Sample records for package-1988 computer code

  1. FPPAC94: A two-dimensional multispecies nonlinear Fokker-Planck package for UNIX systems

    NASA Astrophysics Data System (ADS)

    Mirin, A. A.; McCoy, M. G.; Tomaschke, G. P.; Killeen, J.

    1994-07-01

    FPPAC94 solves the complete nonlinear multispecies Fokker-Planck collison operator for a plasma in two-dimensional velocity space. The operator is expressed in terms of spherical coordinates (speed and pitch angle) under the assumption of azimuthal symmetry. Provision is made for additional physics contributions (e.g. rf heating, electric field acceleration). The charged species, referred to as general species, are assumed to be in the presence of an arbitrary number of fixed Maxwellian species. The electrons may be treated either as one of these Maxwellian species or as a general species. Coulomb interactions among all charged species are considered This program is a new version of FPPAC. FPPAC was last published in Computer Physics Communications in 1988. This new version is identical in scope to the previous version. However, it is written in standard Fortran 77 and is able to execute on a variety of Unix systems. The code has been tested on the Cray-C90, HP-755 and Sun Sparc-1. The answers agree on all platforms where the code has been tested. The test problems are the same as those provided in 1988. This version also corrects a bug in the 1988 version.

  2. The equation of state package FEOS for high energy density matter

    NASA Astrophysics Data System (ADS)

    Faik, Steffen; Tauschwitz, Anna; Iosilevskiy, Igor

    2018-06-01

    Adequate equation of state (EOS) data is of high interest in the growing field of high energy density physics and especially essential for hydrodynamic simulation codes. The semi-analytical method used in the newly developed Frankfurt equation of state (FEOS) package provides an easy and fast access to the EOS of - in principle - arbitrary materials. The code is based on the well known QEOS model (More et al., 1988; Young and Corey, 1995) and is a further development of the MPQeos code (Kemp and Meyer-ter Vehn, 1988; Kemp and Meyer-ter Vehn, 1998) from Max-Planck-Institut für Quantenoptik (MPQ) in Garching Germany. The list of features contains the calculation of homogeneous mixtures of chemical elements and the description of the liquid-vapor two-phase region with or without a Maxwell construction. Full flexibility of the package is assured by its structure: A program library provides the EOS with an interface designed for Fortran or C/C++ codes. Two additional software tools allow for the generation of EOS tables in different file output formats and for the calculation and visualization of isolines and Hugoniot shock adiabats. As an example the EOS of fused silica (SiO2) is calculated and compared to experimental data and other EOS codes.

  3. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  4. Common Ada Missile Packages. Phase 2. (CAMP-2). Volume 2. 11th Missile Demonstration

    DTIC Science & Technology

    1988-11-01

    report describes the work performed, Ihe results obtained, and the conclusions reached during the Common Ada Missile Packages Phase-2 (CAMP-2) contract ... contract was performed between Sep- tember 1985. and March 1988. The MDAC-STL CAMP program manager was: Dr. Daniel G. McNicholl Technology Branch...j DEC Code Management System X X Software Development Files x x Development Status Database x ! X i Smart Cade Counter X j

  5. The Computer Software Rental Amendments Act of 1988. Hearing on S. 2727 before the Subcommittee on Patents, Copyrights and Trrademarks of the Committee on the Judiciary, United States Senate. One Hundredth Congress, Second Session (Provo, Utah, August 24, 1988).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on the Judiciary.

    A statement by Senator Orrin G. Hatch opened the hearing on The Computer Software Rental Amendments Act of 1988, a bill which would amend title 17, United States Code, the Copyright Act, to protect certain computer programs. The text of the bill is then presented, followed by the statements of four witnesses: (1) Dr. Alan C. Ashton, president,…

  6. EPA/Navy CERCLA Remedial Action Technology Guide

    DTIC Science & Technology

    1993-11-01

    Pollution 18:25-36, 1988. Control Association, August 19-21, 1985. 11. Nirmalakhandan, N. N. and R. E. Speece. QSAR Model for Predicting Henry’s...Las Vegas , Nevada. May 1988.. 6. Bergstrom, Wayne R., Gray, Donald H. Fly Ash Utilization 12. Handbook - Remedial Action at Waste Disposal Sites in...of the soil piles should be are needed to confirm that the contaminants of concern can be designed as a package. There are computer models available

  7. NORTICA—a new code for cyclotron analysis

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grote, D. P.

    Forthon generates links between Fortran and Python. Python is a high level, object oriented, interactive and scripting language that allows a flexible and versatile interface to computational tools. The Forthon package generates the necessary wrapping code which allows access to the Fortran database and to the Fortran subroutines and functions. This provides a development package where the computationally intensive parts of a code can be written in efficient Fortran, and the high level controlling code can be written in the much more versatile Python language.

  9. Enhancement of the CAVE computer code. [aerodynamic heating package for nose cones and scramjet engine sidewalls

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.; Burk, H. O.

    1983-01-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  10. MELCOR computer code manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  11. The ENSDF Java Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A.A.

    2005-05-24

    A package of computer codes has been developed to process and display nuclear structure and decay data stored in the ENSDF (Evaluated Nuclear Structure Data File) library. The codes were written in an object-oriented fashion using the java language. This allows for an easy implementation across multiple platforms as well as deployment on web pages. The structure of the different java classes that make up the package is discussed as well as several different implementations.

  12. Enhancement of the CAVE computer code

    NASA Astrophysics Data System (ADS)

    Rathjen, K. A.; Burk, H. O.

    1983-12-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  13. An Interactive Computer Aided Design and Analysis Package.

    DTIC Science & Technology

    1986-03-01

    Al-A167 114 AN INTERACTIVE COMPUTER AIDED DESIGN MUD ANAILYSIS 1/𔃼 PACKAGE(U) NAVAL POSTGRADUATE SCHOOL NONTEREY CA T L EUALD "AR 86 UNCLSSIFIED F... SCHOOL Monterey, California DTIC .LECTE MAYOS THESIS AN INTERACTIVE COMPUTER AIDED DESIGN AND ANALYSIS PACKAGE by Terrence L. Ewald March 1986 jThesis...ORGANIZATION Naval Postgraduate School (if dAp90h81111) Naval Postgraduate School . 62A 6C. ADDRESS (0ty. State, and ZIP Code) 7b. ADDRESS (City State. and

  14. HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics

    NASA Astrophysics Data System (ADS)

    Wiebusch, Martin

    2015-10-01

    This article introduces the Mathematica package HEPMath which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.

  15. Extending R packages to support 64-bit compiled code: An illustration with spam64 and GIMMS NDVI3g data

    NASA Astrophysics Data System (ADS)

    Gerber, Florian; Mösinger, Kaspar; Furrer, Reinhard

    2017-07-01

    Software packages for spatial data often implement a hybrid approach of interpreted and compiled programming languages. The compiled parts are usually written in C, C++, or Fortran, and are efficient in terms of computational speed and memory usage. Conversely, the interpreted part serves as a convenient user-interface and calls the compiled code for computationally demanding operations. The price paid for the user friendliness of the interpreted component is-besides performance-the limited access to low level and optimized code. An example of such a restriction is the 64-bit vector support of the widely used statistical language R. On the R side, users do not need to change existing code and may not even notice the extension. On the other hand, interfacing 64-bit compiled code efficiently is challenging. Since many R packages for spatial data could benefit from 64-bit vectors, we investigate strategies to efficiently pass 64-bit vectors to compiled languages. More precisely, we show how to simply extend existing R packages using the foreign function interface to seamlessly support 64-bit vectors. This extension is shown with the sparse matrix algebra R package spam. The new capabilities are illustrated with an example of GIMMS NDVI3g data featuring a parametric modeling approach for a non-stationary covariance matrix.

  16. BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2011-04-01

    The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.

  17. Optimization and Control of Burning Plasmas Through High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, Alexei

    This project has revived the FACETS code, that has been developed under SciDAC fund- ing in 2008-2012. The code has been dormant for a number of years after the SciDAC funding stopped. FACETS depends on external packages. The external packages and libraries such as PETSc, FFTW, HDF5 and NETCDF that are included in FACETS have evolved during these years. Some packages in FACETS are also parts of other codes such as PlasmaState, NUBEAM, GACODES, and UEDGE. These packages have been also evolved together with their host codes which include TRANSP, TGYRO and XPTOR. Finally, there is also a set ofmore » packages in FACETS that are being developed and maintained by Tech-X. These packages include BILDER, SciMake, and FcioWrappers. Many of these packages evolved significantly during the last several years and FACETS had to be updated to synchronize with the re- cent progress in the external packages. The PI has introduced new changes to the BILDER package to support the updated interfaces to the external modules. During the last year of the project, the FACETS version of the UEDGE code has been extracted from FACETS as a standalone package. The PI collaborates with the scientists from LLNL on the updated UEDGE model in FACETS. Drs. T. Rognlien, M. Umansky and A. Dimits from LLNL are contributing to this task.« less

  18. Determinant Computation on the GPU using the Condensation Method

    NASA Astrophysics Data System (ADS)

    Anisul Haque, Sardar; Moreno Maza, Marc

    2012-02-01

    We report on a GPU implementation of the condensation method designed by Abdelmalek Salem and Kouachi Said for computing the determinant of a matrix. We consider two types of coefficients: modular integers and floating point numbers. We evaluate the performance of our code by measuring its effective bandwidth and argue that it is numerical stable in the floating point number case. In addition, we compare our code with serial implementation of determinant computation from well-known mathematical packages. Our results suggest that a GPU implementation of the condensation method has a large potential for improving those packages in terms of running time and numerical stability.

  19. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  20. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  1. Computer-Aided Design Package for Designers of Digital Optical Computers

    DTIC Science & Technology

    1993-07-01

    Saul Levy, Chun Liew, Masoud Majidi , Donald Smith, and Thomas Stone Final Report for Grant #N00014-90-J-4018 Period Covered: 5/1/90 - 4/30/93 Miles...Logic Arrays," Applied Optics, 27, pp. 1651-1660, (May 1, 1988). [5] Murdocca, M. J., V. Gupta, and M. Majidi , "New Approaches to Digital Optical...Lanzl, F., H.-J. Preuss and G. Wiegelt, eds., Proc. SPIE, vol. 319, Garmisch, Bavaria, pp. 126-127, (1990). Murdocca, M. J., V. Gupta, and M. Majidi

  2. Turbofan noise generation. Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  3. Turbofan noise generation. Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  4. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin

    2018-01-01

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

  5. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  6. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  7. Eddylicious: A Python package for turbulent inflow generation

    NASA Astrophysics Data System (ADS)

    Mukha, Timofey; Liefvendahl, Mattias

    2018-01-01

    A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.

  8. Lewis Structures Technology, 1988. Volume 2: Structural Mechanics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.

  9. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  10. ASP: Automated symbolic computation of approximate symmetries of differential equations

    NASA Astrophysics Data System (ADS)

    Jefferson, G. F.; Carminati, J.

    2013-03-01

    A recent paper (Pakdemirli et al. (2004) [12]) compared three methods of determining approximate symmetries of differential equations. Two of these methods are well known and involve either a perturbation of the classical Lie symmetry generator of the differential system (Baikov, Gazizov and Ibragimov (1988) [7], Ibragimov (1996) [6]) or a perturbation of the dependent variable/s and subsequent determination of the classical Lie point symmetries of the resulting coupled system (Fushchych and Shtelen (1989) [11]), both up to a specified order in the perturbation parameter. The third method, proposed by Pakdemirli, Yürüsoy and Dolapçi (2004) [12], simplifies the calculations required by Fushchych and Shtelen's method through the assignment of arbitrary functions to the non-linear components prior to computing symmetries. All three methods have been implemented in the new MAPLE package ASP (Automated Symmetry Package) which is an add-on to the MAPLE symmetry package DESOLVII (Vu, Jefferson and Carminati (2012) [25]). To our knowledge, this is the first computer package to automate all three methods of determining approximate symmetries for differential systems. Extensions to the theory have also been suggested for the third method and which generalise the first method to systems of differential equations. Finally, a number of approximate symmetries and corresponding solutions are compared with results in the literature.

  11. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    PubMed

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.

    PubMed

    Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld

    2016-08-01

    There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Next-generation acceleration and code optimization for light transport in turbid media using GPUs

    PubMed Central

    Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar

    2010-01-01

    A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498

  14. Software for Computing, Archiving, and Querying Semisimple Braided Monoidal Category Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software package collects various open source and freely available codes and algorithms to compute and archive the categorical data for certain semisimple braided monoidal categories. In particular, it computes the data for of group theoretical categories for academic research.

  15. Study of the TRAC Airfoil Table Computational System

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1999-01-01

    The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.

  16. An Object-Oriented Serial DSMC Simulation Package

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Cai, Chunpei

    2011-05-01

    A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, D L

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program. This document supersedes DOE Evaluation Document for DOT-7A Type A Packaging (Edling 1987), originally issued in 1987 by Monsanto Research Corporation Mound Laboratory (MLM), Miamisburg, Ohio, for the Department of Energy, Securitymore » Evaluation Program (I)P-4. Mound Laboratory issued four revisions to the document between November 1988 and December 1989. In September 1989, the program was transferred to Westinghouse Hanford Company (Westinghouse Hanford) in Richland, Washington. One additional revision was issued in March 1990 by Westinghouse Hanford. This revision reflects the earlier material and incorporates a number of changes. Evaluation and testing activities on 1208 three DOT-7A Program Dockets resulted in the qualification of three new packaging configurations, which are incorporated herein and summarized. This document presents approximately 300 different packagings that have been determined to meet the requirements for a DOT-7A, type A packaging per 49 CFR 178.350.« less

  18. The Weapons Laboratory Technical Library: Automating with ’Stilas’

    DTIC Science & Technology

    1990-03-01

    version of the system to LC in October 1988. -X- A small business specializing in library automation, SIRSI was founded in 1979 by library and...computer specialists, and has a strong reputation based upon the success of their UNIX-based Unicorn Collection Management System. SIRSI offers a complete...system based on the Unicorn and BRS/ Search systems. The contracted STILAS package includes UNISYS hardware, software written in the C language

  19. WOLF: a computer code package for the calculation of ion beam trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, D.L.

    1985-10-01

    The WOLF code solves POISSON'S equation within a user-defined problem boundary of arbitrary shape. The code is compatible with ANSI FORTRAN and uses a two-dimensional Cartesian coordinate geometry represented on a triangular lattice. The vacuum electric fields and equipotential lines are calculated for the input problem. The use may then introduce a series of emitters from which particles of different charge-to-mass ratios and initial energies can originate. These non-relativistic particles will then be traced by WOLF through the user-defined region. Effects of ion and electron space charge are included in the calculation. A subprogram PISA forms part of this codemore » and enables optimization of various aspects of the problem. The WOLF package also allows detailed graphics analysis of the computed results to be performed.« less

  20. Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages

    ERIC Educational Resources Information Center

    Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro

    2017-01-01

    Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…

  1. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  2. An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.

  3. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  4. Development of Fuel Shuffling Module for PHISICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti

    2013-06-01

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less

  5. Lewis Structures Technology, 1988. Volume 3: Structural Integrity Fatigue and Fracture Wind Turbines HOST

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.

  6. Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.

  7. A Graphical User-Interface Development Tool for Intelligent Computer- Assisted Instruction Systems

    DTIC Science & Technology

    1993-09-01

    Wesley Publishing Co., 1991 [HEND 88] Hendler, James A., Expert Systems: The User Interface, Ablex Publishing Corporation, 1988 [WALK 87] Walker, Adrian...Shimeall Code CSSm Assistant Professor, Computer Science Department Naval Postgraduate School Monterey, CA 93943-5000 5. Kepala StafUmum ABRI Mabes ABRI...KASAU Mabes TNI-AU, JI. Gatot Subroto No. 72, Jakarta Timur, Indonesia 8. Diraeroau Mabes TNI-AU, J1. Gatot Subroto No. 72, Jakarta Timur, Indonesia 9

  8. Potential Flow Theory and Operation Guide for the Panel Code PMARC. Version 14

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1999-01-01

    The theoretical basis for PMARC, a low-order panel code for modeling complex three-dimensional bodies, in potential flow, is outlined. PMARC can be run on a wide variety of computer platforms, including desktop machines, workstations, and supercomputers. Execution times for PMARC vary tremendously depending on the computer resources used, but typically range from several minutes for simple or moderately complex cases to several hours for very large complex cases. Several of the advanced features currently included in the code, such as internal flow modeling, boundary layer analysis, and time-dependent flow analysis, including problems involving relative motion, are discussed in some detail. The code is written in Fortran77, using adjustable-size arrays so that it can be easily redimensioned to match problem requirements and computer hardware constraints. An overview of the program input is presented. A detailed description of the input parameters is provided in the appendices. PMARC results for several test cases are presented along with analytic or experimental data, where available. The input files for these test cases are given in the appendices. PMARC currently supports plotfile output formats for several commercially available graphics packages. The supported graphics packages are Plot3D, Tecplot, and PmarcViewer.

  9. Annual Review of Progress in Applied Computational Electromagnetics (4th), Held in Monterey, California on March 22-24, 1988

    DTIC Science & Technology

    1988-03-24

    1430-1445 BREAK 1445-1645 EM CODE USERS PANEL DISCUSSION. Chaired by Wkn Breakal of LLNL. User community sugqestlons on needed enhancemento for EM Codes...I -"FINITE DIFFERENCE & FINITE ELEMENT METHC"S" Moderator: David E . Stein The LTV Aerospace and Defense Company "A Firite Element Analysis of...conduction (resulting from charge movement) or displacement ( e ,0 E /Wt) terms. The sum of these current densities are referred to as the Maxwell current

  10. Emulation of the Active Immune Response in a Computer Network

    DTIC Science & Technology

    2009-01-15

    the Code Red worm propagated faster than the Melissa virus in 1999 and much faster than Morris’ worm in 1988. In the case of the Code Red worm, only...report to AFRL on contract #30602-01-0509, Binghamton NY, 2002, 2. Skormin, V.A., Delgado-Frias, J.G., McGee, D.L., Giordano , J.V., Popyack, L.J...V., Delgado-Frias J., McGee D., Giordano J., Popyack L.. Tarakanov A., "BASIS: A Biological Approach to System Information Security," ^2

  11. EFTofPNG: a package for high precision computation with the effective field theory of post-Newtonian gravity

    NASA Astrophysics Data System (ADS)

    Levi, Michele; Steinhoff, Jan

    2017-12-01

    We present a novel public package ‘EFTofPNG’ for high precision computation in the effective field theory of post-Newtonian (PN) gravity, including spins. We created this package in view of the timely need to publicly share automated computation tools, which integrate the various types of physics manifested in the expected increasing influx of gravitational wave (GW) data. Hence, we created a free and open source package, which is self-contained, modular, all-inclusive, and accessible to the classical gravity community. The ‘EFTofPNG’ Mathematica package also uses the power of the ‘xTensor’ package, suited for complicated tensor computation, where our coding also strategically approaches the generic generation of Feynman contractions, which is universal to all perturbation theories in physics, by efficiently treating n-point functions as tensors of rank n. The package currently contains four independent units, which serve as subsidiaries to the main one. Its final unit serves as a pipeline chain for the obtainment of the final GW templates, and provides the full computation of derivatives and physical observables of interest. The upcoming ‘EFTofPNG’ package version 1.0 should cover the point mass sector, and all the spin sectors, up to the fourth PN order, and the two-loop level. We expect and strongly encourage public development of the package to improve its efficiency, and to extend it to further PN sectors, and observables useful for the waveform modelling.

  12. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    NASA Astrophysics Data System (ADS)

    Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo

    2016-09-01

    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.

  13. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  14. PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles

    1999-01-01

    In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.

  15. beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types

    PubMed Central

    Pagès, Hervé

    2018-01-01

    Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set. PMID:29723188

  16. beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types.

    PubMed

    Lun, Aaron T L; Pagès, Hervé; Smith, Mike L

    2018-05-01

    Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.

  17. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    PubMed Central

    Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.

    2010-01-01

    Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to −4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118

  18. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  19. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  20. LARC: computer codes for Lagrangian analysis of stress-gauge data to obtain decomposition rates through correlation to thermodynamic variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A.B.; Wackerle, J.

    1983-07-01

    This report describes a package of five computer codes for analyzing stress-gauge data from shock-wave experiments on reactive materials. The aim of the analysis is to obtain rate laws from experiment. A Lagrangian analysis of the stress records, performed by program LANAL, provides flow histories of particle velocity, density, and energy. Three postprocessing programs, LOOKIT, LOOK1, and LOOK2, are included in the package of codes for producing graphical output of the results of LANAL. Program RATE uses the flow histories in conjunction with an equation of state to calculate reaction-rate histories. RATE can be programmed to examine correlations between themore » rate histories and thermodynamic variables. Observed correlations can be incorporated into an appropriately parameterized rate law. Program RATE determines the values of these parameters that best reproduce the observed rate histories. The procedure is illustrated with a sample problem.« less

  1. VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS

    NASA Technical Reports Server (NTRS)

    Wang, C.

    1994-01-01

    VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.

  2. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    NASA Astrophysics Data System (ADS)

    Frisoni, Manuela

    2016-03-01

    ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1) containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2) containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG) of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E) are shown and discussed in this paper.

  3. qtcm 0.1.2: A Python Implementation of the Neelin-Zeng Quasi-Equilibrium Tropical Circulation model

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-B.

    2008-10-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiled languages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionality available with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Python to create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran to optimize model performance, but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone, and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  4. qtcm 0.1.2: a Python implementation of the Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-B.

    2009-02-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiled languages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionality available with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Python to create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran to optimize model performance, but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone, and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  5. A Python Implementation of an Intermediate-Level Tropical Circulation Model and Implications for How Modeling Science is Done

    NASA Astrophysics Data System (ADS)

    Lin, J. W. B.

    2015-12-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiledlanguages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionalityavailable with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Pythonto create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran, to optimize model performance but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  6. Development of high performance scientific components for interoperability of computing packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulabani, Teena Pratap

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less

  7. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Large Packaging identification codes. 178.905... FOR PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code designations consist of: two numerals specified in paragraph (a) of this section; followed by...

  8. The VENUS/NWChem software package. Tight coupling between chemical dynamics simulations and electronic structure theory

    NASA Astrophysics Data System (ADS)

    Lourderaj, Upakarasamy; Sun, Rui; Kohale, Swapnil C.; Barnes, George L.; de Jong, Wibe A.; Windus, Theresa L.; Hase, William L.

    2014-03-01

    The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface that accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized.

  9. JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices

    NASA Astrophysics Data System (ADS)

    Bollhöfer, Matthias; Notay, Yvan

    2007-12-01

    A new software code for computing selected eigenvalues and associated eigenvectors of a real symmetric matrix is described. The eigenvalues are either the smallest or those closest to some specified target, which may be in the interior of the spectrum. The underlying algorithm combines the Jacobi-Davidson method with efficient multilevel incomplete LU (ILU) preconditioning. Key features are modest memory requirements and robust convergence to accurate solutions. Parameters needed for incomplete LU preconditioning are automatically computed and may be updated at run time depending on the convergence pattern. The software is easy to use by non-experts and its top level routines are written in FORTRAN 77. Its potentialities are demonstrated on a few applications taken from computational physics. Program summaryProgram title: JADAMILU Catalogue identifier: ADZT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 359 No. of bytes in distributed program, including test data, etc.: 7 493 144 Distribution format: tar.gz Programming language: Fortran 77 Computer: Intel or AMD with g77 and pgf; Intel EM64T or Itanium with ifort; AMD Opteron with g77, pgf and ifort; Power (IBM) with xlf90. Operating system: Linux, AIX RAM: problem dependent Word size: real:8; integer: 4 or 8, according to user's choice Classification: 4.8 Nature of problem: Any physical problem requiring the computation of a few eigenvalues of a symmetric matrix. Solution method: Jacobi-Davidson combined with multilevel ILU preconditioning. Additional comments: We supply binaries rather than source code because JADAMILU uses the following external packages: MC64. This software is copyrighted software and not freely available. COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Councils. AMD. Copyright (c) 2004-2006 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. Source code is distributed by the authors under the GNU LGPL licence. BLAS. The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. LAPACK. The complete LAPACK package or individual routines from LAPACK are freely available on netlib and can be obtained via the World Wide Web or anonymous ftp. For maximal benefit to the community, we added the sources we are proprietary of to the tar.gz file submitted for inclusion in the CPC library. However, as explained in the README file, users willing to compile the code instead of using binaries should first obtain the sources for the external packages mentioned above (email and/or web addresses are provided). Running time: Problem dependent; the test examples provided with the code only take a few seconds to run; timing results for large scale problems are given in Section 5.

  10. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less

  11. Basic mathematical function libraries for scientific computation

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.

  12. Space-Shuttle Emulator Software

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram; hide

    2007-01-01

    A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.

  13. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  14. Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier; Popov, Emilian L.; Pointer, William David

    This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.

  15. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  16. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... has the meaning given in section 1253(b)(1) and includes any agreement that provides one of the...-readable code) that is designed to cause a computer to perform a desired function or set of functions, and...

  17. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... has the meaning given in section 1253(b)(1) and includes any agreement that provides one of the...-readable code) that is designed to cause a computer to perform a desired function or set of functions, and...

  18. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  19. ATLAS software configuration and build tool optimisation

    NASA Astrophysics Data System (ADS)

    Rybkin, Grigory; Atlas Collaboration

    2014-06-01

    ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.

  20. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less

  1. Scoria: a Python module for manipulating 3D molecular data.

    PubMed

    Ropp, Patrick; Friedman, Aaron; Durrant, Jacob D

    2017-09-18

    Third-party packages have transformed the Python programming language into a powerful computational-biology tool. Package installation is easy for experienced users, but novices sometimes struggle with dependencies and compilers. This presents a barrier that can hinder the otherwise broad adoption of new tools. We present Scoria, a Python package for manipulating three-dimensional molecular data. Unlike similar packages, Scoria requires no dependencies, compilation, or system-wide installation. One can incorporate the Scoria source code directly into their own programs. But Scoria is not designed to compete with other similar packages. Rather, it complements them. Our package leverages others (e.g. NumPy, SciPy), if present, to speed and extend its own functionality. To show its utility, we use Scoria to analyze a molecular dynamics trajectory. Our FootPrint script colors the atoms of one chain by the frequency of their contacts with a second chain. We are hopeful that Scoria will be a useful tool for the computational-biology community. A copy is available for download free of charge (Apache License 2.0) at http://durrantlab.com/scoria/ . Graphical abstract .

  2. Structural Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Collier Research and Development Corporation received a one-of-a-kind computer code for designing exotic hypersonic aircraft called ST-SIZE in the first ever Langley Research Center software copyright license agreement. Collier transformed the NASA computer code into a commercial software package called HyperSizer, which integrates with other Finite Element Modeling and Finite Analysis private-sector structural analysis program. ST-SIZE was chiefly conceived as a means to improve and speed the structural design of a future aerospace plane for Langley Hypersonic Vehicles Office. Including the NASA computer code into HyperSizer has enabled the company to also apply the software to applications other than aerospace, including improved design and construction for offices, marine structures, cargo containers, commercial and military aircraft, rail cars, and a host of everyday consumer products.

  3. The NJOY Nuclear Data Processing System, Version 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macfarlane, Robert; Muir, Douglas W.; Boicourt, R. M.

    The NJOY Nuclear Data Processing System, version 2016, is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from evaluated nuclear data in the ENDF-4 through ENDF-6 legacy card-image formats. NJOY works with evaluated files for incident neutrons, photons, and charged particles, producing libraries for a wide variety of particle transport and reactor analysis codes.

  4. AstroBlend: Visualization package for use with Blender

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.

    2015-12-01

    AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

  5. BCM-2.0 - The new version of computer code ;Basic Channeling with Mathematica©;

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Korotchenko, K. B.; Pivovarov, Yu. L.; Rozhkova, E. I.; Tukhfatullin, T. A.; Eikhorn, Yu. L.

    2017-07-01

    The new symbolic-numerical code devoted to investigation of the channeling phenomena in periodic potential of a crystal has been developed. The code has been written in Wolfram Language taking advantage of analytical programming method. Newly developed different packages were successfully applied to simulate scattering, radiation, electron-positron pair production and other effects connected with channeling of relativistic particles in aligned crystal. The result of the simulation has been validated against data from channeling experiments carried out at SAGA LS.

  6. NARMER-1: a photon point-kernel code with build-up factors

    NASA Astrophysics Data System (ADS)

    Visonneau, Thierry; Pangault, Laurence; Malouch, Fadhel; Malvagi, Fausto; Dolci, Florence

    2017-09-01

    This paper presents an overview of NARMER-1, the new generation of photon point-kernel code developed by the Reactor Studies and Applied Mathematics Unit (SERMA) at CEA Saclay Center. After a short introduction giving some history points and the current context of development of the code, the paper exposes the principles implemented in the calculation, the physical quantities computed and surveys the generic features: programming language, computer platforms, geometry package, sources description, etc. Moreover, specific and recent features are also detailed: exclusion sphere, tetrahedral meshes, parallel operations. Then some points about verification and validation are presented. Finally we present some tools that can help the user for operations like visualization and pre-treatment.

  7. CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations

    NASA Astrophysics Data System (ADS)

    Naik, Mit H.; Jain, Manish

    2018-05-01

    Charged point defects in materials are widely studied using Density Functional Theory (DFT) packages with periodic boundary conditions. The formation energy and defect level computed from these simulations need to be corrected to remove the contributions from the spurious long-range interaction between the defect and its periodic images. To this effect, the CoFFEE code implements the Freysoldt-Neugebauer-Van de Walle (FNV) correction scheme. The corrections can be applied to charged defects in a complete range of material shapes and size: bulk, slab (or two-dimensional), wires and nanoribbons. The code is written in Python and features MPI parallelization and optimizations using the Cython package for slow steps.

  8. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  9. Computer-Delivered Interventions for Health Promotion and Behavioral Risk Reduction: A Meta-Analysis of 75 Randomized Controlled Trials, 1988 – 2007

    PubMed Central

    Portnoy, David B.; Scott-Sheldon, Lori A. J.; Johnson, Blair T.; Carey, Michael P.

    2008-01-01

    Objective Use of computers to promote healthy behavior is increasing. To evaluate the efficacy of these computer-delivered interventions, we conducted a meta-analysis of the published literature. Method Studies examining health domains related to the leading health indicators outlined in Healthy People 2010 were selected. Data from 75 randomized controlled trials, published between 1988 and 2007, with 35,685 participants and 82 separate interventions were included. All studies were coded independently by two raters for study and participant characteristics, design and methodology, and intervention content. We calculated weighted mean effect sizes for theoretically-meaningful psychosocial and behavioral outcomes; moderator analyses determined the relation between study characteristics and the magnitude of effect sizes for heterogeneous outcomes. Results Compared with controls, participants who received a computer-delivered intervention improved several hypothesized antecedents of health behavior (knowledge, attitudes, intentions); intervention recipients also improved health behaviors (nutrition, tobacco use, substance use, safer sexual behavior, binge/purge behaviors) and general health maintenance. Several sample, study and intervention characteristics moderated the psychosocial and behavioral outcomes. Conclusion Computer-delivered interventions can lead to improved behavioral health outcomes at first post-intervention assessment. Interventions evaluating outcomes at extended assessment periods are needed to evaluate the longer-term efficacy of computer-delivered interventions. PMID:18403003

  10. NPTFit: A Code Package for Non-Poissonian Template Fitting

    NASA Astrophysics Data System (ADS)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2017-06-01

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ˜GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allow for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.

  11. LONGLIB - A GRAPHICS LIBRARY

    NASA Technical Reports Server (NTRS)

    Long, D.

    1994-01-01

    This library is a set of subroutines designed for vector plotting to CRT's, plotters, dot matrix, and laser printers. LONGLIB subroutines are invoked by program calls similar to standard CALCOMP routines. In addition to the basic plotting routines, LONGLIB contains an extensive set of routines to allow viewport clipping, extended character sets, graphic input, shading, polar plots, and 3-D plotting with or without hidden line removal. LONGLIB capabilities include surface plots, contours, histograms, logarithm axes, world maps, and seismic plots. LONGLIB includes master subroutines, which are self-contained series of commonly used individual subroutines. When invoked, the master routine will initialize the plotting package, and will plot multiple curves, scatter plots, log plots, 3-D plots, etc. and then close the plot package, all with a single call. Supported devices include VT100 equipped with Selanar GR100 or GR100+ boards, VT125s, VT240s, VT220 equipped with Selanar SG220, Tektronix 4010/4014 or 4107/4109 and compatibles, and Graphon GO-235 terminals. Dot matrix printer output is available by using the provided raster scan conversion routines for DEC LA50, Printronix printers, and high or low resolution Trilog printers. Other output devices include QMS laser printers, Postscript compatible laser printers, and HPGL compatible plotters. The LONGLIB package includes the graphics library source code, an on-line help library, scan converter and meta file conversion programs, and command files for installing, creating, and testing the library. The latest version, 5.0, is significantly enhanced and has been made more portable. Also, the new version's meta file format has been changed and is incompatible with previous versions. A conversion utility is included to port the old meta files to the new format. Color terminal plotting has been incorporated. LONGLIB is written in FORTRAN 77 for batch or interactive execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985, and last updated in 1988.

  12. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  13. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  14. YAMM - Yet Another Menu Manager

    NASA Technical Reports Server (NTRS)

    Mazer, Alan S.; Weidner, Richard J.

    1991-01-01

    Yet Another Menu Manager (YAMM) computer program an application-independent menuing package of software designed to remove much difficulty and save much time inherent in implementation of front ends of large packages of software. Provides complete menuing front end for wide variety of applications, with provisions for independence from specific types of terminals, configurations that meet specific needs of users, and dynamic creation of menu trees. Consists of two parts: description of menu configuration and body of application code. Written in C.

  15. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code

    PubMed Central

    Qiao, Shan; Jackson, Edward; Coussios, Constantin C.; Cleveland, Robin O.

    2016-01-01

    Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools. PMID:27914432

  16. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code.

    PubMed

    Qiao, Shan; Jackson, Edward; Coussios, Constantin C; Cleveland, Robin O

    2016-09-01

    Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.

  17. Optimization of large matrix calculations for execution on the Cray X-MP vector supercomputer

    NASA Technical Reports Server (NTRS)

    Hornfeck, William A.

    1988-01-01

    A considerable volume of large computational computer codes were developed for NASA over the past twenty-five years. This code represents algorithms developed for machines of earlier generation. With the emergence of the vector supercomputer as a viable, commercially available machine, an opportunity exists to evaluate optimization strategies to improve the efficiency of existing software. This result is primarily due to architectural differences in the latest generation of large-scale machines and the earlier, mostly uniprocessor, machines. A sofware package being used by NASA to perform computations on large matrices is described, and a strategy for conversion to the Cray X-MP vector supercomputer is also described.

  18. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  19. Spatial Computation

    DTIC Science & Technology

    2003-12-01

    POPL), pages 146–157, 1988 . 207 [HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A million lines of C code in a second...provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently...RESPONSIBLE PERSON a . REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39

  20. Compilation of Abstracts of Theses Submitted by Candidates for Degrees: October 1988 to September 1989

    DTIC Science & Technology

    1989-09-30

    to accommodate peripherally non -uniform flow modelling free of experimental uncertainties. It was effects (blockage) in the throughflow code...combines that experimental control functions with a detail in this thesis, and the results of a computer menu-driven, diagnostic subsystem to ensure...equations and design a complete (DSL) for both linear and non -linear models and automatic control system for the three dimensional compared. Cross

  1. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  2. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  3. WDEC: A Code for Modeling White Dwarf Structure and Pulsations

    NASA Astrophysics Data System (ADS)

    Bischoff-Kim, Agnès; Montgomery, Michael H.

    2018-05-01

    The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (∼100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.

  4. Argonne National Laboratory-East site environmental report for calendar year 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, N.W.; Kolzow, R.G.

    1999-08-26

    This report discusses the results of the environmental protection program at Argonne National Laboratory-East (ANL-E) for 1998. To evaluate the effects of ANL-E operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL-E site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL-E effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups wasmore » estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL-E, and other) and are compared with applicable environmental quality standards. A US Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the US Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report. The status of ANL-E environmental protection activities with respect to the various laws and regulations that govern waste handling and disposal is discussed, along with the progress of environmental corrective actions and restoration projects.« less

  5. NORAD LOOK ANGLES AND PIO SATELLITE PACKAGE

    NASA Technical Reports Server (NTRS)

    ANONYMOUS

    1994-01-01

    This program package consists of two programs. First is the NORAD Look Angles Program, which computes satellite look angles (azimuth, elevation, and range) as well as the subsatellite points (latitude, longitude, and height). The second program in this package is the PIO Satellite Program, which computes sighting directions, visibility times, and the maximum elevation angle attained during each pass of an earth-orbiting satellite. Computations take into consideration the observing location and the effect of the earth's shadow on the satellite visibility. Input consists of a magnetic tape prepared by the NORAD Look Angles Program and punched cards containing reference Julian date, right ascension, declination, mean sidereal time at zero hours universal time of the reference date, and daily changes of these quantities. Output consists of a tabulated listing of the satellite's rise and set times, direction, and the maximum elevation angle visible from each observing location. This program has been implemented on the GE 635. The program Assembler code can easily be replaced by FORTRAN statements.

  6. ChemoPy: freely available python package for computational biology and chemoinformatics.

    PubMed

    Cao, Dong-Sheng; Xu, Qing-Song; Hu, Qian-Nan; Liang, Yi-Zeng

    2013-04-15

    Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Supplementary data are available at Bioinformatics online.

  7. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  8. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  9. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  10. Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack

    Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.

  11. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  12. Computer-assisted instruction: a library service for the community teaching hospital.

    PubMed

    McCorkel, J; Cook, V

    1986-04-01

    This paper reports on five years of experience with computer-assisted instruction (CAI) at Winthrop-University Hospital, a major affiliate of the SUNY at Stony Brook School of Medicine. It compares CAI programs available from Ohio State University and Massachusetts General Hospital (accessed by telephone and modem), and software packages purchased from the Health Sciences Consortium (MED-CAPS) and Scientific American (DISCOTEST). The comparison documents one library's experience of the cost of these programs and the use made of them by medical students, house staff, and attending physicians. It describes the space allocated for necessary equipment, as well as the marketing of CAI. Finally, in view of the decision of the National Board of Medical Examiners to administer the Part III examination on computer (the so-called CBX) starting in 1988, the paper speculates on the future importance of CAI in the community teaching hospital.

  13. Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package

    USGS Publications Warehouse

    Borsia, I.; Rossetto, R.; Schifani, C.; Hill, Mary C.

    2013-01-01

    In this paper two modifications to the MODFLOW code are presented. One concerns an extension of Local Grid Refinement (LGR) to Variable Saturated Flow process (VSF) capability. This modification allows the user to solve the 3D Richards’ equation only in selected parts of the model domain. The second modification introduces a new package, named CFL (Cascading Flow), which improves the computation of overland flow when ground surface saturation is simulated using either VSF or the Unsaturated Zone Flow (UZF) package. The modeling concepts are presented and demonstrated. Programmer documentation is included in appendices.

  14. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  15. 75 FR 63524 - Computer Matching and Privacy Protection Act of 1988; Report of Matching Program: RRB and State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... RAILROAD RETIREMENT BOARD Computer Matching and Privacy Protection Act of 1988; Report of Matching... Railroad Retirement Act. SUMMARY: As required by the Computer Matching and Privacy Protection Act of [[Page...: Under certain circumstances, the Computer Matching and Privacy Protection Act of 1988, Public Law 100...

  16. Creation of a full color geologic map by computer: A case history from the Port Moller project resource assessment, Alaska Peninsula: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Wilson, Frederic H.

    1989-01-01

    Graphics programs on computers can facilitate the compilation and production of geologic maps, including full color maps of publication quality. This paper describes the application of two different programs, GSMAP and ARC/INFO, to the production of a geologic map of the Port Meller and adjacent 1:250,000-scale quadrangles on the Alaska Peninsula. GSMAP was used at first because of easy digitizing on inexpensive computer hardware. Limitations in its editing capability led to transfer of the digital data to ARC/INFO, a Geographic Information System, which has better editing and also added data analysis capability. Although these improved capabilities are accompanied by increased complexity, the availability of ARC/INFO's data analysis capability provides unanticipated advantages. It allows digital map data to be processed as one of multiple data layers for mineral resource assessment. As a result of development of both software packages, it is now easier to apply both software packages to geologic map production. Both systems accelerate the drafting and revision of maps and enhance the compilation process. Additionally, ARC/ INFO's analysis capability enhances the geologist's ability to develop answers to questions of interest that were previously difficult or impossible to obtain.

  17. Design Aspects of the Rayleigh Convection Code

    NASA Astrophysics Data System (ADS)

    Featherstone, N. A.

    2017-12-01

    Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.

  18. Deployment of the OSIRIS EM-PIC code on the Intel Knights Landing architecture

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2017-10-01

    Electromagnetic particle-in-cell (EM-PIC) codes such as OSIRIS have found widespread use in modelling the highly nonlinear and kinetic processes that occur in several relevant plasma physics scenarios, ranging from astrophysical settings to high-intensity laser plasma interaction. Being computationally intensive, these codes require large scale HPC systems, and a continuous effort in adapting the algorithm to new hardware and computing paradigms. In this work, we report on our efforts on deploying the OSIRIS code on the new Intel Knights Landing (KNL) architecture. Unlike the previous generation (Knights Corner), these boards are standalone systems, and introduce several new features, include the new AVX-512 instructions and on-package MCDRAM. We will focus on the parallelization and vectorization strategies followed, as well as memory management, and present a detailed performance evaluation of code performance in comparison with the CPU code. This work was partially supported by Fundaçã para a Ciência e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014.

  19. Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package

    PubMed Central

    Ahn, Woo-Young; Haines, Nathaniel; Zhang, Lei

    2017-01-01

    Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric patients, and there is growing enthusiasm for both RLDM and computational psychiatry among clinical researchers. Such a framework can also provide insights into the brain substrates of particular RLDM processes, as exemplified by model-based analysis of data from functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, researchers often find the approach too technical and have difficulty adopting it for their research. Thus, a critical need remains to develop a user-friendly tool for the wide dissemination of computational psychiatric methods. We introduce an R package called hBayesDM (hierarchical Bayesian modeling of Decision-Making tasks), which offers computational modeling of an array of RLDM tasks and social exchange games. The hBayesDM package offers state-of-the-art hierarchical Bayesian modeling, in which both individual and group parameters (i.e., posterior distributions) are estimated simultaneously in a mutually constraining fashion. At the same time, the package is extremely user-friendly: users can perform computational modeling, output visualization, and Bayesian model comparisons, each with a single line of coding. Users can also extract the trial-by-trial latent variables (e.g., prediction errors) required for model-based fMRI/EEG. With the hBayesDM package, we anticipate that anyone with minimal knowledge of programming can take advantage of cutting-edge computational-modeling approaches to investigate the underlying processes of and interactions between multiple decision-making (e.g., goal-directed, habitual, and Pavlovian) systems. In this way, we expect that the hBayesDM package will contribute to the dissemination of advanced modeling approaches and enable a wide range of researchers to easily perform computational psychiatric research within different populations. PMID:29601060

  20. Computation of Standard Errors

    PubMed Central

    Dowd, Bryan E; Greene, William H; Norton, Edward C

    2014-01-01

    Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304

  1. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGEmore » code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented and discussed.« less

  2. The Computer Aided Aircraft-design Package (CAAP)

    NASA Technical Reports Server (NTRS)

    Yalif, Guy U.

    1994-01-01

    The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the 1970's, many computer programs have been written to help automate preliminary airplane design. Time and resource analyses have identified, 'a substantial decrease in project duration with the introduction of an automated design capability'. Proof-of-concept studies have been completed which establish 'a foundation for a computer-based airframe design capability', Unfortunately, today's design codes exist in many different languages on many, often expensive, hardware platforms. Through the use of a module-based system architecture, the Computer aided Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of existing programs. Through the use of an expert system, it will add an additional feature that could be described as indispensable to entry level engineers and students: the incorporation of 'expert' knowledge into the automated design process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiller, Mauritius M.; Veinot, Kenneth G.; Easterly, Clay E.

    In this study, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 10 5 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Althoughmore » the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.« less

  4. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs.

    PubMed

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-05-28

    Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.

  5. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs

    PubMed Central

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-01-01

    Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045

  6. 77 FR 39748 - Computer Matching and Privacy Protection Act of 1988; Report of Matching Program: RRB and State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... RAILROAD RETIREMENT BOARD Computer Matching and Privacy Protection Act of 1988; Report of Matching.... General The Computer Matching and Privacy Protection Act of 1988 (Pub. L. 100-503), amended the Privacy... of an existing computer matching program due to expire on August 12, 2012. SUMMARY: The Privacy Act...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharibyan, N.

    In order to fully characterize the NIF neutron spectrum, SAND-II-SNL software was requested/received from the Radiation Safety Information Computational Center. The software is designed to determine the neutron energy spectrum through analysis of experimental activation data. However, given that the source code was developed in Sparcstation 10, it is not compatible with current version of FORTRAN. Accounts have been established through the Lawrence Livermore National Laboratory’s High Performance Computing in order to access different compiles for FORTRAN (e.g. pgf77, pgf90). Additionally, several of the subroutines included in the SAND-II-SNL package have required debugging efforts to allow for proper compiling ofmore » the code.« less

  8. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  9. NPTFit: A Code Package for Non-Poissonian Template Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R., E-mail: smsharma@princeton.edu, E-mail: nrodd@mit.edu, E-mail: bsafdi@mit.edu

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ∼GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allowmore » for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.« less

  10. Computer Courseware Evaluations. January 1988 to December 1988. Volume VIII.

    ERIC Educational Resources Information Center

    Riome, Carol-Anne, Comp.

    The eighth in a series, this report reviews microcomputer software authorized by the Alberta (Canada) Department of Education from January 1988 through December 1988. This edition provides detailed evaluations of 40 authorized programs for teaching business education, computer literacy, databases, file management, French, information retrieval,…

  11. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  12. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  13. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  14. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  15. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE PAGES

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.; ...

    2017-07-31

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  16. Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Hindmarsh, Alan C.

    1993-01-01

    LSODE, the Livermore Solver for Ordinary Differential Equations, is a package of FORTRAN subroutines designed for the numerical solution of the initial value problem for a system of ordinary differential equations. It is particularly well suited for 'stiff' differential systems, for which the backward differentiation formula method of orders 1 to 5 is provided. The code includes the Adams-Moulton method of orders 1 to 12, so it can be used for nonstiff problems as well. In addition, the user can easily switch methods to increase computational efficiency for problems that change character. For both methods a variety of corrector iteration techniques is included in the code. Also, to minimize computational work, both the step size and method order are varied dynamically. This report presents complete descriptions of the code and integration methods, including their implementation. It also provides a detailed guide to the use of the code, as well as an illustrative example problem.

  17. The internet worm

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    In November 1988 a worm program invaded several thousand UNIX-operated Sun workstations and VAX computers attached to the Research Internet, seriously disrupting service for several days but damaging no files. An analysis of the work's decompiled code revealed a battery of attacks by a knowledgeable insider, and demonstrated a number of security weaknesses. The attack occurred in an open network, and little can be inferred about the vulnerabilities of closed networks used for critical operations. The attack showed that passwork protection procedures need review and strengthening. It showed that sets of mutually trusting computers need to be carefully controlled. Sharp public reaction crystalized into a demand for user awareness and accountability in a networked world.

  18. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less

  19. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1988-01-01

    A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.

  20. MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science

    NASA Astrophysics Data System (ADS)

    Sébilleau, Didier; Natoli, Calogero; Gavaza, George M.; Zhao, Haifeng; Da Pieve, Fabiana; Hatada, Keisuke

    2011-12-01

    We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile. Program summaryProgram title: MsSpec-1.0 Catalogue identifier: AEJT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 504 438 No. of bytes in distributed program, including test data, etc.: 14 448 180 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any Operating system: Linux, MacOs RAM: Bytes Classification: 7.2 External routines: Lapack ( http://www.netlib.org/lapack/) Nature of problem: Calculation of the cross-section of various spectroscopies. Solution method: Multiple scattering. Running time: The test runs provided only take a few seconds to run.

  1. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic earthquake rupture; SNAC, a developing 3-D coded based on the FLAC method for visco-elastoplastic deformation; SNARK, a 3-D FE-PIC method for viscoplastic deformation; and gPLATES an open source paleogeographic/plate tectonics modeling package. We will demonstrate how codes can be linked with themselves, such as a regional and global model of mantle convection and a visco-elastoplastic representation of the crust within viscous mantle flow. Finally, we will describe how http://GeoFramework.org has become a distribution site for a suite of modeling software in geophysics.

  2. PlasmaPy: initial development of a Python package for plasma physics

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community

    2017-10-01

    We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.

  3. Draco,Version 6.x.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Kelly; Budge, Kent; Lowrie, Rob

    2016-03-03

    Draco is an object-oriented component library geared towards numerically intensive, radiation (particle) transport applications built for parallel computing hardware. It consists of semi-independent packages and a robust build system. The packages in Draco provide a set of components that can be used by multiple clients to build transport codes. The build system can also be extracted for use in clients. Software includes smart pointers, Design-by-Contract assertions, unit test framework, wrapped MPI functions, a file parser, unstructured mesh data structures, a random number generator, root finders and an angular quadrature component.

  4. Computer Based Instruction in the U.S. Army’s Entry Level Enlisted Training.

    DTIC Science & Technology

    1985-03-13

    rosters with essential personal data, and graduation rosters with class standings and printed diplomas. The computer also managed the progress of the...discussion is presented in Chapter Three. Methods of Employment Course administration. In 1980 the US Army Research Center for Behaviorial and Social Studies...contained in Appendix C. Data Presentation All responses from the questionaires were coded for use by the Statistical Package for the Social Sciences

  5. Proceedings of Conference on Variable-Resolution Modeling, Washington, DC, 5-6 May 1992

    DTIC Science & Technology

    1992-05-01

    of powerful new computer architectures for supporting object-oriented computing. Objects, as self -contained data-code packages with orderly...another entity structure. For example, (copy-entstr e:sys- tcm ’ new -system) creates an entity structure named c:new-system that has the same structure...324 Parry, S-H. (1984): A Self -contained Hierarchical Model Construct. In: Systems Analysis and Modeling in Defense (R.K. Huber, Ed.), New York

  6. Supercomputing '91; Proceedings of the 4th Annual Conference on High Performance Computing, Albuquerque, NM, Nov. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)

  7. Using virtualization to protect the proprietary material science applications in volunteer computing

    NASA Astrophysics Data System (ADS)

    Khrapov, Nikolay P.; Rozen, Valery V.; Samtsevich, Artem I.; Posypkin, Mikhail A.; Sukhomlin, Vladimir A.; Oganov, Artem R.

    2018-04-01

    USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.

  8. A Zeus++ Code Tool, a Method for Implementing Same, and Storage Medium Storing Computer Readable Instructions for Instantiating the Zeus++ Code Tool

    DTIC Science & Technology

    1999-12-01

    applications, it should be understood that the invention is not limited thereto. Those having - 9 - Navy Case No. 79694 ordinary skill in the art and access...processing. It should also be mentioned that Tecplot is a commercial plotting software package produced by Amtec Engineering, Inc. The following...conditions) 7. Ch (base on edge conditions) -43- 10 Navy Case No. 79694 8. Ch (base on reference conditions) 9 . Momentum thickness 10. Displacement

  9. The U. S. Department of Energy SARP review training program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauck, C.J.

    1988-01-01

    In support of its radioactive material packaging certification program, the U.S. Department of Energy (DOE) has established a special training workshop. The purpose of the two-week workshop is to develop skills in reviewing Safety Analysis Reports for Packagings (SARPs) and performing confirmatory analyses. The workshop, conducted by the Lawrence Livermore National Laboratory (LLNL) for DOE, is divided into two parts: methods of review and methods of analysis. The sessions covering methods of review are based on the DOE document, ''Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings'' (PRG). The sessions cover relevant DOE Orders and all areas ofmore » review in the applicable Nuclear Regulatory Commission (NRC) Regulatory Guides. The technical areas addressed include structural and thermal behavior, materials, shielding, criticality, and containment. The course sessions on methods of analysis provide hands-on experience in the use of calculational methods and codes for reviewing SARPs. Analytical techniques and computer codes are discussed and sample problems are worked. Homework is assigned each night and over the included weekend; at the conclusion, a comprehensive take-home examination is given requiring six to ten hours to complete.« less

  10. Reducing statistical uncertainties in simulated organ doses of phantoms immersed in water

    DOE PAGES

    Hiller, Mauritius M.; Veinot, Kenneth G.; Easterly, Clay E.; ...

    2016-08-13

    In this study, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 10 5 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Althoughmore » the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.« less

  11. Software and the Scientist: Coding and Citation Practices in Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.

    2017-11-01

    In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.

  12. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... agreement that provides one of the parties to the agreement with the right to distribute, sell, or provide... any program or routine (that is, any sequence of machine-readable code) that is designed to cause a...

  13. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics.

    PubMed

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-03-15

    RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .

  14. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  15. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Functional modules F1--F8 -- Volume 2, Part 1, Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Petrie, L.M.; Westfall, R.M.

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less

  16. Benchmarking of Computational Models for NDE and SHM of Composites

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  17. Investigation of water droplet trajectories within the NASA icing research tunnel

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Ibrahim, Mounir

    1995-01-01

    Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.

  18. Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests

    NASA Astrophysics Data System (ADS)

    Toth, G.; Keppens, R.; Botchev, M. A.

    1998-04-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.

  19. New version: GRASP2K relativistic atomic structure package

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2013-09-01

    A revised version of GRASP2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in LSJ and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an LSJ expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in ATSP2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture. Program SummaryProgram title: GRASP2K, version 1_1 Catalogue identifier: ADZL_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 730252 No. of bytes in distributed program, including test data, etc.: 14808872 Distribution format: tar.gz Programming language: Fortran. Computer: Intel Xeon, 2.66 GHz. Operating system: Suse, Ubuntu, and Debian Linux 64-bit. RAM: 500 MB or more Classification: 2.1. Catalogue identifier of previous version: ADZL_v1_0 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 597 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic properties — atomic energy levels, oscillator strengths, radiative decay rates, hyperfine structure parameters, Landé gJ-factors, and specific mass shift parameters — using a multiconfiguration Dirac-Hartree-Fock approach. Solution method: The computational method is the same as in the previous GRASP2K [1] version except that for v3 codes the njgraf library module [2] for recoupling has been replaced by librang [3,4]. Reasons for new version: New angular libraries with improved performance are available. Also methodology for transforming from jj- to LSJ-coupling has been developed. Summary of revisions: New angular libraries where the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Inclusion of a new program jj2lsj, which reports the percentage composition of the wave function in LSJ. Transition programs have been modified to produce a file of transition data with one record for each transition in the same format as Atsp2K [C. Froese Fischer, G. Tachiev, G. Gaigalas and M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. Updated to 64-bit architecture. A comprehensive user manual in pdf format for the program package has been added. Restrictions: The packing algorithm restricts the maximum number of orbitals to be ≤214. The tables of reduced coefficients of fractional parentage used in this version are limited to subshells with j≤9/2 [5]; occupied subshells with j>9/2 are, therefore, restricted to a maximum of two electrons. Some other parameters, such as the maximum number of subshells of a CSF outside a common set of closed shells are determined by a parameter.def file that can be modified prior to compile time. Unusual features: The bioscl3 program reports transition data in the same format as in Atsp2K [6], and the data processing program tables of the latter package can be used. The tables program takes a name.lsj file, usually a concatenated file of all the .lsj transition files for a given atom or ion, and finds the energy structure of the levels and the multiplet transition arrays. The tables posted at the website http://atoms.vuse.vanderbilt.edu are examples of tables produced by the tables program. With the extension of coefficients of fractional parentage to j=9/2, calculations for the lanthanides and actinides become possible. Running time: CPU time required to execute test cases: 70.5 s.

  20. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and practical application of the code will allow carrying out in the nearest future the computations to analyze the safety of potential NPP projects at a qualitatively higher level.

  1. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  2. Integrated Electronic Warfare System Advanced Development Model (ADM); Appendix 1 - Functional Requirement Specification.

    DTIC Science & Technology

    1977-10-01

    APPROVED DATE FUNCTION APPROVED jDATE WRITER J . K-olanek 2/6/76 REVISIONS CHK DESCRIPTION REV CHK DESCRIPTION IREV REVISION jJ ~ ~ ~~~ _ II SHEET NO...DOCUMENT (CDBDD) 45 5.5 COMPUTER PROGRAM PACKAGE (CPP)- j 45 5.6 COMPUTER PROGRAM OPERATOR’S MANUAL (CPOM) 45 5.7 COMPUTER PROGRAM TEST PLAN (CPTPL) 45...I LIST OF FIGURES Number Page 1 JEWS Simplified Block Diagram 4 2 System Controller Architecture 5 SIZE CODE IDENT NO DRAWING NO. A 49956 SCALE REV J

  3. DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)

    NASA Astrophysics Data System (ADS)

    Humeniuk, Alexander; Mitrić, Roland

    2017-12-01

    A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.

  4. A QR code identification technology in package auto-sorting system

    NASA Astrophysics Data System (ADS)

    di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong

    2017-07-01

    Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.

  5. TICK: Transparent Incremental Checkpointing at Kernel Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrini, Fabrizio; Gioiosa, Roberto

    2004-10-25

    TICK is a software package implemented in Linux 2.6 that allows the save and restore of user processes, without any change to the user code or binary. With TICK a process can be suspended by the Linux kernel upon receiving an interrupt and saved in a file. This file can be later thawed in another computer running Linux (potentially the same computer). TICK is implemented as a Linux kernel module, in the Linux version 2.6.5

  6. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  7. Fortran Program for X-Ray Photoelectron Spectroscopy Data Reformatting

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1989-01-01

    A FORTRAN program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing (EDP) software package. The incompatible floating-point number representations of the two computers were compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs for an x ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP packages.

  8. Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists

    PubMed Central

    Visser, Marco D.; McMahon, Sean M.; Merow, Cory; Dixon, Philip M.; Record, Sydne; Jongejans, Eelke

    2015-01-01

    Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1–S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research. PMID:25811842

  9. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Michael T.; Safdari, Masoud; Kress, Jessica E.

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enablemore » coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site. There are over 100 unit tests provided that run through the Illinois Rocstar Application Development (IRAD) lightweight testing infrastructure that is also supplied along with IMPACT. The package as a whole provides an excellent base for developing high-quality multiphysics applications using modern software development practices. To facilitate understanding how to utilize IMPACT effectively, two multiphysics systems have been developed and are available open-source through gitHUB. The simpler of the two systems, named ElmerFoamFSI in the repository, is a multiphysics, fluid-structure-interaction (FSI) coupling of the solid mechanics package Elmer with a fluid dynamics module from OpenFOAM. This coupling illustrates how to combine software packages that are unrelated by either author or architecture and combine them into a robust, parallel multiphysics system. A more complex multiphysics tool is the Illinois Rocstar Rocstar Multiphysics code that was rebuilt during the project around IMPACT. Rocstar Multiphysics was already an HPC multiphysics tool, but now that it has been rearchitected around IMPACT, it can be readily expanded to capture new and different physics in the future. In fact, during this project, the Elmer and OpenFOAM tools were also coupled into Rocstar Multiphysics and demonstrated. The full Rocstar Multiphysics codebase is also available on gitHUB, and licensed for any organization to use as they wish. Finally, the new IMPACT product is already being used in several multiphysics code coupling projects for the Air Force, NASA and the Missile Defense Agency, and initial work on expansion of the IMPACT-enabled Rocstar Multiphysics has begun in support of a commercial company. These initiatives promise to expand the interest and reach of IMPACT and Rocstar Multiphysics, ultimately leading to the envisioned standardization and consortium of users that was one of the goals of this project.« less

  10. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  11. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-12-01

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.

  12. Mocking the weak lensing universe: The LensTools Python computing package

    NASA Astrophysics Data System (ADS)

    Petri, A.

    2016-10-01

    We present a newly developed software package which implements a wide range of routines frequently used in Weak Gravitational Lensing (WL). With the continuously increasing size of the WL scientific community we feel that easy to use Application Program Interfaces (APIs) for common calculations are a necessity to ensure efficiency and coordination across different working groups. Coupled with existing open source codes, such as CAMB (Lewis et al., 2000) and Gadget2 (Springel, 2005), LensTools brings together a cosmic shear simulation pipeline which, complemented with a variety of WL feature measurement tools and parameter sampling routines, provides easy access to the numerics for theoretical studies of WL as well as for experiment forecasts. Being implemented in PYTHON (Rossum, 1995), LensTools takes full advantage of a range of state-of-the art techniques developed by the large and growing open-source software community (Jones et al., 2001; McKinney, 2010; Astrophy Collaboration, 2013; Pedregosa et al., 2011; Foreman-Mackey et al., 2013). We made the LensTools code available on the Python Package Index and published its documentation on http://lenstools.readthedocs.io.

  13. WinTRAX: A raytracing software package for the design of multipole focusing systems

    NASA Astrophysics Data System (ADS)

    Grime, G. W.

    2013-07-01

    The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.

  14. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... section 1253(b)(1) and includes any agreement that provides one of the parties to the agreement with the... any program or routine (that is, any sequence of machine-readable code) that is designed to cause a...

  15. Software Tools for Development on the Peregrine System | High-Performance

    Science.gov Websites

    Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python

  16. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    USGS Publications Warehouse

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  17. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  18. Integrated Composite Analyzer (ICAN): Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1986-01-01

    The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.

  19. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  20. Conference Proceedings on Validation of Computational Fluid Dynamics. Volume 1. Symposium Papers and Round Table Discussion Held in Lisbon, Portugal on 2-5 May 1988

    DTIC Science & Technology

    1988-05-01

    the representation of the shock, the non -conservative difference scheme in the original method being replaced by a ’ quasi - conservative’ operator 3...domain. In order to simulate the experimentally observed pressure distribution at the exit a formulation of the non -reflecting pressure condition Is used...and Experimental Aero- dynamics: Wing Surface Generator Code, Control Surface and Boundary Conditions". DFVLR IB 221-87 A 01, 1987. [11] Kordulla, W.(ed

  1. Gordon Research Conference on Computational Chemistry Held in Plymouth, New Hampshire on 4-8 July 1988

    DTIC Science & Technology

    1988-07-01

    NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) _ R.TR- 90 - 0 4 70 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING...University of Rhode Island Building 410 Kingston, RI 18195 Boiling AFB, DC 20332-6448 . Sa. NAME OF FUNDING / SPONSORING Sb. OFFICE SYMBOL 9, PROCUREMENT...AS RPT. 3 OTIC USERS UNCLASSIFIED 22a- NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Dr Anthony J. Matuszko (202

  2. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids

    NASA Astrophysics Data System (ADS)

    Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.

    2017-08-01

    We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.

  3. TNSPackage: A Fortran2003 library designed for tensor network state methods

    NASA Astrophysics Data System (ADS)

    Dong, Shao-Jun; Liu, Wen-Yuan; Wang, Chao; Han, Yongjian; Guo, G.-C.; He, Lixin

    2018-07-01

    Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and so on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.

  4. 75 FR 30839 - Privacy Act of 1974; CMS Computer Match No. 2010-03, HHS Computer Match No. 1003, SSA Computer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... of the Matching Program A. General The Computer Matching and Privacy Protection Act of 1988 (Pub. L.... 100-503, the Computer Matching and Privacy Protection Act (CMPPA) of 1988), the Office of Management... 1974; CMS Computer Match No. 2010-03, HHS Computer Match No. 1003, SSA Computer Match No. 1048, IRS...

  5. Motmot, an open-source toolkit for realtime video acquisition and analysis.

    PubMed

    Straw, Andrew D; Dickinson, Michael H

    2009-07-22

    Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at http://code.astraw.com/projects/motmot.

  6. MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process

    USGS Publications Warehouse

    Harbaugh, Arlen W.

    2005-01-01

    This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code. The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility. The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.

  7. Software design for analysis of multichannel intracardial and body surface electrocardiograms.

    PubMed

    Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A

    2002-11-01

    Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.

  8. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.

  9. Sustaining Open Source Communities through Hackathons - An Example from the ASPECT Community

    NASA Astrophysics Data System (ADS)

    Heister, T.; Hwang, L.; Bangerth, W.; Kellogg, L. H.

    2016-12-01

    The ecosystem surrounding a successful scientific open source software package combines both social and technical aspects. Much thought has been given to the technology side of writing sustainable software for large infrastructure projects and software libraries, but less about building the human capacity to perpetuate scientific software used in computational modeling. One effective format for building capacity is regular multi-day hackathons. Scientific hackathons bring together a group of science domain users and scientific software contributors to make progress on a specific software package. Innovation comes through the chance to work with established and new collaborations. Especially in the domain sciences with small communities, hackathons give geographically distributed scientists an opportunity to connect face-to-face. They foster lively discussions amongst scientists with different expertise, promote new collaborations, and increase transparency in both the technical and scientific aspects of code development. ASPECT is an open source, parallel, extensible finite element code to simulate thermal convection, that began development in 2011 under the Computational Infrastructure for Geodynamics. ASPECT hackathons for the past 3 years have grown the number of authors to >50, training new code maintainers in the process. Hackathons begin with leaders establishing project-specific conventions for development, demonstrating the workflow for code contributions, and reviewing relevant technical skills. Each hackathon expands the developer community. Over 20 scientists add >6,000 lines of code during the >1 week event. Participants grow comfortable contributing to the repository and over half continue to contribute afterwards. A high return rate of participants ensures continuity and stability of the group as well as mentoring for novice members. We hope to build other software communities on this model, but anticipate each to bring their own unique challenges.

  10. Evolution of a modular software network

    PubMed Central

    Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.

    2011-01-01

    “Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260

  11. Corrigendum to "Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data"

    Treesearch

    Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; David E. hall; Michael J. Falkowski

    2009-01-01

    The authors regret that an error was discovered in the code within the R software package, yaImpute (Crookston & Finley, 2008), which led to incorrect results reported in the above article. The Most Similar Neighbor (MSN) method computes the distance between reference observations and target observations in a projected space defined using canonical correlation...

  12. Software for Brain Network Simulations: A Comparative Study

    PubMed Central

    Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.

    2017-01-01

    Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687

  13. Radio controlled release apparatus for animal data acquisition devices

    DOEpatents

    Stamps, James Frederick

    2000-01-01

    A novel apparatus for reliably and selectively releasing a data acquisition package from an animal for recovery. The data package comprises two parts: 1) an animal data acquisition device and 2) a co-located release apparatus. One embodiment, which is useful for land animals, the release apparatus includes two major components: 1) an electronics package, comprising a receiver; a decoder comparator, having at plurality of individually selectable codes; and an actuator circuit and 2) a release device, which can be a mechanical device, which acts to release the data package from the animal. To release a data package from a particular animal, a radio transmitter sends a coded signal which is decoded to determine if the code is valid for that animal data package. Having received a valid code, the release device is activated to release the data package from the animal for subsequent recovery. A second embodiment includes floatation means and is useful for releasing animal data acquisition devices attached to sea animals. This embodiment further provides for releasing a data package underwater by employing an acoustic signal.

  14. Computer Virus Bibliography, 1988-1989.

    ERIC Educational Resources Information Center

    Bologna, Jack, Comp.

    This bibliography lists 14 books, 154 journal articles, 34 newspaper articles, and 3 research papers published during 1988-1989 on the subject of computer viruses, software protection and 'cures', virus hackers, and other related issues. Some of the sources listed include Computers and Security, Computer Security Digest, PC Week, Time, the New…

  15. 76 FR 11435 - Privacy Act of 1974; Computer Matching Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Security Administration. SUMMARY: Pursuant to the Computer Matching and Privacy Protection Act of 1988, Public Law 100-503, the Computer Matching and Privacy Protections Amendments of 1990, Pub. L. 101-508... Interpreting the Provisions of Public Law 100-503, the Computer Matching and Privacy Protection Act of 1988...

  16. SEGY to ASCII: Conversion and Plotting Program

    USGS Publications Warehouse

    Goldman, Mark R.

    1999-01-01

    This report documents a computer program to convert standard 4 byte, IBM floating point SEGY files to ASCII xyz format. The program then optionally plots the seismic data using the GMT plotting package. The material for this publication is contained in a standard tar file (of99-126.tar) that is uncompressed and 726 K in size. It can be downloaded by any Unix machine. Move the tar file to the directory you wish to use it in, then type 'tar xvf of99-126.tar' The archive files (and diskette) contain a NOTE file, a README file, a version-history file, source code, a makefile for easy compilation, and an ASCII version of the documentation. The archive files (and diskette) also contain example test files, including a typical SEGY file along with the resulting ASCII xyz and postscript files. Requirements for compiling the source code into an executable are a C++ compiler. The program has been successfully compiled using Gnu's g++ version 2.8.1, and use of other compilers may require modifications to the existing source code. The g++ compiler is a free, high quality C++ compiler and may be downloaded from the ftp site: ftp://ftp.gnu.org/gnu Requirements for plotting the seismic data is the existence of the GMT plotting package. The GMT plotting package may be downloaded from the web site: http://www.soest.hawaii.edu/gmt/

  17. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  18. ImagePy: an open-source, Python-based and platform-independent software package for boimage analysis.

    PubMed

    Wang, Anliang; Yan, Xiaolong; Wei, Zhijun

    2018-04-27

    This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.

  19. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    PubMed

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

  20. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  1. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  2. High-frequency CAD-based scattering model: SERMAT

    NASA Astrophysics Data System (ADS)

    Goupil, D.; Boutillier, M.

    1991-09-01

    Specifications for an industrial radar cross section (RCS) calculation code are given: it must be able to exchange data with many computer aided design (CAD) systems, it must be fast, and it must have powerful graphic tools. Classical physical optics (PO) and equivalent currents (EC) techniques have proven their efficiency on simple objects for a long time. Difficult geometric problems occur when objects with very complex shapes have to be computed. Only a specific geometric code can solve these problems. We have established that, once these problems have been solved: (1) PO and EC give good results on complex objects of large size compared to wavelength; and (2) the implementation of these objects in a software package (SERMAT) allows fast and sufficiently precise domain RCS calculations to meet industry requirements in the domain of stealth.

  3. The role of the PIRT process in identifying code improvements and executing code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.E.; Boyack, B.E.

    1997-07-01

    In September 1988, the USNRC issued a revised ECCS rule for light water reactors that allows, as an option, the use of best estimate (BE) plus uncertainty methods in safety analysis. The key feature of this licensing option relates to quantification of the uncertainty in the determination that an NPP has a {open_quotes}low{close_quotes} probability of violating the safety criteria specified in 10 CFR 50. To support the 1988 licensing revision, the USNRC and its contractors developed the CSAU evaluation methodology to demonstrate the feasibility of the BE plus uncertainty approach. The PIRT process, Step 3 in the CSAU methodology, wasmore » originally formulated to support the BE plus uncertainty licensing option as executed in the CSAU approach to safety analysis. Subsequent work has shown the PIRT process to be a much more powerful tool than conceived in its original form. Through further development and application, the PIRT process has shown itself to be a robust means to establish safety analysis computer code phenomenological requirements in their order of importance to such analyses. Used early in research directed toward these objectives, PIRT results also provide the technical basis and cost effective organization for new experimental programs needed to improve the safety analysis codes for new applications. The primary purpose of this paper is to describe the generic PIRT process, including typical and common illustrations from prior applications. The secondary objective is to provide guidance to future applications of the process to help them focus, in a graded approach, on systems, components, processes and phenomena that have been common in several prior applications.« less

  4. A domain specific language for performance portable molecular dynamics algorithms

    NASA Astrophysics Data System (ADS)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  5. Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel

    2003-01-01

    The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.

  6. Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar

    1997-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.

  7. Operation and Maintenance Manual, Ultrasonic Fish Deterrent System

    DTIC Science & Technology

    1991-07-01

    PAGES Fishery management--Instruments 61 Ultrsonic transducers 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY...compatible computer with a communications software package will be most convenient; however, any terminal will work. To begin operation, connect the...D. Next connect the communications cable (TC-4) between the RFPG and the terminal. An ONSET TC-4 cable must be used due to level shifting

  8. A new algorithm to handle finite nuclear mass effects in electronic calculations: the ISOTOPE program.

    PubMed

    Gonçalves, Cristina P; Mohallem, José R

    2004-11-15

    We report the development of a simple algorithm to modify quantum chemistry codes based on the LCAO procedure, to account for the isotope problem in electronic structure calculations. No extra computations are required compared to standard Born-Oppenheimer calculations. An upgrade of the Gamess package called ISOTOPE is presented, and its applicability is demonstrated in some examples.

  9. 78 FR 29786 - Computer Matching and Privacy Protection Act of 1988; Report of Matching Program: RRB and State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... RAILROAD RETIREMENT BOARD Computer Matching and Privacy Protection Act of 1988; Report of Matching...: Notice of a renewal of an existing computer matching program due to expire on May 24, 2013. SUMMARY: As... of its intent to renew an ongoing computer matching program. In this match, we provide certain...

  10. Flight experiment of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. These salts store energy as a heat of fusion, thereby transferring heat to the fluid at constant temperature during shade. The principal feature of fluorides that must be taken into account is the change in volume that occurs with melting and freezing. Salts shrink as they solidify, a change reaching 30 percent for some salts. The location of voids that form as result of the shrinkage is critical when the solar dynamic system reemerges into the sun. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The code is capable of analysis under microgravity as well as 1 g. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity. Each test package will be installed in a Getaway Special container to be carried by the shuttle. The package will be self-contained and independent of shuttle operations other than the initial opening of the container lid and the final closing of the lid. Upon the return of the test package from flight, the TES container will be radiographed and finally partitioned to examine the exact location and shape of the void. Visual inspection of the void and the temperature data during flight will constitute the bases for code verification.

  11. Radioactive waste management and practice in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.; Rahman, M.M.

    1993-12-31

    A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less

  12. A computer program (MACPUMP) for interactive aquifer-test analysis

    USGS Publications Warehouse

    Day-Lewis, F. D.; Person, M.A.; Konikow, Leonard F.

    1995-01-01

    This report introduces MACPUMP (Version 1.0), an aquifer-test-analysis package for use with Macintosh4 computers. The report outlines the input- data format, describes the solutions encoded in the program, explains the menu-items, and offers a tutorial illustrating the use of the program. The package reads list-directed aquifer-test data from a file, plots the data to the screen, generates and plots type curves for several different test conditions, and allows mouse-controlled curve matching. MACPUMP features pull-down menus, a simple text viewer for displaying data-files, and optional on-line help windows. This version includes the analytical solutions for nonleaky and leaky confined aquifers, using both type curves and straight-line methods, and for the analysis of single-well slug tests using type curves. An executable version of the code and sample input data sets are included on an accompanying floppy disk.

  13. Computer-Based Education. The Best of ERIC, 1988.

    ERIC Educational Resources Information Center

    McLaughlin, Pamela

    This annotated bibliography provides an overview of literature entered into the ERIC database in 1988 on computer use in elementary and secondary education, adult education, and special education. The first of four sections provides a list of overview documents on: computer-assisted instruction. Focusing on special applications, the second section…

  14. DREAMTools: a Python package for scoring collaborative challenges

    PubMed Central

    Cokelaer, Thomas; Bansal, Mukesh; Bare, Christopher; Bilal, Erhan; Bot, Brian M.; Chaibub Neto, Elias; Eduati, Federica; de la Fuente, Alberto; Gönen, Mehmet; Hill, Steven M.; Hoff, Bruce; Karr, Jonathan R.; Küffner, Robert; Menden, Michael P.; Meyer, Pablo; Norel, Raquel; Pratap, Abhishek; Prill, Robert J.; Weirauch, Matthew T.; Costello, James C.; Stolovitzky, Gustavo; Saez-Rodriguez, Julio

    2016-01-01

    DREAM challenges are community competitions designed to advance computational methods and address fundamental questions in system biology and translational medicine. Each challenge asks participants to develop and apply computational methods to either predict unobserved outcomes or to identify unknown model parameters given a set of training data. Computational methods are evaluated using an automated scoring metric, scores are posted to a public leaderboard, and methods are published to facilitate community discussions on how to build improved methods. By engaging participants from a wide range of science and engineering backgrounds, DREAM challenges can comparatively evaluate a wide range of statistical, machine learning, and biophysical methods. Here, we describe DREAMTools, a Python package for evaluating DREAM challenge scoring metrics. DREAMTools provides a command line interface that enables researchers to test new methods on past challenges, as well as a framework for scoring new challenges. As of March 2016, DREAMTools includes more than 80% of completed DREAM challenges. DREAMTools complements the data, metadata, and software tools available at the DREAM website http://dreamchallenges.org and on the Synapse platform at https://www.synapse.org. Availability:  DREAMTools is a Python package. Releases and documentation are available at http://pypi.python.org/pypi/dreamtools. The source code is available at http://github.com/dreamtools/dreamtools. PMID:27134723

  15. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  16. PynPoint code for exoplanet imaging

    NASA Astrophysics Data System (ADS)

    Amara, A.; Quanz, S. P.; Akeret, J.

    2015-04-01

    We announce the public release of PynPoint, a Python package that we have developed for analysing exoplanet data taken with the angular differential imaging observing technique. In particular, PynPoint is designed to model the point spread function of the central star and to subtract its flux contribution to reveal nearby faint companion planets. The current version of the package does this correction by using a principal component analysis method to build a basis set for modelling the point spread function of the observations. We demonstrate the performance of the package by reanalysing publicly available data on the exoplanet β Pictoris b, which consists of close to 24,000 individual image frames. We show that PynPoint is able to analyse this typical data in roughly 1.5 min on a Mac Pro, when the number of images is reduced by co-adding in sets of 5. The main computational work, the calculation of the Singular-Value-Decomposition, parallelises well as a result of a reliance on the SciPy and NumPy packages. For this calculation the peak memory load is 6 GB, which can be run comfortably on most workstations. A simpler calculation, by co-adding over 50, takes 3 s with a peak memory usage of 600 MB. This can be performed easily on a laptop. In developing the package we have modularised the code so that we will be able to extend functionality in future releases, through the inclusion of more modules, without it affecting the users application programming interface. We distribute the PynPoint package under GPLv3 licence through the central PyPI server, and the documentation is available online (http://pynpoint.ethz.ch).

  17. Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft

    NASA Astrophysics Data System (ADS)

    McKenzie, Samuel D.

    1991-12-01

    The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.

  18. NOAA/DOE CWP structural analysis package. [CWPFLY, CWPEXT, COTEC, and XOTEC codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pompa, J.A.; Lunz, D.F.

    1979-09-01

    The theoretical development and computer code user's manual for analysis of the Ocean Thermal Energy Conversion (OTEC) plant cold water pipe (CWP) are presented. The analysis of the CWP includes coupled platform/CWP loadngs and dynamic responses. This report with the exception of the Introduction and Appendix F was orginally published as Hydronautics, Inc., Technical Report No. 7825-2 (by Barr, Chang, and Thasanatorn) in November 1978. A detailed theoretical development of the equations describing the coupled platform/CWP system and preliminary validation efforts are described. The appendices encompass a complete user's manual, describing the inputs, outputs and operation of the four componentmore » programs, and detail changes and updates implemented since the original release of the code by Hydronautics. The code itself is available through NOAA's Office of Ocean Technology and Engineering Services.« less

  19. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.

    2013-01-01

    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method with method-of-lines integration Running time: Determined by the size of the problem

  20. AIRSLUG: A fortran program for the computation of type curves to estimate transmissivity and storativity from prematurely terminated air-pressurized slug tests

    USGS Publications Warehouse

    Greene, E.A.; Shapiro, A.M.

    1998-01-01

    The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.

  1. Bilingualism in the Computer Age 1988-89. OREA Evaluation Section Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Alvarez, Rosalyn

    In the 1988-89 school year, Bilingualism in the Computer Age completed its final year of instruction at Morris High School in the Bronx. The project provided bilingual instructional and support services to 240 Spanish-speaking students of limited English proficiency (LEP) and utilized computers to develop students' English skills and native…

  2. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  3. Lightweight computational steering of very large scale molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less

  4. ON UPGRADING THE NUMERICS IN COMBUSTION CHEMISTRY CODES. (R824970)

    EPA Science Inventory

    A method of updating and reusing legacy FORTRAN codes for combustion simulations is presented using the DAEPACK software package. The procedure is demonstrated on two codes that come with the CHEMKIN-II package, CONP and SENKIN, for the constant-pressure batch reactor simulati...

  5. Code of Fair Testing Practices in Education (Revised)

    ERIC Educational Resources Information Center

    Educational Measurement: Issues and Practice, 2005

    2005-01-01

    A note from the Working Group of the Joint Committee on Testing Practices: The "Code of Fair Testing Practices in Education (Code)" prepared by the Joint Committee on Testing Practices (JCTP) has just been revised for the first time since its initial introduction in 1988. The revision of the Code was inspired primarily by the revision of…

  6. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1988-01-01

    During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.

  7. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recentlymore » updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)« less

  8. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part I: Template-Based Generic Programming

    DOE PAGES

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.

    2012-01-01

    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering.

  9. QMMMW: A wrapper for QM/MM simulations with QUANTUM ESPRESSO and LAMMPS

    NASA Astrophysics Data System (ADS)

    Ma, Changru; Martin-Samos, Layla; Fabris, Stefano; Laio, Alessandro; Piccinin, Simone

    2015-10-01

    We present QMMMW, a new program aimed at performing Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics. The package operates as a wrapper that patches PWscf code included in the QUANTUM ESPRESSO distribution and LAMMPS Molecular Dynamics Simulator. It is designed with a paradigm based on three guidelines: (i) minimal amount of modifications on the parent codes, (ii) flexibility and computational efficiency of the communication layer and (iii) accuracy of the Hamiltonian describing the interaction between the QM and MM subsystems. These three features are seldom present simultaneously in other implementations of QMMM. The QMMMW project is hosted by qe-forge at

  10. MMAPDNG: A new, fast code backed by a memory-mapped database for simulating delayed γ-ray emission with MCNPX package

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui; Ludewigt, Bernhard

    2015-09-01

    The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.

  11. NFDRSPC: The National Fire-Danger Rating System on a Personal Computer

    Treesearch

    Bryan G. Donaldson; James T. Paul

    1990-01-01

    This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...

  12. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  13. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  14. Rapid algorithm prototyping and implementation for power quality measurement

    NASA Astrophysics Data System (ADS)

    Kołek, Krzysztof; Piątek, Krzysztof

    2015-12-01

    This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart grids will require tools for rapid development and implementation of such algorithms.

  15. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  16. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  17. Validation of CFD/Heat Transfer Software for Turbine Blade Analysis

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter D.

    2004-01-01

    I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these programs and the structure of the GlennHT code. Additional information is included in the original extended abstract.

  18. Characterization of a Recoverable Flight Control Computer System

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar; Torres, Wilfredo

    1999-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  19. VizieR Online Data Catalog: Comet ion acoustic waves code (Gunell+, 2017)

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; de Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2017-01-01

    The general package for dispersion relations and fluctuation calculations using simple pole expansions is in the directory named simple. The directory ThisPaper contains files that are specific to the present paper. ThisPaper/startup.m sets up paths and physical constants. ThisPaper/aa16appendix.m plots the figure in the appendix. ThisPaper/aa16figs7to9.m performs the computations behind Figs. 7-9 and plots those figures. ThisPaper/aa16fig6.m performs the computations behind Fig. 6 and plots it. (2 data files).

  20. A Comparative Verbal Analysis of the Two 1988 Bush-Dukakis Presidential Debates.

    ERIC Educational Resources Information Center

    Hellweg, Susan A.; Verhoye, Anna M.

    This study examined the verbal message strategies employed in the two 1988 presidential debates by Vice-President George Bush and Governor Michael Dukakis, independently and comparatively. A number of broad verbal categories were developed to code the messages of each candidate from videotapes and transcripts. Verbal characteristics under…

  1. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  2. Modifications of the U.S. Geological Survey modular, finite-difference, ground-water flow model to read and write geographic information system files

    USGS Publications Warehouse

    Orzol, Leonard L.; McGrath, Timothy S.

    1992-01-01

    This report documents modifications to the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model, commonly called MODFLOW, so that it can read and write files used by a geographic information system (GIS). The modified model program is called MODFLOWARC. Simulation programs such as MODFLOW generally require large amounts of input data and produce large amounts of output data. Viewing data graphically, generating head contours, and creating or editing model data arrays such as hydraulic conductivity are examples of tasks that currently are performed either by the use of independent software packages or by tedious manual editing, manipulating, and transferring data. Programs such as GIS programs are commonly used to facilitate preparation of the model input data and analyze model output data; however, auxiliary programs are frequently required to translate data between programs. Data translations are required when different programs use different data formats. Thus, the user might use GIS techniques to create model input data, run a translation program to convert input data into a format compatible with the ground-water flow model, run the model, run a translation program to convert the model output into the correct format for GIS, and use GIS to display and analyze this output. MODFLOWARC, avoids the two translation steps and transfers data directly to and from the ground-water-flow model. This report documents the design and use of MODFLOWARC and includes instructions for data input/output of the Basic, Block-centered flow, River, Recharge, Well, Drain, Evapotranspiration, General-head boundary, and Streamflow-routing packages. The modification to MODFLOW and the Streamflow-Routing package was minimized. Flow charts and computer-program code describe the modifications to the original computer codes for each of these packages. Appendix A contains a discussion on the operation of MODFLOWARC using a sample problem.

  3. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  4. A new software for deformation source optimization, the Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, H.; Dutta, R.; Jonsson, S.; Mai, P. M.

    2017-12-01

    Modern studies of crustal deformation and the related source estimation, including magmatic and tectonic sources, increasingly use non-linear optimization strategies to estimate geometric and/or kinematic source parameters and often consider both jointly, geodetic and seismic data. Bayesian inference is increasingly being used for estimating posterior distributions of deformation source model parameters, given measured/estimated/assumed data and model uncertainties. For instance, some studies consider uncertainties of a layered medium and propagate these into source parameter uncertainties, while others use informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed to efficiently explore the high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational burden of these methods is high and estimation codes are rarely made available along with the published results. Even if the codes are accessible, it is usually challenging to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in deformation source estimations, we undertook the effort of developing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package builds on the pyrocko seismological toolbox (www.pyrocko.org), and uses the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat), and we encourage and solicit contributions to the project. Here, we present our strategy for developing BEAT and show application examples; especially the effect of including the model prediction uncertainty of the velocity model in following source optimizations: full moment tensor, Mogi source, moderate strike-slip earth-quake.

  5. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  6. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST/1991

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A revision is presented of MASTERFIT-1987, which it supersedes. Changes during 1988 to 1991 included introduction of the octupole component of solid Earth tides, the NUVEL tectonic motion model, partial derivatives for the precession constant and source position rates, the option to correct for source structure, a refined model for antenna offsets, modeling the unique antenna at Richmond, FL, improved nutation series due to Zhu, Groten, and Reigber, and reintroduction of the old (Woolard) nutation series for simulation purposes. Text describing the relativistic transformations and gravitational contributions to the delay model was also revised in order to reflect the computer code more faithfully.

  7. FAA Air Traffic Control Operations Concepts. Volume 2. ACF/ACCC (Area Control Facility/Area Control Computer Complex) Terminal and En Route Controllers. Change 1

    DTIC Science & Technology

    1988-07-29

    VOLff2) 6 July 19837 A-74 A1.5.6 MONITORING NON-CONTROLLED OBJECTS AIM, 7 OIHERS REPORT AIRSPACEJ FIRST 10 DETECT INTRUSION IradR’SIoN BY NON-CON’TROLLED 1...1988 Volume II: ACF/ACCC Terminal and En Route Controllers (ClIG 1) 6 . Porliming Organization Code 7 . Author(s) 8. Performing Organization Report No...MANEUVER SYSTEM GENERATES ABSORPT ION PREVIOUSLY PREPARED RECEIVED MANEUVER FOR A FLIGHT CLEAPANCEI D0T/FAA/AP-47-01 (VOLt2) 6 July 1987 A- 7 A,1.O

  8. Summary of Computer Usage and Inventory of Computer Utilization in Curriculum, FY 1988-89.

    ERIC Educational Resources Information Center

    Tennessee Univ., Chattanooga. Center of Excellence for Computer Applications.

    In addition to data on FY 1988-89, the 12 tables that constitute the major part of this report on computer utilization at the University of Tennessee at Chattanooga (UTC) provide comparisons among the 10 annual inventories that have been conducted, and demonstrate growth patterns over the 10-year period. The first five tables organize data by…

  9. MIFT: GIFT Combinatorial Geometry Input to VCS Code

    DTIC Science & Technology

    1977-03-01

    r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package

  10. Aeroacoustic Analysis of Turbofan Noise Generation

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.; Envia, Edmane

    1996-01-01

    This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.

  11. Poloidal motion of trapped particle orbits in real-space coordinates

    NASA Astrophysics Data System (ADS)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.

    2008-05-01

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of α-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantly also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].

  12. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j

    PubMed Central

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.

    2017-01-01

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110

  13. gadfly: A pandas-based Framework for Analyzing GADGET Simulation Data

    NASA Astrophysics Data System (ADS)

    Hummel, Jacob A.

    2016-11-01

    We present the first public release (v0.1) of the open-source gadget Dataframe Library: gadfly. The aim of this package is to leverage the capabilities of the broader python scientific computing ecosystem by providing tools for analyzing simulation data from the astrophysical simulation codes gadget and gizmo using pandas, a thoroughly documented, open-source library providing high-performance, easy-to-use data structures that is quickly becoming the standard for data analysis in python. Gadfly is a framework for analyzing particle-based simulation data stored in the HDF5 format using pandas DataFrames. The package enables efficient memory management, includes utilities for unit handling, coordinate transformations, and parallel batch processing, and provides highly optimized routines for visualizing smoothed-particle hydrodynamics data sets.

  14. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    PubMed

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  15. Cloud prediction of protein structure and function with PredictProtein for Debian.

    PubMed

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  16. Cloud Prediction of Protein Structure and Function with PredictProtein for Debian

    PubMed Central

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  17. Modeling the influence of plate motions on subduction

    NASA Astrophysics Data System (ADS)

    Hillebrand, Bram; Thieulot, Cedric; van den Berg, Arie; Spakman, Wim

    2014-05-01

    Subduction zones are widely studied complex geodynamical systems. Their evolution is influenced by a broad range of parameters such as the age of the plates (both subducting and overriding) as well as their rheology, their nature (oceanic or continental), the presence of a crust and the involved plate motions to name a few. To investigate the importance of these different parameters on the evolution of subduction we have created a series of 2D numerical thermomechanical subduction models. These subduction models are multi-material flow models containing continental and oceanic crusts, a lithosphere and a mantle. We use the sticky air approach to allow for topography build up in the model. In order to model multi-material flow in our Eulerian finite element code of SEPRAN (Segal and Praagman, 2000) we use the well benchmarked level set method (Osher and Sethian, 1988) to track the different materials and their mode of deformation through the model domain. To our knowledge the presented results are the first subduction model results with the level set method. We will present preliminary results of our parametric study focusing mainly on the influence of plate motions on the evolution of subduction. S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. JCP 1988 A. Segal and N.P. Praagman. The SEPRAN package. Technical report, 2000 This research is funded by The Netherlands Research Centre for Integrated Solid Earth Science (ISES)

  18. The Model 9977 Radioactive Material Packaging Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, themore » package must maintain its radioactive material as subcritical« less

  19. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  20. An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel® Xeon Phi™ processor architecture

    DOE PAGES

    Mironov, Vladimir; Moskovsky, Alexander; D’Mello, Michael; ...

    2017-10-04

    The Hartree-Fock (HF) method in the quantum chemistry package GAMESS represents one of the most irregular algorithms in computation today. Major steps in the calculation are the irregular computation of electron repulsion integrals (ERIs) and the building of the Fock matrix. These are the central components of the main Self Consistent Field (SCF) loop, the key hotspot in Electronic Structure (ES) codes. By threading the MPI ranks in the official release of the GAMESS code, we not only speed up the main SCF loop (4x to 6x for large systems), but also achieve a significant (>2x) reduction in the overallmore » memory footprint. These improvements are a direct consequence of memory access optimizations within the MPI ranks. We benchmark our implementation against the official release of the GAMESS code on the Intel R Xeon PhiTM supercomputer. Here, scaling numbers are reported on up to 7,680 cores on Intel Xeon Phi coprocessors.« less

  1. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  2. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  3. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalashnikova, Irina

    2012-05-01

    A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm)more » and the field integral of the solution (L{sup 2} norm).« less

  4. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability of penetration values per surface area for each element in the model. The SHIELD module writes this data file in either SUPERTAB Universal File Format or PATRAN Neutral File Format so threat contour plots can be generated as a post-processing feature of the FEM programs SUPERTAB and PATRAN. The CONTOUR module combines the functions of the RESPONSE module and most of the SHIELD module functions allowing determination of ranges of PNP's by looping over ranges of shield and/or wall thicknesses. A data file containing the PNP's for the corresponding shield and vessel wall thickness is produced. Users may perform sensitivity studies of two kinds. The effects of simple variations in orbital time, surface area, and flux may be analyzed by making changes to the terms in the equation representing the average number of penetrating particles per unit time in the PNP solution equation. The package analyzes other changes, including model environment, surface area, and configuration, by re-running the solution sequence with new GEOMETRY and RESPONSE data. BUMPERII can be run with no interactive output to the screen during execution. This can be particularly useful during batch runs. BUMPERII is written in FORTRAN 77 for DEC VAX series computers running under VMS, and was written for use with the finite-element model code SUPERTAB or PATRAN as both a pre-processor and a post-processor. Use of an alternate FEM code will require either development of a translator to change data format or modification of the GEOMETRY subroutine in BUMPERII. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution media) or on TK50 tape cartridge. The original BUMPER code was developed in 1988 with the BUMPERII revisions following in 1991 and 1992. SUPERTAB is a former name for I-DEAS. I-DEAS Finite Element Modeling is a trademark of Structural Dynamics Research Corporation. DEC, VAX, VMS and TK50 are trademarks of Digital Equipment Corporation.

  5. ARM Data-Oriented Metrics and Diagnostics Package for Climate Model Evaluation Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chengzhu; Xie, Shaocheng

    A Python-based metrics and diagnostics package is currently being developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Infrastructure Team at Lawrence Livermore National Laboratory (LLNL) to facilitate the use of long-term, high-frequency measurements from the ARM Facility in evaluating the regional climate simulation of clouds, radiation, and precipitation. This metrics and diagnostics package computes climatological means of targeted climate model simulation and generates tables and plots for comparing the model simulation with ARM observational data. The Coupled Model Intercomparison Project (CMIP) model data sets are also included in the package to enable model intercomparison as demonstratedmore » in Zhang et al. (2017). The mean of the CMIP model can serve as a reference for individual models. Basic performance metrics are computed to measure the accuracy of mean state and variability of climate models. The evaluated physical quantities include cloud fraction, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, and radiative fluxes, with plan to extend to more fields, such as aerosol and microphysics properties. Process-oriented diagnostics focusing on individual cloud- and precipitation-related phenomena are also being developed for the evaluation and development of specific model physical parameterizations. The version 1.0 package is designed based on data collected at ARM’s Southern Great Plains (SGP) Research Facility, with the plan to extend to other ARM sites. The metrics and diagnostics package is currently built upon standard Python libraries and additional Python packages developed by DOE (such as CDMS and CDAT). The ARM metrics and diagnostic package is available publicly with the hope that it can serve as an easy entry point for climate modelers to compare their models with ARM data. In this report, we first present the input data, which constitutes the core content of the metrics and diagnostics package in section 2, and a user's guide documenting the workflow/structure of the version 1.0 codes, and including step-by-step instruction for running the package in section 3.« less

  6. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Desjardins, M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  7. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  8. Design optimization studies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  9. Error Correcting Codes and Related Designs

    DTIC Science & Technology

    1990-09-30

    Theory, IT-37 (1991), 1222-1224. 6. Codes and designs, existence and uniqueness, Discrete Math ., to appear. 7. (with R. Brualdi and N. Cai), Orphan...structure of the first order Reed-Muller codes, Discrete Math ., to appear. 8. (with J. H. Conway and N.J.A. Sloane), The binary self-dual codes of length up...18, 1988. 4. "Codes and Designs," Mathematics Colloquium, Technion, Haifa, Israel, March 6, 1989. 5. "On the Covering Radius of Codes," Discrete Math . Group

  10. Moving code - Sharing geoprocessing logic on the Web

    NASA Astrophysics Data System (ADS)

    Müller, Matthias; Bernard, Lars; Kadner, Daniel

    2013-09-01

    Efficient data processing is a long-standing challenge in remote sensing. Effective and efficient algorithms are required for product generation in ground processing systems, event-based or on-demand analysis, environmental monitoring, and data mining. Furthermore, the increasing number of survey missions and the exponentially growing data volume in recent years have created demand for better software reuse as well as an efficient use of scalable processing infrastructures. Solutions that address both demands simultaneously have begun to slowly appear, but they seldom consider the possibility to coordinate development and maintenance efforts across different institutions, community projects, and software vendors. This paper presents a new approach to share, reuse, and possibly standardise geoprocessing logic in the field of remote sensing. Drawing from the principles of service-oriented design and distributed processing, this paper introduces moving-code packages as self-describing software components that contain algorithmic code and machine-readable descriptions of the provided functionality, platform, and infrastructure, as well as basic information about exploitation rights. Furthermore, the paper presents a lean publishing mechanism by which to distribute these packages on the Web and to integrate them in different processing environments ranging from monolithic workstations to elastic computational environments or "clouds". The paper concludes with an outlook toward community repositories for reusable geoprocessing logic and their possible impact on data-driven science in general.

  11. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  12. Increasing Flexibility in Energy Code Compliance: Performance Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Rosenberg, Michael I.

    Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant designmore » team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.« less

  13. Theory-based transport simulations of TFTR L-mode temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, G.

    1992-03-01

    The temperature profiles from a selection of Tokamak Fusion Test Reactor (TFTR) L-mode discharges (17{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Amsterdam, 1990 (EPS, Petit-Lancy, Switzerland, 1990, p. 114)) are simulated with the 1 (1)/(2) -D baldur transport code (Comput. Phys. Commun. {bold 49}, 275 (1988)) using a combination of theoretically derived transport models, called the Multi-Mode Model (Comments Plasma Phys. Controlled Fusion {bold 11}, 165 (1988)). The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{submore » {ital i}}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub {ital i}} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes.« less

  14. Distribution of a Generic Mission Planning and Scheduling Toolkit for Astronomical Spacecraft

    NASA Technical Reports Server (NTRS)

    Kleiner, Steven C.

    1996-01-01

    Work is progressing as outlined in the proposal for this contract. A working planning and scheduling system has been documented and packaged and made available to the WIRE Small Explorer group at JPL, the FUSE group at JHU, the NASA/GSFC Laboratory for Astronomy and Solar Physics and the Advanced Planning and Scheduling Branch at STScI. The package is running successfully on the WIRE computer system. It is expected that the WIRE will reuse significant portions of the SWAS code in its system. This scheduling system itself was tested successfully against the spacecraft hardware in December 1995. A fully automatic scheduling module has been developed and is being added to the toolkit. In order to maximize reuse, the code is being reorganized during the current build into object-oriented class libraries. A paper describing the toolkit has been written and is included in the software distribution. We have experienced interference between the export and production versions of the toolkit. We will be requesting permission to reprogram funds in order to purchase a standalone PC onto which to offload the export version.

  15. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C k's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usagemore » are discussed.« less

  16. CMG-biotools, a free workbench for basic comparative microbial genomics.

    PubMed

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.

  17. Evaluation of the fishery status for King Soldier Bream Argyrops spinifer in Pakistan using the software CEDA and ASPIC

    NASA Astrophysics Data System (ADS)

    Memon, Aamir Mahmood; Liu, Qun; Memon, Khadim Hussain; Baloch, Wazir Ali; Memon, Asfandyar; Baset, Abdul

    2015-07-01

    Catch and effort data were analyzed to estimate the maximum sustainable yield (MSY) of King Soldier Bream, Argyrops spinifer (Forsskål, 1775, Family: Sparidae), and to evaluate the present status of the fish stocks exploited in Pakistani waters. The catch and effort data for the 25-years period 1985-2009 were analyzed using two computer software packages, CEDA (catch and effort data analysis) and ASPIC (a surplus production model incorporating covariates). The maximum catch of 3 458 t was observed in 1988 and the minimum catch of 1 324 t in 2005, while the average annual catch of A. spinifer over the 25 years was 2 500 t. The surplus production models of Fox, Schaefer, and Pella Tomlinson under three error assumptions of normal, log-normal and gamma are in the CEDA package and the two surplus models of Fox and logistic are in the ASPIC package. In CEDA, the MSY was estimated by applying the initial proportion (IP) of 0.8, because the starting catch was approximately 80% of the maximum catch. Except for gamma, because gamma showed maximization failures, the estimated results of MSY using CEDA with the Fox surplus production model and two error assumptions, were 1 692.08 t ( R 2=0.572) and 1 694.09 t ( R 2=0.606), respectively, and from the Schaefer and the Pella Tomlinson models with two error assumptions were 2 390.95 t ( R 2=0.563), and 2 380.06 t ( R 2=0.605), respectively. The MSY estimated by the Fox model was conservatively compared to the Schaefer and Pella Tomlinson models. The MSY values from Schaefer and Pella Tomlinson models were the same. The computed values of MSY using the ASPIC computer software program with the two surplus production models of Fox and logistic were 1 498 t ( R 2=0.917), and 2 488 t ( R 2=0.897) respectively. The estimated values of MSY using CEDA were about 1 700-2 400 t and the values from ASPIC were 1 500-2 500 t. The estimates output by the CEDA and the ASPIC packages indicate that the stock is overfished, and needs some effective management to reduce the fishing effort of the species in Pakistani waters.

  18. MSTor version 2013: A new version of the computer code for the multi-structural torsional anharmonicity, now with a coupled torsional potential

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.

    2013-08-01

    We present an improved version of the MSTor program package, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsions; the method is based on either a coupled torsional potential or an uncoupled torsional potential. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes seven utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files for the MSTor calculation and Voronoi calculation, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multitorsional problems for which one can afford to calculate all the conformational structures and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes, the symmetry program for determining point group symmetry of a molecule, and seven utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes of the torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 26 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 s. References: [1] MS-T(C) method: Quantum Thermochemistry: Multi-Structural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential, J. Zheng and D.G. Truhlar, Journal of Chemical Theory and Computation 9 (2013) 1356-1367, DOI: http://dx.doi.org/10.1021/ct3010722. [2] MS-T(U) method: Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations of Complex Molecules: The Internal-Coordinate Multi-Structural Approximation, J. Zheng, T. Yu, E. Papajak, I, M. Alecu, S.L. Mielke, and D.G. Truhlar, Physical Chemistry Chemical Physics 13 (2011) 10885-10907.

  19. Software Integration in Multi-scale Simulations: the PUPIL System

    NASA Astrophysics Data System (ADS)

    Torras, J.; Deumens, E.; Trickey, S. B.

    2006-10-01

    The state of the art for computational tools in both computational chemistry and computational materials physics includes many algorithms and functionalities which are implemented again and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale simulations, by their very nature however, cannot respect that specialization. In simulation of fracture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quantum mechanical treatment that most often derives from quantum chemistry. That “QM” region is linked to a surrounding “CM” region in which potentials yield the forces. The approach therefore requires the integration or at least inter-operation of quantum chemistry and materials physics algorithms. The same problem occurs in “QM/MM” simulations in computational biology. The challenge grows if pattern recognition or other analysis codes of some kind must be used as well. The most common mode of inter-operation is user intervention: codes are modified as needed and data files are managed “by hand” by the user (interactively and via shell scripts). User intervention is however inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g Sethna’s work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using Python scripts to achieve a more efficient level of interoperation. In this communication we present an alternative approach to merging current working packages without the necessity of major recoding and with only a relatively light wrapper interface. The scheme supports communication among the different components required for a given multi-scale calculation and access to the functionalities of those components for the potential user. A general main program allows the management of every package with a special communication protocol between their interfaces following the directives introduced by the user which are stored in an XML structured file. The initial prototype of the PUPIL (Program for User Packages Interfacing and Linking) system has been done using Java as a fast, easy prototyping object oriented (OO) language. In order to test it, we have applied this prototype to a previously studied problem, the fracture of a silica nanorod. We did so joining two different packages to do a QM/MD calculation. The results show the potential for this software system to do different kind of simulations and its simplicity of maintenance.

  20. The 1991 version of the plume impingement computer program. Volume 2: User's input guide

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Somers, Richard E.; Prendergast, Maurice J.; Clayton, Joseph P.; Smith, Sheldon D.

    1991-01-01

    The Plume Impingement Program (PLIMP) is a computer code used to predict impact pressures, forces, moments, heating rates, and contamination on surfaces due to direct impingement flowfields. Typically, it has been used to analyze the effects of rocket exhaust plumes on nearby structures from ground level to the vacuum of space. The program normally uses flowfields generated by the MOC, RAMP2, SPF/2, or SFPGEN computer programs. It is capable of analyzing gaseous and gas/particle flows. A number of simple subshapes are available to model the surfaces of any structure. The original PLIMP program has been modified many times of the last 20 years. The theoretical bases for the referenced major changes, and additional undocumented changes and enhancements since 1988 are summarized in volume 1 of this report. This volume is the User's Input Guide and should be substituted for all previous guides when running the latest version of the program. This version can operate on VAX and UNIX machines with NCAR graphics ability.

  1. Information-Theoretical Analysis of EEG Microstate Sequences in Python.

    PubMed

    von Wegner, Frederic; Laufs, Helmut

    2018-01-01

    We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG) measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A-D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  2. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  3. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  4. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  5. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less

  6. MULTIPROCESSOR AND DISTRIBUTED PROCESSING BIBLIOGRAPHIC DATA BASE SOFTWARE SYSTEM

    NASA Technical Reports Server (NTRS)

    Miya, E. N.

    1994-01-01

    Multiprocessors and distributed processing are undergoing increased scientific scrutiny for many reasons. It is more and more difficult to keep track of the existing research in these fields. This package consists of a large machine-readable bibliographic data base which, in addition to the usual keyword searches, can be used for producing citations, indexes, and cross-references. The data base is compiled from smaller existing multiprocessing bibliographies, and tables of contents from journals and significant conferences. There are approximately 4,000 entries covering topics such as parallel and vector processing, networks, supercomputers, fault-tolerant computers, and cellular automata. Each entry is represented by 21 fields including keywords, author, referencing book or journal title, volume and page number, and date and city of publication. The data base contains UNIX 'refer' formatted ASCII data and can be implemented on any computer running under the UNIX operating system. The data base requires approximately one megabyte of secondary storage. The documentation for this program is included with the distribution tape, although it can be purchased for the price below. This bibliography was compiled in 1985 and updated in 1988.

  7. A 1998 Workshop on Heterogeneous Computing

    DTIC Science & Technology

    1998-09-18

    of Sussex, England, in 1994. From 1988 to 1990 he was a Lecturer with the UNAM. In 1994, he joined the Laboratorio Nacional de Informatica Avanzada...1984) and at the UNAM (1988-1991). Since 1992, he is titular Researcher and consultant at the Laboratorio Nacional de Informatica Avanzada (LANIA). He...Box 1331 Piscataway, NJ 08855-1331 Tel: + 1-908-981-1393 Fax: + 1-908-981-9667 mis.custserv@computer.org IEEE Computer Society 13, Avenue de

  8. Poloidal motion of trapped particle orbits in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of {alpha}-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantlymore » also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].« less

  9. The Sex Discrimination (Northern Ireland) Order 1988 (S.I. No. 1988/1303 [N.I. 13]), 26 July 1988.

    PubMed

    1989-01-01

    Among other things, this Northern Ireland Sex Discrimination Order amends the 1976 Sex Discrimination Order to do the following: 1) repeal the exemption of private households and small "undertakings" and partnerships from compliance with the Order; 2) restrict the exemptions allowed in the Order and in the Equal Pay Act 1970 with respect to retirement; 3) provide for common age limits for men and women in unfair dismissal cases; 4) extend exemptions to the Order for training bodies to include any person providing training; 5) authorize the Equal Opportunities Commission to issue codes of practice containing practical guidance on the elimination of discrimination in employment and the promotion of equality of opportunity for men and women; such codes of practice shall be admissible in evidence in proceedings under the Order; 6) apply provisions relating to void and unenforceable contracts to collective agreements and rules of "undertakings"; and 7) remove certain restrictions on the working hours and conditions of women.

  10. batman: BAsic Transit Model cAlculatioN in Python

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  11. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    PubMed Central

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-01-01

    Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806

  12. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    PubMed

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  13. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  14. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  15. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  16. elevatr: Access Elevation Data from Various APIs | Science ...

    EPA Pesticide Factsheets

    Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. Currently, the package supports access to the Mapzen Elevation Service, Mapzen Terrain Service, and the USGS Elevation Point Query Service. The R language for statistical computing is increasingly used for spatial data analysis . This R package, elevatr, is in response to this and provides access to elevation data from various sources directly in R. The impact of `elevatr` is that it will 1) facilitate spatial analysis in R by providing access to foundational dataset for many types of analyses (e.g. hydrology, limnology) 2) open up a new set of users and uses for APIs widely used outside of R, and 3) provide an excellent example federal open source development as promoted by the Federal Source Code Policy (https://sourcecode.cio.gov/).

  17. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.

    PubMed

    Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu

    2015-02-15

    Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Comments on the Voigt function implementation in the Astropy and SpectraPlot.com packages

    NASA Astrophysics Data System (ADS)

    Schreier, Franz

    2018-07-01

    The Voigt profile is important for spectroscopy, astrophysics, and many other fields of physics, but is notoriously difficult to compute. McLean et al. [1] [J. Electron Spectrosc. & Relat. Phenom., 1994] have proposed an approximation using a sum of Lorentzians. Our assessment indicates that this algorithm has significant errors for small arguments. After a brief survey of the requirements for spectroscopy we give a short list of both efficient and accurate codes and recommend implementations based on rational approximations.

  19. Calculation of Radau?Kronrod and Lobatto?Kronrod quadrature formulas

    NASA Astrophysics Data System (ADS)

    Laurie, Dirk

    2007-08-01

    We show how to apply routines from the software package OPQ by Walter Gautschi in order to compute the optimal extension of an n-point generalized Radau or Lobatto formula. The method is applicable to any weight function for which enough three-term recursion coefficients are known. The idea on which the method is based was first shown by Paola Baratella in 1979. Program code in the format of M-files conforming to the conventions of OPQ is given.

  20. Structural analysis of cylindrical thrust chambers, volume 3

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1981-01-01

    A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.

  1. Preliminary design of a solar central receiver for a site-specific repowering application (Saguaro Power Plant). Volume IV. Appendixes. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.

  2. Development and Evaluation of a Casualty Evacuation Model for a European Conflict.

    DTIC Science & Technology

    1985-12-01

    EVAC, the computer code which implements our technique, has been used to solve a series of test problems in less time and requiring less memory than...the order of 1/K the amount of main memory for a K-commodity problem, so it can solve significantly larger problems than MCNF. I . 10 CHAPTER II A...technique may require only half the memory of the general L.P. package [6]. These advances are due to the efficient data structures which have been

  3. Mixing, Combustion, and Other Interface Dominated Flows; Paragraphs 3.2.1 A, B, C and 3.2.2 A

    DTIC Science & Technology

    2014-04-09

    Condensed Matter Physics , (12 2010): 43401. doi: H. Lim, Y. Yu, J. Glimm, X. L. Li, D.H. Sharp. Subgrid Models for Mass and Thermal Diffusion in...zone and a series of radial cracks in solid plates hit by high velocity projectiles). • Only 2D dimensional models • Serial codes for running on single ...exter- nal parallel packages TAO and Global Arrays, developed within DOE high performance computing initiatives. A Schwartz-type overlapping domain

  4. Value-Range Analysis of C Programs

    NASA Astrophysics Data System (ADS)

    Simon, Axel

    In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.

  5. Mobile Transactional Modelling: From Concepts to Incremental Knowledge

    NASA Astrophysics Data System (ADS)

    Launders, Ivan; Polovina, Simon; Hill, Richard

    In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.

  6. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.

    PubMed

    Michael, J Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7 (Paturle & Coppens, 1988). In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.

  7. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  8. Enabling Data Intensive Science through Service Oriented Science: Virtual Laboratories and Science Gateways

    NASA Astrophysics Data System (ADS)

    Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.

    2014-12-01

    We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory (VHIRL); any enhancements and new capabilities will be incorporated into a generic VL infrastructure. At same time, we are scoping seven new VLs and in the process, identifying other common components to prioritise and focus development.

  9. Distributed chemical computing using ChemStar: an open source java remote method invocation architecture applied to large scale molecular data from PubChem.

    PubMed

    Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander

    2008-04-01

    We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.

  10. tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Bertuzzo, Enrico

    2018-04-01

    This paper presents the tran-SAS package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant-water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME), which is solved using general StorAge Selection (SAS) functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.

  11. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  12. Implementation of AAPG exchange format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiser, K.; Guerrero, I.

    1989-03-01

    The American Association of Petroleum Geologists (AAPG) has proposed a format for exchanging geologic and other petroleum data. The AAPG Computer Applications Committee approved the proposal at the March 1988 AAPG annual meeting in Houston, Texas. By adopting this format, data input into application software and data exchange between software packages are greatly simplified. Benefits to both users and suppliers of software are substantial. The AAPG exchange format supports a flexible, generic data structure. This flexibility allows application software to use the standard format for storing internal control data. In some cases, extensions to the standard format, such as separationmore » of header and data files and use of data delimiters, permits the use of AAPG format translator programs on data that were defined and generated before the emergence of the exchange format. Translation software, programmed in C, has been written and contributes to successful implementation of the AAPG exchange format in application software.« less

  13. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  14. Precessional quantities for the Earth over 10 Myr

    NASA Technical Reports Server (NTRS)

    Laskar, Jacques

    1992-01-01

    The insolation parameters of the Earth depend on its orbital parameters and on the precession and obliquity. Until 1988, the usually adopted solution for paleoclimate computation consisted in (Bretagnon, 1974) for the orbital elements of the Earth, which was completed by (Berger, 1976) for the computation of the precession and obliquity of the Earth. In 1988, I issued a solution for the orbital elements of the Earth, which was obtained in a new manner, gathering huge analytical computations and numerical integration (Laskar, 1988). In this solution, which will be denoted La88, the precession and obliquity quantities necessary for paleoclimate computations were integrated at the same time, which insure good consistency of the solutions. Unfortunately, due to various factors, this latter solution for the precession and obliquity was not widely distributed (Berger, Loutre, Laskar, 1988). On the other side, the orbital part of the solution La88 for the Earth, was used in (Berger and Loutre, 1991) to derive another solution for precession and obliquity, aimed to climate computations. I also issued a new solution (La90) which presents some slight improvements with respect to the previous one (Laskar, 1990). As previously, this solution contains orbital, precessional, and obliquity variables. The main features of this new solution are discussed.

  15. Development of a new version of the Vehicle Protection Factor Code (VPF3)

    NASA Astrophysics Data System (ADS)

    Jamieson, Terrance J.

    1990-10-01

    The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.

  16. Doclet To Synthesize UML

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  17. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  18. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  19. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for composite packagings with inner... Packaging Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles. (a) The following are identification codes for composite packagings with inner receptacles of...

  20. A new Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, Hannes; Dutta, Rishabh; Jónsson, Sigurjón; Mai, Martin

    2017-04-01

    Modern earthquake source estimation studies increasingly use non-linear optimization strategies to estimate kinematic rupture parameters, often considering geodetic and seismic data jointly. However, the optimization process is complex and consists of several steps that need to be followed in the earthquake parameter estimation procedure. These include pre-describing or modeling the fault geometry, calculating the Green's Functions (often assuming a layered elastic half-space), and estimating the distributed final slip and possibly other kinematic source parameters. Recently, Bayesian inference has become popular for estimating posterior distributions of earthquake source model parameters given measured/estimated/assumed data and model uncertainties. For instance, some research groups consider uncertainties of the layered medium and propagate these to the source parameter uncertainties. Other groups make use of informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed that efficiently explore the often high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational demands of these methods are high and estimation codes are rarely distributed along with the published results. Even if codes are made available, it is often difficult to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in earthquake source estimations, we undertook the effort of producing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package is build on top of the pyrocko seismological toolbox (www.pyrocko.org) and makes use of the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat) and we encourage and solicit contributions to the project. In this contribution, we present our strategy for developing BEAT, show application examples, and discuss future developments.

  1. 19 CFR 12.33 - Importation of tea; entry; examination for customs purposes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required of them by the said act and regulations. (b) The importation of tea is subject also to the... made of packages for examination in public stores. (e) If the invoice has not been received, the..., 1988; T.D. 97-82, 62 FR 51770, Oct. 3, 1997] White Phosphorus Matches ...

  2. 19 CFR 12.33 - Importation of tea; entry; examination for customs purposes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required of them by the said act and regulations. (b) The importation of tea is subject also to the... made of packages for examination in public stores. (e) If the invoice has not been received, the..., 1988; T.D. 97-82, 62 FR 51770, Oct. 3, 1997] White Phosphorus Matches ...

  3. 19 CFR 12.33 - Importation of tea; entry; examination for customs purposes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required of them by the said act and regulations. (b) The importation of tea is subject also to the... made of packages for examination in public stores. (e) If the invoice has not been received, the..., 1988; T.D. 97-82, 62 FR 51770, Oct. 3, 1997] White Phosphorus Matches ...

  4. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  5. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE PAGES

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    2017-02-24

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  6. Wind turbine design codes: A comparison of the structural response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, M.L. Jr.; Wright, A.D.; Pierce, K.G.

    2000-03-01

    The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory is continuing a comparison of several computer codes used in the design and analysis of wind turbines. The second part of this comparison determined how well the programs predict the structural response of wind turbines. In this paper, the authors compare the structural response for four programs: ADAMS, BLADED, FAST{_}AD, and YawDyn. ADAMS is a commercial, multibody-dynamics code from Mechanical Dynamics, Inc. BLADED is a commercial, performance and structural-response code from Garrad Hassan and Partners Limited. FAST{_}AD is a structural-response code developed by Oregon State University and themore » University of Utah for the NWTC. YawDyn is a structural-response code developed by the University of Utah for the NWTC. ADAMS, FAST{_}AD, and YawDyn use the University of Utah's AeroDyn subroutine package for calculating aerodynamic forces. Although errors were found in all the codes during this study, once they were fixed, the codes agreed surprisingly well for most of the cases and configurations that were evaluated. One unresolved discrepancy between BLADED and the AeroDyn-based codes was when there was blade and/or teeter motion in addition to a large yaw error.« less

  7. PALP: A Package for Analysing Lattice Polytopes with applications to toric geometry

    NASA Astrophysics Data System (ADS)

    Kreuzer, Maximilian; Skarke, Harald

    2004-02-01

    We describe our package PALP of C programs for calculations with lattice polytopes and applications to toric geometry, which is freely available on the internet. It contains routines for vertex and facet enumeration, computation of incidences and symmetries, as well as completion of the set of lattice points in the convex hull of a given set of points. In addition, there are procedures specialized to reflexive polytopes such as the enumeration of reflexive subpolytopes, and applications to toric geometry and string theory, like the computation of Hodge data and fibration structures for toric Calabi-Yau varieties. The package is well tested and optimized in speed as it was used for time consuming tasks such as the classification of reflexive polyhedra in 4 dimensions and the creation and manipulation of very large lists of 5-dimensional polyhedra. While originally intended for low-dimensional applications, the algorithms work in any dimension and our key routine for vertex and facet enumeration compares well with existing packages. Program summaryProgram obtainable form: CPC Program Library, Queen's University of Belfast, N. Ireland Title of program: PALP Catalogue identifier: ADSQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSQ Computer for which the program is designed: Any computer featuring C Computers on which it has been tested: PCs, SGI Origin 2000, IBM RS/6000, COMPAQ GS140 Operating systems under which the program has been tested: Linux, IRIX, AIX, OSF1 Programming language used: C Memory required to execute with typical data: Negligible for most applications; highly variable for analysis of large polytopes; no minimum but strong effects on calculation time for some tasks Number of bits in a word: arbitrary Number of processors used: 1 Has the code been vectorised or parallelized?: No Number of bytes in distributed program, including test data, etc.: 138 098 Distribution format: tar gzip file Keywords: Lattice polytopes, facet enumeration, reflexive polytopes, toric geometry, Calabi-Yau manifolds, string theory, conformal field theory Nature of problem: Certain lattice polytopes called reflexive polytopes afford a combinatorial description of a very large class of Calabi-Yau manifolds in terms of toric geometry. These manifolds play an essential role for compactifications of string theory. While originally designed to handle and classify reflexive polytopes, with particular emphasis on problems relevant to string theory applications [M. Kreuzer and H. Skarke, Rev. Math. Phys. 14 (2002) 343], the package also handles standard questions (facet enumeration and similar problems) about arbitrary lattice polytopes very efficiently. Method of solution: Much of the code is straightforward programming, but certain key routines are optimized with respect to calculation time and the handling of large sets of data. A double description method (see, e.g., [D. Avis et al., Comput. Geometry 7 (1997) 265]) is used for the facet enumeration problem, lattice basis reduction for extended gcd and a binary database structure for tasks involving large numbers of polytopes, such as classification problems. Restrictions on the complexity of the program: The only hard limitation comes from the fact that fixed integer arithmetic (32 or 64 bit) is used, allowing for input data (polytope coordinates) of roughly up to 10 9. Other parameters (dimension, numbers of points and vertices, etc.) can be set before compilation. Typical running time: Most tasks (typically: analysis of a four dimensional reflexive polytope) can be perfomed interactively within milliseconds. The classification of all reflexive polytopes in four dimensions takes several processor years. The facet enumeration problem for higher (e.g., 12-20) dimensional polytopes varies strongly with the dimension and structure of the polytope; here PALP's performance is similar to that of existing packages [Avis et al., Comput. Geometry 7 (1997) 265]. Unusual features of the program: None

  8. Combining Open-Source Packages for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, Albrecht; Grieger, Björn; Völk, Stefan

    2015-04-01

    The science planning of the ESA Rosetta mission has presented challenges which were addressed with combining various open-source software packages, such as the SPICE toolkit, the Python language and the Web graphics library three.js. The challenge was to compute certain parameters from a pool of trajectories and (possible) attitudes to describe the behaviour of the spacecraft. To be able to do this declaratively and efficiently, a C library was implemented that allows to interface the SPICE toolkit for geometrical computations from the Python language and process as much data as possible during one subroutine call. To minimise the lines of code one has to write special care was taken to ensure that the bindings were idiomatic and thus integrate well into the Python language and ecosystem. When done well, this very much simplifies the structure of the code and facilitates the testing for correctness by automatic test suites and visual inspections. For rapid visualisation and confirmation of correctness of results, the geometries were visualised with the three.js library, a popular Javascript library for displaying three-dimensional graphics in a Web browser. Programmatically, this was achieved by generating data files from SPICE sources that were included into templated HTML and displayed by a browser, thus made easily accessible to interested parties at large. As feedback came and new ideas were to be explored, the authors benefited greatly from the design of the Python-to-SPICE library which allowed the expression of algorithms to be concise and easier to communicate. In summary, by combining several well-established open-source tools, we were able to put together a flexible computation and visualisation environment that helped communicate and build confidence in planning ideas.

  9. A distributed version of the NASA Engine Performance Program

    NASA Technical Reports Server (NTRS)

    Cours, Jeffrey T.; Curlett, Brian P.

    1993-01-01

    Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in a distributed computer environment. Multiple workstations connected by a network increase the program's speed and, more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing many different architectures. It includes the capability to link with other computers, allowing them to process NEPP jobs in parallel. This paper discusses the design issues and granularity considerations that entered into programming Distributed NEPP and presents the results of timing runs.

  10. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  11. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  12. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

    PubMed

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M

    2009-09-30

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  13. Second Generation Integrated Composite Analyzer (ICAN) Computer Code

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Ginty, Carol A.; Sanfeliz, Jose G.

    1993-01-01

    This manual updates the original 1986 NASA TP-2515, Integrated Composite Analyzer (ICAN) Users and Programmers Manual. The various enhancements and newly added features are described to enable the user to prepare the appropriate input data to run this updated version of the ICAN code. For reference, the micromechanics equations are provided in an appendix and should be compared to those in the original manual for modifications. A complete output for a sample case is also provided in a separate appendix. The input to the code includes constituent material properties, factors reflecting the fabrication process, and laminate configuration. The code performs micromechanics, macromechanics, and laminate analyses, including the hygrothermal response of polymer-matrix-based fiber composites. The output includes the various ply and composite properties, the composite structural response, and the composite stress analysis results with details on failure. The code is written in FORTRAN 77 and can be used efficiently as a self-contained package (or as a module) in complex structural analysis programs. The input-output format has changed considerably from the original version of ICAN and is described extensively through the use of a sample problem.

  14. What makes computational open source software libraries successful?

    NASA Astrophysics Data System (ADS)

    Bangerth, Wolfgang; Heister, Timo

    2013-01-01

    Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects.

  15. Initial Ada components evaluation

    NASA Technical Reports Server (NTRS)

    Moebes, Travis

    1989-01-01

    The SAIC has the responsibility for independent test and validation of the SSE. They have been using a mathematical functions library package implemented in Ada to test the SSE IV and V process. The library package consists of elementary mathematical functions and is both machine and accuracy independent. The SSE Ada components evaluation includes code complexity metrics based on Halstead's software science metrics and McCabe's measure of cyclomatic complexity. Halstead's metrics are based on the number of operators and operands on a logical unit of code and are compiled from the number of distinct operators, distinct operands, and total number of occurrences of operators and operands. These metrics give an indication of the physical size of a program in terms of operators and operands and are used diagnostically to point to potential problems. McCabe's Cyclomatic Complexity Metrics (CCM) are compiled from flow charts transformed to equivalent directed graphs. The CCM is a measure of the total number of linearly independent paths through the code's control structure. These metrics were computed for the Ada mathematical functions library using Software Automated Verification and Validation (SAVVAS), the SSE IV and V tool. A table with selected results was shown, indicating that most of these routines are of good quality. Thresholds for the Halstead measures indicate poor quality if the length metric exceeds 260 or difficulty is greater than 190. The McCabe CCM indicated a high quality of software products.

  16. PlasmaPy: beginning a community developed Python package for plasma physics

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  17. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  18. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  19. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    PubMed

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  20. 76 FR 30551 - Specifications for Packagings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... 178 Specifications for Packagings CFR Correction In Title 49 of the Code of Federal Regulations, Parts... design qualification test and each periodic retest on a packaging, a test report must be prepared. The test report must be maintained at each location where the packaging is manufactured and each location...

  1. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  2. ISO 639-1 and ISO 639-2: International Standards for Language Codes. ISO 15924: International Standard for Names of Scripts.

    ERIC Educational Resources Information Center

    Byrum, John D.

    This paper describes two international standards for the representation of the names of languages. The first (ISO 639-1), published in 1988, provides two-letter codes for 136 languages and was produced primarily to meet terminological needs. The second (ISO 639-2) appeared in late 1998 and includes three-letter codes for 460 languages. This list…

  3. Computational thermochemistry: Automated generation of scale factors for vibrational frequencies calculated by electronic structure model chemistries

    NASA Astrophysics Data System (ADS)

    Yu, Haoyu S.; Fiedler, Lucas J.; Alecu, I. M.; Truhlar, Donald G.

    2017-01-01

    We present a Python program, FREQ, for calculating the optimal scale factors for calculating harmonic vibrational frequencies, fundamental vibrational frequencies, and zero-point vibrational energies from electronic structure calculations. The program utilizes a previously published scale factor optimization model (Alecu et al., 2010) to efficiently obtain all three scale factors from a set of computed vibrational harmonic frequencies. In order to obtain the three scale factors, the user only needs to provide zero-point energies of 15 or 6 selected molecules. If the user has access to the Gaussian 09 or Gaussian 03 program, we provide the option for the user to run the program by entering the keywords for a certain method and basis set in the Gaussian 09 or Gaussian 03 program. Four other Python programs, input.py, input6, pbs.py, and pbs6.py, are also provided for generating Gaussian 09 or Gaussian 03 input and PBS files. The program can also be used with data from any other electronic structure package. A manual of how to use this program is included in the code package.

  4. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  5. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

    PubMed

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.

  6. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Des, Jardins M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  7. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database.

    PubMed

    Scofield, Patricia A; Smith, Linda L; Johnson, David N

    2017-07-01

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.

  8. The Human Rights Code, 1988, 8 July 1988.

    PubMed

    1988-01-01

    This Act prohibits discrimination on the basis of sex and marital status, among other things, with respect to accommodation practices, employment practices, and publications. In its employment practices provisions, it mandates equal pay for equal work and outlaws harassment and unwelcome sexual solicitation. Under the Act, the Newfoundland Human Rights Commission, already established, is given the power to investigate complaints, effect settlements, and refer matters to a board of inquiry for further action. full text

  9. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Wang, Peng; Plimpton, Steven J

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less

  10. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for composite packagings with inner... Standards for composite packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within...

  11. Engineering Technology Education: Bibliography, 1988.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  12. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    NASA Astrophysics Data System (ADS)

    Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain

    2017-09-01

    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.

  13. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-23

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive designmore » package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.« less

  14. US Geological Survey National Computer Technology Meeting; Proceedings, Phoenix, Arizona, November 14-18, 1988

    USGS Publications Warehouse

    Balthrop, Barbara H.; Terry, J.E.

    1991-01-01

    The U.S. Geological Survey National Computer Technology Meetings (NCTM) are sponsored by the Water Resources Division and provide a forum for the presentation of technical papers and the sharing of ideas or experiences related to computer technology. This report serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, Arizona. The meeting was attended by more than 200 technical and managerial people representing all Divisions of the U.S. Geological Survey.Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art computer technology (both hardware and sofnuare). Today the goals of each Division are pursued in an environment where high speed computers, distributed communications, distributed data bases, high technology input/output devices, and very sophisticated simulation tools are used regularly. Therefore, information transfer and the sharing of advances in technology are very important issues that must be addressed regularly.This report contains complete papers and abstracts of papers that were presented at the 1988 NCTM. The report is divided into topical sections that reflect common areas of interest and application. In each section, papers are presented first followed by abstracts. For these proceedings, the publication of a complete paper or only an abstract was at the discretion of the author, although complete papers were encouraged.Some papers presented at the 1988 NCTM are not published in these proceedings.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattsson, Ann E.

    Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less

  16. Quantum Monte Carlo Endstation for Petascale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlomore » code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13 published papers, 15 invited talks and lectures nationally and internationally. My former graduate student and postdoc Dr. Michal Bajdich, who was supported byt this grant, is currently a postdoc with ORNL in the group of Dr. F. Reboredo and Dr. P. Kent and is using the developed tools in a number of DOE projects. The QWalk package has become a truly important research tool used by the electronic structure community and has attracted several new developers in other research groups. Our tools use several types of correlated wavefunction approaches, variational, diffusion and reptation methods, large-scale optimization methods for wavefunctions and enables to calculate energy differences such as cohesion, electronic gaps, but also densities and other properties, using multiple runs one can obtain equations of state for given structures and beyond. Our codes use efficient numerical and Monte Carlo strategies (high accuracy numerical orbitals, multi-reference wave functions, highly accurate correlation factors, pairing orbitals, force biased and correlated sampling Monte Carlo), are robustly parallelized and enable to run on tens of thousands cores very efficiently. Our demonstration applications were focused on the challenging research problems in several fields of materials science such as transition metal solids. We note that our study of FeO solid was the first QMC calculation of transition metal oxides at high pressures.« less

  17. Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.

    PubMed

    Robinson, Risa J; Snyder, Pam; Oldham, Michael J

    2007-05-01

    Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.

  18. The Composite Analytic and Simulation Package or RFI (CASPR) on a coded channel

    NASA Technical Reports Server (NTRS)

    Freedman, Jeff; Berman, Ted

    1993-01-01

    CASPR is an analysis package which determines the performance of a coded signal in the presence of Radio Frequency Interference (RFI) and Additive White Gaussian Noise (AWGN). It can analyze a system with convolutional coding, Reed-Solomon (RS) coding, or a concatenation of the two. The signals can either be interleaved or non-interleaved. The model measures the system performance in terms of either the E(sub b)/N(sub 0) required to achieve a given Bit Error Rate (BER) or the BER needed for a constant E(sub b)/N(sub 0).

  19. User's manual of fd2: A software package for modeling seismological problems with 2-dimensional linear finite-difference method. Special report, 1 May-15 July 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jih, R.S.

    1993-07-15

    Fd2 is a software package developed at Teledyne Geotech Alexandria Laboratories (TGAL) during the past several years for generating synthetic seismograms and displaying the wavefields. This package consists of primarily a 2-dimensional 2nd-order explicit linear finite-difference (LFD) code. LFD method has the advantage that the solution contains all conversions and all orders of multiple scattering. It permits examinations of fairly general models with arbitrary complex variations in material properties and free-surface geometry. Furthermore, it does not require many assumptions commonly invoked in other theoretical approaches. The basic limitations to the LFD method or the finite-element method are the computational costmore » and memory requirements. These constrain the size of the grid and the number of time steps that can be calculated over a reasonable time frame. Our LFD code has a distinguishable feature in that it allows the inclusion o topographical free surface. This is particularly useful in modeling nuclear explosions buried in mountains. In this topical report, sample scripts are presented to illustrate the usage of fd2 and several supporting routines for plotting out the synthetics, generating 2-dimensional media, as well as the graphic visualization of wavefields. The algorithms for handling the boundary conditions of polygonal topography are reviewed in detail. Thus this topical report serves as both a programmer's guide and the user's manual.« less

  20. Structured Forms Reference Set of Binary Images (SFRS)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images (SFRS) (Web, free access)   The NIST Structured Forms Database (Special Database 2) consists of 5,590 pages of binary, black-and-white images of synthesized documents. The documents in this database are 12 different tax forms from the IRS 1040 Package X for the year 1988.

  1. EggLib: processing, analysis and simulation tools for population genetics and genomics

    PubMed Central

    2012-01-01

    Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded. PMID:22494792

  2. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    PubMed

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  3. EggLib: processing, analysis and simulation tools for population genetics and genomics.

    PubMed

    De Mita, Stéphane; Siol, Mathieu

    2012-04-11

    With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.

  4. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    PubMed Central

    2011-01-01

    Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923

  5. Criminal Code (Amendment) (No. 2) Act, 1988, (No. 1 of 1988), 5 February 1988.

    PubMed

    1988-01-01

    Among other things, this Act adds the following new section to the Saint Lucia Criminal Code: "112A. Any person who commits an act of indecency with or towards a child under the age of fourteen or who incites or encourages a child under that age to commit such an act with him or with another person is liable on conviction on indictment to imprisonment for two years or on summary conviction to imprisonment for six months or to a fine not exceeding one thousand dollars." The Act also changes the criminal penalty for keeping a brothel. Henceforth a person who is guilty of the crime is subject to a fine not exceeding $5,000 or to imprisonment for twelve months. In addition, that person may be required "to enter into a recognisance with or without securities to be of good behaviour for any period not exceeding one year; and in default of compliance with such recognisance is liable to imprisonment for a further period not exceeding six months." full text

  6. Act No. 42/1988 instituting the Preliminary Title and First Book of the Civil Code, 27 October 1988.

    PubMed

    1988-01-01

    This document contains major provisions of the Preliminary Title and First Book (dealing with persons and the family) of the Civil Code enacted by Rwanda in 1988. These include the portions of Part 1 (physical persons) which deal with personality, birth, identification of physical persons, legal names, residence and domicile, and proof of civil status. Included sections of Part 2 (the family) cover marriage, engagement, the conclusion of marriage (with sections devoted to general provisions, substantive conditions, obligations arising from marriage, and respective rights and duties of spouses), the annulment of marriages and the effects of an annulled marriage, the dissolution of marriage and separation (divorce for specific reasons, divorce by mutual consent, and the effects of divorce), kinship and filiation (the kinship of children born legitimately or in marriage; proof of legitimate filiation; and legitimization, recognition, and support of natural children), adoption, and parental authority (general provisions, the right of custody, legal administration, legal enjoyment, loss of parental authority). The only section of Part 3 contained herein relates to the duty of the customary family council.

  7. Computer Aided Drafting Packages for Secondary Education. Edition 2. PC DOS Compatible Programs. A MicroSIFT Quarterly Report.

    ERIC Educational Resources Information Center

    Pollard, Jim

    This report reviews eight IBM-compatible software packages that are available to secondary schools to teach computer-aided drafting (CAD). Software packages to be considered were selected following reviews of CAD periodicals, computers in education periodicals, advertisements, and recommendations of teachers. The packages were then rated by…

  8. InSAR Scientific Computing Environment - The Home Stretch

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python. ISCE is now a complete, functional package, under configuration management, and with extensive documentation and tested use cases appropriate to geodetic imaging applications. The software has been tested with canonical simulated radar data ("point targets") as well as with a variety of existing satellite data, cross-compared with other software packages. Its extensibility has already been proven by the straightforward addition of polarimetric processing and calibration, and derived filtering and estimation routines associated with polarimetry that supplement the original InSAR geodetic functionality. As of October 2011, the software is available for non-commercial use through UNAVCO's WinSAR consortium.

  9. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  10. hybrid\\scriptsize{{MANTIS}}: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-01

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.

  11. Subpicosecond Optical Digital Computation Using Conjugate Parametric Generators

    DTIC Science & Technology

    1989-03-31

    Using Phase Conjugate Farametric Generators ..... 12. PERSONAL AUTHOR(S) Alfano, Robert- Eichmann . George; Dorsinville. Roger! Li. Yao 13a. TYPE OF...conjugation-based optical residue arithmetic processor," Y. Li, G. Eichmann , R. Dorsinville, and R. R. Alfano, Opt. Lett. 13, (1988). [2] "Parallel ultrafast...optical digital and symbolic computation via optical phase conjugation," Y. Li, G. Eichmann , R. Dorsinville, Appl. Opt. 27, 2025 (1988). [3

  12. Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent

    NASA Astrophysics Data System (ADS)

    Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.

    2016-03-01

    Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.

  13. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  14. Handling of Atomic Data

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Deetjen, J. L.

    2003-01-01

    State-of-the-art NLTE model atmosphere codes have arrived at a high level of ``numerical'' sophistication and are an adequate tool to analyze the available high-quality spectra from the infrared to the X-ray wavelength range. The computational capacities allow the calculation which include all elements from hydrogen up to the iron group and the lack of reliable atomic data has become a crucial problem for further progress. We summarize briefly the available sources of atomic data and how these are implemented in the Tübingen Model Atmosphere Package (TMAP).

  15. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1988-07-01

    Principal Investigator B. K. Jenkins Signal and Image Processing Institute University of Southern California Mail Code 0272 Los Angeles, California...ADDRESS (09% SteW. Mnd ZIP Code ) 10. SOURC OF FUNONG NUMBERS Bldg. 410, Bolling AFB PROGAM CT TASK WORK UNIT Washington, D.C. 20332 EEETP.aso o 11...TAB Unmnnncced Justification By Distribution/ I O’ Availablility Codes I - ’_ ji and/or 2 I Summary During the period 1 July 1987 - 30 June 1988, the

  16. TetrUSS Capabilities for S and C Applications

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Parikh, Paresh

    2004-01-01

    TetrUSS is a suite of loosely coupled computational fluid dynamics software that is packaged into a complete flow analysis system. The system components consist of tools for geometry setup, grid generation, flow solution, visualization, and various utilities tools. Development began in 1990 and it has evolved into a proven and stable system for Euler and Navier-Stokes analysis and design of unconventional configurations. It is 1) well developed and validated, 2) has a broad base of support, and 3) is presently is a workhorse code because of the level of confidence that has been established through wide use. The entire system can now run on linux or mac architectures. In the following slides, I will highlight more of the features of the VGRID and USM3D codes.

  17. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.

    2012-06-01

    BerkeleyGW is a massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the ab initio GW and GW plus Bethe-Salpeter equation methodology. It can be used in conjunction with many density-functional theory codes for ground-state properties, including PARATEC, PARSEC, Quantum ESPRESSO, SIESTA, and Octopus. The package can be used to compute the electronic and optical properties of a wide variety of material systems from bulk semiconductors and metals to nanostructured materials and molecules. The package scales to 10 000s of CPUs and can be used to study systems containing up to 100s of atoms. Program summaryProgram title: BerkeleyGW Catalogue identifier: AELG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open source BSD License. See code for licensing details. No. of lines in distributed program, including test data, etc.: 576 540 No. of bytes in distributed program, including test data, etc.: 110 608 809 Distribution format: tar.gz Programming language: Fortran 90, C, C++, Python, Perl, BASH Computer: Linux/UNIX workstations or clusters Operating system: Tested on a variety of Linux distributions in parallel and serial as well as AIX and Mac OSX RAM: (50-2000) MB per CPU (Highly dependent on system size) Classification: 7.2, 7.3, 16.2, 18 External routines: BLAS, LAPACK, FFTW, ScaLAPACK (optional), MPI (optional). All available under open-source licenses. Nature of problem: The excited state properties of materials involve the addition or subtraction of electrons as well as the optical excitations of electron-hole pairs. The excited particles interact strongly with other electrons in a material system. This interaction affects the electronic energies, wavefunctions and lifetimes. It is well known that ground-state theories, such as standard methods based on density-functional theory, fail to correctly capture this physics. Solution method: We construct and solve the Dyson's equation for the quasiparticle energies and wavefunctions within the GW approximation for the electron self-energy. We additionally construct and solve the Bethe-Salpeter equation for the correlated electron-hole (exciton) wavefunctions and excitation energies. Restrictions: The material size is limited in practice by the computational resources available. Materials with up to 500 atoms per periodic cell can be studied on large HPCs. Additional comments: The distribution file for this program is approximately 110 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: 1-1000 minutes (depending greatly on system size and processor number).

  18. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Updatemore » Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009, Cycle 145A through Cycle 151B, was successfully completed during 2012. This major effort supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR Core Safety Analysis Package (CSAP) preparation process, in parallel with the established PDQ-based methodology, beginning late in Fiscal Year 2012. Acquisition of the advanced SERPENT (VTT-Finland) and MC21 (DOE-NR) Monte Carlo stochastic neutronics simulation codes was also initiated during the year and some initial applications of SERPENT to ATRC experiment analysis were demonstrated. These two new codes will offer significant additional capability, including the possibility of full-3D Monte Carlo fuel management support capabilities for the ATR at some point in the future. Finally, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system has been implemented and initial computational results have been obtained. This capability will have many applications as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation.« less

  19. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material AGENCY: Nuclear..., ``Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material.'' This draft... regulations for the packaging and transportation of radioactive material in Part 71 of Title 10 of the Code of...

  20. BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments

    PubMed Central

    Thomas, Brandon R.; Chylek, Lily A.; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H.A.; Hlavacek, William S.; Posner, Richard G.

    2016-01-01

    Summary: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. Availability and implementation: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary information: Supplementary data are available at Bioinformatics online. Contact: bionetgen.help@gmail.com PMID:26556387

  1. Reproducible Research in the Geosciences at Scale: Achievable Goal or Elusive Dream?

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Evans, B. J. K.

    2016-12-01

    Reproducibility is a fundamental tenant of the scientific method: it implies that any researcher, or a third party working independently, can duplicate any experiment or investigation and produce the same results. Historically computationally based research involved an individual using their own data and processing it in their own private area, often using software they wrote or inherited from close collaborators. Today, a researcher is likely to be part of a large team that will use a subset of data from an external repository and then process the data on a public or private cloud or on a large centralised supercomputer, using a mixture of their own code, third party software and libraries, or global community codes. In 'Big Geoscience' research it is common for data inputs to be extracts from externally managed dynamic data collections, where new data is being regularly appended, or existing data is revised when errors are detected and/or as processing methods are improved. New workflows increasingly use services to access data dynamically to create subsets on-the-fly from distributed sources, each of which can have a complex history. At major computational facilities, underlying systems, libraries, software and services are being constantly tuned and optimised, or as new or replacement infrastructure being installed. Likewise code used from a community repository is continually being refined, re-packaged and ported to the target platform. To achieve reproducibility, today's researcher increasingly needs to track their workflow, including querying information on the current or historical state of facilities used. Versioning methods are standard practice for software repositories or packages, but it is not common for either data repositories or data services to provide information about their state, or for systems to provide query-able access to changes in the underlying software. While a researcher can achieve transparency and describe steps in their workflow so that others can repeat them and replicate processes undertaken, they cannot achieve exact reproducibility or even transparency of results generated. In Big Geoscience, full reproducibiliy will be an elusive dream until data repositories and compute facilities can provide provenance information in a standards compliant, machine query-able way.

  2. SEDA: A software package for the Statistical Earthquake Data Analysis

    NASA Astrophysics Data System (ADS)

    Lombardi, A. M.

    2017-03-01

    In this paper, the first version of the software SEDA (SEDAv1.0), designed to help seismologists statistically analyze earthquake data, is presented. The package consists of a user-friendly Matlab-based interface, which allows the user to easily interact with the application, and a computational core of Fortran codes, to guarantee the maximum speed. The primary factor driving the development of SEDA is to guarantee the research reproducibility, which is a growing movement among scientists and highly recommended by the most important scientific journals. SEDAv1.0 is mainly devoted to produce accurate and fast outputs. Less care has been taken for the graphic appeal, which will be improved in the future. The main part of SEDAv1.0 is devoted to the ETAS modeling. SEDAv1.0 contains a set of consistent tools on ETAS, allowing the estimation of parameters, the testing of model on data, the simulation of catalogs, the identification of sequences and forecasts calculation. The peculiarities of routines inside SEDAv1.0 are discussed in this paper. More specific details on the software are presented in the manual accompanying the program package.

  3. treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.

    PubMed

    Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T

    2017-01-07

    Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.

  4. SEDA: A software package for the Statistical Earthquake Data Analysis

    PubMed Central

    Lombardi, A. M.

    2017-01-01

    In this paper, the first version of the software SEDA (SEDAv1.0), designed to help seismologists statistically analyze earthquake data, is presented. The package consists of a user-friendly Matlab-based interface, which allows the user to easily interact with the application, and a computational core of Fortran codes, to guarantee the maximum speed. The primary factor driving the development of SEDA is to guarantee the research reproducibility, which is a growing movement among scientists and highly recommended by the most important scientific journals. SEDAv1.0 is mainly devoted to produce accurate and fast outputs. Less care has been taken for the graphic appeal, which will be improved in the future. The main part of SEDAv1.0 is devoted to the ETAS modeling. SEDAv1.0 contains a set of consistent tools on ETAS, allowing the estimation of parameters, the testing of model on data, the simulation of catalogs, the identification of sequences and forecasts calculation. The peculiarities of routines inside SEDAv1.0 are discussed in this paper. More specific details on the software are presented in the manual accompanying the program package. PMID:28290482

  5. CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics

    PubMed Central

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086

  6. 76 FR 5215 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Compliance with Packaging Requirements for Shipment and Receipt of Radioactive Material,'' is temporarily... Code of Federal Regulations, Part 71, ``Packaging and Transportation of Radioactive Material'' (10 CFR... Compliance with Packaging Requirements for Shipments of Radioactive Materials,'' as an acceptable process for...

  7. 49 CFR 41.120 - Acceptable model codes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... seismic safety substantially equivalent to that provided by use of the 1988 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions (Copies are available from the Office of Earthquakes and...

  8. 49 CFR 41.120 - Acceptable model codes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... seismic safety substantially equivalent to that provided by use of the 1988 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions (Copies are available from the Office of Earthquakes and...

  9. 49 CFR 41.120 - Acceptable model codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... seismic safety substantially equivalent to that provided by use of the 1988 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions (Copies are available from the Office of Earthquakes and...

  10. 49 CFR 41.120 - Acceptable model codes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... seismic safety substantially equivalent to that provided by use of the 1988 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions (Copies are available from the Office of Earthquakes and...

  11. 49 CFR 41.120 - Acceptable model codes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... seismic safety substantially equivalent to that provided by use of the 1988 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions (Copies are available from the Office of Earthquakes and...

  12. Electronic structure, chemical bonding, and geometry of pure and Sr-doped CaCO3.

    PubMed

    Stashans, Arvids; Chamba, Gaston; Pinto, Henry

    2008-02-01

    The electronic structure, chemical bonding, geometry, and effects produced by Sr-doping in CaCO(3) have been studied on the basis of density-functional theory using the VASP simulation package and molecular-orbital theory utilizing the CLUSTERD computer code. Two calcium carbonate structures which occur naturally in anhydrous crystalline forms, calcite and aragonite, were considered in the present investigation. The obtained diagrams of density of states show similar patterns for both materials. The spatial structures are computed and analyzed in comparison to the available experimental data. The electronic properties and atomic displacements because of the trace element Sr-incorporation are discussed in a comparative manner for the two crystalline structures. (c) 2007 Wiley Periodicals, Inc.

  13. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James Russell

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equationmore » of state and for the JWL equation of state.« less

  14. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  15. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated. Afterwards, the total energy for each distorted structure is calculated by the first-principles codes, e.g. VASP [3]. Finally, the second-order elastic constants are determined from the quadratic coefficients of the polynomial fitting of the energies vs strain relationships and other elastic properties are accordingly derived. References [1] http://atztogo.github.io/spglib/. [2] A. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE standard on piezoelectricity, Society, 1988. [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

  16. Proceedings of Selected Research Paper Presentations at the 1988 Convention of the Association for Educational Communications and Technology and Sponsored by the Research and Theory Division (10th, New Orleans, Louisiana, January 14-19, 1988).

    ERIC Educational Resources Information Center

    Simonson, Michael R., Ed.; Frederick, Jacqueline K., Ed.

    1988-01-01

    The 54 papers in this volume represent some of the most current thinking in educational communications and technology. Individual papers address the following topics: feedback in computer-assisted instruction (CAI); cognitive style and cognitive strategies in CAI; persuasive film-making; learning strategies; computer technology and children's word…

  17. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  18. SOL - SIZING AND OPTIMIZATION LANGUAGE COMPILER

    NASA Technical Reports Server (NTRS)

    Scotti, S. J.

    1994-01-01

    SOL is a computer language which is geared to solving design problems. SOL includes the mathematical modeling and logical capabilities of a computer language like FORTRAN but also includes the additional power of non-linear mathematical programming methods (i.e. numerical optimization) at the language level (as opposed to the subroutine level). The language-level use of optimization has several advantages over the traditional, subroutine-calling method of using an optimizer: first, the optimization problem is described in a concise and clear manner which closely parallels the mathematical description of optimization; second, a seamless interface is automatically established between the optimizer subroutines and the mathematical model of the system being optimized; third, the results of an optimization (objective, design variables, constraints, termination criteria, and some or all of the optimization history) are output in a form directly related to the optimization description; and finally, automatic error checking and recovery from an ill-defined system model or optimization description is facilitated by the language-level specification of the optimization problem. Thus, SOL enables rapid generation of models and solutions for optimum design problems with greater confidence that the problem is posed correctly. The SOL compiler takes SOL-language statements and generates the equivalent FORTRAN code and system calls. Because of this approach, the modeling capabilities of SOL are extended by the ability to incorporate existing FORTRAN code into a SOL program. In addition, SOL has a powerful MACRO capability. The MACRO capability of the SOL compiler effectively gives the user the ability to extend the SOL language and can be used to develop easy-to-use shorthand methods of generating complex models and solution strategies. The SOL compiler provides syntactic and semantic error-checking, error recovery, and detailed reports containing cross-references to show where each variable was used. The listings summarize all optimizations, listing the objective functions, design variables, and constraints. The compiler offers error-checking specific to optimization problems, so that simple mistakes will not cost hours of debugging time. The optimization engine used by and included with the SOL compiler is a version of Vanderplatt's ADS system (Version 1.1) modified specifically to work with the SOL compiler. SOL allows the use of the over 100 ADS optimization choices such as Sequential Quadratic Programming, Modified Feasible Directions, interior and exterior penalty function and variable metric methods. Default choices of the many control parameters of ADS are made for the user, however, the user can override any of the ADS control parameters desired for each individual optimization. The SOL language and compiler were developed with an advanced compiler-generation system to ensure correctness and simplify program maintenance. Thus, SOL's syntax was defined precisely by a LALR(1) grammar and the SOL compiler's parser was generated automatically from the LALR(1) grammar with a parser-generator. Hence unlike ad hoc, manually coded interfaces, the SOL compiler's lexical analysis insures that the SOL compiler recognizes all legal SOL programs, can recover from and correct for many errors and report the location of errors to the user. This version of the SOL compiler has been implemented on VAX/VMS computer systems and requires 204 KB of virtual memory to execute. Since the SOL compiler produces FORTRAN code, it requires the VAX FORTRAN compiler to produce an executable program. The SOL compiler consists of 13,000 lines of Pascal code. It was developed in 1986 and last updated in 1988. The ADS and other utility subroutines amount to 14,000 lines of FORTRAN code and were also updated in 1988.

  19. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... distinguishing brand name or code designation appearing on the packaging material shipping container; must....13) will be acceptable. The management of the establishment must maintain a file containing...

  20. New schemes for internally contracted multi-reference configuration interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi

    2014-10-01

    In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.

  1. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  2. T.I.M.S: TaqMan Information Management System, tools to organize data flow in a genotyping laboratory

    PubMed Central

    Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico

    2005-01-01

    Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298

  3. recount workflow: Accessing over 70,000 human RNA-seq samples with Bioconductor

    PubMed Central

    Collado-Torres, Leonardo; Nellore, Abhinav; Jaffe, Andrew E.

    2017-01-01

    The recount2 resource is composed of over 70,000 uniformly processed human RNA-seq samples spanning TCGA and SRA, including GTEx. The processed data can be accessed via the recount2 website and the recountBioconductor package. This workflow explains in detail how to use the recountpackage and how to integrate it with other Bioconductor packages for several analyses that can be carried out with the recount2 resource. In particular, we describe how the coverage count matrices were computed in recount2 as well as different ways of obtaining public metadata, which can facilitate downstream analyses. Step-by-step directions show how to do a gene-level differential expression analysis, visualize base-level genome coverage data, and perform an analyses at multiple feature levels. This workflow thus provides further information to understand the data in recount2 and a compendium of R code to use the data. PMID:29043067

  4. A study of the compatibility of an existing CFD package with a broader class of material constitutions

    NASA Technical Reports Server (NTRS)

    French, K. W., Jr.

    1985-01-01

    The flexibility of the PHOENICS computational fluid dynamics package was assessed along two general avenues; parallel modeling and analog modeling. In parallel modeling the dependent and independent variables retain their identity within some scaling factors, even though the boundary conditions and especially the constitutive relations do not correspond to any realistic fluid dynamic situation. PHOENICS was used to generate a CFD model that should exhibit the physical anomalies of a granular medium and permit reasonable similarity with boundary conditions typical to membrane or porous piston loading. A considerable portion of the study was spent prying into the existing code with a prejudice toward rate type and disarming any inherent fluid behavior. The final stages of the study were directed at the more specific problem of multiaxis loading of cylindrical geometry with a concern for the appearance of bulging, cross slab shear failure modes.

  5. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  6. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, S.

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less

  7. Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST.

    PubMed

    Baele, Guy; Lemey, Philippe; Rambaut, Andrew; Suchard, Marc A

    2017-06-15

    Advances in sequencing technology continue to deliver increasingly large molecular sequence datasets that are often heavily partitioned in order to accurately model the underlying evolutionary processes. In phylogenetic analyses, partitioning strategies involve estimating conditionally independent models of molecular evolution for different genes and different positions within those genes, requiring a large number of evolutionary parameters that have to be estimated, leading to an increased computational burden for such analyses. The past two decades have also seen the rise of multi-core processors, both in the central processing unit (CPU) and Graphics processing unit processor markets, enabling massively parallel computations that are not yet fully exploited by many software packages for multipartite analyses. We here propose a Markov chain Monte Carlo (MCMC) approach using an adaptive multivariate transition kernel to estimate in parallel a large number of parameters, split across partitioned data, by exploiting multi-core processing. Across several real-world examples, we demonstrate that our approach enables the estimation of these multipartite parameters more efficiently than standard approaches that typically use a mixture of univariate transition kernels. In one case, when estimating the relative rate parameter of the non-coding partition in a heterochronous dataset, MCMC integration efficiency improves by > 14-fold. Our implementation is part of the BEAST code base, a widely used open source software package to perform Bayesian phylogenetic inference. guy.baele@kuleuven.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  10. Ray Methods for Acoustic Scattering, Optics Of Bubbles, Diffraction Catastrophes, and Nonlinear Acoustics.

    DTIC Science & Technology

    1992-11-24

    15 Code I: Internal Reports ................................................................. 19 Code M : Oral...experiments. 13. S. M . Baumer: completed M.S. thesis in 1988 on light scattering. 14. C. E. Dean: completed Ph.D. dissertation in 1989 on light...novel oscillation induced flow instabilities. 18. J. M . Winey: awarded M.S. degree in 1990 with project on capillary wave experiments. He

  11. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  12. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  13. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.

    2010-09-01

    The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.

  14. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  15. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    NASA Astrophysics Data System (ADS)

    Datta, Arjun

    2018-03-01

    We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git).

  16. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    NASA Technical Reports Server (NTRS)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  17. Accelerating cardiac bidomain simulations using graphics processing units.

    PubMed

    Neic, A; Liebmann, M; Hoetzl, E; Mitchell, L; Vigmond, E J; Haase, G; Plank, G

    2012-08-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6-20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20 GPUs, 476 CPU cores were required on a national supercomputing facility.

  18. Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units

    PubMed Central

    Neic, Aurel; Liebmann, Manfred; Hoetzl, Elena; Mitchell, Lawrence; Vigmond, Edward J.; Haase, Gundolf

    2013-01-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6–20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20GPUs, 476 CPU cores were required on a national supercomputing facility. PMID:22692867

  19. Deterministic Local Sensitivity Analysis of Augmented Systems - II: Applications to the QUENCH-04 Experiment Using the RELAP5/MOD3.2 Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.

    2005-09-15

    The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less

  20. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  1. Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach: General formulation and removal of singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndong, Mamadou; Lauvergnat, David; Nauts, André

    2013-11-28

    We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less

  2. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  3. YAMM - YET ANOTHER MENU MANAGER

    NASA Technical Reports Server (NTRS)

    Mazer, A. S.

    1994-01-01

    One of the most time-consuming yet necessary tasks of writing any piece of interactive software is the development of a user interface. Yet Another Menu Manager, YAMM, is an application independent menuing package, designed to remove much of the difficulty and save much of the time inherent in the implementation of the front ends for large packages. Written in C for UNIX-based operating systems, YAMM provides a complete menuing front end for a wide variety of applications, with provisions for terminal independence, user-specific configurations, and dynamic creation of menu trees. Applications running under the menu package consists of two parts: a description of the menu configuration and the body of application code. The menu configuration is used at runtime to define the menu structure and any non-standard keyboard mappings and terminal capabilities. Menu definitions define specific menus within the menu tree. The names used in a definition may be either a reference to an application function or the name of another menu defined within the menu configuration. Application parameters are entered using data entry screens which allow for required and optional parameters, tables, and legal-value lists. Both automatic and application-specific error checking are available. Help is available for both menu operation and specific applications. The YAMM program was written in C for execution on a Sun Microsystems workstation running SunOS, based on the Berkeley (4.2bsd) version of UNIX. During development, YAMM has been used on both 68020 and SPARC architectures, running SunOS versions 3.5 and 4.0. YAMM should be portable to most other UNIX-based systems. It has a central memory requirement of approximately 232K bytes. The standard distribution medium for this program is one .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. YAMM was developed in 1988 and last updated in 1990. YAMM is a copyrighted work with all copyright vested in NASA.

  4. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, S K

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less

  5. MPPhys—A many-particle simulation package for computational physics education

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  6. NASA/ASEE Summer Faculty Fellowship Program: 1988 research reports

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A. (Editor); Armstrong, Dennis W. (Editor)

    1988-01-01

    This contractor's report contains all sixteen final reports prepared by the participants in the 1988 Summer Faculty Fellowship Program. Reports describe research projects on a number of topics including controlled environments, robotics, cryogenic propellant storage, polymers, hydroponic culture, adaptive servocontrol, and computer aided design

  7. LinguisticBelief: a java application for linguistic evaluation using belief, fuzzy sets, and approximate reasoning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, John L.

    LinguisticBelief is a Java computer code that evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. The mathematics of fuzzy sets, approximate reasoning, and belief/ plausibility are complex. Without an automated tool, this complexity precludes their application to all but the simplest of problems. LinguisticBelief automates the use of these techniques, allowing complex problems to be evaluated easily. LinguisticBelief can be used free of chargemore » on any Windows XP machine. This report documents the use and structure of the LinguisticBelief code, and the deployment package for installation client machines.« less

  8. Aeras: A next generation global atmosphere model

    DOE PAGES

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; ...

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  9. EOSlib, Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Nathan; Menikoff, Ralph

    2017-02-03

    Equilibrium thermodynamics underpins many of the technologies used throughout theoretical physics, yet verification of the various theoretical models in the open literature remains challenging. EOSlib provides a single, consistent, verifiable implementation of these models, in a single, easy-to-use software package. It consists of three parts: a software library implementing various published equation-of-state (EOS) models; a database of fitting parameters for various materials for these models; and a number of useful utility functions for simplifying thermodynamic calculations such as computing Hugoniot curves or Riemann problem solutions. Ready availability of this library will enable reliable code-to- code testing of equation-of-state implementations, asmore » well as a starting point for more rigorous verification work. EOSlib also provides a single, consistent API for its analytic and tabular EOS models, which simplifies the process of comparing models for a particular application.« less

  10. Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.

    1992-01-01

    Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented.

  11. UPEML Version 3.0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

  12. UPEML Version 3. 0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

  13. BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments.

    PubMed

    Thomas, Brandon R; Chylek, Lily A; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H A; Hlavacek, William S; Posner, Richard G

    2016-03-01

    Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary data are available at Bioinformatics online. bionetgen.help@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. CPU timing routines for a CONVEX C220 computer system

    NASA Technical Reports Server (NTRS)

    Bynum, Mary Ann

    1989-01-01

    The timing routines available on the CONVEX C220 computer system in the Structural Mechanics Division (SMD) at NASA Langley Research Center are examined. The function of the timing routines, the use of the timing routines in sequential, parallel, and vector code, and the interpretation of the results from the timing routines with respect to the CONVEX model of computing are described. The timing routines available on the SMD CONVEX fall into two groups. The first group includes standard timing routines generally available with UNIX 4.3 BSD operating systems, while the second group includes routines unique to the SMD CONVEX. The standard timing routines described in this report are /bin/csh time,/bin/time, etime, and ctime. The routines unique to the SMD CONVEX are getinfo, second, cputime, toc, and a parallel profiling package made up of palprof, palinit, and palsum.

  15. Intelligent sensor and controller framework for the power grid

    DOEpatents

    Akyol, Bora A.; Haack, Jereme Nathan; Craig, Jr., Philip Allen; Tews, Cody William; Kulkarni, Anand V.; Carpenter, Brandon J.; Maiden, Wendy M.; Ciraci, Selim

    2015-07-28

    Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with the software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.

  16. Intelligent sensor and controller framework for the power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Bora A.; Haack, Jereme Nathan; Craig, Jr., Philip Allen

    Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with themore » software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.« less

  17. TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Myers, R. A.; Topp, D. A.; Delaney, R. A.

    1995-01-01

    The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.

  18. Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.

    2015-12-01

    Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.

  19. Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations.

    PubMed

    Wilkinson, Karl; Skylaris, Chris-Kriton

    2013-10-30

    We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms. Copyright © 2013 Wiley Periodicals, Inc.

  20. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    NASA Astrophysics Data System (ADS)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  1. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...

  2. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111...; Specification IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...

  3. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...

  4. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...

  5. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...

  6. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    PubMed

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor.

  7. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    NASA Technical Reports Server (NTRS)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  8. Function Package for Computing Quantum Resource Measures

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-05-01

    In this paper, we present a function package for to calculate quantum resource measures and dynamics of open systems. Our package includes common operators and operator lists, frequently-used functions for computing quantum entanglement, quantum correlation, quantum coherence, quantum Fisher information and dynamics in noisy environments. We briefly explain the functions of the package and illustrate how to use the package with several typical examples. We expect that this package is a useful tool for future research and education.

  9. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles. (a) The following are identification codes for composite packagings with inner receptacles of glass...

  10. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  11. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  12. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  13. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  14. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Laloo, Jalal Z. A.; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  15. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations.

    PubMed

    Laloo, Jalal Z A; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  16. Proceedings: USACERL/ASCE First Joint Conference on Expert Systems, 29-30 June 1988

    DTIC Science & Technology

    1989-01-01

    Wong KOWLEDGE -BASED GRAPHIC DIALOGUES . o ...................... .... 80 D. L Mw 4 CONTENTS (Cont’d) ABSTRACTS ACCEPTED FOR PUBLICATION MAD, AN EXPERT...methodology of inductive shallow modeling was developed. Inductive systems may become powerful shallow modeling tools applicable to a large class of...analysis was conducted using a statistical package, Trajectories. Four different types of relationships were analyzed: linear, logarithmic, power , and

  17. Structured Forms Reference Set of Binary Images II (SFRS2)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images II (SFRS2) (Web, free access)   The second NIST database of structured forms (Special Database 6) consists of 5,595 pages of binary, black-and-white images of synthesized documents containing hand-print. The documents in this database are 12 different tax forms with the IRS 1040 Package X for the year 1988.

  18. Mesh-matrix analysis method for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1989-01-01

    The mesh-matrix method is a procedure for calculating the current distribution in the conductors of electromagnetic launchers with coil or flat-plate geometry. Once the current distribution is known the launcher performance can be calculated. The method divides the conductors into parallel current paths, or meshes, and finds the current in each mesh by matrix inversion. The author presents procedures for writing equations for the current and voltage relations for a few meshes to serve as a pattern for writing the computer code. An available subroutine package provides routines for field and flux coefficients and equation solution.

  19. SIRU development. Volume 3: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.

    1973-01-01

    The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.

  20. Progress in 1988 1990 with computer applications in the ``hard-rock'' arena: Geochemistry, mineralogy, petrology, and volcanology

    NASA Astrophysics Data System (ADS)

    Rock, Nicholas M. S.

    This review covers rock, mineral and isotope geochemistry, mineralogy, igneous and metamorphic petrology, and volcanology. Crystallography, exploration geochemistry, and mineral exploration are excluded. Fairly extended comments on software availability, and on computerization of the publication process and of specimen collection indexes, may interest a wider audience. A proliferation of both published and commercial software in the past 3 years indicates increasing interest in what traditionally has been a rather reluctant sphere of geoscience computer activity. However, much of this software duplicates the same old functions (Harker and triangular plots, mineral recalculations, etc.). It usually is more efficient nowadays to use someone else's program, or to employ the command language in one of many general-purpose spreadsheet or statistical packages available, than to program a specialist operation from scratch in, say, FORTRAN. Greatest activity has been in mineralogy, where several journals specifically encourage publication of computer-related activities, and IMA and MSA Working Groups on microcomputers have been convened. In petrology and geochemistry, large national databases of rock and mineral analyses continue to multiply, whereas the international database IGBA grows slowly; some form of integration is necessary to make these disparate systems of lasting value to the global "hard-rock" community. Total merging or separate addressing via an intelligent "front-end" are both possibilities. In volcanology, the BBC's videodisk Volcanoes and the Smithsonian Institution's Global Volcanism Project use the most up-to-date computer technology in an exciting and innovative way, to promote public education.

  1. Command History for 1988

    DTIC Science & Technology

    1989-02-01

    installs, and provides life cycle support for information management systems. 16. Provides information and reports to higher authority and the scientific com...instruction/policy. 29 November New Employees Margaret Overton Paula Augustine Staffing Clerk Clerk Typist Code OOB Code I I GS-203-4 GS-322-4 Sylvia ...Evaluation and Survey Systems-Develops systems to evaluate the effectiveness of quality of life programs and to improve the quality of personnel

  2. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  3. NSTX-U Control System Upgrades

    DOE PAGES

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; ...

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  4. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.

    PubMed

    Fernandes, Kyle D; Renison, C Alicia; Naidoo, Kevin J

    2015-07-05

    We present here a set of algorithms that completely rewrites the Hartree-Fock (HF) computations common to many legacy electronic structure packages (such as GAMESS-US, GAMESS-UK, and NWChem) into a massively parallel compute scheme that takes advantage of hardware accelerators such as Graphical Processing Units (GPUs). The HF compute algorithm is core to a library of routines that we name the Quantum Supercharger Library (QSL). We briefly evaluate the QSL's performance and report that it accelerates a HF 6-31G Self-Consistent Field (SCF) computation by up to 20 times for medium sized molecules (such as a buckyball) when compared with mature Central Processing Unit algorithms available in the legacy codes in regular use by researchers. It achieves this acceleration by massive parallelization of the one- and two-electron integrals and optimization of the SCF and Direct Inversion in the Iterative Subspace routines through the use of GPU linear algebra libraries. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Basic Business and Economics: Understanding the Uses of the Universal Product Code

    ERIC Educational Resources Information Center

    Blockhus, Wanda

    1977-01-01

    Describes the Universal Product Code (UPC), the two-part food labeling and packaging code which is both human- and electronic scanner-readable. Discusses how it affects both consumer and business, and suggests how to teach the UPC code to business education students. (HD)

  6. A Review of Human Spatial Representations Computational, Neuroscience, Mathematical, Developmental, and Cognitive Psychology Considerations

    DTIC Science & Technology

    2000-12-18

    Gallistel , 1988). Hermer and Spelke (1996) found that the young children were able to detect, remember, and use the same nongeometric information...America, 50, 637-642. Margules, J., & Gallistel , C. R. (1988). Heading in the rat: Determination by environmental shape. Animal Learning & Behavior, 16(4

  7. SILHOUETTE - HIDDEN LINE COMPUTER CODE WITH GENERALIZED SILHOUETTE SOLUTION

    NASA Technical Reports Server (NTRS)

    Hedgley, D. R.

    1994-01-01

    Flexibility in choosing how to display computer-generated three-dimensional drawings has become increasingly important in recent years. A major consideration is the enhancement of the realism and aesthetics of the presentation. A polygonal representation of objects, even with hidden lines removed, is not always desirable. A more pleasing pictorial representation often can be achieved by removing some of the remaining visible lines, thus creating silhouettes (or outlines) of selected surfaces of the object. Additionally, it should be noted that this silhouette feature allows warped polygons. This means that any polygon can be decomposed into constituent triangles. Considering these triangles as members of the same family will present a polygon with no interior lines, and thus removes the restriction of flat polygons. SILHOUETTE is a program for calligraphic drawings that can render any subset of polygons as a silhouette with respect to itself. The program is flexible enough to be applicable to every class of object. SILHOUETTE offers all possible combinations of silhouette and nonsilhouette specifications for an arbitrary solid. Thus, it is possible to enhance the clarity of any three-dimensional scene presented in two dimensions. Input to the program can be line segments or polygons. Polygons designated with the same number will be drawn as a silhouette of those polygons. SILHOUETTE is written in FORTRAN 77 and requires a graphics package such as DI-3000. The program has been implemented on a DEC VAX series computer running VMS and used 65K of virtual memory without a graphics package linked in. The source code is intended to be machine independent. This program is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution) and is also available on a 9-track 1600 BPI ASCII CARD IMAGE magnetic tape. SILHOUETTE was developed in 1986 and was last updated in 1992.

  8. Heterogeneous scalable framework for multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Karla Vanessa

    2013-09-01

    Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less

  9. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    NASA Astrophysics Data System (ADS)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  10. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that is represented as manufactured to meet a UN standard with the marks specified in this section. The... marks should be used to separate this information. A packaging conforming to a UN standard must be... “UN”) may be applied in place of the symbol;; (2) A packaging identification code designating the type...

  11. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that is represented as manufactured to meet a UN standard with the marks specified in this section. The... marks should be used to separate this information. A packaging conforming to a UN standard must be... “UN”) may be applied in place of the symbol;; (2) A packaging identification code designating the type...

  12. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that is represented as manufactured to meet a UN standard with the marks specified in this section. The... marks should be used to separate this information. A packaging conforming to a UN standard must be... “UN” may be applied in place of the symbol); (2) A packaging identification code designating the type...

  13. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that is represented as manufactured to meet a UN standard with the marks specified in this section. The... marks should be used to separate this information. A packaging conforming to a UN standard must be... “UN” may be applied in place of the symbol); (2) A packaging identification code designating the type...

  14. Optical Storage Technology Subgroup (FIMUG)

    DTIC Science & Technology

    1990-04-01

    SECURITY CLASSICATON O NGRS PAG E NPAGE OMNo. 0704- 01 " I a REPORT SECUR - ,. ASSF o RiSTRICTIVE MARKINGS Unclasified oJU IS M’ 2a SECURITY C,.ASS...USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL i22o TELEPHONE (include Area Code) 22c OFFICE SYMBOL (I 00 Form 1473, JUN 06 Previous e1t3onJ art obSo1te...Mdium May Change Shape of Optical Storage." PC Week. 1988 (21 Jun). "More Volume Buyers Turning Eyes Toward Optical-Storage Market." PC Week. 1988 (25 Jul

  15. Military Compensation Alternatives for Retention of Officers in the Republic of Korea Army

    DTIC Science & Technology

    1988-06-01

    Instunment Identification Number( if applicable) 8c Address ( city , state, and ZIP code) 10 Source of Funding Numbers Program Element No P roject Ne ITask...Strategic Studies, "The Military Balance 19S7 - 1988", London, IISS, 1988. pp. 162-165. North Korea persists in its efforts to modernize its large Armed...0.80 (2.34) 1983 5.780 (1.92) 5.443 (4.41) 0.94 (2.19) * Source : Charles Wolf, Jr., "The Changing Balance : South and North Korean Capa- bilities for

  16. An electron-beam dose deposition experiment: TIGER 1-D simulation code versus thermoluminescent dosimetry

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.

    1991-03-01

    The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

  17. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.

    2013-04-01

    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.

  18. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  19. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  20. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  1. 7 CFR 272.12 - Computer matching requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Computer matching requirements. 272.12 Section 272.12... Computer matching requirements. (a) General purpose. The Computer Matching and Privacy Protection Act (CMA) of 1988, as amended, addresses the use of information from computer matching programs that involve a...

  2. 7 CFR 272.12 - Computer matching requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Computer matching requirements. 272.12 Section 272.12... Computer matching requirements. (a) General purpose. The Computer Matching and Privacy Protection Act (CMA) of 1988, as amended, addresses the use of information from computer matching programs that involve a...

  3. Development of FWIGPR, an open-source package for full-waveform inversion of common-offset GPR data

    NASA Astrophysics Data System (ADS)

    Jazayeri, S.; Kruse, S.

    2017-12-01

    We introduce a package for full-waveform inversion (FWI) of Ground Penetrating Radar (GPR) data based on a combination of open-source programs. The FWI requires a good starting model, based on direct knowledge of field conditions or on traditional ray-based inversion methods. With a good starting model, the FWI can improve resolution of selected subsurface features. The package will be made available for general use in educational and research activities. The FWIGPR package consists of four main components: 3D to 2D data conversion, source wavelet estimation, forward modeling, and inversion. (These four components additionally require the development, by the user, of a good starting model.) A major challenge with GPR data is the unknown form of the waveform emitted by the transmitter held close to the ground surface. We apply a blind deconvolution method to estimate the source wavelet, based on a sparsity assumption about the reflectivity series of the subsurface model (Gholami and Sacchi 2012). The estimated wavelet is deconvolved from the data and the sparsest reflectivity series with fewest reflectors. The gprMax code (www.gprmax.com) is used as the forward modeling tool and the PEST parameter estimation package (www.pesthomepage.com) for the inversion. To reduce computation time, the field data are converted to an effective 2D equivalent, and the gprMax code can be run in 2D mode. In the first step, the user must create a good starting model of the data, presumably using ray-based methods. This estimated model will be introduced to the FWI process as an initial model. Next, the 3D data is converted to 2D, then the user estimates the source wavelet that best fits the observed data by sparsity assumption of the earth's response. Last, PEST runs gprMax with the initial model and calculates the misfit between the synthetic and observed data, and using an iterative algorithm calling gprMax several times ineach iteration, finds successive models that better fit the data. To gauge whether the iterative process has arrived at a local or global minima, the process can be repeated with a range of starting models. Tests have shown that this package can successfully improve estimates of selected subsurface model parameters for simple synthetic and real data. Ongoing research will focus on FWI of more complex scenarios.

  4. Generalized type II hybrid ARQ scheme using punctured convolutional coding

    NASA Astrophysics Data System (ADS)

    Kallel, Samir; Haccoun, David

    1990-11-01

    A method is presented to construct rate-compatible convolutional (RCC) codes from known high-rate punctured convolutional codes, obtained from best-rate 1/2 codes. The construction method is rather simple and straightforward, and still yields good codes. Moreover, low-rate codes can be obtained without any limit on the lowest achievable code rate. Based on the RCC codes, a generalized type-II hybrid ARQ scheme, which combines the benefits of the modified type-II hybrid ARQ strategy of Hagenauer (1988) with the code-combining ARQ strategy of Chase (1985), is proposed and analyzed. With the proposed generalized type-II hybrid ARQ strategy, the throughput increases as the starting coding rate increases, and as the channel degrades, it tends to merge with the throughput of rate 1/2 type-II hybrid ARQ schemes with code combining, thus allowing the system to be flexible and adaptive to channel conditions, even under wide noise variations and severe degradations.

  5. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  6. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1990-12-06

    ban on that flail away at each other in maneuvers designed to nuclear tests (sic), even for peaceful purposes, across build up influence . Whatever...uranium and develop reactors for nuclear can help Mr. Collor nudge (away from the nuclear submarines. program) his fractious military along by suspending...two and a half years to behaviour to qualify for a certificate. WASHINGTON permit the second six-year aid package for 1988-93, was POST has meanwhile

  7. Department of the Army Justification of Estimates for Fiscal Years 1988/1989. Procurement/Appropriations-Construction Program Submitted to Congress.

    DTIC Science & Technology

    1987-01-01

    e4run stoag :ahbl’ -ss to -ervice the, IDS equipment a-nd1 tho liFr . F)- fencing ;haill bo prov.id-d iroun,! the IDS area with necessary gats nd roa1d I...will provide enhanced and expanded capabilities. The EMCS (with 2,000 points) will control package boilers at 24 locations, one furnace, chiller

  8. Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Clell J. Jr.

    The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the descriptionmore » of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.« less

  9. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.

  10. Assessment of radionuclide databases in CAP88 mainframe version 1.0 and Windows-based version 3.0.

    PubMed

    LaBone, Elizabeth D; Farfán, Eduardo B; Lee, Patricia L; Jannik, G Timothy; Donnelly, Elizabeth H; Foley, Trevor Q

    2009-09-01

    In this study the radionuclide databases for two versions of the Clean Air Act Assessment Package-1988 (CAP88) computer model were assessed in detail. CAP88 estimates radiation dose and the risk of health effects to human populations from radionuclide emissions to air. This program is used by several U.S. Department of Energy (DOE) facilities to comply with National Emission Standards for Hazardous Air Pollutants regulations. CAP88 Mainframe, referred to as version 1.0 on the U.S. Environmental Protection Agency Web site (http://www.epa.gov/radiation/assessment/CAP88/), was the very first CAP88 version released in 1988. Some DOE facilities including the Savannah River Site still employ this version (1.0) while others use the more user-friendly personal computer Windows-based version 3.0 released in December 2007. Version 1.0 uses the program RADRISK based on International Commission on Radiological Protection Publication 30 as its radionuclide database. Version 3.0 uses half-life, dose, and risk factor values based on Federal Guidance Report 13. Differences in these values could cause different results for the same input exposure data (same scenario), depending on which version of CAP88 is used. Consequently, the differences between the two versions are being assessed in detail at Savannah River National Laboratory. The version 1.0 and 3.0 database files contain 496 and 838 radionuclides, respectively, and though one would expect the newer version to include all the 496 radionuclides, 35 radionuclides are listed in version 1.0 that are not included in version 3.0. The majority of these has either extremely short or long half-lives or is no longer in production; however, some of the short-lived radionuclides might produce progeny of great interest at DOE sites. In addition, 122 radionuclides were found to have different half-lives in the two versions, with 21 over 3 percent different and 12 over 10 percent different.

  11. HEATPLOT: a temperature distribution plotting program for heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1977-07-01

    HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less

  12. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE PAGES

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less

  13. A FEniCS-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Langtangen, Hans Petter; Wells, Garth N.

    2011-09-01

    Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model.

  14. Flight experiment of thermal energy storage. [for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.

  15. Use of computer code for dose distribution studies in A 60CO industrial irradiator

    NASA Astrophysics Data System (ADS)

    Piña-Villalpando, G.; Sloan, D. P.

    1995-09-01

    This paper presents a benchmark comparison between calculated and experimental absorbed dose values tor a typical product, in a 60Co industrial irradiator, located at ININ, México. The irradiator is a two levels, two layers system with overlapping product configuration with activity around 300kCi. Experimental values were obtanied from routine dosimetry, using red acrylic pellets. Typical product was Petri dishes packages, apparent density 0.13 g/cm3; that product was chosen because uniform size, large quantity and low density. Minimum dose was fixed in 15 kGy. Calculated values were obtained from QAD-CGGP code. This code uses a point kernel technique, build-up factors fitting was done by geometrical progression and combinatorial geometry is used for system description. Main modifications for the code were related with source sumilation, using punctual sources instead of pencils and an energy and anisotropic emission spectrums were included. Results were, for maximum dose, calculated value (18.2 kGy) was 8% higher than experimental average value (16.8 kGy); for minimum dose, calculated value (13.8 kGy) was 3% higher than experimental average value (14.3 kGy).

  16. BASiNET-BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification.

    PubMed

    Ito, Eric Augusto; Katahira, Isaque; Vicente, Fábio Fernandes da Rocha; Pereira, Luiz Filipe Protasio; Lopes, Fabrício Martins

    2018-06-05

    With the emergence of Next Generation Sequencing (NGS) technologies, a large volume of sequence data in particular de novo sequencing was rapidly produced at relatively low costs. In this context, computational tools are increasingly important to assist in the identification of relevant information to understand the functioning of organisms. This work introduces BASiNET, an alignment-free tool for classifying biological sequences based on the feature extraction from complex network measurements. The method initially transform the sequences and represents them as complex networks. Then it extracts topological measures and constructs a feature vector that is used to classify the sequences. The method was evaluated in the classification of coding and non-coding RNAs of 13 species and compared to the CNCI, PLEK and CPC2 methods. BASiNET outperformed all compared methods in all adopted organisms and datasets. BASiNET have classified sequences in all organisms with high accuracy and low standard deviation, showing that the method is robust and non-biased by the organism. The proposed methodology is implemented in open source in R language and freely available for download at https://cran.r-project.org/package=BASiNET.

  17. Micromechanics Analysis Code Post-Processing (MACPOST) User Guide. 1.0

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Comiskey, Michele D.; Bednarcyk, Brett A.

    1999-01-01

    As advanced composite materials have gained wider usage. the need for analytical models and computer codes to predict the thermomechanical deformation response of these materials has increased significantly. Recently, a micromechanics technique called the generalized method of cells (GMC) has been developed, which has the capability to fulfill this -oal. Tc provide a framework for GMC, the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) has been developed. As MAC/GMC has been updated, significant improvements have been made to the post-processing capabilities of the code. Through the MACPOST program, which operates directly within the MSC/PATRAN graphical pre- and post-processing package, a direct link between the analysis capabilities of MAC/GMC and the post-processing capabilities of MSC/PATRAN has been established. MACPOST has simplified the production, printing. and exportation of results for unit cells analyzed by MAC/GMC. MACPOST allows different micro-level quantities to be plotted quickly and easily in contour plots. In addition, meaningful data for X-Y plots can be examined. MACPOST thus serves as an important analysis and visualization tool for the macro- and micro-level data generated by MAC/GMC. This report serves as the user's manual for the MACPOST program.

  18. Modeling of high speed chemically reacting flow-fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Carpenter, Mark H.; Kamath, H.

    1989-01-01

    The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.

  19. SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.

  20. SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.

Top