Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno
Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less
Analysis of random drop for gateway congestion control. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hashem, Emam Salaheddin
1989-01-01
Lately, the growing demand on the Internet has prompted the need for more effective congestion control policies. Currently No Gateway Policy is used to relieve and signal congestion, which leads to unfair service to the individual users and a degradation of overall network performance. Network simulation was used to illustrate the character of Internet congestion and its causes. A newly proposed gateway congestion control policy, called Random Drop, was considered as a promising solution to the pressing problem. Random Drop relieves resource congestion upon buffer overflow by choosing a random packet from the service queue to be dropped. The random choice should result in a drop distribution proportional to the bandwidth distribution among all contending TCP connections, thus applying the necessary fairness. Nonetheless, the simulation experiments demonstrate several shortcomings with this policy. Because Random Drop is a congestion control policy, which is not applied until congestion has already occurred, it usually results in a high drop rate that hurts too many connections including well-behaved ones. Even though the number of packets dropped is different from one connection to another depending on the buffer utilization upon overflow, the TCP recovery overhead is high enough to neutralize these differences, causing unfair congestion penalties. Besides, the drop distribution itself is an inaccurate representation of the average bandwidth distribution, missing much important information about the bandwidth utilization between buffer overflow events. A modification of Random Drop to do congestion avoidance by applying the policy early was also proposed. Early Random Drop has the advantage of avoiding the high drop rate of buffer overflow. The early application of the policy removes the pressure of congestion relief and allows more accurate signaling of congestion. To be used effectively, algorithms for the dynamic adjustment of the parameters of Early Random Drop to suite the current network load must still be developed.
Cooperative Position Aware Mobility Pattern of AUVs for Avoiding Void Zones in Underwater WSNs.
Javaid, Nadeem; Ejaz, Mudassir; Abdul, Wadood; Alamri, Atif; Almogren, Ahmad; Niaz, Iftikhar Azim; Guizani, Nadra
2017-03-13
In this paper, we propose two schemes; position-aware mobility pattern (PAMP) and cooperative PAMP (Co PAMP). The first one is an optimization scheme that avoids void hole occurrence and minimizes the uncertainty in the position estimation of glider's. The second one is a cooperative routing scheme that reduces the packet drop ratio by using the relay cooperation. Both techniques use gliders that stay at sojourn positions for a predefined time, at sojourn position self-confidence (s-confidence) and neighbor-confidence (n-confidence) regions that are estimated for balanced energy consumption. The transmission power of a glider is adjusted according to those confidence regions. Simulation results show that our proposed schemes outperform the compared existing one in terms of packet delivery ratio, void zones and energy consumption.
Cooperative Position Aware Mobility Pattern of AUVs for Avoiding Void Zones in Underwater WSNs
Javaid, Nadeem; Ejaz, Mudassir; Abdul, Wadood; Alamri, Atif; Almogren, Ahmad; Niaz, Iftikhar Azim; Guizani, Nadra
2017-01-01
In this paper, we propose two schemes; position-aware mobility pattern (PAMP) and cooperative PAMP (Co PAMP). The first one is an optimization scheme that avoids void hole occurrence and minimizes the uncertainty in the position estimation of glider’s. The second one is a cooperative routing scheme that reduces the packet drop ratio by using the relay cooperation. Both techniques use gliders that stay at sojourn positions for a predefined time, at sojourn position self-confidence (s-confidence) and neighbor-confidence (n-confidence) regions that are estimated for balanced energy consumption. The transmission power of a glider is adjusted according to those confidence regions. Simulation results show that our proposed schemes outperform the compared existing one in terms of packet delivery ratio, void zones and energy consumption. PMID:28335377
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-06-07
The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly. PMID:28590434
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
Francini, Andrea
2013-05-14
An advance is made over the prior art in accordance with the principles of the present invention that is directed to a new approach for a system and method for a buffer management scheme called Periodic Early Discard (PED). The invention builds on the observation that, in presence of TCP traffic, the length of a queue can be stabilized by selection of an appropriate frequency for packet dropping. For any combination of number of TCP connections and distribution of the respective RTT values, there exists an ideal packet drop frequency that prevents the queue from over-flowing or under-flowing. While the value of the ideal packet drop frequency may quickly change over time and is sensitive to the series of TCP connections affected by past packet losses, and most of all is impossible to compute inline, it is possible to approximate it with a margin of error that allows keeping the queue occupancy within a pre-defined range for extended periods of time. The PED scheme aims at tracking the (unknown) ideal packet drop frequency, adjusting the approximated value based on the evolution of the queue occupancy, with corrections of the approximated packet drop frequency that occur at a timescale that is comparable to the aggregate time constant of the set of TCP connections that traverse the queue.
Misra, Sudip; Oommen, B John; Yanamandra, Sreekeerthy; Obaidat, Mohammad S
2010-02-01
In this paper, we present a learning-automata-like The reason why the mechanism is not a pure LA, but rather why it yet mimics one, will be clarified in the body of this paper. (LAL) mechanism for congestion avoidance in wired networks. Our algorithm, named as LAL Random Early Detection (LALRED), is founded on the principles of the operations of existing RED congestion-avoidance mechanisms, augmented with a LAL philosophy. The primary objective of LALRED is to optimize the value of the average size of the queue used for congestion avoidance and to consequently reduce the total loss of packets at the queue. We attempt to achieve this by stationing a LAL algorithm at the gateways and by discretizing the probabilities of the corresponding actions of the congestion-avoidance algorithm. At every time instant, the LAL scheme, in turn, chooses the action that possesses the maximal ratio between the number of times the chosen action is rewarded and the number of times that it has been chosen. In LALRED, we simultaneously increase the likelihood of the scheme converging to the action, which minimizes the number of packet drops at the gateway. Our approach helps to improve the performance of congestion avoidance by adaptively minimizing the queue-loss rate and the average queue size. Simulation results obtained using NS2 establish the improved performance of LALRED over the traditional RED methods which were chosen as the benchmarks for performance comparison purposes.
Isolated drops from capillary jets by means of Gaussian wave packets
NASA Astrophysics Data System (ADS)
Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose
2017-11-01
The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.
A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Ozel, Omur; Sinopoli, Bruno
We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the othermore » hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.« less
Network congestion control algorithm based on Actor-Critic reinforcement learning model
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2018-04-01
Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.
Distributed Optimal Dispatch of Distributed Energy Resources Over Lossy Communication Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junfeng; Yang, Tao; Wu, Di
In this paper, we consider the economic dispatch problem (EDP), where a cost function that is assumed to be strictly convex is assigned to each of distributed energy resources (DERs), over packet dropping networks. The goal of a standard EDP is to minimize the total generation cost while meeting total demand and satisfying individual generator output limit. We propose a distributed algorithm for solving the EDP over networks. The proposed algorithm is resilient against packet drops over communication links. Under the assumption that the underlying communication network is strongly connected with a positive probability and the packet drops are independentmore » and identically distributed (i.i.d.), we show that the proposed algorithm is able to solve the EDP. Numerical simulation results are used to validate and illustrate the main results of the paper.« less
Enabling Secure High-Performance Wireless Ad Hoc Networking
2003-05-29
destinations, consuming energy and available bandwidth. An attacker may similarly create a routing black hole, in which all packets are dropped: by sending...of the vertex cut, for example by forwarding only routing packets and not data packets, such that the nodes waste energy forwarding packets to the...with limited resources, including network bandwidth and the CPU processing capacity, memory, and battery power ( energy ) of each individual node in the
Implementing MANETS in Android based environment using Wi-Fi direct
NASA Astrophysics Data System (ADS)
Waqas, Muhammad; Babar, Mohammad Inayatullah Khan; Zafar, Mohammad Haseeb
2015-05-01
Packet loss occurs in real-time voice transmission over wireless broadcast Ad-hoc network which creates disruptions in sound. Basic objective of this research is to design a wireless Ad-hoc network based on two Android devices by using the Wireless Fidelity (WIFI) Direct Application Programming Interface (API) and apply the Network Codec, Reed Solomon Code. The network codec is used to encode the data of a music wav file and recover the lost packets if any, packets are dropped using a loss module at the transmitter device to analyze the performance with the objective of retrieving the original file at the receiver device using the network codec. This resulted in faster transmission of the files despite dropped packets. In the end both files had the original formatted music files with complete performance analysis based on the transmission delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385
NASA Astrophysics Data System (ADS)
Hwang, Eunju; Kim, Kyung Jae; Choi, Bong Dae
In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200ms and talkspurt periods shorter than 15ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 32 ∼ 39% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.
Napolitano, Jr., Leonard M.
1995-01-01
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.
OSLG: A new granting scheme in WDM Ethernet passive optical networks
NASA Astrophysics Data System (ADS)
Razmkhah, Ali; Rahbar, Akbar Ghaffarpour
2011-12-01
Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.
Napolitano, L.M. Jr.
1995-11-28
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.
Shapes of Bubbles and Drops in Motion.
ERIC Educational Resources Information Center
O'Connell, James
2000-01-01
Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Acoustics and hydrodynamics of a drop impact on a water surface
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Prokhorov, V. E.
2017-01-01
Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.
Implementation of the Algorithm for Congestion control in the Dynamic Circuit Network (DCN)
NASA Astrophysics Data System (ADS)
Nalamwar, H. S.; Ivanov, M. A.; Buddhawar, G. U.
2017-01-01
Transport Control Protocol (TCP) incast congestion happens when a number of senders work in parallel with the same server where the high bandwidth and low latency network problem occurs. For many data center network applications such as a search engine, heavy traffic is present on such a server. Incast congestion degrades the entire performance as packets are lost at a server side due to buffer overflow, and as a result, the response time becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive window and retransmission. Our method is based on the proactive adjust of the TCP receive window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm has been implemented in the data center network (ToR).
A multi-ring optical packet and circuit integrated network with optical buffering.
Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya
2012-12-17
We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.
A game theory-based obstacle avoidance routing protocol for wireless sensor networks.
Guan, Xin; Wu, Huayang; Bi, Shujun
2011-01-01
The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
GREEN + IDMaps: A practical soulution for ensuring fairness in a biased internet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapadia, A. C.; Thulasidasan, S.; Feng, W. C.
2002-01-01
GREEN is a proactive queue-management (PQM) algorithm that removes TCP's bias against connections with longer round-trip times, while maintaining high link utilization and low packet-loss. GREEN applies knowledge of the steady-state behavior of TCP connections to proactively drop packets, thus preventing congestion from ever occurring. As a result, GREEN ensures much higher fairness between flows than other active queue management schemes like Flow Random Early Drop (FRED) and Stochastic Fair Blue (SFB), which suffer in topologies where a large number of flows have widely varying round-trip times. GREEN'S performance relies on its ability to gauge a flow's round-trip time (RTT).more » In previous work, we presented results for an ideal GREEN router which has accurate RTT information for a flow. In this paper, we present a practical solution based on IDMaps, an Internet distance-estimation service, and compare its performance to an ideal GREEN router. We show that a solution based on IDMaps is practical and maintains high fairness and link utilization, and low packet-loss rates.« less
Eun, Yongsoon
2017-01-01
Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node’s depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15% packet delivery ratio, propagates 50% less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes. PMID:28954395
Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon
2017-09-26
Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.
Design of an All-Optical Network Based on LCoS Technologies
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Shiau, Yhi
2016-06-01
In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.
Undersea Communication Network Self-Localization during the Unet Seatrial
2010-06-01
Multiple Access Collision Avoidance ( MACA ) suitable for underwater networks [6]. Control frames are short 9-byte utility packets which are...Proceedings of the MILCOM’08 Conference, San Diego, CA, USA, November 2008. [6] P. Karn, MACA --a new channel access method for packet radio, in ARRL/CRRL
Furukawa, Hiroshi
2017-01-01
Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164
The Use of End-to-End Multicast Measurements for Characterizing Internal Network Behavior
2002-08-01
dropping on the basis Random Early Detection ( RED ) [17] is another mechanism by which packet loss may become decorrelated. It remains to be seen whether...this mechanism will be widely deployed in communications networks. On the other hand, the use of RED to merely mark packets will not break correlations...Tail and Random Early Detection ( RED ) buffer discard methods, [17]. We compared the inferred loss and delay with actual probe loss and delay. We found
Application of Cellular Automata to Detection of Malicious Network Packets
ERIC Educational Resources Information Center
Brown, Robert L.
2014-01-01
A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…
Interference Drop Scheme: Enhancing QoS Provision in Multi-Hop Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Luo, Chang-Yi; Komuro, Nobuyoshi; Takahashi, Kiyoshi; Kasai, Hiroyuki; Ueda, Hiromi; Tsuboi, Toshinori
Ad hoc networking uses wireless technologies to construct networks with no physical infrastructure and so are expected to provide instant networking in areas such as disaster recovery sites and inter-vehicle communication. Unlike conventional wired networks services, services in ad hoc networks are easily disrupted by the frequent changes in traffic and topology. Therefore, solutions to assure the Quality of Services (QoS) in ad hoc networks are different from the conventional ones used in wired networks. In this paper, we propose a new queue management scheme, Interference Drop Scheme (IDS) for ad hoc networks. In the conventional queue management approaches such as FIFO (First-in First-out) and RED (Random Early Detection), a queue is usually managed by a queue length limit. FIFO discards packets according to the queue limit, and RED discards packets in an early and random fashion. IDS, on the other hand, manages the queue according to wireless interference time, which increases as the number of contentions in the MAC layer increases. When there are many MAC contentions, IDS discards TCP data packets. By observing the interference time and discarding TCP data packets, our simulation results show that IDS improves TCP performance and reduces QoS violations in UDP in ad hoc networks with chain, grid, and random topologies. Our simulation results also demonstrate that wireless interference time is a better metric than queue length limit for queue management in multi-hop ad hoc networks.
Sporadic frame dropping impact on quality perception
NASA Astrophysics Data System (ADS)
Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine
2004-06-01
Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.
Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks
NASA Astrophysics Data System (ADS)
Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji
High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.
Physical-layer network coding for passive optical interconnect in datacenter networks.
Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia
2017-07-24
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
The Identification of Major Factors in the Deployment of a Science DMZ at Small Institutions
ERIC Educational Resources Information Center
Valcourt, Scott A.
2017-01-01
The Science DMZ is a network research tool offering superior large science data transmission between two locations. Through a network design that places the Science DMZ at the edge of the campus network, the Science DMZ defines a network path that avoids packet inspecting devices (firewalls, packet shapers) and produces near line-rate transmission…
Back pressure based multicast scheduling for fair bandwidth allocation.
Sarkar, Saswati; Tassiulas, Leandros
2005-09-01
We study the fair allocation of bandwidth in multicast networks with multirate capabilities. In multirate transmission, each source encodes its signal in layers. The lowest layer contains the most important information and all receivers of a session should receive it. If a receiver's data path has additional bandwidth, it receives higher layers which leads to a better quality of reception. The bandwidth allocation objective is to distribute the layers fairly. We present a computationally simple, decentralized scheduling policy that attains the maxmin fair rates without using any knowledge of traffic statistics and layer bandwidths. This policy learns the congestion level from the queue lengths at the nodes, and adapts the packet transmissions accordingly. When the network is congested, packets are dropped from the higher layers; therefore, the more important lower layers suffer negligible packet loss. We present analytical and simulation results that guarantee the maxmin fairness of the resulting rate allocation, and upper bound the packet loss rates for different layers.
NASA Astrophysics Data System (ADS)
Huang, Jinhui; Liu, Wenxiang; Su, Yingxue; Wang, Feixue
2018-02-01
Space networks, in which connectivity is deterministic and intermittent, can be modeled by delay/disruption tolerant networks. In space delay/disruption tolerant networks, a packet is usually transmitted from the source node to the destination node indirectly via a series of relay nodes. If anyone of the nodes in the path becomes congested, the packet will be dropped due to buffer overflow. One of the main reasons behind congestion is the unbalanced network traffic distribution. We propose a load balancing strategy which takes the congestion status of both the local node and relay nodes into account. The congestion status, together with the end-to-end delay, is used in the routing selection. A lookup-table enhancement is also proposed. The off-line computation and the on-line adjustment are combined together to make a more precise estimate of the end-to-end delay while at the same time reducing the onboard computation. Simulation results show that the proposed strategy helps to distribute network traffic more evenly and therefore reduces the packet drop ratio. In addition, the average delay is also decreased in most cases. The lookup-table enhancement provides a compromise between the need for better communication performance and the desire for less onboard computation.
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
A Technique for Presenting a Deceptive Dynamic Network Topology
2013-03-01
Comment RIP Routing Information Protocol SNOS Systemic Network Obfuscation System SSH Secure Shell TCP Transmission Control Protocol TTL time to live...because it sacrifices elements available in Transmission Control Protocol ( TCP ) such as ordered delivery of packets, delivery confirmation and duplication...avoidance [4]. Of note, some traceroute implementations use TCP packets since they are able to pass through firewalls which are typically configured
Enhancing the cyber-security of smart grids with applications to synchrophasor data
NASA Astrophysics Data System (ADS)
Pal, Seemita
In the power grids, Supervisory Control and Data Acquisition (SCADA) systems are used as part of the Energy Management System (EMS) for enabling grid monitoring, control and protection. In recent times, with the ongoing installation of thousands of Phasor Measurement Units (PMUs), system operators are becoming increasingly reliant on PMU-generated synchrophasor measurements for executing wide-area monitoring and real-time control. The availability of PMU data facilitates dynamic state estimation of the system, thus improving the efficiency and resiliency of the grid. Since the SCADA and PMU data are used to make critical control decisions including actuation of physical systems, the timely availability and integrity of this networked data is of paramount importance. Absence or wrong control actions can potentially lead to disruption of operations, monetary loss, damage to equipments or surroundings or even blackout. This has posed new challenges to information security especially in this age of ever-increasing cyber-attacks. In this thesis, potential cyber-attacks on smart grids are presented and effective and implementable schemes are proposed for detecting them. The focus is mainly on three kinds of cyber-attacks and their detection: (i) gray-hole attacks on synchrophasor systems, (ii) PMU data manipulation attacks and (iii) data integrity attacks on SCADA systems. In the case of gray-hole attacks, also known as packet-drop attacks, the adversary may arbitrarily drop PMU data packets as they traverse the network, resulting in unavailability of time-sensitive data for the various critical power system applications. The fundamental challenge is to distinguish packets dropped by the adversary from those that occur naturally due to network congestion.The proposed gray-hole attack detection technique is based on exploiting the inherent timing information in the GPS time-stamped PMU data packets and using the temporal trends of the latencies to classify the cause of packet-drops and finally detect attacks, if any. In the case of PMU data manipulation attacks, the attacker may modify the data in the PMU packets in order to bias the system states and influence the control center into taking wrong decisions. The proposed detection technique is based on evaluating the equivalent impedances of the transmission lines and classifying the observed anomalies to determine the presence of attack and its location. The scheme for detecting data integrity attacks on SCADA systems is based on utilizing synchrophasor measurements from available PMUs in the grid. The proposed method uses a difference measure, developed in this thesis, to determine the relative divergence and mis-correlation between the datasets. Based on the estimated difference measure, tampered and genuine data can be distinguished. The proposed detection mechanisms have demonstrated high accuracy in real-time detection of attacks of various magnitudes, simulated on real PMU data obtained from the NY grid. By performing alarm clustering, the occurrence of false alarms has been reduced to almost zero. The solutions are computationally inexpensive, low on cost, do not add any overhead, and do not require any feedback from the network.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-06-05
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-01-01
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037
Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook
2010-01-01
This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones.
Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook
2010-01-01
This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones. PMID:22163453
Energy Efficient Probabilistic Broadcasting for Mobile Ad-Hoc Network
NASA Astrophysics Data System (ADS)
Kumar, Sumit; Mehfuz, Shabana
2017-06-01
In mobile ad-hoc network (MANETs) flooding method is used for broadcasting route request (RREQ) packet from one node to another node for route discovery. This is the simplest method of broadcasting of RREQ packets but it often results in broadcast storm problem, originating collisions and congestion of packets in the network. A probabilistic broadcasting is one of the widely used broadcasting scheme for route discovery in MANETs and provides solution for broadcasting storm problem. But it does not consider limited energy of the battery of the nodes. In this paper, a new energy efficient probabilistic broadcasting (EEPB) is proposed in which probability of broadcasting RREQs is calculated with respect to remaining energy of nodes. The analysis of simulation results clearly indicate that an EEPB route discovery scheme in ad-hoc on demand distance vector (AODV) can increase the network lifetime with a decrease in the average power consumption and RREQ packet overhead. It also decreases the number of dropped packets in the network, in comparison to other EEPB schemes like energy constraint gossip (ECG), energy aware gossip (EAG), energy based gossip (EBG) and network lifetime through energy efficient broadcast gossip (NEBG).
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-23
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Nodes vary a choice of routing policy for routing data in the network in a semi-random manner, so that similarly situated packets are not always routed along the same path. Semi-random variation of the routing policy tends to avoid certain local hot spots of network activity, which might otherwise arise using more consistent routing determinations. Preferably, the originating node chooses a routing policy for a packet, and all intermediate nodes in the path route the packet according to that policy. Policies may be rotated on a round-robin basis, selected by generating a random number, or otherwise varied.
Controlling charge on levitating drops.
Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M
2007-08-01
Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.
Macroscopic traveling packet and soliton states of quasi-one-dimensional flocks.
Guttenberg, Nicholas; Toner, John; Tu, Yuhai
2014-05-01
Using a continuum model for inhomogeneous flocks, we show that a finite but arbitrarily large moving "packet" of active particles (e.g., moving creatures) can form in a background of a lower density disordered phase of these particles, like a liquid drop surrounded by vapor. The "vapor density" of the disordered background can be made arbitrarily low. We find three basic types of quasi-one-dimensional states: "longitudinal", "transverse", and "oblique" states, with their internal velocity fields, respectively, parallel, perpendicular, and oblique to the interface. The transitions between these states are also studied.
A novel fair active queue management algorithm based on traffic delay jitter
NASA Astrophysics Data System (ADS)
Wang, Xue-Shun; Yu, Shao-Hua; Dai, Jin-You; Luo, Ting
2009-11-01
In order to guarantee the quantity of data traffic delivered in the network, congestion control strategy is adopted. According to the study of many active queue management (AQM) algorithms, this paper proposes a novel active queue management algorithm named JFED. JFED can stabilize queue length at a desirable level by adjusting output traffic rate and adopting a reasonable calculation of packet drop probability based on buffer queue length and traffic jitter; and it support burst packet traffic through the packet delay jitter, so that it can traffic flow medium data. JFED impose effective punishment upon non-responsible flow with a full stateless method. To verify the performance of JFED, it is implemented in NS2 and is compared with RED and CHOKe with respect to different performance metrics. Simulation results show that the proposed JFED algorithm outperforms RED and CHOKe in stabilizing instantaneous queue length and in fairness. It is also shown that JFED enables the link capacity to be fully utilized by stabilizing the queue length at a desirable level, while not incurring excessive packet loss ratio.
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Neighboring and connectivity-aware routing in VANETs.
Ghafoor, Huma; Koo, Insoo; Gohar, Nasir-ud-Din
2014-01-01
A novel position-based routing protocol anchor-based connectivity-aware routing (ACAR) for vehicular ad hoc networks (VANETs) is proposed in this paper to ensure connectivity of routes with more successfully delivered packets. Both buses and cars are considered as vehicular nodes running in both clockwise and anticlockwise directions in a city scenario. Both directions are taken into account for faster communication. ACAR is a hybrid protocol, using both the greedy forwarding approach and the store-carry-and-forward approach to minimize the packet drop rate on the basis of certain assumptions. Our solution to situations that occur when the network is sparse and when any (source or intermediate) node has left its initial position makes this protocol different from those existing in the literature. We consider only vehicle-to-vehicle (V2V) communication in which both the source and destination nodes are moving vehicles. Also, no road-side units are considered. Finally, we compare our protocol with A-STAR (a plausible connectivity-aware routing protocol for city environments), and simulation results in NS-2 show improvement in the number of packets delivered to the destination using fewer hops. Also, we show that ACAR has more successfully-delivered long-distance packets with reasonable packet delay than A-STAR.
Multicasting in Wireless Communications (Ad-Hoc Networks): Comparison against a Tree-Based Approach
NASA Astrophysics Data System (ADS)
Rizos, G. E.; Vasiliadis, D. C.
2007-12-01
We examine on-demand multicasting in ad hoc networks. The Core Assisted Mesh Protocol (CAMP) is a well-known protocol for multicast routing in ad-hoc networks, generalizing the notion of core-based trees employed for internet multicasting into multicast meshes that have much richer connectivity than trees. On the other hand, wireless tree-based multicast routing protocols use much simpler structures for determining route paths, using only parent-child relationships. In this work, we compare the performance of the CAMP protocol against the performance of wireless tree-based multicast routing protocols, in terms of two important factors, namely packet delay and ratio of dropped packets.
Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.
Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan
2016-01-01
Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.
Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP
2016-01-01
Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783
Primary acoustic signal structure during free falling drop collision with a water surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chashechkin, Yu. D., E-mail: chakin@ipmnet.ru; Prokhorov, V. E., E-mail: prohorov@ipmnet.ru
2016-04-15
Consistent optical and acoustic techniques have been used to study the structure of hydrodynamic disturbances and acoustic signals generated as a free falling drop penetrates water. The relationship between the structures of hydrodynamic and acoustic perturbations arising as a result of a falling drop contacting with the water surface and subsequent immersion into water is traced. The primary acoustic signal is characterized, in addition to stably reproduced features (steep leading edge followed by long decay with local pressure maxima), by irregular high-frequency packets, which are studied for the first time. Reproducible experimental data are used to recognize constant and variablemore » components of the primary acoustic signal.« less
Point-to-Point Multicast Communications Protocol
NASA Technical Reports Server (NTRS)
Byrd, Gregory T.; Nakano, Russell; Delagi, Bruce A.
1987-01-01
This paper describes a protocol to support point-to-point interprocessor communications with multicast. Dynamic, cut-through routing with local flow control is used to provide a high-throughput, low-latency communications path between processors. In addition multicast transmissions are available, in which copies of a packet are sent to multiple destinations using common resources as much as possible. Special packet terminators and selective buffering are introduced to avoid a deadlock during multicasts. A simulated implementation of the protocol is also described.
Mobility based key management technique for multicast security in mobile ad hoc networks.
Madhusudhanan, B; Chitra, S; Rajan, C
2015-01-01
In MANET multicasting, forward and backward secrecy result in increased packet drop rate owing to mobility. Frequent rekeying causes large message overhead which increases energy consumption and end-to-end delay. Particularly, the prevailing group key management techniques cause frequent mobility and disconnections. So there is a need to design a multicast key management technique to overcome these problems. In this paper, we propose the mobility based key management technique for multicast security in MANET. Initially, the nodes are categorized according to their stability index which is estimated based on the link availability and mobility. A multicast tree is constructed such that for every weak node, there is a strong parent node. A session key-based encryption technique is utilized to transmit a multicast data. The rekeying process is performed periodically by the initiator node. The rekeying interval is fixed depending on the node category so that this technique greatly minimizes the rekeying overhead. By simulation results, we show that our proposed approach reduces the packet drop rate and improves the data confidentiality.
Quasi-light storage for optical data packets.
Schneider, Thomas; Preußler, Stefan
2014-02-06
Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.
NASA Astrophysics Data System (ADS)
Vadivel, R.; Bhaskaran, V. Murali
2010-10-01
The main reason for packet loss in ad hoc networks is the link failure or node failure. In order to increase the path stability, it is essential to distinguish and moderate the failures. By knowing individual link stability along a path, path stability can be identified. In this paper, we develop an adaptive reliable routing protocol using combined link stability estimation for mobile ad hoc networks. The main objective of this protocol is to determine a Quality of Service (QoS) path along with prolonging the network life time and to reduce the packet loss. We calculate a combined metric for a path based on the parameters Link Expiration Time, Node Remaining Energy and Node Velocity and received signal strength to predict the link stability or lifetime. Then, a bypass route is established to retransmit the lost data, when a link failure occurs. By simulation results, we show that the proposed reliable routing protocol achieves high delivery ratio with reduced delay and packet drop.
Quality of service routing in wireless ad hoc networks
NASA Astrophysics Data System (ADS)
Sane, Sachin J.; Patcha, Animesh; Mishra, Amitabh
2003-08-01
An efficient routing protocol is essential to guarantee application level quality of service running on wireless ad hoc networks. In this paper we propose a novel routing algorithm that computes a path between a source and a destination by considering several important constraints such as path-life, availability of sufficient energy as well as buffer space in each of the nodes on the path between the source and destination. The algorithm chooses the best path from among the multiples paths that it computes between two endpoints. We consider the use of control packets that run at a priority higher than the data packets in determining the multiple paths. The paper also examines the impact of different schedulers such as weighted fair queuing, and weighted random early detection among others in preserving the QoS level guarantees. Our extensive simulation results indicate that the algorithm improves the overall lifetime of a network, reduces the number of dropped packets, and decreases the end-to-end delay for real-time voice application.
Fernández de Gorostiza, Erlantz; Mabe, Jon
2018-01-01
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method. PMID:29473910
Fernández de Gorostiza, Erlantz; Berzosa, Jorge; Mabe, Jon; Cortiñas, Roberto
2018-02-23
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.
Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil
2018-01-01
The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio. PMID:29614794
Ahmed, Farwa; Wadud, Zahid; Javaid, Nadeem; Alrajeh, Nabil; Alabed, Mohamad Souheil; Qasim, Umar
2018-04-02
The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.
A Simulation Study of Paced TCP
NASA Technical Reports Server (NTRS)
Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig
2000-01-01
In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the full capacity of the network. In a network with a high delay-bandwidth product, however, Transmission Control Protocol's (TCPs) maximum window-size may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the performance of paced TCP in a simulated network and discusses implementation details that can affect the performance of paced TCP.
Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.
Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif
2017-03-19
In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.
Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks
Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif
2017-01-01
In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494
Fine structure of acoustic signals caused by a drop falling onto the surface of water
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Prokhorov, V. E.
2015-08-01
The temporal structure of sound radiation upon a drop falling onto a free liquid surface is investigated experimentally by high-resolution high-speed videorecording synchronized with a broad-band measurement of the acoustic pressure. Groups of short and relatively prolonged sound packets with frequency filling from 2 to 50 kHz and the corresponding flow patterns including the simultaneous formation of resonating bubbles and their interaction processes with an originating cavern are isolated. The temporal dependence of the determining parameter, i.e., the Weber number, which is stably reproduced in a series of experiments by a power function with a fractional index, is constructed.
Privacy preservation and authentication on secure geographical routing in VANET
NASA Astrophysics Data System (ADS)
Punitha, A.; Manickam, J. Martin Leo
2017-05-01
Vehicular Ad hoc Networks (VANETs) play an important role in vehicle-to-vehicle communication as it offers a high level of safety and convenience to drivers. In order to increase the level of security and safety in VANETs, in this paper, we propose a Privacy Preservation and Authentication on Secure Geographical Routing Protocol (PPASGR) for VANET. It provides security by detecting and preventing malicious nodes through two directional antennas such as forward (f-antenna) and backward (b-antenna). The malicious nodes are detected by direction detection, consistency detection and conflict detection. The location of the trusted neighbour is identified using TNT-based location verification scheme after the implementation of the Vehicle Tamper Proof Device (VTPD), Trusted Authority (TA) is generated that produces the anonymous credentials. Finally, VTPD generates pseudo-identity using TA which retrieves the real identity of the sender. Through this approach, the authentication, integrity and confidentiality for routing packets can be achieved. The simulation results show that the proposed approach reduces the packet drop due to attack and improves the packet delivery ratio.
MMPP Traffic Generator for the Testing of the SCAR 2 Fast Packet Switch
NASA Technical Reports Server (NTRS)
Chren, William A., Jr.
1995-01-01
A prototype MWP Traffic Generator (TG) has been designed for testing of the COMSAT-supplied SCAR II Fast Packet Switch. By generating packets distributed according to a Markov-Modulated Poisson Process (MMPP) model. it allows the assessment of the switch performance under traffic conditions that are more realistic than could be generated using the COMSAT-supplied Traffic Generator Module. The MMPP model is widely believed to model accurately real-world superimposed voice and data communications traffic. The TG was designed to be as much as possible of a "drop-in" replacement for the COMSAT Traffic Generator Module. The latter fit on two Altera EPM7256EGC 192-pin CPLDs and produced traffic for one switch input port. No board changes are necessary because it has been partitioned to use the existing board traces. The TG, consisting of parts "TGDATPROC" and "TGRAMCTL" must merely be reprogrammed into the Altera devices of the same name. However, the 040 controller software must be modified to provide TG initialization data. This data will be given in Section II.
Stochastic Stability in Internet Router Congestion Games
NASA Astrophysics Data System (ADS)
Chung, Christine; Pyrga, Evangelia
Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.
Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)
2008-07-01
use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with
Climate warming may increase aphids' dropping probabilities in response to high temperatures.
Ma, Gang; Ma, Chun-Sen
2012-11-01
Dropping off is considered an anti-predator behavior for aphids since previous studies have shown that it reduces the risk of predation. However, little attention is paid to dropping behavior triggered by other external stresses such as daytime high temperatures which are predicted to become more frequent in the context of climate warming. Here we defined a new parameter, drop-off temperature (DOT), to describe the critical temperature at which an aphid drops off its host plant when the ambient temperature increases gradually and slowly. Detailed studies were conducted to reveal effects of short-term acclimation (temperature, exposure time at high-temperature and starvation) on DOT of an aphid species, Sitobion avenae. Our objectives were to test if the aphids dropped off host plant to avoid high temperatures and how short-term acclimation affected the aphids' dropping behavior in response to heat stress. We suggest that dropping is a behavioral thermoregulation to avoid heat stress, since aphids started to move before they dropped off and the dropped aphids were still able to control their muscles prior to knockdown. The adults starved for 12 h had higher DOT values than those that were unstarved or starved for 6 h, and there was a trade-off between behavioral thermoregulation and energy acquisition. Higher temperatures and longer exposure times at high temperatures significantly lowered the aphids' DOT, suggested that the aphids avoid heat stress by dropping when exposed to high temperatures. Climate warming may therefore increase the aphids' dropping probabilities and consequently affect the aphids' individual development and population growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Survey on Trust Management for Mobile Ad Hoc Networks
2011-11-01
expects, trust is dangerous implying the possible betrayal of trust. In his comments on Lagerspetz’s book titled Trust: The Tacit Demand, Lahno [24...AODV Zouridaki et al. (2005 ) [79] (2006) [80] Secure routing Direct observation [79][80] Reputation by secondhand information [80] Packet dropping...areas of signal processing, wireless communications, sensor and mobile ad hoc networks. He is co-editor of the book Wireless Sensor Networks: Signal
Effect of a perfume on prosocial behavior of pedestrians.
Guéguen, N
2001-06-01
Several studies have shown that perfumes encourage prosocial behavior of people from whom help is requested in the street. Implicit requests for help were studied. On a pedestrian walk, a woman confederate, with or without a heavy perfume, walked by the subject while dropping a packet of paper handkerchiefs or a glove apparently without noticing. Results show that the confederate was warned more often when wearing a perfume.
Analysis of Optimal Jitter Buffer Size for VoIP QoS under WiMAX Power-Saving Mode
NASA Astrophysics Data System (ADS)
Kim, Hyungsuk; Kim, Taehyoun
VoIP service is expected as one of the key applications of Mobile WiMAX, but the speech quality of VoIP service often suffers deterioration due to the fluctuating transmission delay called jitter. This is commonly ameliorated by a de-jitter buffer, and we aim to find the optimal size of de-jitter buffer to achieve speech quality comparable to PSTN. We developed a new model of the packet drops at the de-jitter buffer and the end-to-end packet delay which takes account of the additional delay introduced by the WiMAX power-saving mode. Using our model, we analyzed the optimal size of the de-jitter buffer for various network parameters, and showed that the results obtained by analysis accord with simulation results.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Hybrid Packet-Pheromone-Based Probabilistic Routing for Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Kashkouli Nejad, Keyvan; Shawish, Ahmed; Jiang, Xiaohong; Horiguchi, Susumu
Ad-Hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Minimal configuration and quick deployment make Ad-Hoc networks suitable for emergency situations like natural disasters or military conflicts. The current Ad-Hoc networks can only support either high mobility or high transmission rate at a time because they employ static approaches in their routing schemes. However, due to the continuous expansion of the Ad-Hoc network size, node-mobility and transmission rate, the development of new adaptive and dynamic routing schemes has become crucial. In this paper we propose a new routing scheme to support high transmission rates and high node-mobility simultaneously in a big Ad-Hoc network, by combining a new proposed packet-pheromone-based approach with the Hint Based Probabilistic Protocol (HBPP) for congestion avoidance with dynamic path selection in packet forwarding process. Because of using the available feedback information, the proposed algorithm does not introduce any additional overhead. The extensive simulation-based analysis conducted in this paper indicates that the proposed algorithm offers small packet-latency and achieves a significantly higher delivery probability in comparison with the available Hint-Based Probabilistic Protocol (HBPP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid
This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellularmore » and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.« less
Efficient packet forwarding using cyber-security aware policies
Ros-Giralt, Jordi
2017-04-04
For balancing load, a forwarder can selectively direct data from the forwarder to a processor according to a loading parameter. The selective direction includes forwarding the data to the processor for processing, transforming and/or forwarding the data to another node, and dropping the data. The forwarder can also adjust the loading parameter based on, at least in part, feedback received from the processor. One or more processing elements can store values associated with one or more flows into a structure without locking the structure. The stored values can be used to determine how to direct the flows, e.g., whether to process a flow or to drop it. The structure can be used within an information channel providing feedback to a processor.
Efficient packet forwarding using cyber-security aware policies
Ros-Giralt, Jordi
2017-10-25
For balancing load, a forwarder can selectively direct data from the forwarder to a processor according to a loading parameter. The selective direction includes forwarding the data to the processor for processing, transforming and/or forwarding the data to another node, and dropping the data. The forwarder can also adjust the loading parameter based on, at least in part, feedback received from the processor. One or more processing elements can store values associated with one or more flows into a structure without locking the structure. The stored values can be used to determine how to direct the flows, e.g., whether to process a flow or to drop it. The structure can be used within an information channel providing feedback to a processor.
A two-hop based adaptive routing protocol for real-time wireless sensor networks.
Rachamalla, Sandhya; Kancherla, Anitha Sheela
2016-01-01
One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.
Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model
NASA Astrophysics Data System (ADS)
Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.
2008-11-01
In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.
Software Architecture of Sensor Data Distribution In Planetary Exploration
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo
2006-01-01
Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.
Novel elastic protection against DDF failures in an enhanced software-defined SIEPON
NASA Astrophysics Data System (ADS)
Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar
2017-07-01
Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.
An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.
Zhang, Jinhuan; Long, Jun
2017-06-12
Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.
A Genetic Algorithm for the Generation of Packetization Masks for Robust Image Communication
Zapata-Quiñones, Katherine; Duran-Faundez, Cristian; Gutiérrez, Gilberto; Lecuire, Vincent; Arredondo-Flores, Christopher; Jara-Lipán, Hugo
2017-01-01
Image interleaving has proven to be an effective solution to provide the robustness of image communication systems when resource limitations make reliable protocols unsuitable (e.g., in wireless camera sensor networks); however, the search for optimal interleaving patterns is scarcely tackled in the literature. In 2008, Rombaut et al. presented an interesting approach introducing a packetization mask generator based in Simulated Annealing (SA), including a cost function, which allows assessing the suitability of a packetization pattern, avoiding extensive simulations. In this work, we present a complementary study about the non-trivial problem of generating optimal packetization patterns. We propose a genetic algorithm, as an alternative to the cited work, adopting the mentioned cost function, then comparing it to the SA approach and a torus automorphism interleaver. In addition, we engage the validation of the cost function and provide results attempting to conclude about its implication in the quality of reconstructed images. Several scenarios based on visual sensor networks applications were tested in a computer application. Results in terms of the selected cost function and image quality metric PSNR show that our algorithm presents similar results to the other approaches. Finally, we discuss the obtained results and comment about open research challenges. PMID:28452934
A Cooperative Downloading Method for VANET Using Distributed Fountain Code.
Liu, Jianhang; Zhang, Wenbin; Wang, Qi; Li, Shibao; Chen, Haihua; Cui, Xuerong; Sun, Yi
2016-10-12
Cooperative downloading is one of the effective methods to improve the amount of downloaded data in vehicular ad hoc networking (VANET). However, the poor channel quality and short encounter time bring about a high packet loss rate, which decreases transmission efficiency and fails to satisfy the requirement of high quality of service (QoS) for some applications. Digital fountain code (DFC) can be utilized in the field of wireless communication to increase transmission efficiency. For cooperative forwarding, however, processing delay from frequent coding and decoding as well as single feedback mechanism using DFC cannot adapt to the environment of VANET. In this paper, a cooperative downloading method for VANET using concatenated DFC is proposed to solve the problems above. The source vehicle and cooperative vehicles encodes the raw data using hierarchical fountain code before they send to the client directly or indirectly. Although some packets may be lost, the client can recover the raw data, so long as it receives enough encoded packets. The method avoids data retransmission due to packet loss. Furthermore, the concatenated feedback mechanism in the method reduces the transmission delay effectively. Simulation results indicate the benefits of the proposed scheme in terms of increasing amount of downloaded data and data receiving rate.
On the metal-insulator-transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Godoy, Salvador; Suzuki, Akira
2012-02-01
Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity σ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop.
Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games
NASA Astrophysics Data System (ADS)
Kozma, William; Lazos, Loukas
We address the problem of identifying misbehaving nodes that refuse to forward packets in wireless multi-hop networks. We map the process of locating the misbehaving nodes to the classic Rényi-Ulam game of 20 questions. Compared to previous methods, our mapping allows the evaluation of node behavior on a per-packet basis, without the need for energy-expensive overhearing techniques or intensive acknowledgment schemes. Furthermore, it copes with colluding adversaries that coordinate their behavioral patterns to avoid identification and frame honest nodes. We show via simulations that our algorithms reduce the communication overhead for identifying misbehaving nodes by at least one order of magnitude compared to other methods, while increasing the identification delay logarithmically with the path size.
A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks
Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992
A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.
Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.
Performance Analysis of IEEE 802.15.6 CSMA/CA Protocol for WBAN Medical Scenario through DTMC Model.
Kumar, Vivek; Gupta, Bharat
2016-12-01
The newly drafted IEEE 802.15.6 standard for Wireless Body Area Networks (WBAN) has been concentrating on a numerous medical and non-medical applications. Such short range wireless communication standard offers ultra-low power consumption with variable data rates from few Kbps to Mbps in, on or around the proximity of the human body. In this paper, the performance analysis of carrier sense multiple access with collision avoidance (CSMA/CA) scheme based on IEEE 802.15.6 standard in terms of throughput, reliability, clear channel assessment (CCA) failure probability, packet drop probability, and end-to-end delay has been presented. We have developed a discrete-time Markov chain (DTMC) to significantly evaluate the performances of IEEE 802.15.6 CSMA/CA under non-ideal channel condition having saturated traffic condition including node wait time and service time. We also visualize that, as soon as the payload length increases the CCA failure probability increases, which results in lower node's reliability. Also, we have calculated the end-to-end delay in order to prioritize the node wait time cause by backoff and retransmission. The user priority (UP) wise DTMC analysis has been performed to show the importance of the standard especially for medical scenario.
Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks
Mahjoub, Reem K.; Elleithy, Khaled
2017-01-01
The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation. PMID:28420102
Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks.
Mahjoub, Reem K; Elleithy, Khaled
2017-04-14
The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.
A distributed geo-routing algorithm for wireless sensor networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2009-01-01
Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.
An autonomous recovery mechanism against optical distribution network failures in EPON
NASA Astrophysics Data System (ADS)
Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar
2014-10-01
Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.
Performance analysis of signaling protocols on OBS switches
NASA Astrophysics Data System (ADS)
Kirci, Pinar; Zaim, A. Halim
2005-10-01
In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.
Data-Driven Packet Loss Estimation for Node Healthy Sensing in Decentralized Cluster.
Fan, Hangyu; Wang, Huandong; Li, Yong
2018-01-23
Decentralized clustering of modern information technology is widely adopted in various fields these years. One of the main reason is the features of high availability and the failure-tolerance which can prevent the entire system form broking down by a failure of a single point. Recently, toolkits such as Akka are used by the public commonly to easily build such kind of cluster. However, clusters of such kind that use Gossip as their membership managing protocol and use link failure detecting mechanism to detect link failures cannot deal with the scenario that a node stochastically drops packets and corrupts the member status of the cluster. In this paper, we formulate the problem to be evaluating the link quality and finding a max clique (NP-Complete) in the connectivity graph. We then proposed an algorithm that consists of two models driven by data from application layer to respectively solving these two problems. Through simulations with statistical data and a real-world product, we demonstrate that our algorithm has a good performance.
Jump state estimation with multiple sensors with packet dropping and delaying channels
NASA Astrophysics Data System (ADS)
Dolz, Daniel; Peñarrocha, Ignacio; Sanchis, Roberto
2016-03-01
This work addresses the design of a state observer for systems whose outputs are measured through a communication network. The measurements from each sensor node are assumed to arrive randomly, scarcely and with a time-varying delay. The proposed model of the plant and the network measurement scenarios cover the cases of multiple sensors, out-of-sequence measurements, buffered measurements on a single packet and multirate sensor measurements. A jump observer is proposed that selects a different gain depending on the number of periods elapsed between successfully received measurements and on the available data. A finite set of gains is pre-calculated offline with a tractable optimisation problem, where the complexity of the observer implementation is a design parameter. The computational cost of the observer implementation is much lower than in the Kalman filter, whilst the performance is similar. Several examples illustrate the observer design for different measurement scenarios and observer complexity and show the achievable performance.
Providing the full DDF link protection for bus-connected SIEPON based system architecture
NASA Astrophysics Data System (ADS)
Hwang, I.-Shyan; Pakpahan, Andrew Fernando; Liem, Andrew Tanny; Nikoukar, AliAkbar
2016-09-01
Currently a massive amount of traffic per second is delivered through EPON systems, one of the prominent access network technologies for delivering the next generation network. Therefore, it is vital to keep the EPON optical distribution network (ODN) working by providing the necessity protection mechanism in the deployed devices; otherwise, when failures occur it will cause a great loss for both network operators and business customers. In this paper, we propose a bus-connected architecture to protect and recover distribution drop fiber (DDF) link faults or transceiver failures at ONU(s) in SIEPON system. The proposed architecture provides a cost-effective architecture, which delivers the high fault-tolerance in handling multiple DDF faults, while also providing flexibility in choosing the backup ONU assignments. Simulation results show that the proposed architecture provides the reliability and maintains quality of service (QoS) performance in terms of mean packet delay, system throughput, packet loss and EF jitter when DDF link failures occur.
Prioritized retransmission in slotted all-optical packet-switched networks
NASA Astrophysics Data System (ADS)
Ghaffar Pour Rahbar, Akbar; Yang, Oliver
2006-12-01
We consider an all-optical slotted packet-switched network interconnected by a number of bufferless all-optical switches with contention-based operation. One approach to reduce the cost of the expensive contention resolution hardware could be retransmission in which each ingress switch keeps a copy of the transmitted traffic in the electronic buffer and retransmits whenever required. The conventional retransmission technique may need a higher number of retransmissions until traffic passes through the network. This in turn may lead to a retransmission at a higher layer and reduce the network throughput. In this paper, we propose and analyze a simple but effective prioritized retransmission technique in which dropped traffic is prioritized when retransmitted from ingress switches so that the core switch can process them with a higher priority. We present the analysis of both techniques in multifiber network architecture and verify it via simulation to demonstrate that our proposed algorithm can limit the number of retransmissions significantly and can improve TCP throughput better than the conventional retransmission technique.
Design and analysis of a model predictive controller for active queue management.
Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan
2012-01-01
Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David
2003-09-01
As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less
Management of Dropped Skull Flaps.
Abdelfatah, Mohamed AbdelRahman
2017-01-01
Dropping a skull flap on the floor is an uncommon and avoidable mistake in the neurosurgical operating theater. This study retrospectively reviewed all incidents of dropped skull flaps in Ain-Shams University hospitals during a 10-year period to show how to manage this problem and its outcome. Thirty-one incidents of dropped skull flaps occurred from January 2004 to January 2014 out of more than 10,000 craniotomies. Follow-up period varied from 20 to 44 months. The bone flap was dropped while elevating the bone (n = 16), while drilling the bone on the operating table (n = 5), and during insertion of the bone flap (n = 10). Treatment included re-insertion of the skull flap after soaking it in povidone iodine and antibiotic solution (n = 17) or after autoclaving (n = 11), or discarding the skull flap and replacing it with a mesh cranioplasty in the same operation (n = 3). No bone or wound infection was noted during the follow-up period. Management of dropped skull flap is its prevention. Replacement of the skull flap, after decontamination, is an option that avoids the expense and time of cranioplasty.
NASA Astrophysics Data System (ADS)
Moralis-Pegios, M.; Terzenidis, N.; Mourgias-Alexandris, G.; Vyrsokinos, K.; Pleros, N.
2018-02-01
Disaggregated Data Centers (DCs) have emerged as a powerful architectural framework towards increasing resource utilization and system power efficiency, requiring, however, a networking infrastructure that can ensure low-latency and high-bandwidth connectivity between a high-number of interconnected nodes. This reality has been the driving force towards high-port count and low-latency optical switching platforms, with recent efforts concluding that the use of distributed control architectures as offered by Broadcast-and-Select (BS) layouts can lead to sub-μsec latencies. However, almost all high-port count optical switch designs proposed so far rely either on electronic buffering and associated SerDes circuitry for resolving contention or on buffer-less designs with packet drop and re-transmit procedures, unavoidably increasing latency or limiting throughput. In this article, we demonstrate a 256x256 optical switch architecture for disaggregated DCs that employs small-size optical delay line buffering in a distributed control scheme, exploiting FPGA-based header processing over a hybrid BS/Wavelength routing topology that is implemented by a 16x16 BS design and a 16x16 AWGR. Simulation-based performance analysis reveals that even the use of a 2- packet optical buffer can yield <620nsec latency with >85% throughput for up to 100% loads. The switch has been experimentally validated with 10Gb/s optical data packets using 1:16 optical splitting and a SOA-MZI wavelength converter (WC) along with fiber delay lines for the 2-packet buffer implementation at every BS outgoing port, followed by an additional SOA-MZI tunable WC and the 16x16 AWGR. Error-free performance in all different switch input/output combinations has been obtained with a power penalty of <2.5dB.
Distribution of Information in Ad Hoc Networks
2007-09-01
2.4. MACA Protocol...................................20 Figure 2.5. Route discovery in AODV (From [32]).............28 Figure 2.6. Creation of a...19 Figure 2.3. Exposed terminal Problem (From [20]) (3) MACA and MACAW Protocols. One of the first protocols conceived for wireless local area...networks is MACA [21] (Multiple Accesses with Collision Avoidance). The transmitter sends a small packet, or RTS (Request To Send), which has little
Turning in mid-air allows aphids that flee the plant to avoid reaching the risky ground.
Meresman, Yonatan; Ben-Ari, Matan; Inbar, Moshe
2017-09-01
When forced to drop from the plant, flightless arboreal insects can avoid reaching the risky ground by maneuvering their body through the air. When wingless pea aphids (Acyrthosiphon pisum) are threatened by natural enemies, they often drop off their host plant while assuming a stereotypic posture that rotates them in mid-air, aligning them with their feet pointing downwards. This position may increase their chances of re-clinging onto lower plant parts and avoid facing the dangers on the ground, although its effectiveness in realistic field conditions has not been tested. We performed both laboratory and outdoor experiments, in which we dropped aphids upon host plants to quantify clinging success in plants with different characteristics such as height and leaf size. Live aphids had twofold higher clinging rates than dead ones, indicating that clinging success is indeed affected by the active aerial-righting of dropping aphids. The ability to cling was positively dependent on the plants' foliage cover as viewed in vertical direction from above. Therefore, we released aphids in commercial alfalfa (Medicago sativa) fields with varying plant heights and foliage cover and induced them to drop. Most (up to 75%) of the aphids avoided reaching the ground in taller plants (65 cm), and 17% in shorter plants (21 cm), demonstrating the efficiency of the aphids' response in averting risks: both those of an approaching enemy on the plant and the plethora of new risks on the ground. Evidently, even in complex field environment, the aerial-righting mechanism can substantially reduce the possible risks following escape from a predator. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Van Dijk, Dina; Seger-Guttmann, Tali; Heller, Daniel
2013-04-01
Drawing on the approach-avoidance theory, we have examined the role of avoidance motivation in explaining the negative effects of a life-threatening event on subjective well-being (SWB). Residents of the south of Israel were surveyed during heavy missile attacks in January 2009 (T1; n = 283), and again after 6 months (T2; n = 212) and 1 year (T3; n = 154). During the missile attacks, we also surveyed a group from the center of the country (T1; n = 102), not exposed to the attacks. The results indicate that avoidance motivation was activated by the life threat and further mediated its detrimental influence on SWB measures (positive/negative affects, anxiety, and subjective health). Moreover, within the southern sample, the drop in avoidance motivation over time mediated the parallel drop in SWB. In contrast to avoidance motivation, approach motivation remained stable over time and was related to positive emotions. The role of avoidance and approach motivations in life-threatening situations is further discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2009-07-01
Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
False capacity for lane drops : final report.
DOT National Transportation Integrated Search
2005-02-01
Lane drops downstream of signalized intersections are found on many urban and suburban streets and highways. Since : drivers tend to avoid using the short lane due to the potential for stressful merges downstream of the signal, the short lane is : ty...
A Study of the Seastar Underwater Acoustic Local Area Network Concept
2007-12-01
sense multiple access (CSMA) and multiple access with collision avoidance ( MACA ) are reviewed in [19, 22, 23, 34]. Peripheral nodes using ALOHA and...transmissions until the channel is clear. However, the long propagation time limits the effectiveness of CSMA for acoustic communications. MACA [22] uses... MACA protocol, if no ACK message is received after the transmission is completed, the full packet will be retransmitted until reception is
Local, Regional and Large Scale Integrated Networks
1975-08-01
e.g., [Abramson, 1970, 1973, Kleinrock, 1973, Kleinrock, 1975, Roberts, 1973, Gitman , 19] , have shown that this "fixed assignment" of the...Abramson, 1973, ■- Kleinrock, 1973]), or intentionally avoid the issue of packet routing by proper assumptions [ Gitman , 1975]. The issue of...Communications Sys- tems," Memorandum RM-4781-PR, The Rand Corpora- tion, February 1966. Frank, H., I. Gitman , R. Van Slyke, "Pc-jket I.adio System
Data-Driven Packet Loss Estimation for Node Healthy Sensing in Decentralized Cluster
Fan, Hangyu; Wang, Huandong; Li, Yong
2018-01-01
Decentralized clustering of modern information technology is widely adopted in various fields these years. One of the main reason is the features of high availability and the failure-tolerance which can prevent the entire system form broking down by a failure of a single point. Recently, toolkits such as Akka are used by the public commonly to easily build such kind of cluster. However, clusters of such kind that use Gossip as their membership managing protocol and use link failure detecting mechanism to detect link failures cannot deal with the scenario that a node stochastically drops packets and corrupts the member status of the cluster. In this paper, we formulate the problem to be evaluating the link quality and finding a max clique (NP-Complete) in the connectivity graph. We then proposed an algorithm that consists of two models driven by data from application layer to respectively solving these two problems. Through simulations with statistical data and a real-world product, we demonstrate that our algorithm has a good performance. PMID:29360792
Avoidance of Heights on the Visual Cliff in Newly Walking Infants
ERIC Educational Resources Information Center
Witherington, David C.; Campos, Joseph J.; Anderson, David I.; Lejeune, Laure; Seah, Eileen
2005-01-01
Work with infants on the "visual cliff" links avoidance of drop-offs to experience with self-produced locomotion. Adolph's (2002) research on infants' perception of slope and gap traversability suggests that learning to avoid falling down is highly specific to the postural context in which it occurs. Infants, for example, who have…
Ellis, Thomas E; Rufino, Katrina A
2016-07-02
Growing empirical literature in recent years indicates that experiential avoidance plays a role in a wide variety of psychological disorders and psychotherapeutic interventions. This study explored the view of suicidal ideation as a form of experiential avoidance by examining the association between suicidal ideation and therapeutic change in a sample of 189 adult psychiatric inpatients. Results were consistent with predictions, showing a statistically significant association between scores on the Beck Scale for Suicidal Ideation and the Acceptance and Action Questionnaire-II (AAQ-II). It was further shown that change in AAQ-II scores over the course of hospitalization was associated with change in suicidality, independent of changes in depression severity and hopelessness. Moreover, treatment responders (patients whose suicidal ideation scores dropped significantly over the course of treatment) showed greater drops in experiential avoidance relative to nonresponders. These results are consistent with a view of suicidal ideation (and, by extension, suicide) as a form of experiential avoidance and potentially a therapeutic approach that specifically seeks to reduce experiential avoidance.
Pauler, Denise K; Kendrick, Brian K
2004-01-08
The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics
Mandava, Nageswara; Chang, Richard S; Wang, John H; Bertocchi, Michael; Yrad, Jonathan; Allamaneni, Shyam; Aboian, Edouard; Lall, Malini H; Mariano, Rosalind; Richards, Neil
2011-02-01
'Mules' or body packers are people who transport illegal drugs by packet ingestion into the gastrointestinal tract. These people are otherwise healthy and their management should maintain minimal morbidity. In this study, experience with body packers is presented and an algorithm for conservative and surgical management is provided. The clinical patient database for all body packer admissions at Mary Immaculate Hospital of the Caritas Health Care Inc. from 1993 to 2005 was interrogated. 56 patients (4.5%) required admission out of a total of 1250 subjects confirmed to be body packers and apprehended by United State Customs officials at JFK International Airport, New York. The retrieved patient data were analysed retrospectively. 70% of the body packers were men, with a male to female ratio of 2.8 to 1. The mean age was 33 years and 52% were from Columbia. Heroin was the most common illegally transported substance (73%). 25 patients (45%) required surgical intervention, whereas 31 patients (55%) were successfully managed conservatively. Indications for intervention included: bowel obstruction, packet rupture/toxicity, and delayed progression of packet transit on conservative management. Multiple intraoperative manoeuvres were used to remove the foreign bodies: gastrotomy, enterotomy and colotomy. Wound infection was the most common complication and is associated with distal enterotomy and colotomy. Men were more likely to present as body packers than women. Proximal enterotomies are preferred and multiple enterotomies should be avoided. A confirmatory radiological study is needed to demonstrate complete clearance of packets. A systematic protocol for the management of body packers results in minimal morbidity and no mortality.
Protocol, Engineering Research Center, University of California, Santa Barbara
2005-12-01
minimizing the energy consumption in idle periods. We have designed an asynchronous wakeup schedule based on the theory of block designs. The idea is...performance of ad hoc networks through innovative packet scheduling (Baker). "* Developed a number of novel schemes to ensure loop freedom in on demand routing...network nodes to schedule their transmissions to avoid collisions (Garcia-Luna-Aceves). "* Designed and analyzed the Hybrid Activation Multiple Access (HAMA
NASA Astrophysics Data System (ADS)
Peng, Chaorong; Chen, Chang Wen
2008-04-01
Malicious nodes are mounting increasingly sophisticated attacking operations on the Mobile Ad Hoc Networks (MANETs). This is mainly because the IP-based MANETs are vulnerable to attacks by various malicious nodes. However, the defense against malicious attack can be improved when a new layer of network architecture can be developed to separate true IP address from disclosing to the malicious nodes. In this paper, we propose a new algorithm to improve the defense against malicious attack (IDMA) that is based on a recently developed Assignment Router Identify Protocol (ARIP) for the clustering-based MANET management. In the ARIP protocol, we design the ARIP architecture based on the new Identity instead of the vulnerable IP addresses to provide the required security that is embedded seamlessly into the overall network architecture. We make full use of ARIP's special property to monitor gateway forward packets by Reply Request Route Packets (RREP) without additional intrusion detection layer. We name this new algorithm IDMA because of its inherent capability to improve the defense against malicious attacks. Through IDMA, a watching algorithm can be established so as to counterattack the malicious node in the routing path when it unusually drops up packets. We provide analysis examples for IDMA for the defense against a malicious node that disrupts the route discovery by impersonating the destination, or by responding with state of corrupted routing information, or by disseminating forged control traffic. The IDMA algorithm is able to counterattack the malicious node in the cases when the node lunch DoS attack by broadcast a large number of route requests, or make Target traffic congestion by delivering huge mount of data; or spoof the IP addresses and send forge packets with a fake ID to the same Target causing traffic congestion at that destination. We have implemented IDMA algorism using the GloMoSim simulator and have demonstrated its performance under a variety of operational conditions.
Metal Insulator transition in Vanadium Dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador
2012-02-01
MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .
Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaume de, E-mail: jaime.haro@upc.edu
It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks
Claver, Jose M.; Ezpeleta, Santiago
2017-01-01
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments. PMID:28684666
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.
Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago
2017-07-06
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.
Characterizing and Improving Distributed Intrusion Detection Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Steven A; Proebstel, Elliot P.
2007-11-01
Due to ever-increasing quantities of information traversing networks, network administrators are developing greater reliance upon statistically sampled packet information as the source for their intrusion detection systems (IDS). Our research is aimed at understanding IDS performance when statistical packet sampling is used. Using the Snort IDS and a variety of data sets, we compared IDS results when an entire data set is used to the results when a statistically sampled subset of the data set is used. Generally speaking, IDS performance with statistically sampled information was shown to drop considerably even under fairly high sampling rates (such as 1:5). Characterizingmore » and Improving Distributed Intrusion Detection Systems4AcknowledgementsThe authors wish to extend our gratitude to Matt Bishop and Chen-Nee Chuah of UC Davis for their guidance and support on this work. Our thanks are also extended to Jianning Mai of UC Davis and Tao Ye of Sprint Advanced Technology Labs for their generous assistance.We would also like to acknowledge our dataset sources, CRAWDAD and CAIDA, without which this work would not have been possible. Support for OC48 data collection is provided by DARPA, NSF, DHS, Cisco and CAIDA members.« less
GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.
Lin, Chi; Wu, Guowei; Pirozmand, Poria
2015-06-04
The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.
The Effects of Block Size on the Performance of Coherent Caches in Shared-Memory Multiprocessors
1993-05-01
increase with the bandwidth and latency. For those applications with poor spatial locality, the best choice of cache line size is determined by the...observation was used in the design of two schemes: LimitLESS di- rectories and Tag caches. LimitLESS directories [15] were designed for the ALEWIFE...small packets may be used to avoid network congestion. The most important factor influencing the choice of cache line size for a multipro- cessor is the
A Novel Cooperative Opportunistic Routing Scheme for Underwater Sensor Networks
Ghoreyshi, Seyed Mohammad; Shahrabi, Alireza; Boutaleb, Tuleen
2016-01-01
Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance. PMID:26927118
A Novel Cooperative Opportunistic Routing Scheme for Underwater Sensor Networks.
Ghoreyshi, Seyed Mohammad; Shahrabi, Alireza; Boutaleb, Tuleen
2016-02-26
Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes' collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron
2018-03-01
The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.
NASA Astrophysics Data System (ADS)
Patti, Andrew; Tan, Wai-tian; Shen, Bo
2007-09-01
Streaming video in consumer homes over wireless IEEE 802.11 networks is becoming commonplace. Wireless 802.11 networks pose unique difficulties for streaming high definition (HD), low latency video due to their error-prone physical layer and media access procedures which were not designed for real-time traffic. HD video streaming, even with sophisticated H.264 encoding, is particularly challenging due to the large number of packet fragments per slice. Cross-layer design strategies have been proposed to address the issues of video streaming over 802.11. These designs increase streaming robustness by imposing some degree of monitoring and control over 802.11 parameters from application level, or by making the 802.11 layer media-aware. Important contributions are made, but none of the existing approaches directly take the 802.11 queuing into account. In this paper we take a different approach and propose a cross-layer design allowing direct, expedient control over the wireless packet queue, while obtaining timely feedback on transmission status for each packet in a media flow. This method can be fully implemented on a media sender with no explicit support or changes required to the media client. We assume that due to congestion or deteriorating signal-to-noise levels, the available throughput may drop substantially for extended periods of time, and thus propose video source adaptation methods that allow matching the bit-rate to available throughput. A particular H.264 slice encoding is presented to enable seamless stream switching between streams at multiple bit-rates, and we explore using new computationally efficient transcoding methods when only a high bit-rate stream is available.
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Viscosity Measurement Using Drop Coalescence in Microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)
2002-01-01
We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.
Qi, Baoxin; Kong, Qingzhao; Qian, Hui; Patil, Devendra; Lim, Ing; Li, Mo; Liu, Dong; Song, Gangbing
2018-02-24
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests.
Qian, Hui; Li, Mo; Liu, Dong; Song, Gangbing
2018-01-01
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests. PMID:29495277
Packet Fragmentation and Reassembly in Molecular Communication.
Furubayashi, Taro; Nakano, Tadashi; Eckford, Andrew; Okaie, Yutaka; Yomo, Tetsuya
2016-04-01
This paper describes packet fragmentation and reassembly to achieve reliable molecular communication among bionanomachines. In the molecular communication described in this paper, a sender bionanomachine performs packet fragmentation, dividing a large molecular message into smaller pieces and embedding into smaller molecular packets, so that molecular packets have higher diffusivity to reach the receiver bionanomachine. The receiver bionanomachine then performs packet reassembly to retrieve the original molecular message from a set of molecular packets that it receives. To examine the effect of packet fragmentation and reassembly, we develop analytical models and conduct numerical experiments. Numerical results show that packet fragmentation and reassembly can improve the message delivery performance. Numerical results also indicate that packet fragmentation and reassembly may degrade the performance in the presence of drift in the environment.
A novel lost packets recovery scheme based on visual secret sharing
NASA Astrophysics Data System (ADS)
Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao
2017-08-01
In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).
A robust fractional-order PID controller design based on active queue management for TCP network
NASA Astrophysics Data System (ADS)
Hamidian, Hamideh; Beheshti, Mohammad T. H.
2018-01-01
In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Game-theoretic approach for improving cooperation in wireless multihop networks.
Ng, See-Kee; Seah, Winston K G
2010-06-01
Traditional networks are built on the assumption that network entities cooperate based on a mandatory network communication semantic to achieve desirable qualities such as efficiency and scalability. Over the years, this assumption has been eroded by the emergence of users that alter network behavior in a way to benefit themselves at the expense of others. At one extreme, a malicious user/node may eavesdrop on sensitive data or deliberately inject packets into the network to disrupt network operations. The solution to this generally lies in encryption and authentication. In contrast, a rational node acts only to achieve an outcome that he desires most. In such a case, cooperation is still achievable if the outcome is to the best interest of the node. The node misbehavior problem would be more pronounced in multihop wireless networks like mobile ad hoc and sensor networks, which are typically made up of wireless battery-powered devices that must cooperate to forward packets for one another. However, cooperation may be hard to maintain as it consumes scarce resources such as bandwidth, computational power, and battery power. This paper applies game theory to achieve collusive networking behavior in such network environments. In this paper, pricing, promiscuous listening, and mass punishments are avoided altogether. Our model builds on recent work in the field of Economics on the theory of imperfect private monitoring for the dynamic Bertrand oligopoly, and adapts it to the wireless multihop network. The model derives conditions for collusive packet forwarding, truthful routing broadcasts, and packet acknowledgments under a lossy wireless multihop environment, thus capturing many important characteristics of the network layer and link layer in one integrated analysis that has not been achieved previously. We also provide a proof of the viability of the model under a theoretical wireless environment. Finally, we show how the model can be applied to design a generic protocol which we call the Selfishness Resilient Resource Reservation protocol, and validate the effectiveness of this protocol in ensuring cooperation using simulations.
Scenarios for control and data flows in multiprotocol over ATM
NASA Astrophysics Data System (ADS)
Kujoory, Ali
1997-10-01
The multiprotocol over ATM (MPOA), specified by the ATM Forum, provides an architecture for transfer of Internetwork layer packets (Layer 3 datagram such as IP, IPX) over ATM subnets or across the emulated LANs. MPOA provides shortcuts that bypass routers to avoid router bottlenecks. It is a grand union of some of the existing standards such as LANE by the ATM Forum, NHRP by the IETF, and the Q.2931 by ITU. The intent of this paper is to clarify the data flows between pairs of source and destination hosts in an MPOA system. It includes scenarios for both the intra- and inter-subnet flows between different pairs of MPOA end-systems. The intrasubnet flows simply use LANE for address resolution or data transfer. The inter-subnet flows may use a default path for short-lived flows or a shortcut for long-lived flows. The default path uses the LANE and router capabilities. The shortcut path uses LANE plus NHRP for ATM address resoluton. An ATM virtual circuit is established before the data transfer. This allows efficient transfer of internetwork layer packets over ATM for real-time applications.
Digital optical processing of optical communications: towards an Optical Turing Machine
NASA Astrophysics Data System (ADS)
Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.
2017-01-01
Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.
Methods for Processing and Interpretation of AIS Signals Corrupted by Noise and Packet Collisions
NASA Astrophysics Data System (ADS)
Poļevskis, J.; Krastiņš, M.; Korāts, G.; Skorodumovs, A.; Trokšs, J.
2012-01-01
The authors deal with the operation of Automatic Identification System (AIS) used in the marine traffic monitoring to broadcast messages containing information about the vessel: id, payload, size, speed, destination etc., meant primarily for avoidance of ship collisions. To extend the radius of AIS operation, it is envisaged to dispose its receivers on satellites. However, in space, due to a large coverage area, interfering factors are especially pronounced - such as packet collision, Doppler's shift and noise impact on AIS message receiving, pre-processing and decoding. To assess the quality of an AIS receiver's operation, a test was carried out in which, varying automatically frequency, amplitude, noise, and other parameters, the data on the ability of the receiver's ability to decode AIS signals are collected. In the work, both hardware- and software-based AIS decoders were tested. As a result, quite satisfactory statistics has been gathered - both on the common and the differing features of such decoders when operating in space. To obtain reliable data on the software-defined radio AIS receivers, further research is envisaged.
Method and Apparatus for Processing UDP Data Packets
NASA Technical Reports Server (NTRS)
Murphy, Brandon M. (Inventor)
2017-01-01
A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.
Evaluation and Treatment of Swimming Pool Avoidance Exhibited by an Adolescent Girl with Autism
ERIC Educational Resources Information Center
Rapp, John T.; Vollmer, Timothy R.; Hovanetz, Alyson N.
2005-01-01
We evaluated and treated swimming pool avoidance that was exhibited by a 14-year-old girl diagnosed with autism. In part, treatment involved blocking for flopping (dropping to the ground) and elopement (running away from the pool) and access to food for movements toward a swimming pool. Treatment also involved reinforcement for exposure to various…
Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.
2009-10-01
The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.
Packet flow monitoring tool and method
Thiede, David R [Richland, WA
2009-07-14
A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.
I/O routing in a multidimensional torus network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
2017-02-07
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
I/O routing in a multidimensional torus network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destinationmore » address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.« less
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
NASA Astrophysics Data System (ADS)
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Random access with adaptive packet aggregation in LTE/LTE-A.
Zhou, Kaijie; Nikaein, Navid
While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.
Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1983-01-01
Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.
Error recovery to enable error-free message transfer between nodes of a computer network
Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.
2016-01-26
An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.
SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET
NASA Astrophysics Data System (ADS)
KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya
2013-02-01
Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.
... instilling the next drop. Replace and tighten the cap on the dropper bottle. Do not wipe or ... someone else apply the gel. Remove the protective cap. Avoid touching the tip of the tube against ...
[A correct understanding of preservatives in eye drops].
Liu, Zuguo; Huang, Caihong
2015-09-01
Eye drops are the most commonly used preparations in ophthalmology. Preservatives are usually added in order to protect eye drops against pathogenic organisms and increase the solubility of the drugs in multi-dose containers. Ophthalmologists have paid a lot of attention to the preservatives in eye drops because they remain one of the main reasons for ocular surface damage, and even may lead to serious visual impairment in patients with inappropriate use of eye drops. However, it should be noted that the dangers of preservatives become overstated nowadays. It is necessary to completely evaluate the effects of preservatives in ophthalmic preparations, so that ophthalmologists can guide patients to correctly select eye drops containing preservatives and avoid dangerous side effects, according to their eye disease situation, state of tear function and ocular surface changes, cultural background and financial income, cost and benefit and convenience of the use of drugs, and other factors. The direction of the future development in this field is to establish the clinical guideline for use of eye drops containing preservatives, carry out continuing education courses on preservatives and develop ideal preservatives.
Electrochemistry in an acoustically levitated drop.
Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander
2013-02-19
Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%.
Stoyanova, Milena; Hope, Debra A
2012-01-01
Despite the well-documented gender effect in anxiety, less is known about contributing factors to women's greater risk for anxiety and fears. The present study examined the relationship between gender, gender role orientation (i.e., expressivity/instrumentality) and fear of harmless insects (tarantula), using a multimodal approach of self-report measures, a Behavioral Approach Test (BAT), and physiological reactivity. Participants (144 college students; 67 women, 77 men) completed a questionnaire packet and then were instructed to approach a tarantula. We were unable to replicate Pierce and Kirkpatrick's (1992) findings that men underreport anxiety. Consistent with the literature, women in the study experienced greater anxiety and avoidance compared to men. However, men and women did not differ on physiological reactivity during the first 2 min of the BAT. The concordance across avoidance, anxiety and heart rate reactivity differed by gender, suggesting that men and women have different experiences when faced with a fearful object. Furthermore, instrumentality (masculinity) was negatively related to anticipatory anxiety for women but not for men. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nonperturbative quantum control via the nonresonant dynamic Stark effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Benjamin J.; Stolow, Albert; Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6
2005-05-15
The nonresonant dynamic Stark effect (NRDSE) is investigated as a general tool for quantum control in the intermediate field strength regime (nonperturbative but nonionizing). We illustrate this scheme for the case of nonadiabatic molecular photodissociation at an avoided crossing. Using the NRDSE exclusively, both the electronic branching ratio and predissociation lifetime may be controlled. Infrared control pulses are used to modify the field-free dynamical evolution during traversal of the avoided crossing, thus controlling the nonadiabatic branching ratio. Predissociation lifetimes may be either increased or decreased using properly timed short infrared pulses to modify phase differences between the diabatic wave packets.more » In contrast with the limiting cases of perturbative control (interference between transitions) and strong field control with ionizing laser fields, control via the NRDSE may be thought of as reversibly modifying the effective Hamiltonian during system propagation.« less
A beacon interval shifting scheme for interference mitigation in body area networks.
Kim, Seungku; Kim, Seokhwan; Kim, Jin-Woo; Eom, Doo-Seop
2012-01-01
This paper investigates the issue of interference avoidance in body area networks (BANs). IEEE 802.15 Task Group 6 presented several schemes to reduce such interference, but these schemes are still not proper solutions for BANs. We present a novel distributed TDMA-based beacon interval shifting scheme that reduces interference in the BANs. A design goal of the scheme is to avoid the wakeup period of each BAN coinciding with other networks by employing carrier sensing before a beacon transmission. We analyze the beacon interval shifting scheme and investigate the proper back-off length when the channel is busy. We compare the performance of the proposed scheme with the schemes presented in IEEE 802.15 Task Group 6 using an OMNeT++ simulation. The simulation results show that the proposed scheme has a lower packet loss, energy consumption, and delivery-latency than the schemes of IEEE 802.15 Task Group 6.
A Beacon Interval Shifting Scheme for Interference Mitigation in Body Area Networks
Kim, Seungku; Kim, Seokhwan; Kim, Jin-Woo; Eom, Doo-Seop
2012-01-01
This paper investigates the issue of interference avoidance in body area networks (BANs). IEEE 802.15 Task Group 6 presented several schemes to reduce such interference, but these schemes are still not proper solutions for BANs. We present a novel distributed TDMA-based beacon interval shifting scheme that reduces interference in the BANs. A design goal of the scheme is to avoid the wakeup period of each BAN coinciding with other networks by employing carrier sensing before a beacon transmission. We analyze the beacon interval shifting scheme and investigate the proper back-off length when the channel is busy. We compare the performance of the proposed scheme with the schemes presented in IEEE 802.15 Task Group 6 using an OMNeT++ simulation. The simulation results show that the proposed scheme has a lower packet loss, energy consumption, and delivery-latency than the schemes of IEEE 802.15 Task Group 6. PMID:23112639
Dewey, Daniel; Schuldberg, David; Madathil, Renee
2014-08-01
This study investigated whether specific peritraumatic emotions differentially predict PTSD symptom clusters in individuals who have experienced stressful life events. Hypotheses were developed based on the SPAARS model of PTSD. It was predicted that the peritraumatic emotions of anger, disgust, guilt, and fear would significantly predict re-experiencing and avoidance symptoms, while only fear would predict hyperarousal. Undergraduate students (N = 144) participated in this study by completing a packet of self-report questionnaires. Multiple regression analyses were conducted with PCL-S symptom cluster scores as dependent variables and peritraumatic fear, guilt, anger, shame, and disgust as predictor variables. As hypothesized, peritraumatic anger, guilt, and fear all significantly predicted re-experiencing. However, only fear predicted avoidance, and anger significantly predicted hyperarousal. Results are discussed in relation to the theoretical role of emotions in the etiology of PTSD following the experience of a stressful life event.
Speech transport for packet telephony and voice over IP
NASA Astrophysics Data System (ADS)
Baker, Maurice R.
1999-11-01
Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.
NASA Astrophysics Data System (ADS)
Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.
2014-12-01
The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested with different communication media, including Internet, DSL, Wi-Fi, GPRS, etc. The test results show that the data latency via most communication media do not exceed 0.5 sec nominal from a first sample in the data packet. Detailed acquisition algorithm and results of data transmission via different communication media are presented.
Threatened and Endangered Species: Tour Packet.
ERIC Educational Resources Information Center
Coats, Victoria; Samia, Cory
This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…
Development of optical packet and circuit integrated ring network testbed.
Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya
2011-12-12
We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Photonic integrated circuit optical buffer for packet-switched networks.
Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E
2009-04-13
A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.
Enhanced Handoff Scheme for Downlink-Uplink Asymmetric Channels in Cellular Systems
2013-01-01
In the latest cellular networks, data services like SNS and UCC can create asymmetric packet generation rates over the downlink and uplink channels. This asymmetry can lead to a downlink-uplink asymmetric channel condition being experienced by cell edge users. This paper proposes a handoff scheme to cope effectively with downlink-uplink asymmetric channels. The proposed handoff scheme exploits the uplink channel quality as well as the downlink channel quality to determine the appropriate timing and direction of handoff. We first introduce downlink and uplink channel models that consider the intercell interference, to verify the downlink-uplink channel asymmetry. Based on these results, we propose an enhanced handoff scheme that exploits both the uplink and downlink channel qualities to reduce the handoff-call dropping probability and the service interruption time. The simulation results show that the proposed handoff scheme reduces the handoff-call dropping probability about 30% and increases the satisfaction of the service interruption time requirement about 7% under high-offered load, compared to conventional mobile-assisted handoff. Especially, the proposed handoff scheme is more efficient when the uplink QoS requirement is much stricter than the downlink QoS requirement or uplink channel quality is worse than downlink channel quality. PMID:24501576
Flow-oriented dynamic assembly algorithm in TCP over OBS networks
NASA Astrophysics Data System (ADS)
Peng, Shuping; Li, Zhengbin; He, Yongqi; Xu, Anshi
2008-11-01
OBS is envisioned as a promising infrastructure for the next generation optical network, and TCP is likely to be the dominant transport protocol in the next generation network. Therefore, it is necessary to evaluate the performance of TCP over OBS networks. The assembly at the ingress edge nodes will impact the network performance. There have been several Fixed Assembly Period (FAP) algorithms proposed. However, the assembly period in FAP is fixed, and it can not be adjusted according to the network condition. Moreover, in FAP, the packets from different TCP sources are assembled into one burst. In that case, if such a burst is dropped, the TCP windows of the corresponding sources will shrink and the throughput will be reduced. In this paper, we introduced a flow-oriented Dynamic Assembly Period (DAP) algorithm for TCP over OBS networks. Through comparing the previous and current burst lengths, DAP can track the variation of TCP window, and update the assembly period dynamically for the next assembly. The performance of DAP is evaluated over a single TCP connection and multiple connections, respectively. The simulation results show that DAP performs better than FAP at almost the whole range of burst dropping probability.
Perumal, Madhumathy; Dhandapani, Sivakumar
2015-01-01
Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.
Rate-based congestion control in networks with smart links, revision. B.S. Thesis - May 1988
NASA Technical Reports Server (NTRS)
Heybey, Andrew Tyrrell
1990-01-01
The author uses a network simulator to explore rate-based congestion control in networks with smart links that can feed back information to tell senders to adjust their transmission rates. This method differs in a very important way from congestion control in which a congested network component just drops packets - the most commonly used method. It is clearly advantageous for the links in the network to communicate with the end users about the network capacity, rather than the users unilaterally picking a transmission rate. The components in the middle of the network, not the end users, have information about the capacity and traffic in the network. The author experiments with three different algorithms for calculating the control rate to feed back to the users. All of the algorithms exhibit problems in the form of large queues when simulated with a configuration modeling the dynamics of a packet-voice system. However, the problems are not with the algorithms themselves, but with the fact that feedback takes time. If the network steady-state utilization is low enough that it can absorb transients in the traffic through it, then the large queues disappear. If the users are modified to start sending slowly, to allow the network to adapt to a new flow without causing congestion, a greater portion of the network's bandwidth can be used.
Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches
NASA Astrophysics Data System (ADS)
Jeong, Han-You; Seo, Seung-Woo
2000-09-01
The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.
Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal
2012-09-01
The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. Copyright © 2012 Elsevier Ltd. All rights reserved.
SpaceWire Protocol ID: What Does It Mean To You?
NASA Technical Reports Server (NTRS)
Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parks, Steve
2006-01-01
Spacewire is becoming a popular solution for satellite high-speed data buses because it is a simple standard that provides great flexibility for a wide range of system requirements. It is simple in packet format and protocol, allowing users to easily tailor their implementation for their specific application. Some of the attractive aspects of Spacewire that make it easy to implement also make it hard for future reuse. Protocol reuse is difficult because Spacewire does not have a defined mechanism to communicate with the higher layers of the protocol stack. This has forced users of Spacewire to define unique packet formats and define how these packets are to be processed. Each mission writes their own Interface Control Document (ICD) and tailors Spacewire for their specific requirements making reuse difficult. Part of the reason for this habit may be because engineers typically optimize designs for their own requirements in the absence of a standard. This is an inefficient use of project resources and costs more to develop missions. A new packet format for Spacewire has been defined as a solution for this problem. This new packet format is a compliment to the Spacewire standard that will support protocol development upon Spacewire. The new packet definition does not replace the current packet structure, i.e., does not make the standard obsolete, but merely extends the standard for those who want to develop protocols over Spacewire. The Spacewire packet is defined with the first part being the Destination Address, which may be one or more bytes. This is followed by the packet cargo, which is user defined. The cargo is truncated with an End-Of-Packet (EOP) marker. This packet structure offers low packet overhead and allows the user to define how the contents are to be formatted. It also provides for many different addressing schemes, which provide flexibility in the system. This packet flexibility is typically an attractive part of the Spacewire. The new extended packet format adds one new field to the packet that greatly enhances the capability of Spacewire. This new field called the Protocol Identifier (ID) is used to identify the packet contents and the associated processing for the packet. This feature along with the restriction in the packet format that uses the Protocol ID, allows a deterministic method of decoding packets that was not before possible. The first part of the packet is still the Destination Address, which still conforms to the original standard but with one restriction. The restriction is that the first byte seen at the destination by the user needs to be a logical address, independent of the addressing scheme used. The second field is defined as the Protocol ID, which is usually one byte in length. The packet cargo (user defined) follows the Protocol ID. After the packet cargo is the EOP, which defines the end of packet. The value of the Protocol ID is assigned by the Spacewire working group and the protocol description published for others to use. The development of Protocols for Spacewire is currently the area of greatest activity by the Spacewire working group. The first protocol definition by the working group has been completed and is now in the process of formal standardization. There are many other protocols in development for missions that have not yet received formal Protocol ID assignment, but even if the protocols are not formally assigned a value, this effort will provide synergism for future developments.
Wireless Avionics Packet to Support Fault Tolerance for Flight Applications
NASA Technical Reports Server (NTRS)
Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad
2009-01-01
In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit.
NASA Astrophysics Data System (ADS)
Edwards, Mark; Hu, Fei; Kumar, Sunil
2004-10-01
The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Burggraf, Stefan; Galenko, Peter; Gandin, Charles-André; Garcia-Escorial, Asuncion; Henein, Hani; Karrasch, Christian; Mullis, Andrew; Rettenmayr, Markus; Valloton, Jonas
2017-08-01
Containerless processing of droplets and drops by atomization and electromagnetic levitation are applied to undercool metallic melts and alloys prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. Experiments are performed both under terrestrial (1 g) conditions and in reduced gravity ( µg) as well. Microgravity conditions are realized by the free fall of small droplets during atomization of a spray of droplets, individual drops in a drop tube and by electromagnetic levitation of drops during parabolic flights, sounding rocket missions, and using the electro-magnetic levitator multi-user facility on board the International Space Station. The comparison of both sets of experiments in 1 g and µg leads to an estimation of the influence of forced convection on dendrite growth kinetics and microstructure evolution.
Razaque, Abdul; Elleithy, Khaled
2015-01-01
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes. PMID:26153768
Razaque, Abdul; Elleithy, Khaled
2015-07-06
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
An Emergency Packet Forwarding Scheme for V2V Communication Networks
2014-01-01
This paper proposes an effective warning message forwarding scheme for cooperative collision avoidance. In an emergency situation, an emergency-detecting vehicle warns the neighbor vehicles via an emergency warning message. Since the transmission range is limited, the warning message is broadcast in a multihop manner. Broadcast packets lead two challenges to forward the warning message in the vehicular network: redundancy of warning messages and competition with nonemergency transmissions. In this paper, we study and address the two major challenges to achieve low latency in delivery of the warning message. To reduce the intervehicle latency and end-to-end latency, which cause chain collisions, we propose a two-way intelligent broadcasting method with an adaptable distance-dependent backoff algorithm. Considering locations of vehicles, the proposed algorithm controls the broadcast of a warning message to reduce redundant EWM messages and adaptively chooses the contention window to compete with nonemergency transmission. Via simulations, we show that our proposed algorithm reduces the probability of rear-end crashes by 70% compared to previous algorithms by reducing the intervehicle delay. We also show that the end-to-end propagation delay of the warning message is reduced by 55%. PMID:25054181
Strategies for Optimal MAC Parameters Tuning in IEEE 802.15.6 Wearable Wireless Sensor Networks.
Alam, Muhammad Mahtab; Ben Hamida, Elyes
2015-09-01
Wireless body area networks (WBAN) has penetrated immensely in revolutionizing the classical heath-care system. Recently, number of WBAN applications has emerged which introduce potential limits to existing solutions. In particular, IEEE 802.15.6 standard has provided great flexibility, provisions and capabilities to deal emerging applications. In this paper, we investigate the application-specific throughput analysis by fine-tuning the physical (PHY) and medium access control (MAC) parameters of the IEEE 802.15.6 standard. Based on PHY characterizations in narrow band, at the MAC layer, carrier sense multiple access collision avoidance (CSMA/CA) and scheduled access protocols are extensively analyzed. It is concluded that, IEEE 802.15.6 standard can satisfy most of the WBANs applications throughput requirements by maximum achieving 680 Kbps. However, those emerging applications which require high quality audio or video transmissions, standard is not able to meet their constraints. Moreover, delay, energy efficiency and successful packet reception are considered as key performance metrics for comparing the MAC protocols. CSMA/CA protocol provides the best results to meet the delay constraints of medical and non-medical WBAN applications. Whereas, the scheduled access approach, performs very well both in energy efficiency and packet reception ratio.
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan
2011-09-01
In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.
Achievement goals in adult learners: evidence from distance education.
Remedios, Richard; Richardson, John T E
2013-12-01
There is evidence that learners may adopt different kinds of achievement goals: mastery approach, mastery avoidance, performance approach, and performance avoidance. In higher education, this evidence has mainly come from young people who have recently gone straight from secondary education to higher education. However, higher education is increasingly populated by older students, and it has been theorised that the relationship between goals and achievement might be very different for adult learners. The aim of the present study was to examine whether the relationships between achievement, drop-out rate, and goal orientation observed for non-adult populations are mirrored in adult learners. The Achievement Goal Questionnaire (AGQ) was administered to adult learners taking courses by distance learning. Respondents were 195 men and 586 women between the ages of 19 and 87. The results confirmed the reliability of the 2 × 2 version of the AGQ for this distinctive population. As in previous studies of younger students, mastery-approach goals were unrelated to attainment, performance-approach goals tended to facilitate attainment, and performance-avoidance goals tended to impair attainment. In addition, mastery-avoidance goals tended to impair students' attainment and also increased the likelihood that they would drop out of their course altogether. The achievement-goal framework is as appropriate for understanding influences on attainment in adult learners as it is in younger students. Adult learners may be more sensitive to the deleterious effects of adopting mastery-avoidance achievement goals. © 2012 The British Psychological Society.
Priority arbitration mechanism
Garmire, Derrick L [Kingston, NY; Herring, Jay R [Poughkeepsie, NY; Stunkel, Craig B [Bethel, CT
2007-03-06
A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Wiese, U.-J.
2009-12-01
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
Interconnecting network for switching data packets and method for switching data packets
Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian
2010-05-25
The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).
Discharge properties of hippocampal neurons during performance of a jump avoidance task
Lenck-Santini, Pierre-Pascal; Fenton, André A.; Muller, Robert U.
2008-01-01
We recorded single hippocampal cells while rats performed a jump avoidance task. In this task, a rat was dropped onto the metal floor of a 33 cm gray wooden cube and was given a mild electric shock if it did not jump up onto the box rim in less than 15 sec. We found that many hippocampal pyramidal cells and most interneurons discharged preferentially at either the drop, the jump or on both events. By simultaneously recording the hippocampal EEG, we found that the discharge of most of the event-related pyramidal cells was modulated by the theta rhythm and moreover that discharge precessed with theta cycles in the same fashion seen for pyramidal cells in their role as place cells. The elevations of firing rate at drop and jump were accompanied by increases in theta frequency. We conclude that many of the features of event-related discharge can be interpreted as being equivalent to the activity of place cells with firing fields above the box floor. Nevertheless, there are sufficient differences between expectations from place cells and observed activity to indicate that pyramidal cells may be able to signal events as well as location. PMID:18596153
Sayner, Robyn; Carpenter, Delesha M; Robin, Alan L; Blalock, Susan J; Muir, Kelly W; Vitko, Michelle; Hartnett, Mary Elizabeth; Lawrence, Scott D; Giangiacomo, Annette L; Tudor, Gail; Goldsmith, Jason A; Sleath, Betsy
2017-01-01
Objectives The objective of this study was to examine the extent to which patient characteristics, eye drop technique self-efficacy, and ophthalmologist–patient communication about eye drop administration are associated with glaucoma patients’ ability to instil a single drop, have the drop land in the eye, and avoid touching the applicator tip of the medication bottle to the eye or face while self-administering eye drops. Methods Glaucoma patients (n = 279) were recruited from six ophthalmology clinics. Medical visits were videotape-recorded. Afterwards, patients were interviewed and demonstrated administering an eye drop on a videotaped-recording. Generalized estimating equations were used to analyse the data. Key findings Ophthalmologists provided eye drop administration instruction to 40 patients. Patients with more years of education were significantly more likely to both instil a single drop (P = 0.017) and have the drop land in their eye (P = 0.017). Women were significantly more likely to touch the applicator tip to their eyes or face (P = 0.014). Patients with severe glaucoma (P = 0.016), women (P = 0.026), and patients who asked at least one eye drop administration question (P = 0.001) were significantly less likely to instil a single drop. Patients with arthritis were significantly less likely to have the drop land in their eye (P = 0.008). African American patients were significantly less likely to touch the applicator tip to their eyes or face (P = 0.008). Conclusions Some glaucoma patients have a difficult time self-administering eye drops. As so few patients received eye drop administration instruction from their providers, there is an opportunity for pharmacists to complement care. PMID:26303667
Sayner, Robyn; Carpenter, Delesha M; Robin, Alan L; Blalock, Susan J; Muir, Kelly W; Vitko, Michelle; Hartnett, Mary Elizabeth; Lawrence, Scott D; Giangiacomo, Annette L; Tudor, Gail; Goldsmith, Jason A; Sleath, Betsy
2016-04-01
The objective of this study was to examine the extent to which patient characteristics, eye drop technique self-efficacy, and ophthalmologist-patient communication about eye drop administration are associated with glaucoma patients' ability to instil a single drop, have the drop land in the eye, and avoid touching the applicator tip of the medication bottle to the eye or face while self-administering eye drops. Glaucoma patients (n = 279) were recruited from six ophthalmology clinics. Medical visits were videotape-recorded. Afterwards, patients were interviewed and demonstrated administering an eye drop on a videotaped-recording. Generalized estimating equations were used to analyse the data. Ophthalmologists provided eye drop administration instruction to 40 patients. Patients with more years of education were significantly more likely to both instil a single drop (P = 0.017) and have the drop land in their eye (P = 0.017). Women were significantly more likely to touch the applicator tip to their eyes or face (P = 0.014). Patients with severe glaucoma (P = 0.016), women (P = 0.026), and patients who asked at least one eye drop administration question (P = 0.001) were significantly less likely to instil a single drop. Patients with arthritis were significantly less likely to have the drop land in their eye (P = 0.008). African American patients were significantly less likely to touch the applicator tip to their eyes or face (P = 0.008). Some glaucoma patients have a difficult time self-administering eye drops. As so few patients received eye drop administration instruction from their providers, there is an opportunity for pharmacists to complement care. © 2015 Royal Pharmaceutical Society.
Latif, Rabia; Abbas, Haider; Latif, Seemab; Masood, Ashraf
2016-07-01
Security and privacy are the first and foremost concerns that should be given special attention when dealing with Wireless Body Area Networks (WBANs). As WBAN sensors operate in an unattended environment and carry critical patient health information, Distributed Denial of Service (DDoS) attack is one of the major attacks in WBAN environment that not only exhausts the available resources but also influence the reliability of information being transmitted. This research work is an extension of our previous work in which a machine learning based attack detection algorithm is proposed to detect DDoS attack in WBAN environment. However, in order to avoid complexity, no consideration was given to the traceback mechanism. During traceback, the challenge lies in reconstructing the attack path leading to identify the attack source. Among existing traceback techniques, Probabilistic Packet Marking (PPM) approach is the most commonly used technique in conventional IP- based networks. However, since marking probability assignment has significant effect on both the convergence time and performance of a scheme, it is not directly applicable in WBAN environment due to high convergence time and overhead on intermediate nodes. Therefore, in this paper we have proposed a new scheme called Efficient Traceback Technique (ETT) based on Dynamic Probability Packet Marking (DPPM) approach and uses MAC header in place of IP header. Instead of using fixed marking probability, the proposed scheme uses variable marking probability based on the number of hops travelled by a packet to reach the target node. Finally, path reconstruction algorithms are proposed to traceback an attacker. Evaluation and simulation results indicate that the proposed solution outperforms fixed PPM in terms of convergence time and computational overhead on nodes.
Estimation of network path segment delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Kathleen Marie
A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less
Interface Supports Lightweight Subsystem Routing for Flight Applications
NASA Technical Reports Server (NTRS)
Lux, James P.; Block, Gary L.; Ahmad, Mohammad; Whitaker, William D.; Dillon, James W.
2010-01-01
A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.
106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11
2017-07-01
11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... approved. ANDA applicants do not have to repeat the extensive clinical testing otherwise necessary to gain... mEq/packet and 20 mEq/packet, is the subject of NDA 19-647, held by Nova-K LLC, and initially...
Packet loss mitigation for biomedical signals in healthcare telemetry.
Garudadri, Harinath; Baheti, Pawan K
2009-01-01
In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.
Payload Instrument Design Rules for Safe and Efficient Flight Operations
NASA Astrophysics Data System (ADS)
Montagnon, E.; Ferri, P.
2004-04-01
Payload operations are often being neglected in favour of optimisation of scientific performance of the instrument design. This has major drawbacks in terms of cost, safety, efficiency of operations and finally science return. By taking operational aspects into account in the early phases of the instrument design, with a minimum more cultural than financial or technological additional effort, many problems can be avoided or minimized, with significant benefits to be gained in the mission execution phases. This paper presents possible improvements based on the use of the telemetry and telecommand packet standard, proper sharing of autonomy functions between instrument and platform, and enhanced interface documents.
Droppings From Captive Coturnix coturnix (Galliformes: Phasianidae) as a Fly Breeding Resource
Horenstein, M. Battán; Lynch-Ianniello, I.; de Dio, B.; Gleiser, R. M.
2014-01-01
Abstract The aim of this study was to describe the fauna of flies associated with captive Coturnix coturnix (L.) (Galliformes: Phasianidae) droppings. Samples of 150 g of quail droppings were exposed in the quail house for 48 h in plastic containers to promote eventual access of flies, and then placed in emergence traps. The number of adults and species emerging was recorded daily. This procedure was carried out in spring 2008 and spring and autumn 2009. In total, 2,138 adults belonging to Muscidae, Calliphoridae, Piophilidae, Phoridae, Fanniidae, and Milichiidae families were collected. The most numerous family was Muscidae (representing >82% of the total specimens), with Musca domestica L. being the most abundant species followed by Ophyra aenescens (Wiedemann) (both Diptera: Muscidae). Quail breeding should include adequate droppings management policies to avoid potential sanitary issues related to fly production. PMID:25347840
Dolphin "packet" use during long-range echolocation tasks.
Finneran, James J
2013-03-01
When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge
2014-11-01
Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip
2013-01-29
A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.
Deep Packet/Flow Analysis using GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Qian; Wu, Wenji; DeMar, Phil
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less
Trade Related Reading Packets for Disabled Readers.
ERIC Educational Resources Information Center
Davis, Beverly; Woodruff, Nancy S.
Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…
Studying the field induced breakup of acoustically levitated drops
NASA Astrophysics Data System (ADS)
Warschat, C.; Riedel, J.
2017-10-01
Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of drops of different charge, material, and size.
Standard services for the capture, processing, and distribution of packetized telemetry data
NASA Technical Reports Server (NTRS)
Stallings, William H.
1989-01-01
Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
Retrieval of charge mobility from apparent charge packet movements in LDPE thin films
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2017-03-01
The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.
Jasemian, Yousef; Arendt-Nielsen, Lars
2005-01-01
A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.
Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.
Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Experimental evaluation of the impact of packet capturing tools for web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee
Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
Abdominal Pain (Stomach Pain), Long-Term
... or WHEAT INTOLERANCE (CELIAC DISEASE). Self CareAvoid the foods and beverages that cause your symptoms. People who have lactose intolerance can use lactose enzyme tablets or drops to help them digest foods that contain lactose. Start OverDiagnosisYour pancreas may not ...
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
Second-hand smoke: how damaging is it to health?
Percival, Jennifer; Queally, Bridget
In the 20th century, over half the English population smoked, but this figure has now dropped to a quarter (Office for National Statistics, 2003). A combination of scientific evidence, health education campaigns and larger warnings on cigarette packets has contributed to achieving this change. Public opinion has also shifted dramatically, and most people now accept that being a smoker is damaging to health. In 1992, the World Health Organization International Agency for Research and Cancer classified second-hand smoke as being 'carcinogenic' to humans (WHO International Agency for Research on Cancer, 2002). Following this report, New York became one of the first cities in the world to introduce a comprehensive ban on smoking in public places to protect employees. In the UK, however, many employees, including nurses, are still routinely exposed to tobacco smoke in the workplace.
Connected cruise control: modelling, delay effects, and nonlinear behaviour
NASA Astrophysics Data System (ADS)
Orosz, Gábor
2016-08-01
Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.
APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study
NASA Astrophysics Data System (ADS)
Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak
2017-04-01
In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.
NASA Astrophysics Data System (ADS)
Khor, Jian Wei; Hua, Yu; Bick, Alison; Tang, Sindy
2017-11-01
In this study, we investigate the effect of an obstacle on the breakup probability of droplets within a concentrated emulsion flowing into a constriction. We introduce a concentrated emulsion as a 2D monolayer through a tapered channel into a narrow constriction. This geometry is commonly used for the serial interrogation of droplet content in droplet microfluidics applications. We found that certain drop-drop interactions near the constriction entrance lead to the breakup of these drops at a high flow rates. Such breakup sets the upper limit for the droplet interrogation throughput. Incidentally, previous findings have shown that strategic placement of a circular post near a narrow exit can reduce the conflict from the interactions among living organisms (humans, ants, and sheep) or a cluster of particles when entering a narrow exit. Inspired by these results, we modify the tapered channel by placing a circular post in a strategic location near the constriction entrance in order to reduce catastrophic drop-drop interactions and to avoid breakup. Preliminary work shows that the circular posts can reduce the breakup fraction of drops by up to 17%. The optimization of the location and size of the obstacle is expected to further reduce the breakup fraction.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor
2016-02-24
In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption.
Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor
2016-01-01
In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption. PMID:26927104
Dadian, M J
1997-06-01
Condom social marketing (CSM) programs have been successful in Rwanda and Haiti because they make it possible to sell condoms at prices even low-income people can afford. In Haiti, a packet of 3 Pante condoms costs US$0.06, about the same amount as a packet of 4 Prudence condoms in Rwanda. Less expensive condoms translate into higher condom sales, greater condom use, and a lower degree of HIV transmission. Fewer infections mean funding for AIDS prevention and care can be diverted to other health needs, fewer workers become sick and drop out of the economy, and fewer orphaned children become wards of the state. A major factor which allows such low prices in Haiti and Rwanda is the absence of taxes and tariffs on imported condoms, which comprise the bulk of socially marketed condoms. Botswana, Tanzania, and Bangladesh also do not collect duties on foreign condoms. Some countries, however, impose considerable taxes upon imported condoms. Malaysia, a major condom manufacturer and exporter, imposes a 25% tax upon imported condoms, while Brazil charges condom importers a 10% import duty and all condom marketers an 18% circulation tax. Condom prices in Brazil are among the highest in the world. Even subsidized socially marketed condoms are too expensive for many to buy consistently. Brazil's tariffs together with condom testing regulations and legal expenses impede the sale of subsidized condoms in the country. Efforts are underway to get the Brazilian government to eliminate taxes on imported condoms.
Strong Ground Motion Generation during the 2011 Tohoku-Oki Earthquake
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.
2011-12-01
Strong ground motions during the 2011 Tohoku-Oki earthquake (Mw9.0) were densely observed by the strong motion observation networks all over Japan. Seeing the acceleration and velocity waveforms observed at strong stations in northeast Japan along the source region, those ground motions are characterized by plural wave packets with duration of about twenty seconds. Particularly, two wave packets separated by about fifty seconds could be found on the records in the northern part of the damaged area, whereas only one significant wave packets could be recognized on the records in the southern part of the damaged area. The record section shows four isolated wave packets propagating from different locations to north and south, and it gives us a hint of the strong motion generation process on the source fault which is related to the heterogeneous rupture process in the scale of tens of kilometers. In order to solve it, we assume that each isolated wave packet is contributed by the corresponding strong motion generation area (SMGA). It is a source patch whose slip velocity is larger than off the area (Miyake et al., 2003). That is, the source model of the 2011 Tohoku-Oki earthquake consists of four SMGAs. The SMGA source model has succeeded in reproducing broadband strong ground motions for past subduction-zone events (e.g., Suzuki and Iwata, 2007). The target frequency range is set to be 0.1-10 Hz in this study as this range is significantly related to seismic damage generation to general man-made structures. First, we identified the rupture starting points of each SMGA by picking up the onset of individual packets. The source fault plane is set following the GCMT solution. The first two SMGAs were located approximately 70 km and 30 km west of the hypocenter. The third and forth SMGAs were located approximately 160 km and 230 km southwest of the hypocenter. Then, the model parameters (size, rise time, stress drop, rupture velocity, rupture propagation pattern) of these four SMGAs were determined by waveform modeling using the empirical Green's function method (Irikura, 1986). The first and second SMGAs are located close to each other, and they are partially overlapped though the difference in the rupture time between them is more than 40 s. Those two SMGA appear to be included in the source region of the past repeating Miyagi-Oki subduction-zone event in 1936. The third and fourth SMGAs appear to be located in the source region of the past Fukushima-Oki events in 1938. Each of Those regions has been expected to cause next major earthquakes in the long-term evaluation. The obtained source model explains the acceleration, velocity, and displacement time histories in the target frequency range at most stations well. All of four SMGAs exist apparently outside of the large slip area along the trench east of the hypocenter, which was estimated by the seismic, geodetic, and tsunami inversion analyses, and this large slip zone near the trench does not contribute to strong motion much. At this point, we can conclude that the 2011 Tohoku-Oki earthquake has a possibility to be a complex event rupturing multiple preexisting asperities in terms of strong ground motion generation. It should be helpful to validate and improve the applicability of the strong motion prediction recipe for great subduction-zone earthquakes.
Children's Literature with a Science Emphasis: Twenty Teacher-Developed K-8 Activity Packets.
ERIC Educational Resources Information Center
Butler, Malcolm B.
This document features 10 science activity packets developed for elementary students by science teachers in a graduate seminar. The activity packets were designed to cover existing commercial children's books on specific content areas. The 10 activity packets are: (1) "Bringing the Rain to Kapiti Plain," which explains the water cycle;…
[KIND Worksheet Packet: Wild Animals (Junior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
[KIND Worksheet Packet: Wild Animals (Senior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…
Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…
106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink
2017-07-31
Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16...packet is defined as a free -running 12-bit counter. The PT test counter packet shall consist of one 12-bit word and shall be encoded as one 24-bit
The Effect of Background Traffic Packet Size to VoIP Speech Quality
NASA Astrophysics Data System (ADS)
Triyason, Tuul; Kanthamanon, Prasert; Warasup, Kittipong; Yamsaengsung, Siam; Supattatham, Montri
VoIP is gaining acceptance into the corporate world especially, in small and medium sized business that want to save cost for gaining advantage over their competitors. The good voice quality is one of challenging task in deployment plan because VoIP voice quality was affected by packet loss and jitter delay. In this paper, we study the effect of background traffic packet size to voice quality. The background traffic was generated by Bricks software and the speech quality was assessed by MOS. The obtained result shows an interesting relationship between the voice quality and the number of TCP packets and their size. With the same amount of data smaller packets affect the voice's quality more than the larger packet.
NASA Astrophysics Data System (ADS)
Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif
2017-01-01
The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.
Experience with the EURECA Packet Telemetry and Packet Telecommand system
NASA Technical Reports Server (NTRS)
Sorensen, Erik Mose; Ferri, Paolo
1994-01-01
The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is seventh in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet, one explaining the differences between periodic and merit pay increases and between flat amount and…
A Practical Terrestrial Packet Radio Network.
1983-11-01
12 Howard Frank, Israel Gitman and Richard Van Slyke , "Packet Radio System--Network Considerations," AFIPS Conference Proceedings, Anaheim, 1975...p, 1396. 33 Howard Frank, Israel Gitman and Richard Van Slyke, "Packet Radio System--Network Considerations," AFIPS...44, 1975 NCC, Anaheim, pp. 233-242. J 149 I : Frank, Howard, Israel Gitman and Richard Van Slyke, "Packet Radio System — Network
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is fifth in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet: the first describing the various ways of being paid: salary (including overtime and compensatory time),…
Precise Interval Timer for Software Defined Radio
NASA Technical Reports Server (NTRS)
Pozhidaev, Aleksey (Inventor)
2014-01-01
A precise digital fractional interval timer for software defined radios which vary their waveform on a packet-by-packet basis. The timer allows for variable length in the preamble of the RF packet and allows to adjust boundaries of the TDMA (Time Division Multiple Access) Slots of the receiver of an SDR based on the reception of the RF packet of interest.
NASA Astrophysics Data System (ADS)
Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas
2017-09-01
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.
Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-09-30
Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.
NASA Astrophysics Data System (ADS)
Halubok, M.; Gu, L.; Yang, Z. L.
2017-12-01
A model of light transport in a three-dimensional vegetation canopy is being designed and evaluated. The model employs Monte Carlo ray tracing technique which offers simple yet rigorous approach of quantifying the photon transport in a plant canopy. This method involves simulation of a chain of scattering and absorption events incurred by a photon on its path from the light source. Implementation of weighting mechanism helps avoid `all-or-nothing' type of interaction between a photon packet and a canopy element, i.e. at each interaction a photon packet is split into three parts, namely, reflected, transmitted and absorbed, instead of assuming complete absorption, reflection or transmission. Canopy scenes in the model are represented by a number of polygons with specified set of reflectances and transmittances. The performance of the model is being evaluated through comparison against established plant canopy reflectance models, such as 3D Radiosity-Graphics combined model which calculates bidirectional reflectance distribution function of a 3D canopy scene. This photon transport model is to be coupled to a leaf level solar-induced chlorophyll fluorescence (SIF) model with the aim of further advancing of accuracy of the modeled SIF, which, in its turn, has a potential of improving our predictive capability of terrestrial carbon uptake.
Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak
2013-06-27
The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.
Models for IP/MPLS routing performance: convergence, fast reroute, and QoS impact
NASA Astrophysics Data System (ADS)
Choudhury, Gagan L.
2004-09-01
We show how to model the black-holing and looping of traffic during an Interior Gateway Protocol (IGP) convergence event at an IP network and how to significantly improve both the convergence time and packet loss duration through IGP parameter tuning and algorithmic improvement. We also explore some congestion avoidance and congestion control algorithms that can significantly improve stability of networks in the face of occasional massive control message storms. Specifically we show the positive impacts of prioritizing Hello and Acknowledgement packets and slowing down LSA generation and retransmission generation on detecting congestion in the network. For some types of video, voice signaling and circuit emulation applications it is necessary to reduce traffic loss durations following a convergence event to below 100 ms and we explore that using Fast Reroute algorithms based on Multiprotocol Label Switching Traffic Engineering (MPLS-TE) that effectively bypasses IGP convergence. We explore the scalability of primary and backup MPLS-TE tunnels where MPLS-TE domain is in the backbone-only or edge-to-edge. We also show how much extra backbone resource is needed to support Fast Reroute and how can that be reduced by taking advantage of Constrained Shortest Path (CSPF) routing of MPLS-TE and by reserving less than 100% of primary tunnel bandwidth during Fast Reroute.
Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks.
Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin
2016-06-03
This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method.
Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks
Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin
2016-01-01
This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method. PMID:27271626
Lopez, Esteban Alejandro; Costa, Orozimbo Alves; Ferrari, Deborah Viviane
2016-10-01
The purpose of this research note is to describe the development and technical validation of the Mobile Based Assistive Listening System (MoBALS), a free-of-charge smartphone-based remote microphone application. MoBALS Version 1.0 was developed for Android (Version 2.1 or higher) and was coded with Java using Eclipse Indigo with the Android Software Development Kit. A Wi-Fi router with background traffic and 2 affordable smartphones were used for debugging and technical validation comprising, among other things, multicasting capability, data packet loss, and battery consumption. MoBALS requires at least 2 smartphones connected to the same Wi-Fi router for signal transmission and reception. Subscriber identity module cards or Internet connections are not needed. MoBALS can be used alone or connected to a hearing aid or cochlear implant via direct audio input. Maximum data packet loss was 99.28%, and minimum battery life was 5 hr. Other relevant design specifications and their implementation are described. MoBALS performed as a remote microphone with enhanced accessibility features and avoids overhead expenses by using already-available and affordable technology. The further development and technical revalidation of MoBALS will be followed by clinical evaluation with persons with hearing impairment.
NASA Astrophysics Data System (ADS)
Moayedi, Maryam; Foo, Yung Kuan; Chai Soh, Yeng
2011-03-01
The minimum-variance filtering problem in networked control systems, where both random measurement transmission delays and packet dropouts may occur, is investigated in this article. Instead of following the many existing results that solve the problem by using probabilistic approaches based on the probabilities of the uncertainties occurring between the sensor and the filter, we propose a non-probabilistic approach by time-stamping the measurement packets. Both single-measurement and multiple measurement packets are studied. We also consider the case of burst arrivals, where more than one packet may arrive between the receiver's previous and current sampling times; the scenario where the control input is non-zero and subject to delays and packet dropouts is examined as well. It is shown that, in such a situation, the optimal state estimate would generally be dependent on the possible control input. Simulations are presented to demonstrate the performance of the various proposed filters.
Packet utilisation definitions for the ESA XMM mission
NASA Technical Reports Server (NTRS)
Nye, H. R.
1994-01-01
XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.
Compound Capillary Flows in Complex Containers: Drop Tower Test Results
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.
2010-10-01
Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Analysis of the packet formation process in packet-switched networks
NASA Astrophysics Data System (ADS)
Meditch, J. S.
Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.
Detecting illegal intra-corporeal cocaine containers: Which factors influence their density?
Platon, Alexandra; Herrera, Bruno; Becker, Minerva; Perneger, Thomas; Getaz, Laurent; Wolff, Hans; Lock, Eric; Rutschmann, Olivier; Poletti, Pierre-Alexandre
2018-05-30
To determine parameters related to hyperdensity (>40 HU) of intra-corporeal cocaine packets on low-dose CT (LDCT); hyperdensity increases detectability on abdominal radiographs. LDCT showing drug packets (n = 46) were analyzed for mean radiological density and packets volume. Following expulsion, packets weight and cocaine concentration were measured. Hypercompaction was defined as >0.9 g/cm 3 . Packets were hyperdense in 33 cases (72%). Mean compaction was 1.0 g/cm 3 , mean density 118.5 HU and mean cocaine concentration 44.2%. On multivariate analysis, only high compaction remained significantly related to hyperdensity (p = 0.001). Compaction >0.9 g/cm 3 is the only parameter significantly associated with hyperdense packets. Copyright © 2018 Elsevier Inc. All rights reserved.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
MPH-M, AODV-M and DSR-M Performance Evaluation under Jamming Attacks.
Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Monroy, Raul; Nolazco-Flores, Juan A
2017-07-05
In this work, we present the design of a mitigation scheme for jamming attacks integrated to the routing protocols MPH, AODV, and DSR. The resulting protocols are named MPH-M (Multi-Parent Hierarchical - Modified), AODV-M (Ad hoc On Demand Distance Vector - Modified), and DSR-M (Dynamic Source Routing - Modified). For the mitigation algorithm, if the detection algorithm running locally in each node produces a positive result then the node is isolated; second, the routing protocol adapts their paths avoiding the isolated nodes. We evaluated how jamming attacks affect different metrics for all these modified protocols. The metrics we employ to detect jamming attack are number of packet retransmissions, number of CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) retries while waiting for an idle channel and the energy wasted by the node. The metrics to evaluate the performance of the modified routing protocols are the throughput and resilience of the system and the energy used by the nodes. We evaluated all the modified protocols when the attacker position was set near, middle and far of the collector node. The results of our evaluation show that performance for MPH-M is much better than AODV-M and DSR-M. For example, the node energy for MPH-M is 138.13% better than AODV-M and 126.07% better than DSR-M. Moreover, we also find that MPH-M benefits much more of the mitigation scheme than AODV-M and DSR-M. For example, the node energy consumption is 34.61% lower for MPH-M and only 3.92% and 3.42% for AODV-M and DSR-M, respectively. On throughput, the MPH protocol presents a packet reception efficiency at the collector node of 16.4% on to AODV and DSR when there is no mitigation mechanism. Moreover, MPH-M has an efficiency greater than 7.7% with respect to AODV-M and DSR-M when there is a mitigation scheme. In addition, we have that with the mitigation mechanism AODV-M and DSR-M do not present noticeable modification. However, MPH-M improves its efficiency by 8.4%. We also measure the resilience of these algorithms from the average packet re-transmissions perspective, and we find that MPH-M has around a 15% lower change rate than AODV-M and DSR-M. The MPH-M recovery time is 5 s faster than AODV-M and 2 s faster than DSR-M.
MPH-M, AODV-M and DSR-M Performance Evaluation under Jamming Attacks
Del-Valle-Soto, Carolina
2017-01-01
In this work, we present the design of a mitigation scheme for jamming attacks integrated to the routing protocols MPH, AODV, and DSR. The resulting protocols are named MPH-M (Multi-Parent Hierarchical - Modified), AODV-M (Ad hoc On Demand Distance Vector - Modified), and DSR-M (Dynamic Source Routing - Modified). For the mitigation algorithm, if the detection algorithm running locally in each node produces a positive result then the node is isolated; second, the routing protocol adapts their paths avoiding the isolated nodes. We evaluated how jamming attacks affect different metrics for all these modified protocols. The metrics we employ to detect jamming attack are number of packet retransmissions, number of CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) retries while waiting for an idle channel and the energy wasted by the node. The metrics to evaluate the performance of the modified routing protocols are the throughput and resilience of the system and the energy used by the nodes. We evaluated all the modified protocols when the attacker position was set near, middle and far of the collector node. The results of our evaluation show that performance for MPH-M is much better than AODV-M and DSR-M. For example, the node energy for MPH-M is 138.13% better than AODV-M and 126.07% better than DSR-M. Moreover, we also find that MPH-M benefits much more of the mitigation scheme than AODV-M and DSR-M. For example, the node energy consumption is 34.61% lower for MPH-M and only 3.92% and 3.42% for AODV-M and DSR-M, respectively. On throughput, the MPH protocol presents a packet reception efficiency at the collector node of 16.4% on to AODV and DSR when there is no mitigation mechanism. Moreover, MPH-M has an efficiency greater than 7.7% with respect to AODV-M and DSR-M when there is a mitigation scheme. In addition, we have that with the mitigation mechanism AODV-M and DSR-M do not present noticeable modification. However, MPH-M improves its efficiency by 8.4%. We also measure the resilience of these algorithms from the average packet re-transmissions perspective, and we find that MPH-M has around a 15% lower change rate than AODV-M and DSR-M. The MPH-M recovery time is 5 s faster than AODV-M and 2 s faster than DSR-M. PMID:28678180
Combined guaranteed throughput and best effort network-on-chip
Chen, Gregory K.; Anders, Mark A.; Kaul, Himanshu; Krishnamurthy, Ram K.; Stillmaker, Aaron T.
2018-05-22
A first packet-switched reservation request is received. Data associated with the first packet-switched reservation request is communicated through a first circuit-switched channel according to a best effort communication scheme. A second packet-switched reservation request is received. Data associated with the second packet-switched reservation request is communicated through a second circuit-switched channel according to a guaranteed throughput communication scheme.
Williams, Jessica R; Caceda-Castro, Lizbeth E; Dusablon, Tracy; Stipa, Melissa
2016-06-01
Printed educational materials (PEMs) are one of the most common dissemination strategies for communicating information about evidence-based practices (EBPs) to healthcare professionals and organizations; however, evidence is conflicting regarding the conditions and circumstances in which PEMs are effective in achieving desired outcomes. The effectiveness of PEMs is largely dependent on the manner in which they are developed. This article reports on the findings from a comprehensive review of the literature regarding best practices for creating PEMs for health professionals and illustrates how these practices were used to design, develop, and evaluate an informational packet to disseminate information about motivational interviewing. The informational packet was disseminated to 92 community health organizations not currently implementing motivational interviewing. Evaluation surveys were completed by 212 healthcare directors and providers to examine quality and perceived helpfulness of the packets, intention to use information from the packet, and sharing of the packet with others. Associations between these and individual and organizational characteristics were also assessed. Overall, the packet was perceived as appropriate and helpful in making a decision to implement motivational interviewing. For example, 84.9% of participants stated that the content was 'about right'. Three-quarters (75.9%) of participants reported plans to use the information in the packet and almost half (46.7%) reported talking about the packet with others in the organizations. Higher levels of baseline interest in motivational interviewing adoption were significantly related to packet use and wanting to utilize additional resources presented in the packet. Positive attitudes toward EBPs were also significantly related to the desire to obtain resources in the packet. Perceptions of the packet did not differ by type of community health organization (i.e., community health center, community behavioral health organization) or whether the individual was a director or provider. Results indicated that PEMs can be a useful tool to disseminate EBP information to healthcare professionals particularly if they have a prior interest in the EBP and have general attitudes supportive of EBPs. Recommendations for the improvement of future PEMs are discussed.
Environment Resource Packets Get Wide Use
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Announces the availability of the resource packet entitled "Noise Pollution," the third in the series prepared by the University of Maryland, and the main topics which will be covered in the remaining three packets. (CC)
PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang
2016-11-01
In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Kent, Alexander Dale [Los Alamos, NM
2008-09-02
Methods and systems in a data/computer network for authenticating identifying data transmitted from a client to a server through use of a gateway interface system which are communicately coupled to each other are disclosed. An authentication packet transmitted from a client to a server of the data network is intercepted by the interface, wherein the authentication packet is encrypted with a one-time password for transmission from the client to the server. The one-time password associated with the authentication packet can be verified utilizing a one-time password token system. The authentication packet can then be modified for acceptance by the server, wherein the response packet generated by the server is thereafter intercepted, verified and modified for transmission back to the client in a similar but reverse process.
Spatial control of recollision wave packets with attosecond precision.
Kitzler, Markus; Lezius, Matthias
2005-12-16
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2008-08-01
vision for multiple concurrent communication settings, i.e., a many-to-many framework where multi-packet transmissions (MPTs) and multi-packet...modelling framework of capacity-delay tradeoffs We have introduced the first unified modeling framework for the computation of fundamental limits o We...dalities in wireless n twor i-packet modelling framework to account for the use of m lti-packet reception (MPR) f ad hoc networks with MPT under
The impact of neighboring infection on the computer virus spread in packets on scale-free networks
NASA Astrophysics Data System (ADS)
Lazfi, S.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.
2017-12-01
In this paper, we introduce the effect of neighbors on the infection of packets by computer virus in the SI and SIR models using the minimal traffic routing protocol. We have applied this model to the Barabasi-Albert network to determine how intrasite and extrasite infection rates affect virus propagation through the traffic flow of information packets in both the free-flow and the congested phases. The numerical results show that when we change the intrasite infection rate λ1 while keeping constant the extrasite infection rate λ2, we get normal behavior in the congested phase: in the network, the proportion of infected packets increases to reach a peak and then decreases resulting in a simultaneous increase of the recovered packets. In contrast, when the intrasite infection rate λ1 is kept fixed, an increase of the extrasite infection rate results in two regimes: The first one is characterized by an increase of the proportion of infected packets until reaching some peak value and then decreases smoothly. The second regime is characterized by an increase of infected packets to some stationary value.
TCP Packet Trace Analysis. M.S. Thesis
NASA Technical Reports Server (NTRS)
Shepard, Timothy J.
1991-01-01
Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.
Cigarette tax avoidance and evasion.
Stehr, Mark
2005-03-01
Variation in state cigarette taxes provides incentives for tax avoidance through smuggling, legal border crossing to low tax jurisdictions, or Internet purchasing. When taxes rise, tax paid sales of cigarettes will decline both because consumption will decrease and because tax avoidance will increase. The key innovation of this paper is to compare cigarette sales data to cigarette consumption data from the Behavioral Risk Factor Surveillance System (BRFSS). I show that after subtracting percent changes in consumption, residual percent changes in sales are associated with state cigarette tax changes implying the existence of tax avoidance. I estimate that the tax avoidance response to tax changes is at least twice the consumption response and that tax avoidance accounted for up to 9.6% of sales between 1985 and 2001. Because of the increase in tax avoidance, tax paid sales data understate the level of smoking and overstate the drop in smoking. I also find that the level of legal border crossing was very low relative to other forms of tax avoidance. If states have strong preferences for smoking control, they must pair high cigarette taxes with effective policies to curb smuggling and other forms of tax avoidance or employ alternative policies such as counter-advertising and smoking restrictions.
A simulation-based study of HighSpeed TCP and its deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Evandro de
2003-05-01
The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions includingmore » different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.« less
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-01-01
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. PMID:27007373
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility.
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-03-19
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.
Jasemian, Yousef; Nielsen, Lars Arendt
2005-01-01
This paper introduces the design and implementation of a generic wireless and Real-time Multi-purpose Health Care Telemedicine system applying Bluetooth protocol, Global System for Mobile Communications (GSM) and General Packet Radio Service (GPRS). The paper explores the factors that should be considered when evaluating different technologies for application in telemedicine system. The design and implementation of an embedded wireless communication platform utilising Bluetooth protocol is described, and the implementation problems and limitations are investigated. The system is tested and its telecommunication general aspects are verified. The results showed that the system has (97.9 +/- 1.3)% Up-time, 2.5 x 10(-5) Bit Error Rate, 1% Dropped Call Rate, 97.4% Call Success Rate, 5 second transmission delay in average, (3.42 +/- 0.11) kbps throughput, and the system may have application in electrocardiography.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying
2015-05-28
Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.
Theory for low-frequency modulated Langmuir wave packets
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1992-01-01
Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Dispatching packets on a global combining network of a parallel computer
Almasi, Gheorghe [Ardsley, NY; Archer, Charles J [Rochester, MN
2011-07-19
Methods, apparatus, and products are disclosed for dispatching packets on a global combining network of a parallel computer comprising a plurality of nodes connected for data communications using the network capable of performing collective operations and point to point operations that include: receiving, by an origin system messaging module on an origin node from an origin application messaging module on the origin node, a storage identifier and an operation identifier, the storage identifier specifying storage containing an application message for transmission to a target node, and the operation identifier specifying a message passing operation; packetizing, by the origin system messaging module, the application message into network packets for transmission to the target node, each network packet specifying the operation identifier and an operation type for the message passing operation specified by the operation identifier; and transmitting, by the origin system messaging module, the network packets to the target node.
Bell, Kirsten; Dennis, Simone; Robinson, Jude; Moore, Roland
2015-10-01
Throughout the twentieth century, packaging was a carefully cultivated element of the appeal of the cigarette. However, the tobacco industry's control over cigarette packaging has been steadily eroded through legislation that aims to rebrand the packet from a desirable to a dangerous commodity-epitomized in Australia's introduction of plain packaging in 2012. Evident in both the enactment of cigarette packaging legislation and industry efforts to overturn it is the assumption that packets do things-i.e. that they have a critical role to play in either promoting or discouraging the habit. Drawing on 175 ethnographic interviews conducted with people smoking in public spaces in Vancouver, Canada; Canberra, Australia; Liverpool, England; and San Francisco, USA, we produce a 'thick description' of smokers' engagements with cigarette packets. We illustrate that despite the very different types of cigarette packaging legislation in place in the four countries, there are marked similarities in the ways smokers engage with their packets. In particular, they are not treated as a purely visual sign; instead, a primary means through which one's own cigarette packet is apprehended is by touch rather than by sight. Smokers perceive cigarette packets largely through the operations of their hands-through their 'handiness'. Thus, our study findings problematize the assumption that how smokers engage with packets when asked to do so on a purely intellectual or aesthetic level reflects how they engage with packets as they are enfolded into their everyday lives. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.
1991-01-01
We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.
1992-01-01
A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A scheme for synchronizing clocks connected by a packet communication network
NASA Astrophysics Data System (ADS)
dos Santos, R. V.; Monteiro, L. H. A.
2012-07-01
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.
Ingestion of Laundry Detergent Packets in Children.
Shah, Lindsey Wilson
2016-08-01
Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). ©2016 American Association of Critical-Care Nurses.
Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area Network
2010-06-01
Successful number of data packets % b. PSUP = Successful number of Utility packets % c. PSB = Successful number of byte Tx. % d. PSPRT = Number of sub...g. PFU = Number of failed utilities Tx failures with time log of failure % h. PTO = Number of Time-outs 55 function [PSDP,PSUP, PSB ,PSPRT,PFP,PFSP...transmitted PSB = 0 ; % Number of Bytes transmitted PSPRT = 0; % Number of sub-packets retransmitted PFP = 0; % Number of failed packets event PFSP
Fast packet switch architectures for broadband integrated services digital networks
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.
1990-01-01
Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.
Identification of Low-Latency Obfuscated Traffic Using Multi-Attribute Analysis
2017-03-01
the distribution of common Tor packet sizes. Herrmann et al. also contend that the remaining variations in observed packet sizes are caused by OS...specific fragmentation and that Tor’s variation in packet size provides an additional level of protection as the false positive rate (FPR) using packet...three pre-filter variations , the observed FPR for non-Tor ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3
Pincavage, Amber T; Lee, Wei Wei; Venable, Laura Ruth; Prochaska, Megan; Staisiunas, Daina D; Beiting, Kimberly J; Czerweic, M K; Oyler, Julie; Vinci, Lisa M; Arora, Vineet M
2015-02-01
Few patient-centered interventions exist to improve year-end residency clinic handoffs. Our purpose was to assess the impact of a patient-centered transition packet and comic on clinic handoff outcomes. The study was conducted at an academic medicine residency clinic. Participants were patients undergoing resident clinic handoff 2011-2013 PROGRAM DESCRIPTION: Two months before the 2012 handoff, patients received a "transition packet" incorporating patient-identified solutions (i.e., a new primary care provider (PCP) welcome letter with photo, certificate of recognition, and visit preparation tool). In 2013, a comic was incorporated to stress the importance of follow-up. Patients were interviewed by phone with response rates of 32 % in 2011, 43 % in 2012 and 36 % in 2013. Most patients who were interviewed were aware of the handoff post-packet (95 %). With the comic, more patients recalled receiving the packet (44 % 2012 vs. 64 % 2013, p< 0.001) and correctly identified their new PCP (77 % 2012 vs. 98 % 2013, p< 0.001). Among patients recalling the packet, most (70 % 2012; 65 % 2013) agreed it helped them establish rapport. Both years, fewer patients missed their first new PCP visit (43 % in 2011, 31 % in 2012 and 26 % in 2013, p< 0.001). A patient-centered transition packet helped prepare patients for clinic handoffs. The comic was associated with increased packet recall and improved follow-up rates.
Techniques for Examining Drop Size Spectra in Water Sprays and Clouds
1979-04-01
surface perpendicular to the air stream was essential to avoid elliptical or comet -like impressions. 5.1.2 Oil Wetted Slides While, with this technique...55 Commonwealth Aircraft Corporation, Library 56 Hawker de Havilland Pty Ltd, Librarian, Bankstown 57 Hawker de Havilland Pty Ltd, Manager, Lidcombe 58
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
Acoustic emission detection for mass fractions of materials based on wavelet packet technology.
Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing
2015-07-01
Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi
2017-03-01
In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.
A novel EPON architecture for supporting direct communication between ONUs
NASA Astrophysics Data System (ADS)
Wang, Liqian; Chen, Xue; Wang, Zhen
2008-11-01
In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.
On-Line Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)
1999-01-01
The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.
2015-08-01
Experimental environment 5 Table 1 Hardware specifications Name Manufacture Model CPU Memory Hard Drive IP Address Bilbo Dell PowerEdge R610 Intel...10 we replayed the same hour of network traffic from the CDX 20093 that we used in our theoretical2 exploration to show the impact of our packet... replay the traffic at arbitrary speeds. Table 3 lists the speed multiplier that we used and the packet loss we observed. Table 3 Network packet loss
Crossbar Switches For Optical Data-Communication Networks
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
Glider Observations of Internal Tide Packets on the Australian Northwest Shelf
NASA Astrophysics Data System (ADS)
Book, J. W.; Steinberg, C. R.; Brinkman, R. M.; Jones, N. L.; Lowe, R.; Ivey, G. N.; Pattiaratchi, C. B.; Rice, A. E.
2016-02-01
The rapid profiling capabilities (less than 10 minutes per profile in 100 m of water excluding surfacing times) of autonomous gliders were utilized to study the structure of non-linear internal tide packets on the Australian Northwest Shelf. A total of five gliders were deployed on the shelf from 11 February - 21 April 2012 with more than 2900 glider CTD profiles collected during the final three weeks of this time period when the internal tide activity was intense. In general the internal tide packets showed high degrees of non-linearity, for example in one case a glider observed a 62 m rise of the 28° isotherm over 2.25 hours in a shelf location of 90 meters water depth. In addition to the glider measurements, moored strings of CTD sensors were used to measure the internal tide packets at fixed positions and the results show that the wave packets vary significantly with respect to their structure and arrival times from one tidal period to the next. This fact complicates interpretation of the glider data as wave packet spatial evolution is non-stationary and cannot be simply recovered from repeat glider visits to the same location. Furthermore, the packets were found to move at speeds near or greater (e.g., 0.55 m/s) than the speed that the gliders were moving. Despite these challenges, the gliders offer the only resource that can measure the spatial structure of the wave packets beyond the scope of our limited mooring positions. Therefore, we have implemented methods such as time-augmented empirical orthogonal functions to combine these glider measurements with the fixed mooring measurements in order to better understand the spatial and temporal patterns of the wave packet evolution over the slope and shelf of this region.
New hybrid frequency reuse method for packet loss minimization in LTE network.
Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H
2015-11-01
This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.
Hoenicke, Dirk
2014-12-02
Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.
Statistics of Gaussian packets on metric and decorated graphs.
Chernyshev, V L; Shafarevich, A I
2014-01-28
We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
ERIC Educational Resources Information Center
Astronomical Society of the Pacific, San Francisco, CA.
One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…
Notes from beyond the Cognitive Domain.
ERIC Educational Resources Information Center
Brand, Alice, Comp.; Graves, Dick, Comp.
This packet summarizes the ideas, concepts, suggestions, and speculations growing out of a think tank which explored the uncharted region beyond cognitive learning. The packet shows that participants were divided into groups to discuss teaching, research, bibliographic information, theoretical ideas, and professional issues. The packet contains:…
Multi-Media Instructional Packets.
ERIC Educational Resources Information Center
Brophy, John W.
This is a collection of multi-media packets for each of the following business subjects: (1) Introduction to Business; (2) Principles of Marketing; (3) Principles of Advertising; (4) Principles of Retailing/Merchandising; and (5) Principles of Salesmanship. Each packet includes information regarding: (1) most relevant textbooks; (2) Suggested…
Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method
NASA Astrophysics Data System (ADS)
Fali Oklilas, Ahmad; Tasmi
2017-04-01
Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
NASA Astrophysics Data System (ADS)
Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie
2018-05-01
In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1979-01-01
A set of standard telemetry protocols for downlink data flow facilitating the end-to-end transport of instrument data from the spacecraft to the user in real time is proposed. The direct switching of data by autonomous message 'packets' that are assembled by the source instrument on the spacecraft is discussed. The data system consists thus of a format on a message rather than word basis, and such packet telemetry would include standardized protocol headers. Standards are being developed within the NASA End-to-End Data System (NEEDS) program for the source packet and transport frame protocols. The source packet protocol contains identification of both the sequence number of the packet as it is generated by the source and the total length of the packet, while the transport frame protocol includes a sequence count defining the serial number of the frame as it is generated by the spacecraft data system, and a field specifying any 'options' selected in the format of the frame itself.
Support for non-locking parallel reception of packets belonging to a single memory reception FIFO
Chen, Dong [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Salapura, Valentina [Yorktown Heights, NY; Senger, Robert M [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugawara, Yutaka [Yorktown Heights, NY
2011-01-27
A method and apparatus for distributed parallel messaging in a parallel computing system. A plurality of DMA engine units are configured in a multiprocessor system to operate in parallel, one DMA engine unit for transferring a current packet received at a network reception queue to a memory location in a memory FIFO (rmFIFO) region of a memory. A control unit implements logic to determine whether any prior received packet destined for that rmFIFO is still in a process of being stored in the associated memory by another DMA engine unit of the plurality, and prevent the one DMA engine unit from indicating completion of storing the current received packet in the reception memory FIFO (rmFIFO) until all prior received packets destined for that rmFIFO are completely stored by the other DMA engine units. Thus, there is provided non-locking support so that multiple packets destined for a single rmFIFO are transferred and stored in parallel to predetermined locations in a memory.
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
Air-dropped sensor network for real-time high-fidelity volcano monitoring
Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.
2009-01-01
This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.
Framework based on stochastic L-Systems for modeling IP traffic with multifractal behavior
NASA Astrophysics Data System (ADS)
Salvador, Paulo S.; Nogueira, Antonio; Valadas, Rui
2003-08-01
In a previous work we have introduced a multifractal traffic model based on so-called stochastic L-Systems, which were introduced by biologist A. Lindenmayer as a method to model plant growth. L-Systems are string rewriting techniques, characterized by an alphabet, an axiom (initial string) and a set of production rules. In this paper, we propose a novel traffic model, and an associated parameter fitting procedure, which describes jointly the packet arrival and the packet size processes. The packet arrival process is modeled through a L-System, where the alphabet elements are packet arrival rates. The packet size process is modeled through a set of discrete distributions (of packet sizes), one for each arrival rate. In this way the model is able to capture correlations between arrivals and sizes. We applied the model to measured traffic data: the well-known pOct Bellcore, a trace of aggregate WAN traffic and two traces of specific applications (Kazaa and Operation Flashing Point). We assess the multifractality of these traces using Linear Multiscale Diagrams. The suitability of the traffic model is evaluated by comparing the empirical and fitted probability mass and autocovariance functions; we also compare the packet loss ratio and average packet delay obtained with the measured traces and with traces generated from the fitted model. Our results show that our L-System based traffic model can achieve very good fitting performance in terms of first and second order statistics and queuing behavior.
Telfeian, Albert E; Oyelese, Adetokunbo; Fridley, Jared; Gokaslan, Ziya L
2018-05-19
Lumbar total disc replacement (LTDR) is considered for the treatment of lumbar degenerative disc disease with the hope that by preserving motion the long-term fusion complication of adjacent segment disease can be avoided. The complications of LTDR can be divided into approach-related and long-term complications. Very little has been described about the complications and treatment for complications more than 10 years after the device has been implanted. Here we describe a tranforaminal endoscopic discectomy procedure for a patient presenting with foot drop twelve years after a L5-S1 total disc replacement. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Little, Mildred J.; Smith, Carole F.
Designed to be used in conjunction with the book "Canoeing", published by the American Red Cross in 1977, the teaching packet provides assistance in organizing and teaching a basic canoeing class. The packet lists 20 class objectives and details essential and recommended equipment and safety precautions. The packet contains a 15-day unit…
78 FR 10263 - Proposed Collection; Comment Request for ADA Accommodations Request Packet
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for ADA... the ADA Accommodations Packet. DATES: Written comments should be received on or before April 15, 2013...: ADA Accommodations Request Packet. OMB Number: 1545-2027. Abstract: Information is collected so that...
Zhu, Jianping; Tao, Zhengsu; Lv, Chunfeng
2012-01-01
Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes—OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme)—are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results. PMID:22666076
Enhanced AIS receiver design for satellite reception
NASA Astrophysics Data System (ADS)
Clazzer, Federico; Lázaro, Francisco; Plass, Simon
2016-12-01
The possibility to detect Automatic Identification System (AIS) messages from low earth orbit (LEO) satellites paves the road for a plurality of new and unexplored services. Besides worldwide tracking of vessels, maritime traffic monitoring, analysis of vessel routes employing big data, and oceans monitoring are just few of the fields, where satellite-aided AIS is beneficial. Designed for ship-to-ship communication and collision avoidance, AIS satellite reception performs poorly in regions with a high density of vessels. This calls for the development of advanced satellite AIS receivers able to improve the decoding capabilities. In this context, our contribution focuses on the introduction of a new enhanced AIS receiver design and its performance evaluation. The enhanced receiver makes use of a coherent receiver for the low signal-to-noise ratio (SNR) region, while for medium to high SNRs, a differential Viterbi receiver is used. Additional novelty of our work is in the exploitation of previously decoded packets from one vessel that is still under the LEO reception range, to improve the vessel detection probability. The assessment of the performance against a common receiver is done making the use of a simple and tight model of the medium access (MAC) layer and the multi-packet reception (MPR) matrix for physical layer (PHY) representation. Performance results show the benefits of such enhanced receiver, especially when it is bundled with successive interference cancellation (SIC).
Zhu, Jianping; Tao, Zhengsu; Lv, Chunfeng
2012-01-01
Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes-OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme)-are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results.
Self-peeling of impacting droplets
NASA Astrophysics Data System (ADS)
de Ruiter, Jolet; Soto, Dan; Varanasi, Kripa K.
2018-01-01
Whether an impacting droplet sticks or not to a solid surface has been conventionally controlled by functionalizing the target surface or by using additives in the drop. Here we report on an unexpected self-peeling phenomenon that can happen even on smooth untreated surfaces by taking advantage of the solidification of the impacting drop and the thermal properties of the substrate. We control this phenomenon by tuning the coupling of the short-timescale fluid dynamics--leading to interfacial defects upon local freezing--and the longer-timescale thermo-mechanical stresses--leading to global deformation. We establish a regime map that predicts whether a molten metal drop impacting onto a colder substrate will bounce, stick or self-peel. In many applications, avoiding adhesion of impacting droplets around designated target surfaces can be as crucial as bonding onto them to minimize waste or cleaning. These insights have broad applicability in processes ranging from thermal spraying and additive manufacturing to extreme ultraviolet lithography.
Drug interaction of levothyroxine with infant colic drops.
Balapatabendi, Mihirani; Harris, David; Shenoy, Savitha D
2011-09-01
Infacol (Forest Laboratories UK, Kent, UK) is a widely available over-the-counter preparation used to relieve colic symptoms in neonates and infants. The active ingredient is simeticone. No drug interactions with simeticone are documented in the current summary of product characteristics. The authors report the case of an infant with confirmed congenital hypothyroidism on levothyroxine who experienced a possible drug interaction with simeticone. Despite adequate levothyroxine dosage, thyroid stimulating hormone (TSH) was high, suggesting undertreatment. Questioning revealed the child was taking Infacol drops before feeds while on levothyroxine. The colic drops were immediately discontinued and TSH promptly normalised with a reduction in thyroxine requirement to an age appropriate dosage. Drug interaction of thyroxine with simeticone has not been reported previously and is not listed in the British National Formulary for Children. Clinicians and parents need to be aware of this interaction to avoid unnecessary undertreatment and prevent potential long-term neurological sequelae.
Advertising and the Economy: A Teaching Package.
ERIC Educational Resources Information Center
Proctor and Gamble Co., Cincinnati, OH.
This teaching packet is designed to enrich lessons and motivate students, and is based on real-life marketing problems. The packet includes a booklet containing background for instructors on advertising's crucial economic role and its history in the United States, eight reproducible lessons, and teaching tips for each lesson. The packet also…
Continuing Development of California State Packet Radio Project.
ERIC Educational Resources Information Center
Brownrigg, Edwin
1992-01-01
Provides background on the California State Library Packet Radio project, which will use packet radios to deploy a wireless, high-speed, wide-area network of 600 nodes, including 100 libraries, in the San Francisco Bay Area. Project goals and objectives, plan of operation, equipment, and evaluation plans are summarized. (MES)
Vocational and Industrial Arts Packets.
ERIC Educational Resources Information Center
Maine Audubon Society, Falmouth.
This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…
ERIC Educational Resources Information Center
Peace Corps, Manila (Philippines).
The materials in this packet were designed for the rapid Cebuano language training of Peace Corps volunteers, focusing on daily communication needs in this context. The packet contains: lists of common phrases, expressions, and vocabulary on a variety of topics related to Peace Corps work; a list of core competencies for specific topics…
Learn about Seabirds. Teaching Packet, Grades 4-6.
ERIC Educational Resources Information Center
Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.
This teaching packet is designed to teach Alaskan students in grades 4-6 about Alaska's seabird populations, the worldwide significance of seabirds, and the environmental conditions to which seabirds are sensitive. The packet includes a curriculum guide (containing a teacher's background story and 12 teaching activities), a separately published…
Personal Skills. Facilitator's Skill Packets 1-7. Social Skills Training.
ERIC Educational Resources Information Center
Model Classrooms, Bellevue, WA.
This document contains the following seven facilitators' skill packets on personal skills: (1) personal hygiene; (2) personal appearance; (3) locker hygiene; (4) dorm cleanliness; (5) punctuality and attendance; (6) responding to supervision; and (7) teamwork. Each packet contains the following sections: definition of personal skills; objective;…
Student Activity Packet for the California State Capitol Museum.
ERIC Educational Resources Information Center
2001
This packet contains materials to help fourth and fifth grade teachers provide their students with background information for field trips to the California State Capitol Museum (Sacramento). The working museum focuses on the theme areas of California history, the state government/legislative process, and state symbols. The packet presents teacher…
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Coherent wave packet dynamics in a double-well potential in cavity
NASA Astrophysics Data System (ADS)
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Transfer of a wave packet in double-well potential
NASA Astrophysics Data System (ADS)
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Securing internet by eliminating DDOS attacks
NASA Astrophysics Data System (ADS)
Niranchana, R.; Gayathri Devi, N.; Santhi, H.; Gayathri, P.
2017-11-01
The major threat caused to the authorised usage of Internet is Distributed Denial of Service attack. The mechanisms used to prevent the DDoS attacks are said to overcome the attack’s ability in spoofing the IP packets source addresses. By utilising Internet Protocol spoofing, the attackers cause a consequential load over the networks destination for policing attack packets. To overcome the IP Spoofing level on the Internet, We propose an Inter domain Packet Filter (IPF) architecture. The proposed scheme is not based on global routing information. The packets with reliable source addresses are not rejected, the IPF frame work works in such a manner. The spoofing capability of attackers is confined by IPF, and also the filter identifies the source of an attack packet by minimal number of candidate network.
Fast WEP-Key Recovery Attack Using Only Encrypted IP Packets
NASA Astrophysics Data System (ADS)
Teramura, Ryoichi; Asakura, Yasuo; Ohigashi, Toshihiro; Kuwakado, Hidenori; Morii, Masakatu
Conventional efficient key recovery attacks against Wired Equivalent Privacy (WEP) require specific initialization vectors or specific packets. Since it takes much time to collect the packets sufficiently, any active attack should be performed. An Intrusion Detection System (IDS), however, will be able to prevent the attack. Since the attack logs are stored at the servers, it is possible to prevent such an attack. This paper proposes an algorithm for recovering a 104-bit WEP key from any IP packets in a realistic environment. This attack needs about 36, 500 packets with a success probability 0.5, and the complexity of our attack is equivalent to about 220 computations of the RC4 key setups. Since our attack is passive, it is difficult for both WEP users and administrators to detect our attack.
NASA Astrophysics Data System (ADS)
Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi
This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
ERIC Educational Resources Information Center
Gewertz, Catherine
2005-01-01
In the shadow of a Manhattan housing project, Public School 33 is coming back to life. A new principal has brought a wave of optimism, test scores are way up, and middle-class families who used to avoid the school are enrolling their children. In Brooklyn, teenagers who might have dropped out of school are getting diplomas through a special…
[School refusal and dropping out of school: positioning regarding a Swiss perspective].
Walitza, Susanne; Melfsen, Siebke; Della Casa, André; Schneller, Lena
2013-01-01
This article deals with refusal to attend school and dropping out of school from the point of view of child and adolescent psychiatry and psychology, in German speaking countries and from the perspective of Swiss schools and their administrative bodies. General epidemiological data on refusal to attend school show that approximately 5% of children and adolescents are likely to try to avoid attending school at some point. There is very little data available on the frequency of school drop-out. In the past two years (2011 and 2012), approximately 2% of all patients seen for the first time at the department of Child and Adolescent Psychiatry, University Zurich, were referred because of failure to attend school, making this phenomenon one of the most common reasons for referral in child and adolescent psychiatry. After a discussion of the epidemiology, symptomatology, causes and its risk factors, the article presents examples drawn from practice and guidelines for intervention in cases of refusal to attend school, and discusses ways of preventing school drop-out from the point of view of schools, hospitals and bodies such as educational psychology services in Switzerland.
Personality disorders and treatment drop out in the homeless
Salavera, Carlos; Tricás, José M; Lucha, Orosia
2013-01-01
The homeless drop out of treatment relatively frequently. Also, prevalence rates of personality disorders are much higher in the homeless group than in the general population. We hypothesize that when both variables coexist — homelessness and personality disorders — the possibility of treatment drop out grows. The aim of this study was to analyze the hypotheses, that is, to study how the existence of personality disorders affects the evolution of and permanence in treatment. One sample of homeless people in a therapeutic community (N = 89) was studied. The structured clinical interview for the diagnostic and statistical manual of mental disorders (DSM-IV-TR) was administered and participants were asked to complete the Millon Clinical Multiaxial Inventory-II (MCMI-II). Cluster B personality disorders (antisocial, borderline, and narcissistic) avoided permanence in the treatment process while cluster C disorders, as dependent, favored adhesion to the treatment and improved the prognosis. Knowledge of these personality characteristics should be used to advocate for better services to support homeless people and prevent their dropping out before completing treatment. PMID:23569378
Probe Measures Fouling As In Heat Exchangers
NASA Technical Reports Server (NTRS)
Marner, Wilbur J.; Macdavid, Kenton S.
1990-01-01
Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.
Detecting and Blocking Network Attacks at Ultra High Speeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paxson, Vern
2010-11-29
Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was tomore » keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank's server farms cannot safely omit a subset of the traffic from analysis. In this environment, Shunting cannot realize its main performance benefits, and the monitoring task likely calls for using custom hardware instead. However, in many other environments we find Shunting holds promise for delivering major performance gains. This arises due to the the widely documented 'heavy tail' nature of most forms of network traffic, which we might express as 'a few of the connections carry just about all the bytes.' The key additional insight is '... and very often for these few large connections, the very beginning of the connection contains nearly all the information of interest from a security analysis perspective.' We argue that this second claim holds because it is at the beginning of connections that authentication exchanges occur, data or file names and types are specified, request and reply status codes conveyed, and encryption is negotiated. Once these occur, we have seen most of the interesting facets of the dialog. Certainly the remainder of the connection might also yield some grist for analysis, but this is generally less likely, and thus if we want to lower analysis load at as small a loss as possible of information relevant to security analysis, we might best do so by skipping the bulk of large connections. In a different context, the 'Time Machine' work by Kornexl and colleagues likewise shows that in some environments we can realize major reductions in the volume of network traffic processed, by limiting the processing to the first 10-20 KB of each connection. As a concrete example, consider an IPS that monitors SSH traffic. When a new SSH connection arrives and the Shunt fails to find an entry for it in any of its tables (per-address, per-port, per-connection), it executes the default action of diverting the connection through the IPS. The IPS analyzes the beginning of the connection in this fashion. As long as it is satisified with the dialog, it reinjects the packets forwarded to it so that the connection can continue. If the connection successfully negotiates encryption, the IPS can no longer profitably analyze it, so it downloads a per-connection table entry to the Shunt specifying that the action for the connection in the future is 'forward.' For heavy-tailed connections, this means a very large majority of the connection's packets will now pass through the Shunt device without burdening the IPS with any further analysis load. On the other hand, if the IPS is dissatisfied with some element of the initial dialog, it downloads a 'drop' entry to terminate the connection. Note that by providing for reinjection, we can promote an intrusion detection system into an intrusion prevention system, one that does not merely detect attacks but can block them before they complete. Reinjection also allows the IPS to normalize traffic to remove ambiguities that attackers can leverage to evade the IPS.« less
Artificial magnetic-field quenches in synthetic dimensions
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2018-02-01
Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Capture and playback synchronization in video conferencing
NASA Astrophysics Data System (ADS)
Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song
1995-03-01
Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.
ERIC Educational Resources Information Center
James, Sally
Four packets comprise the electricity component of an enrichment program for gifted elementary students. Provided in the introductory packet are sample pre- and posttests for the unit. Remaining packets present vocabulary lists, student worksheets on beginning circuitry, and suggestions for student projects (such as making a battery, constructing…
Environmental Microbiology Modules. Final Report.
ERIC Educational Resources Information Center
Walke, Raymond H.; Walke, Jayne G.
This publication is the result of a project to develop microbiology instructional materials for vocational college students. These materials are a series of self-paced modules. Each module includes a pre-test, an introduction and historical packet, an organizational packet to set the framework for in-depth study, one or more in-depth packets, a…
Guide to Alternative Mortgage Instruments. Teachers Instructional Packet, TIP No. 4, Spring 1985.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Texas Real Estate Research Center.
Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand the various alternative mortgage instruments, including their major advantages and disadvantages. First, an evaluation form for the packet is presented. Next, a summary presentation on four basic…
Forests and Flowers. A Spring Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on plants and…
Performance Evaluation of Multihop Packet Radio Networks by Simulation
1987-03-01
Multihop Packet Radio Networks," Proc. IEEE, Vol. 75, No. 1, January 1987. [15] 1. Gitman , "On the Capacity of Slotted ALOHA Networks and Some Design...Networks in the Presence of Noise," Proc. Infocom, Washington D. C., April 1985 [40] H. Frank, I. Gitman and R. Van Slyke, " Packet Radio System
Energy Conservation Activity Packet, Grade 3.
ERIC Educational Resources Information Center
Bakke, Ruth
This activity packet for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…
Signs of Fall. A Fall Activity Packet for Pre-School.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Nature's Hitchhikers. A Fall Activity Packet for Second Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
...- Demutualization Trading Permits, Tier Appointment and Bandwidth Packets June 25, 2010. Pursuant to Section 19(b)(1...-demutualization Trading Permits, tier appointment and bandwidth packets. The text of the proposed rule change is..., tier appointment and bandwidth packets. These post-demutualization Trading Permits, tier appointment...
Temperature, Pulse, and Respiration. Instructor's Packet. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This instructor's packet accompanies the learning activity package (LAP) on temperature, pulse, and respiration. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to…
Dance Theatre of Harlem--Theater Activity Packet.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
Intended to complement the New York City communication arts curriculum, this packet introduces young students, guided by the classroom teacher, to a dress rehearsal performance of the Dance Theatre of Harlem ballet company. The packet is one of a series in the "Early Stages" program, a joint effort of the Mayor's Office of Film, Theater…
Energy Around Us. A Fall Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…
Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…
Tropical Animal Tour Packet. Metro.
ERIC Educational Resources Information Center
Metro Washington Park Zoo, Portland, OR. Educational Services Div.
This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…
Michigan Natural History. A Spring Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…
Reading the Rocks. A Fall Activity Packet for Fifth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on various geological…
Understanding and Minimizing Staff Burnout. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…
Spring Birds. A Spring Activity Packet for First Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Animal Homes and Habitats. A Fall Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on animal populations and…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
MPNACK: an optical switching scheme enabling the buffer-less reliable transmission
NASA Astrophysics Data System (ADS)
Yu, Xiaoshan; Gu, Huaxi; Wang, Kun; Xu, Meng; Guo, Yantao
2016-01-01
Optical data center networks are becoming an increasingly promising solution to solve the bottlenecks faced by electrical networks, such as low transmission bandwidth, high wiring complexity, and unaffordable power consumption. However, the optical circuit switching (OCS) network is not flexible enough to carry the traffic burst while the optical packet switching (OPS) network cannot solve the packet contention in an efficient way. To this end, an improved switching strategy named OPS with multi-hop Negative Acknowledgement (MPNACK) is proposed. This scheme uses a feedback mechanism, rather than the buffering structure, to handle the optical packet contention. The collided packet is treated as a NACK packet and sent back to the source server. When the sender receives this NACK packet, it knows a collision happens in the transmission path and a retransmission procedure is triggered. Overall, the OPS-NACK scheme enables a reliable transmission in the buffer-less optical network. Furthermore, with this scheme, the expensive and energy-hungry elements, optical or electrical buffers, can be removed from the optical interconnects, thus a more scalable and cost-efficient network can be constructed for cloud computing data centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeibel, J. G.; Jones, R. R.
2003-08-01
Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less
Unified study of Quality of Service (QoS) in OPS/OBS networks
NASA Astrophysics Data System (ADS)
Hailu, Dawit Hadush; Lema, Gebrehiwet Gebrekrstos; Yekun, Ephrem Admasu; Kebede, Samrawit Haylu
2017-07-01
With the growth of Internet traffic, an inevitable use of optical networks provide a large bandwidth, fast data transmission rates and Quality of Service (QoS) support. Currently, Optical Burst Switched (OBS)/Optical Packet Switched (OPS) networks are under study as future solutions for addressing the increase demand of Internet traffic. However, due to their high blocking probability in the intermediate nodes they have been delayed in the industries. Packet loss in OBS/OPS networks is mainly occur due to contention. Hence, the contribution of this study is to analyze the file loss ratio (FLR), packet overhead and number of disjoint paths, and processing delay over Coded Packet Transport (CPT) scheme for OBS/OPS network using simulation. The simulations show that CPT scheme reduces the FLR in OBS/OPS network for the evaluated scenarios since the data packets are chopped off into blocks of the data packet for transmission over a network. Simulation results for secrecy and survivability are verified with the help of the analytical model to define the operational range of CPT scheme.
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection
Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.
A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network
NASA Astrophysics Data System (ADS)
Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren
2005-10-01
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.
NASA Astrophysics Data System (ADS)
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
Application of hanging drop technique for stem cell differentiation and cytotoxicity studies.
Banerjee, Meenal; Bhonde, Ramesh R
2006-05-01
The aim of our study is to explore the possibility of using an ancient method of culture technique- the hanging drop technique for stem cell differentiation and cytotoxicity testing. We demonstrate here a variety of novel applications of this age old technique not only to harness the differentiation potential of stem cells into specific lineages but also for cytotoxicity studies. Here we have prepared hanging drop cultures by placing 20 microl micro-drops of nutrient media and 10% Fetal Calf Serum (FCS) containing cells of interest on the lids of 60 mm dishes. Bottom plates of the dishes were filled with sterile Phosphate Buffer Saline (PBS) to avoid desiccation of samples. Lids were then placed on the bottom plates to achieve hanging drop cultures. We utilized this technique for cultivation of ciliated epithelia to study cytotoxicity and differentiation of bone marrow stromal cells. Most importantly the modified culture technique presented here is simple, economical and cost effective in terms of the time taken and the reagents required and are amenable to goal specific modification such as cytotoxicity testing. It is advantageous over the existing system in terms of retention of viability and functionality for longer duration and for providing three dimensional growth micro-environment making it useful for organotypic cultures and in vivo simulation.
Robustness of crossover trials against subject drop-out - Examples of perpetually connected designs.
Godolphin, P J; Godolphin, E J
2017-01-01
When performing a repeated measures experiment, such as a clinical trial, there is a risk of subject drop-out during the experiment. If one or more subjects leave the study prematurely, a situation could arise where the eventual design is disconnected, implying that very few treatment contrasts for both direct effects and carryover effects are estimable. This paper aims to identify experimental conditions where this problem with the eventual design can be avoided. It is shown that in the class of uniformly balanced repeated measurement designs consisting of two or more Latin squares, there are planned designs with the following useful property. Provided that all subjects have completed the first two periods of study, such a design will not be replaced by a disconnected eventual design due to drop-out, irrespective of the type of drop-out behaviour that may occur. Designs with this property are referred to as perpetually connected. These experimental conditions are identified and examined in the paper and an example of at least one perpetually connected uniformly balanced repeated measurement design is given in each case. The results improve upon previous contributions in the literature that have been confined largely to cases in which drop-out occurs only in the final periods of study.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
An optical disk archive for a data base management system
NASA Technical Reports Server (NTRS)
Thomas, Douglas T.
1985-01-01
An overview is given of a data base management system that can catalog and archive data at rates up to 50M bits/sec. Emphasis is on the laser disk system that is used for the archive. All key components in the system (3 Vax 11/780s, a SEL 32/2750, a high speed communication interface, and the optical disk) are interfaced to a 100M bits/sec 16-port fiber optic bus to achieve the high data rates. The basic data unit is an autonomous data packet. Each packet contains a primary and secondary header and can be up to a million bits in length. The data packets are recorded on the optical disk at the same time the packet headers are being used by the relational data base management software ORACLE to create a directory independent of the packet recording process. The user then interfaces to the VAX that contains the directory for a quick-look scan or retrieval of the packet(s). The total system functions are distributed between the VAX and the SEL. The optical disk unit records the data with an argon laser at 100M bits/sec from its buffer, which is interfaced to the fiber optic bus. The same laser is used in the read cycle by reducing the laser power. Additional information is given in the form of outlines, charts, and diagrams.
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
Two-point coherence of wave packets in turbulent jets
NASA Astrophysics Data System (ADS)
Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.
2017-02-01
An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
In the Public Interest: Law, Government, and Media. Maryland Women's History Resource Packet--1986.
ERIC Educational Resources Information Center
Maryland State Commission for Women, Baltimore.
Designed to be used for National Women's History Week (March 2-8), this 1986 Maryland women's history resource packet centers around Maryland women who have made significant volunteer and career contributions in the areas of government, law, and the public interest media. The packet begins with suggested student activity lists and activity sheets…
Environmental Fluctuations and Acoustic Data Communications
2015-09-30
July 2011 along with subsequent analysis of the experiment data. KAM11 Experiment (2011) A shallow water acoustic communications experiment...packet and packet-to-packet variability. Algorithm Design and Experiment Data Analysis Communication receiver algorithm design for shallow water is...exhibited substantial daily oceanographic variability. Analysis of the KAM11 experiment data this past year has focused on fixed source transmissions
Assessing To Address Barriers to Learning. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Schools committed to the success of all children must have an array of activities designed to address barriers to learning. This introductory packet contains some aids to help school staff find new ways of thinking about how schools should assess barriers to learning. The following items are included in the packet: (1) a chart of "Barriers to…
The Noble Path: Buddhist Art of South Asia and Tibet. Teacher's Packet.
ERIC Educational Resources Information Center
Sierra Community Coll., Rocklin, CA. Mathematics Dept.
A teaching packet was developed in association with the exhibition, "The Noble Path: Buddhist Art of South Asia and Tibet," held at the Arthur M. Sackler Gallery, Smithsonian Institution, Washington, D.C., from October 1, 1989 to March 31, 1990. The packet aims to provide students in middle and secondary schools with introductory…
The purpose of this SOP is to describe the assembly of household (HH) packets into data processing batches. The batching process enables orderly tracking of packets or forms through data processing and limits the potential for packet or form loss. This procedure was used for th...
Packet Switching Networks: An Introduction with Some Attention to Selected Vendors.
ERIC Educational Resources Information Center
Sanchez, James Joseph
The purpose of this paper is to provide an overview of the history, development, and services of the packet switching network services that currently exist in the United States. The character of packet switching, a computerized method of transmitting data, is used as the basis for tracing the development of the industry itself. Contending that the…
2017-03-03
When a neighbor receives one of these packets, it waits until the end of the transmit time and then responds with its own hello packet, containing its...and 3 respond with their own hello packet. Location Tracking Another important feature is location tracking. Due to node mobility, it is vital that
Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking
2017-03-03
of these packets, it waits until the end of the transmit time and then responds with its own hello packet, containing its own location, as well as...own hello packet. Location Tracking Another important feature is location tracking. Due to node mobility, it is vital that each node tracks the
Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…
Accounting Clerk Guide, Test Packet--Part I.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The test packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The test packet contains both pretests and post-tests for lessons 1 through 12. The unit is concerned with the basic accounting theory found in the accounting…
Learning Disabilities in the Workplace: A Professional Development Packet. Session 1 & 2.
ERIC Educational Resources Information Center
Corley, Mary Ann; Tibbetts, John
This field-tested training packet, which was designed for adult literacy providers, contains preparation materials, facilitator's notes, handout masters, and transparency masters for two 3-hour sessions on learning disabilities (LD) in the workplace. (At the end of the first session supported by the packet, participants will be able to do the…
The purpose of this SOP is to describe the assembly of household (HH) packets into data processing batches. The batching process enables orderly tracking of packets or forms through data processing and limits the potential for packet or form loss. This procedure was used for th...
Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network
Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed
2018-01-01
Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. PMID:29874237
Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.
Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed
2018-01-01
Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively.
On-board closed-loop congestion control for satellite based packet switching networks
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Ivancic, William D.; Kim, Heechul
1993-01-01
NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.
NASA Astrophysics Data System (ADS)
Biswas, Tutul; Kanti Ghosh, Tarun
2018-02-01
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for 0<α<1 the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for α=0 and α=1 . It is also unveiled that the frequency of ZB corresponding to α=1 gets exactly half of that corresponding to the α=0 case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
Biswas, Tutul; Kanti Ghosh, Tarun
2018-01-22
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T 3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Basic School Law. "What Every School Board Member Should Know" Series.
ERIC Educational Resources Information Center
Martinez, Robert P.; And Others
Designed to tell the school board member what New Jersey school law requires and permits, this second edition of "Basic School Law" avoids exploring the complex legal issues that gave rise to the regulations discussed. Dropping the first edition's chapter on labor law, this edition adds material on the sunshine laws regarding the conduct…
Propagation velocity of Alfven wave packets in a dissipative plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagishi, Y.; Nakagawa, H.; Tanaka, M.
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in themore » anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.« less
Propagation velocity of Alfvén wave packets in a dissipative plasma
NASA Astrophysics Data System (ADS)
Amagishi, Yoshimitsu; Nakagawa, Hiroyuki; Tanaka, Masayoshi
1994-09-01
We have experimentally studied the behavior of Alfvén wave packets in a dissipative plasma due to ion-neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Packet-Based Protocol Efficiency for Aeronautical and Satellite Communications
NASA Technical Reports Server (NTRS)
Carek, David A.
2005-01-01
This paper examines the relation between bit error ratios and the effective link efficiency when transporting data with a packet-based protocol. Relations are developed to quantify the impact of a protocol s packet size and header size relative to the bit error ratio of the underlying link. These relations are examined in the context of radio transmissions that exhibit variable error conditions, such as those used in satellite, aeronautical, and other wireless networks. A comparison of two packet sizing methodologies is presented. From these relations, the true ability of a link to deliver user data, or information, is determined. Relations are developed to calculate the optimal protocol packet size forgiven link error characteristics. These relations could be useful in future research for developing an adaptive protocol layer. They can also be used for sizing protocols in the design of static links, where bit error ratios have small variability.
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
An Efficient Conflict Detection Algorithm for Packet Filters
NASA Astrophysics Data System (ADS)
Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung
Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.
NASA Astrophysics Data System (ADS)
El-Shafai, W.; El-Bakary, E. M.; El-Rabaie, S.; Zahran, O.; El-Halawany, M.; Abd El-Samie, F. E.
2017-06-01
Three-Dimensional Multi-View Video (3D-MVV) transmission over wireless networks suffers from Macro-Blocks losses due to either packet dropping or fading-motivated bit errors. Thus, the robust performance of 3D-MVV transmission schemes over wireless channels becomes a recent considerable hot research issue due to the restricted resources and the presence of severe channel errors. The 3D-MVV is composed of multiple video streams shot by several cameras around a single object, simultaneously. Therefore, it is an urgent task to achieve high compression ratios to meet future bandwidth constraints. Unfortunately, the highly-compressed 3D-MVV data becomes more sensitive and vulnerable to packet losses, especially in the case of heavy channel faults. Thus, in this paper, we suggest the application of a chaotic Baker interleaving approach with equalization and convolution coding for efficient Singular Value Decomposition (SVD) watermarked 3D-MVV transmission over an Orthogonal Frequency Division Multiplexing wireless system. Rayleigh fading and Additive White Gaussian Noise are considered in the real scenario of 3D-MVV transmission. The SVD watermarked 3D-MVV frames are primarily converted to their luminance and chrominance components, which are then converted to binary data format. After that, chaotic interleaving is applied prior to the modulation process. It is used to reduce the channel effects on the transmitted bit streams and it also adds a degree of encryption to the transmitted 3D-MVV frames. To test the performance of the proposed framework; several simulation experiments on different SVD watermarked 3D-MVV frames have been executed. The experimental results show that the received SVD watermarked 3D-MVV frames still have high Peak Signal-to-Noise Ratios and watermark extraction is possible in the proposed framework.
Easements in Texas. Teachers Instructional Packet, TIP No. 5, Spring 1985.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Texas Real Estate Research Center.
Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand public and private easements, which most commonly entail the right of a person (or the public) to use the land of another in a certain manner. Following an evaluation form for the packet, a…
Graphics processing unit-assisted lossless decompression
Loughry, Thomas A.
2016-04-12
Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
Women's Studies for Teachers and Administrators: A Packet of Inservice Education Materials.
ERIC Educational Resources Information Center
Froschl, Merle, Ed.; And Others
This packet of materials is designed for elementary and secondary teachers and administrators who are engaged in inservice education and interested in the movement to eliminate sexism in schools. Two major purposes of the packet are to help a school district start an inservice course on sexism in education and to show the potential of such a…
ERIC Educational Resources Information Center
Seif, Elliott
The document presents student learning packets designed to provide an alternative social studies experience for high school students. The objective is to enable students to better understand themselves and their environment and other individuals and groups. Written at a junior high school reading level, the packets are intended to be used with low…
Opciones (Options). Spanish Correspondence. Level 1. Learning Activity Packet.
ERIC Educational Resources Information Center
Brown, James W.
The purpose of this learning activity packet is to acquaint students of Spanish as a second language with letter-writing in Spanish. Upon completion of the packet, students should be able to: (1) identify some of the major differences in mailing customs between the U.S. and Hispanic countries, (2) read and write mailing and return adresses, (3)…
The United States History (Laotian Edition). [34 Self-Learning Packets for Laotian Students.
ERIC Educational Resources Information Center
Nhi, Do Dien; And Others
Designed primarily for Indochinese students in grades 9-12, 34 United States history self-learning packets are presented in eight sections. The publication could be used by mainstream teachers who have a number of limited English proficient (LEP) Laotian students in their classes or by parents to tutor their children. The packets were adapted from…
The United States History = Lich Su Hoa Ky. [34 Self-Learning Packets for Vietnamese Students.
ERIC Educational Resources Information Center
Nhi, Do Dien; And Others
Designed primarily for Indochinese students in grades 9-12, 34 United States history self-learning packets are presented in eight sections. The publication could be used by mainstream teachers who have a number of limited English proficient (LEP) Vietnamese students in their classes or by parents to tutor their children. The packets were adapted…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei
2010-01-01
This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Identification of speech transients using variable frame rate analysis and wavelet packets.
Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung
2006-01-01
Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks
Wang, Haiyan; He, Ke
2018-01-01
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.
Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin
2018-04-23
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.
NASA Astrophysics Data System (ADS)
Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu
2018-01-01
Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.
Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy.
Gómez, María Jesús; Corral, Eduardo; Castejón, Cristina; García-Prada, Juan Carlos
2018-05-17
Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%.
Verdon, Megan; Zegarra, Natalia; Achayra, Rutu; Hemsworth, Paul H
2018-06-05
This research studied whether floor feeding group-housed sows their daily allocation over multiple feed drops per day provides more equitable feeding opportunities in later drops. Over four time replicates, 275 sows were mixed into groups of 10 for both their first and second gestations (200 sows/gestation, 126 sows observed in both gestations). The feeding behavior of individual sows was recorded for 10 min following each of four feed drops per day (0730, 0900, 1100, 1500 h) on days 2, 9 and 51 post-mixing. The location of feeding sows (i.e., feeding in areas associated with high, reduced or little/no food availability) was also recorded. Sow aggressive behavior on day 2 was used to classify sows as dominant (D), subdominant (SD), or submissive (SM). Dominant sows spent the most time feeding in areas of high-food availability (gestation 1, p < 0.001; gestation 2, p = 0.023); SD sows fed more frequently than D sows from areas of reduced food availability (gestation 1, p = 0.001; gestation 2, p = 0.025); and SM sows performed more feeding behavior in areas of little/no food availability (gestation 1, p < 0.001; gestation 2, p < 0.001). These relationships did not change over feed drops or days in either gestation ( p > 0.05). Further research on the management and design of floor feeding systems is required, with a particular emphasis on increasing accessibility to sows that avoid the feeding area.
Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
Combined Wavelet Video Coding and Error Control for Internet Streaming and Multicast
NASA Astrophysics Data System (ADS)
Chu, Tianli; Xiong, Zixiang
2003-12-01
This paper proposes an integrated approach to Internet video streaming and multicast (e.g., receiver-driven layered multicast (RLM) by McCanne) based on combined wavelet video coding and error control. We design a packetized wavelet video (PWV) coder to facilitate its integration with error control. The PWV coder produces packetized layered bitstreams that are independent among layers while being embedded within each layer. Thus, a lost packet only renders the following packets in the same layer useless. Based on the PWV coder, we search for a multilayered error-control strategy that optimally trades off source and channel coding for each layer under a given transmission rate to mitigate the effects of packet loss. While both the PWV coder and the error-control strategy are new—the former incorporates embedded wavelet video coding and packetization and the latter extends the single-layered approach for RLM by Chou et al.—the main distinction of this paper lies in the seamless integration of the two parts. Theoretical analysis shows a gain of up to 1 dB on a channel with 20% packet loss using our combined approach over separate designs of the source coder and the error-control mechanism. This is also substantiated by our simulations with a gain of up to 0.6 dB. In addition, our simulations show a gain of up to 2.2 dB over previous results reported by Chou et al.
Market turbulence creates financing opportunity.
Cooper, James H
2012-03-01
The flight to high-quality assets resulting from Standard & Poor's downgrade of the U.S. government's credit rating has dropped the yield on U.S. Treasury securities as investors have sought refuge amid uncertain market conditions. Consequently, hospitals can now obtain mortgage insurance from the U.S. government to finance expansions and refinance their debt with GNMA securities at taxable interest rates that are often more favorable than tax-exempt bond fixed rates. Because GNMA certificates can be sold in a forward purchase transaction that locks in a fixed interest rate while avoiding payment of interest until construction funds are disbursed, they can help avoid the effects of negative arbitrage.
Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications.
Pelegris, P; Banitsas, K
2011-01-01
Recent advancements in wireless communications technologies bring us one step closer to provide reliable Telecare services as an alternative to patients staying in a hospital mainly for monitoring purposes. In this research we investigate the efficiency of IEEE 802.15.4 in a simple scenario where a patient is being monitored using an ECG and a blood analysis module. This approach binds well with assisted living solutions, by sharing the network infrastructure for both monitoring and control while taking advantage of the low power features of the protocol. Such applications are becoming more and more realistic to implement as IEEE 802.15.4 compatible hardware becomes increasingly available. Our aim is to examine the impact of Beacon and Superframe Order in the medium access delay, dropped packets, end to end delay, average retransmission attempts and consumed power focusing on this bandwidth demanding situation where the network load does not allow low duty cycles, in order to draw some conclusions on the effect that this will have to telemonitoring applications.
NASA Astrophysics Data System (ADS)
Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin
2017-02-01
Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.
Layer Structure of a Refractory Multilayer Ti/Al Composite After Pressure Diffusion Welding
NASA Astrophysics Data System (ADS)
Karpov, M. I.; Korzhov, V. P.; Zheltyakova, I. S.
2016-05-01
A composite refractory material with layer structure obtained by the method of pressure diffusion welding of multilayer Ti/Al packets composed of Ti- and Al-foils is studied. The welding temperature of the packets does not exceed 1200 - 1250°C. A layer structure forms in the process of interdiffusion of titanium and aluminum during welding of the packets.
Operational Rations Current and Future of the Department of Defense
1982-09-01
with Spiced Sauce Beefsteak Chicken and Noodles Chicken or Turkey, Boned Apricots Peaches Chocolate Nut Roll Cookies Grape MEATS Ham and...Sauce Tuna Fish Turkey Loaf Fruit Cocktail Peacan Cake Roll Pound Cake Orange Tomato 16 ACCESSORY ITEMS Instant Coffee Instant Tea or Tea... INSTANT ACCESSORY PACKET FOOD PACKET, IN-FLIGHT INDIVIDUAL SPOON EARLY VERSION VI FOOD PACKET, LONG-RANGE Designed for troops in operations
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
The materials in this packet are designed to aid teachers in the implementation of a science field studies unit concerning tidal rivers. The packet consists of the following: (1) background material for the teacher; (2) lab exercises; (3) field activities; and (4) classroom activities. The overall purpose of this packet is to provide information…
Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks
2006-09-01
AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and
Bonanno, G A; Keltner, D; Holen, A; Horowitz, M J
1995-11-01
It has been widely assumed that emotional avoidance during bereavement leads to either prolonged grief, delayed grief, or delayed somatic symptoms. To test this view, as well as a contrasting adaptive hypothesis, emotional avoidance was measured 6 months after a conjugal loss as negative verbal-autonomic response dissociation (low self-rated negative emotion coupled with heightened cardiovascular activity) and compared with grief measured at 6 and 14 months. The negative dissociation score evidenced reliability and validity but did not evidence the assumed link to severe grief. Rather, consistent with the adaptive hypothesis, negative dissociation at 6 months was associated with minimal grief symptoms across 14 months. Negative dissociation scores were also linked to initially high levels of somatic symptoms, which dropped to a low level by 14 months. Possible explanations for the initial cost and long-term adaptive quality of emotional avoidance during bereavement, as well as implications and limitations of the findings, are discussed.
Beam queuing for aeronautical free space optical networks
NASA Astrophysics Data System (ADS)
Karras, Kimon; Marinos, Dimitris; Kouros, Pavlos
2010-08-01
Free space optical technologies are currently only very marginally used in aviation, particularly for communication purposes. Most applications occur in a military environment, with civilian aviation remaining oblivious to its advantages. One of these is high-bandwidth communication between the various actors available in an aeronautical network. Considerable research is underway in order to resolve a multitude of issues like reliable reception and transmission of the optical signal and the construction of high performance, small and lightweight terminals for the optical transceiver. The slow Pointing, Acquisition and Tracking of the latter represents a significant issue, which detracts from their usability in such an environment. Since an aircraft may carry only a limited number of such terminals on board, the delay of a terminal in reacquiring a target (which is in the order of several seconds) constitutes a significant hurdle in achieving satisfactory connectivity. This paper proposes an optimization technique, in which packet are reordered dynamically before transmission in the sender node in order to minimize terminal movement and thus avoid the time-consuming PAT process. Several parameters are considered such as QoS of the packets, minimization of the number of movements of the terminal and of the distance it must traverse when it reacquires a target. The algorithm was tested by integrating it into a custom built, discrete event SystemC simulator. The results verify that incorporating into such a system yields tangible benefits in terms of the practical throughput achieved by the system through the minimization of idle time, while moving.
Deterministic quantum state transfer between remote qubits in cavities
NASA Astrophysics Data System (ADS)
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
Wavelet packets for multi- and hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.
2010-01-01
State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.
A New Reactive FMIPv6 Mechanism for Minimizing Packet Loss
NASA Astrophysics Data System (ADS)
Kim, Pyungsoo
This paper considers a new reactive fast handover MIPv6 (FMIPv6) mechanism to minimize packet loss of the existing mechanism. The primary idea of the proposed reactive FMIPv6 mechanism is that the serving access router buffers packets toward the mobile node (MN) as soon as the link layer between MN and serving base station is disconnected. To implement the proposed mechanism, the router discovery message exchanged between MN and serving access router is extended. In addition, the IEEE 802.21 Media Independent Handover Function event service message is defined newly. Through analytic performance evaluation and experiments, the proposed reactive FMIPv6 mechanism can be shown to minimize packet loss much than the existing mechanism.
Performance optimization of internet firewalls
NASA Astrophysics Data System (ADS)
Chiueh, Tzi-cker; Ballman, Allen
1997-01-01
Internet firewalls control the data traffic in and out of an enterprise network by checking network packets against a set of rules that embodies an organization's security policy. Because rule checking is computationally more expensive than routing-table look-up, it could become a potential bottleneck for scaling up the performance of IP routers, which typically implement firewall functions in software. in this paper, we analyzed the performance problems associated with firewalls, particularly packet filters, propose a good connection cache to amortize the costly security check over the packets in a connection, and report the preliminary performance results of a trace-driven simulation that show the average packet check time can be reduced by a factor of 2.5 at the least.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Inukai, Thomas
1995-01-01
In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.
Combined coding and delay-throughput analysis for fading channels of mobile satellite communications
NASA Technical Reports Server (NTRS)
Wang, C. C.; Yan, Tsun-Yee
1986-01-01
This paper presents the analysis of using the punctured convolutional code with Viterbi decoding to improve communications reliability. The punctured code rate is optimized so that the average delay is minimized. The coding gain in terms of the message delay is also defined. Since using punctured convolutional code with interleaving is still inadequate to combat the severe fading for short packets, the use of multiple copies of assignment and acknowledgment packets is suggested. The performance on the average end-to-end delay of this protocol is analyzed. It is shown that a replication of three copies for both assignment packets and acknowledgment packets is optimum for the cases considered.
External Catalyst Breakup Phenomena
1976-06-01
catalyst particle can cause high internal pressures which result in particle destruction. Analytical results suggest rhat erosion effects from solid...mechanisms. * Pressure Forces. High G loadings and bed pressure drops should be avoided. Bed pre-loads should be kept at a minimum value. Thruster...5.2.7.1 Failure Theories ............................ 243 5.2.7.2 Maximum Tension Stress Criterion ............ 244 5.2.7.3 Distortion Energy Approach
Modeling and minimization of barium sulfate scale
Alan W. Rudie; Peter W. Hart
2006-01-01
The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...
NASA Astrophysics Data System (ADS)
Harris, Margaret
2015-03-01
Was the atomic bombing of Hiroshima and Nagasaki justified? Was it necessary? Were there other - better - options available, either to the scientists who built the bombs or the generals who ordered them dropped? Nearly 70 years later, there are still no settled answers to these questions, and Tom Morton-Smith's new play Oppenheimer wisely avoids dwelling on the "what ifs" of atomic history.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan
2018-03-01
Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.
Miller, C L; Hill, D J; Quester, P G; Hiller, J E
2009-01-01
Background: In March 2006, Australia introduced graphic pictorial warnings on cigarette packets. For the first time, packs include the Quitline number. Objective: To measure the combined effect of graphic cigarette pack warnings and printing the Quitline number on packs on calls to the Australian Quitline service. Methods: Calls to the Australian Quitline were monitored over 4 years, 2 years before and after the new packets were introduced. Results: There were twice as many calls to the Quitline in 2006 (the year of introduction), as there were in each of the preceding 2 years. The observed increase in calls exceeds that explained by the accompanying television advertising alone. While call volume tapered back in 2007, it remained at a level higher than before the introduction of new packets. No change was observed in the proportion of first time callers. Conclusion: Introducing graphic cigarette packet warnings and the Quitline number on cigarette packets boosts demand for Quitline services, with likely flow on effects to cessation. PMID:19211613
An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks
NASA Astrophysics Data System (ADS)
Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang
As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.
Abel, Francois [Rueschlikon, CH; Iliadis, Ilias [Rueschlikon, CH; Minkenberg, Cyriel J. A. [Adliswil, CH
2009-02-03
A method for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a switching system in successive time slots, including a matching method including the steps of providing a first request information in a first time slot indicating data packets at the inputs requesting transmission to the outputs of the switching system, performing a first step in the first time slot depending on the first request information to obtain a first matching information, providing a last request information in a last time slot successive to the first time slot, performing a last step in the last time slot depending on the last request information and depending on the first matching information to obtain a final matching information, and assigning the pending data packets at the number of inputs to the number of outputs based on the final matching information.
Flow-aggregated traffic-driven label mapping in label-switching networks
NASA Astrophysics Data System (ADS)
Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu
1998-12-01
Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.
Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal
NASA Astrophysics Data System (ADS)
Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.
2014-02-01
The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.
Sliding Mode Control for Discrete-Time Systems With Markovian Packet Dropouts.
Song, Heran; Chen, Shih-Chi; Yam, Yeung
2017-11-01
This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.
Angular momentum transport with twisted exciton wave packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-10-01
A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.
Spacelab Program: Conversion of Spacelab to packet data format. Flight system study
NASA Technical Reports Server (NTRS)
1981-01-01
A study of packetization of the Spacelab data handling system, including the alternate approaches considered and the supporting rationale, is described. It is concluded that it is well within today's state of the art in microelectronics to implement either a full or hybrid packet data system on board the Spacelab. Of the two, the hybrid system is preferred because of the significant cost saving.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The instructor packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The instructor packet lists performance objectives, vocabulary, learning tasks, and supplemental activities for lessons 1 through 11. It also includes…
Increasingly minimal bias routing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataineh, Abdulla; Court, Thomas; Roweth, Duncan
2017-02-21
A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).
Dispersionless wave packets in Dirac materials
NASA Astrophysics Data System (ADS)
Jakubský, Vít; Tušek, Matěj
2017-03-01
We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.
ERIC Educational Resources Information Center
Giesecke, Carol; And Others
This self-instructional learning packet is one part of a competency-guided program for instructional supervisor preparation developed by the Special Education Supervisor Training (SEST) project. This packet deals with the study and practice of time utilization as it relates to the supervisor; users of the packet have the opportunity to review and…
Generation of attosecond electron packets via conical surface plasmon electron acceleration
Greig, S. R.; Elezzabi, A. Y.
2016-01-01
We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2018-04-12
Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T
Currently, the problem at hand is in distributing identical copies of OEP and filter software to a large number of farm nodes. One of the common methods used to transfer these softwares is through unicast. Unicast protocol faces the problem of repetitiously sending the same data over the network. Since the sending rate is limited, this process poses to be a bottleneck. Therefore, one possible solution to this problem lies in creating a reliable multicast protocol. A specific type of multicast protocol is the Bulk Multicast Protocol [4]. This system consists of one sender distributing data to many receivers. Themore » sender delivers data at a given rate of data packets. In response to that, the receiver replies to the sender with a status packet which contains information about the packet loss in terms of Negative Acknowledgment. The probability of the status packet sent back to the sender is+, where N is the number of receivers. The protocol is designed to have approximately 1 status packet for each data packet sent. In this project, we were able to show that the time taken for the complete transfer of a file to multiple receivers was about 12 times faster with multicast than by the use of unicast. The implementation of this experimental protocol shows remarkable improvement in mass data transfer to a large number of farm machines.« less
Gaussian and Airy wave packets of massive particles with orbital angular momentum
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry V.
2015-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.
Advances in integrated photonic circuits for packet-switched interconnection
NASA Astrophysics Data System (ADS)
Williams, Kevin A.; Stabile, Ripalta
2014-03-01
Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.
Biswas, Tutul; Ghosh, Tarun Kanti
2018-01-09
We consider the $\\alpha$-$T_3$ model which provides a smooth crossover between the honeycomb lattice with pseudospin $1/2$ and the dice lattice with pseudospin $1$ through the variation of a parameter $\\alpha$. We study the dynamics of a wave packet representing a quasiparticle in the $\\alpha$-T$_3$ model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient $zitterbewegung$ (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter $\\alpha$ i.e. for $0<\\alpha<1$ the resulting ZB consists of two distinct frequencies when the wave packet was located initially in $rim$ site. However, the wave packet exhibits single frequency ZB for $\\alpha=0$ and $\\alpha=1$. It is also unveiled that the frequency of ZB corresponding to $\\alpha=1$ gets exactly half of that corresponding to the $\\alpha=0$ case. On the other hand, when the initial wave packet was in $hub$ site, the ZB consists of only one frequency for all values of $\\alpha$. Using stationary phase approximation we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of large number of Landau energy levels the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter $\\alpha$. © 2018 IOP Publishing Ltd.
Levitation and locomotion on an air-table of plates with herringbone grooves
NASA Astrophysics Data System (ADS)
Hinch, John; de Maleprade, Helene
2017-11-01
Recent experiments in ESPCI in Paris and numerical simulations in Nano- and Microfluidics in Darmstadt have shown that plates with herringbone grooves in their base are accelerated on an air-table in the direction that the chevron grooves point. A simple two-dimensional model is constructed of the air flow down a channel with pressure controlled influx across the lower boundary. Limiting cases are considered of low and high Reynolds numbers, and of small and large pressure drop down the channel compared with the pressure drop across the porous plate. The levitation and locomotion forces are calculated. A prediction is made for the locomotive acceleration which avoids the complications of the shorter grooves which exit the front and back edges.
An active drop counting device using condenser microphone for superheated emulsion detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Mala; Marick, C.; Kanjilal, D.
2008-11-15
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less
An active drop counting device using condenser microphone for superheated emulsion detector
NASA Astrophysics Data System (ADS)
Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.
2008-11-01
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.
Acute common peroneal neuropathy due to hand positioning in normal labor and delivery.
Radawski, Melissa M; Strakowski, Jeffrey A; Johnson, Ernest W
2011-08-01
Foot drop has been described as an infrequent complication from common peroneal nerve injury related to external compression and forceful knee flexion while pushing during vaginal delivery. Past recommendations include placing the hands at the posterior thighs rather than the legs to avoid this complication. A 32-year-old woman developed unilateral foot drop after vaginal delivery. Electromyography was diagnostic for an acute compression neuropathy of the common peroneal nerve above the knee. The patient's likely mechanism of injury occurred during delivery from external compression by the patient's dominant hand to the distal posterior thigh while under epidural anesthesia. Labor and delivery teams should be aware that nerve injury is also possible at the distal thigh with excessive external pressure.
SEQUENCING of TSUNAMI WAVES: Why the first wave is not always the largest?
NASA Astrophysics Data System (ADS)
Synolakis, C.; Okal, E.
2016-12-01
We discuss what contributes to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r 30 /h2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0 , the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard
Sequencing of tsunami waves: why the first wave is not always the largest
NASA Astrophysics Data System (ADS)
Okal, Emile A.; Synolakis, Costas E.
2016-02-01
This paper examines the factors contributing to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r_0^3 / h^2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0, the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard inherent in premature calls for all-clear.
Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks
NASA Astrophysics Data System (ADS)
Vadrevu, Sree Krishna Chaitanya
Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will preempt IP services routed over them, and thus it is important to ensure IP topology survivability to successfully re-route preempted IP services. Integer-linear-program (ILP) and heuristic solutions have been developed and network cost reduction up to 60% has been observed. In ESnet, we study loaning packet links to support circuit services. Mixed-line-rate (MLR) networks supporting 10/40/100 Gbps on the same fiber are becoming increasingly popular. Services that accept degradation in bandwidth, latency, jitter, etc. under failure scenarios for lower cost are known as degraded services. We study degradation in bandwidth for lower cost under failure scenarios, a concept called partial protection, in the context of MLR networks. We notice partial protection enables significant cost savings compared to full protection. To cope with traffic growth, network operators need to deploy equipment at periodic time intervals, and this is known as the multi-period planning and upgrade problem. We study three important multi-period planning approaches, namely incremental planning, all-period planning, and two-period planning with mixed line rates. Our approaches predict the network equipment that needs to be deployed optimally at which nodes and at which time periods in the network to meet QoS requirements.
A Bibliography of Packet Radio Literature.
1984-03-01
r r* C.C.4. W . . . . . . . . .. . . . Gafni, E. and D. Bertsekas, "Distributed Algorithms for Generating Loop-Free Routes in Networks with Frequently...December 1980). Leiner, B., K. Klemba, and J. Tornow , "Packet Radio Networking," Computer World, pp. 26-37, 30, (September 27, 1982). Liu, J...34Distributed Routing and Relay Management in Mobile Packet Radio Networks," Proceedings IEEE COMPCON Fall , p. 235-243 (1980). MacGregor, W ., J. Westcott, and
The Network Protocol Analysis Technique in Snort
NASA Astrophysics Data System (ADS)
Wu, Qing-Xiu
Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.
ERIC Educational Resources Information Center
Dorchester Vocational Center, SC.
Project activities were conducted to accomplish three major objectives: (1) to develop a definition of minimum mathematical skills necessary to complete vocational skill training in fifteen areas, (2) to develop learning activity packets relevant to each vocational area, and (3) to make the process and packets available to other vocational…