NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Yan, Jian-Jun; Wang, Yi-Qin; Guo, Rui; Zhou, Jin-Zhuan; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Yong
2012-01-01
Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT) has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn) has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM). SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%.
Yan, Jian-Jun; Wang, Yi-Qin; Guo, Rui; Zhou, Jin-Zhuan; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Yong
2012-01-01
Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT) has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn) has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM). SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%. PMID:22690242
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei
2010-01-01
This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.
Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine.
Yan, Jian-Jun; Guo, Rui; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing
2014-01-01
This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered.
Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine
Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing
2014-01-01
This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068
Zhang, Yan; Zou, Hong-Yan; Shi, Pei; Yang, Qin; Tang, Li-Juan; Jiang, Jian-Hui; Wu, Hai-Long; Yu, Ru-Qin
2016-01-01
Determination of benzo[a]pyrene (BaP) in cigarette smoke can be very important for the tobacco quality control and the assessment of its harm to human health. In this study, mid-infrared spectroscopy (MIR) coupled to chemometric algorithm (DPSO-WPT-PLS), which was based on the wavelet packet transform (WPT), discrete particle swarm optimization algorithm (DPSO) and partial least squares regression (PLS), was used to quantify harmful ingredient benzo[a]pyrene in the cigarette mainstream smoke with promising result. Furthermore, the proposed method provided better performance compared to several other chemometric models, i.e., PLS, radial basis function-based PLS (RBF-PLS), PLS with stepwise regression variable selection (Stepwise-PLS) as well as WPT-PLS with informative wavelet coefficients selected by correlation coefficient test (rtest-WPT-PLS). It can be expected that the proposed strategy could become a new effective, rapid quantitative analysis technique in analyzing the harmful ingredient BaP in cigarette mainstream smoke. Copyright © 2015 Elsevier B.V. All rights reserved.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.
Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto
2017-12-12
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation
Segreto, Tiziana; Karam, Sara; Teti, Roberto
2017-01-01
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864
NASA Astrophysics Data System (ADS)
Liu, Dong; Cheng, Chen; Fu, Qiang; Liu, Chunlei; Li, Mo; Faiz, Muhammad Abrar; Li, Tianxiao; Khan, Muhammad Imran; Cui, Song
2018-03-01
In this paper, the complete ensemble empirical mode decomposition with the adaptive noise (CEEMDAN) algorithm is introduced into the complexity research of precipitation systems to improve the traditional complexity measure method specific to the mode mixing of the Empirical Mode Decomposition (EMD) and incomplete decomposition of the ensemble empirical mode decomposition (EEMD). We combined the CEEMDAN with the wavelet packet transform (WPT) and multifractal detrended fluctuation analysis (MF-DFA) to create the CEEMDAN-WPT-MFDFA, and used it to measure the complexity of the monthly precipitation sequence of 12 sub-regions in Harbin, Heilongjiang Province, China. The results show that there are significant differences in the monthly precipitation complexity of each sub-region in Harbin. The complexity of the northwest area of Harbin is the lowest and its predictability is the best. The complexity and predictability of the middle and Midwest areas of Harbin are about average. The complexity of the southeast area of Harbin is higher than that of the northwest, middle, and Midwest areas of Harbin and its predictability is worse. The complexity of Shuangcheng is the highest and its predictability is the worst of all the studied sub-regions. We used terrain and human activity as factors to analyze the causes of the complexity of the local precipitation. The results showed that the correlations between the precipitation complexity and terrain are obvious, and the correlations between the precipitation complexity and human influence factors vary. The distribution of the precipitation complexity in this area may be generated by the superposition effect of human activities and natural factors such as terrain, general atmospheric circulation, land and sea location, and ocean currents. To evaluate the stability of the algorithm, the CEEMDAN-WPT-MFDFA was compared with the equal probability coarse graining LZC algorithm, fuzzy entropy, and wavelet entropy. The results show that the CEEMDAN-WPT-MFDFA was more stable than 3 contrast methods under the influence of white noise and colored noise, which proves that the CEEMDAN-WPT-MFDFA has a strong robustness under the influence of noise.
Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy.
Gómez, María Jesús; Corral, Eduardo; Castejón, Cristina; García-Prada, Juan Carlos
2018-05-17
Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Ding, Huijun; He, Qing; Zhou, Yongjin; Dan, Guo; Cui, Song
2017-01-01
Motion-intent-based finger gesture recognition systems are crucial for many applications such as prosthesis control, sign language recognition, wearable rehabilitation system, and human–computer interaction. In this article, a motion-intent-based finger gesture recognition system is designed to correctly identify the tapping of every finger for the first time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting the finger tapping frame. Based on the truncated signals, the Wavelet packet transform (WPT) coefficients are calculated and compressed as the features, followed by a feature selection method that is able to improve the performance by optimizing the feature set. Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN), and support vector machine (SVM) are applied and evaluated. The recognition accuracy can be achieved up to 94%. The design and the architecture of the system are presented with full system characterization results. PMID:29167655
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
NASA Astrophysics Data System (ADS)
Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun
2016-04-01
Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.
Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong
2014-06-01
Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices.
Application of Wavelet Transform for PDZ Domain Classification
Daqrouq, Khaled; Alhmouz, Rami; Balamesh, Ahmed; Memic, Adnan
2015-01-01
PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification. PMID:25860375
Neural network and wavelet average framing percentage energy for atrial fibrillation classification.
Daqrouq, K; Alkhateeb, A; Ajour, M N; Morfeq, A
2014-03-01
ECG signals are an important source of information in the diagnosis of atrial conduction pathology. Nevertheless, diagnosis by visual inspection is a difficult task. This work introduces a novel wavelet feature extraction method for atrial fibrillation derived from the average framing percentage energy (AFE) of terminal wavelet packet transform (WPT) sub signals. Probabilistic neural network (PNN) is used for classification. The presented method is shown to be a potentially effective discriminator in an automated diagnostic process. The ECG signals taken from the MIT-BIH database are used to classify different arrhythmias together with normal ECG. Several published methods were investigated for comparison. The best recognition rate selection was obtained for AFE. The classification performance achieved accuracy 97.92%. It was also suggested to analyze the presented system in an additive white Gaussian noise (AWGN) environment; 55.14% for 0dB and 92.53% for 5dB. It was concluded that the proposed approach of automating classification is worth pursuing with larger samples to validate and extend the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Vehicular Integration of Wireless Power Transfer Systems and Hardware Interoperability Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Campbell, Steven L; Seiber, Larry Eugene
Several wireless charging methods are under development or available as an aftermarket option in the light-duty automotive market. However, there are not a sufficient number of studies detailing the vehicle integration methods, particularly a complete vehicle integration with higher power levels. This paper presents the design, development, implementation, and vehicle integration of wireless power transfer (WPT)-based electric vehicle (EV) charging systems for various test vehicles. Before having the standards effective, it is expected that WPT technology first will be integrated as an aftermarket retrofitting approach. Inclusion of this technology on production vehicles is contingent upon the release of the internationalmore » standards. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction, high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, and communications, systems are presented. Aftermarket conversion approaches including the WPT on-board charger (OBC) integration, WPT CHAdeMO integration, and WPT direct battery connection scenarios are described. The experiments are carried out using the integrated vehicles and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Wang, Zhiqiang
This paper presents a detailed parametric sensitivity analysis for a wireless power transfer (WPT) system in electric vehicle application. Specifically, several key parameters for sensitivity analysis of a series-parallel (SP) WPT system are derived first based on analytical modeling approach, which includes the equivalent input impedance, active / reactive power, and DC voltage gain. Based on the derivation, the impact of primary side compensation capacitance, coupling coefficient, transformer leakage inductance, and different load conditions on the DC voltage gain curve and power curve are studied and analyzed. It is shown that the desired power can be achieved by just changingmore » frequency or voltage depending on the design value of coupling coefficient. However, in some cases both have to be modified in order to achieve the required power transfer.« less
Frequency-selective design of wireless power transfer systems for controlled access applications
NASA Astrophysics Data System (ADS)
Maschino, Tyler Stephen
Wireless power transfer (WPT) has become a common way to charge or power many types of devices, ranging from cell phones to electric toothbrushes. WPT became popular through the introduction of a transmission mode known as strongly coupled magnetic resonance (SCMR). This means of transmission is non-radiative and enables mid-range WPT. Shortly after the development of WPT via SCMR, a group of researchers introduced the concept of resonant repeaters, which allows power to hop from the source to the device. These repeaters are in resonance with the WPT system, which enables them to propagate the power wirelessly with minimal losses to the environment. Resonant repeaters have rekindled the dream of ubiquitous wireless power. Inherent risks come with the realization of such a dream. One of the most prominent risks, which we set out in this thesis to address, is that of accessibility to the WPT system. We propose the incorporation of a controlled access schema within a WPT system to prevent unwarranted use of wireless power. Our thesis discusses the history of electromagnetism, examines the inception of WPT via SCMR, evaluates recent developments in WPT, and further elaborates on the controlled access schema we wish to contribute to the field.
NASA Astrophysics Data System (ADS)
Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.
2017-09-01
This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.
NASA Astrophysics Data System (ADS)
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
NASA Astrophysics Data System (ADS)
Habibi, Muhammad Afnan; Fall, Cheikh; Setiawan, Eko; Hodaka, Ichijo; Wijono, Hasanah, Rini Nur
2017-09-01
Wireless Power Transfer (WPT) isa technique to deliver the electrical power from the source to the load without using wires or conductors. The physics of WPT is well known and basically learned as a course in high school. However, it is very recent that WPT is useful in practical situation: it should be able to transfer electric power in a significant efficiency. It means that WPT requires not much knowledge to university students but may attract students because of cutting edge technique of WPT. On the other hand, phenomena of WPT is invisible and sometimes difficult to imagine. The objective of this paper is to demonstrate the use of mathematics and an electric circuit simulator using MATHEMATICA software and LT-SPICE software in designing a WPT system application. It brings to a conclusion that the students as well the designer can take the benefit of the proposed method. By giving numerical values to circuit parameters, students acquires the power output and efficiency of WPT system. The average power output as well as the efficiency of the designed WPT which resonance frequency set on the system,leads it to produce high output power and better efficiency.
Embedded wavelet packet transform technique for texture compression
NASA Astrophysics Data System (ADS)
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-09-01
A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.
NASA Astrophysics Data System (ADS)
Chen, BinQiang; Zhang, ZhouSuo; Zi, YanYang; He, ZhengJia; Sun, Chuang
2013-10-01
Detecting transient vibration signatures is of vital importance for vibration-based condition monitoring and fault detection of the rotating machinery. However, raw mechanical signals collected by vibration sensors are generally mixtures of physical vibrations of the multiple mechanical components installed in the examined machinery. Fault-generated incipient vibration signatures masked by interfering contents are difficult to be identified. The fast kurtogram (FK) is a concise and smart gadget for characterizing these vibration features. The multi-rate filter-bank (MRFB) and the spectral kurtosis (SK) indicator of the FK are less powerful when strong interfering vibration contents exist, especially when the FK are applied to vibration signals of short duration. It is encountered that the impulsive interfering contents not authentically induced by mechanical faults complicate the optimal analyzing process and lead to incorrect choosing of the optimal analysis subband, therefore the original FK may leave out the essential fault signatures. To enhance the analyzing performance of FK for industrial applications, an improved version of fast kurtogram, named as "fast spatial-spectral ensemble kurtosis kurtogram", is presented. In the proposed technique, discrete quasi-analytic wavelet tight frame (QAWTF) expansion methods are incorporated as the detection filters. The QAWTF, constructed based on dual tree complex wavelet transform, possesses better vibration transient signature extracting ability and enhanced time-frequency localizability compared with conventional wavelet packet transforms (WPTs). Moreover, in the constructed QAWTF, a non-dyadic ensemble wavelet subband generating strategy is put forward to produce extra wavelet subbands that are capable of identifying fault features located in transition-band of WPT. On the other hand, an enhanced signal impulsiveness evaluating indicator, named "spatial-spectral ensemble kurtosis" (SSEK), is put forward and utilized as the quantitative measure to select optimal analyzing parameters. The SSEK indicator is robuster in evaluating the impulsiveness intensity of vibration signals due to its better suppressing ability of Gaussian noise, harmonics and sporadic impulsive shocks. Numerical validations, an experimental test and two engineering applications were used to verify the effectiveness of the proposed technique. The analyzing results of the numerical validations, experimental tests and engineering applications demonstrate that the proposed technique possesses robuster transient vibration content detecting performance in comparison with the original FK and the WPT-based FK method, especially when they are applied to the processing of vibration signals of relative limited duration.
Lee, Boon-Giin; Lee, Boon-Leng; Chung, Wan-Young
2014-01-01
Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG) and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz) regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT) method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI) technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM) and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals. PMID:25264954
Chen, Hong; Slade, Gary; Lim, Pei Feng; Miller, Vanessa; Maixner, William; Diatchenko, Luda
2012-01-01
The multiple bodily pain conditions in temporomandibular disorders (TMD) have been associated with generalized alterations in pain processing. The purpose of this study was to examine the relationship between the presence of widespread body palpation tenderness (WPT) and the likelihood of multiple comorbid pain conditions in TMD patients and controls. This case-control study was conducted in 76 TMD subjects with WPT, 83 TMD subjects without WPT, and 181 non-TMD matched control subjects. The study population was also characterized for clinical pain, experimental pain sensitivity, and related psychological phenotypes. Results showed that (1) TMD subjects reported an average of 1.7 comorbid pain conditions compared to 0.3 reported by the control subjects (p<0.001); (2) Compared to control subjects, the odds ratio (OR) for multiple comorbid pain conditions is higher for TMD subjects with WPT [OR 8.4 (95% CI 3.1–22.8) for TMD with WPT versus OR 3.3 (95% CI 1.3–8.4) for TMD without WPT]; (3) TMD subjects with WPT presented with reduced pressure pain thresholds (PPTs) in both cranial and extra-cranial regions compared to TMD subjects without WPT; and (4) TMD subjects with WPT reported increased somatic symptoms. These findings suggest that pain assessment outside of the orofacial region may prove valuable for the classification, diagnosis, and management of TMD patients. PMID:23031401
NASA Astrophysics Data System (ADS)
Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.
2015-01-01
This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.
Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications
DOT National Transportation Integrated Search
2014-08-01
This research report provides a status review of emerging and existing Wireless Power Transfer (WPT) technologies applicable to electric bus (EB) and rail transit. The WPT technology options discussed, especially Inductive Power Transfer (IPT), enabl...
Paul, Rimi; Sengupta, Anindita
2017-11-01
A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multipolar modes in dielectric disk resonator for wireless power transfer
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2017-09-01
We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.
Wen, Feng; Huang, Xueliang
2017-02-08
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously.
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems
Wen, Feng; Huang, Xueliang
2017-01-01
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously. PMID:28208709
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Dynamic impedance compensation for wireless power transfer using conjugate power
NASA Astrophysics Data System (ADS)
Liu, Suqi; Tan, Jianping; Wen, Xue
2018-02-01
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.
Wavelet packets for multi- and hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.
2010-01-01
State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.
Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan
2014-01-01
The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.
Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji
2015-04-07
Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.
Phased Array Excitations For Efficient Near Field Wireless Power Transmission
2016-09-01
relating to the improvement of wireless - power transfer (WPT) in the near field. Improvement to power reception in the near field requires that...improvement of wireless - power transfer (WPT) in the near field. Improvement to power reception in the near field requires that excitation correction methods...transverse electromagnetic TM transverse magnetic UAV unmanned aerial vehicles VSWR voltage standing wave ratio WPT wireless power transfer XML
Harmonic wavelet packet transform for on-line system health diagnosis
NASA Astrophysics Data System (ADS)
Yan, Ruqiang; Gao, Robert X.
2004-07-01
This paper presents a new approach to on-line health diagnosis of mechanical systems, based on the wavelet packet transform. Specifically, signals acquired from vibration sensors are decomposed into sub-bands by means of the discrete harmonic wavelet packet transform (DHWPT). Based on the Fisher linear discriminant criterion, features in the selected sub-bands are then used as inputs to three classifiers (Nearest Neighbor rule-based and two Neural Network-based), for system health condition assessment. Experimental results have confirmed that, comparing to the conventional approach where statistical parameters from raw signals are used, the presented approach enabled higher signal-to-noise ratio for more effective and intelligent use of the sensory information, thus leading to more accurate system health diagnosis.
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun
2017-05-01
Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
NASA Astrophysics Data System (ADS)
Liu, Suqi; Tan, Jianping; Wen, Xue
2017-11-01
Wireless power transfer (WPT) via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.
Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils
NASA Astrophysics Data System (ADS)
Yang, Dongsheng; Won, Sokhui; Hong, Huan
2017-05-01
Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.
An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
Waterpipe Tobacco Smoking and Gastric Cancer Risk among Vietnamese Men.
Lai, Hang Thi Minh; Koriyama, Chihaya; Tokudome, Shinkan; Tran, Hoc Hieu; Tran, Long Thanh; Nandakumar, Athira; Akiba, Suminori; Le, Ngoan Tran
2016-01-01
The association of waterpipe tobacco (WPT) smoking with gastric cancer (GC) risk was suggested. A hospital-based case-control study was conducted to examine the association of WPT with GC risk among Vietnamese men, in Hanoi city, during the period of 2003-2011. Newly-diagnosed GC cases (n = 454) and control patients (n = 628) were matched by age (+/- 5 years) and the year of hospitalization. Information on smoking and alcohol drinking habits and diet including salty food intake and fruits/vegetables consumption were obtained by the interview. Maximum likelihood estimates of odds ratios (ORs) and corresponding 95% confidence intervals (Cis) were obtained using conditional logistic regression models. The group with the highest consumption of citrus fruits showed a significantly low GC risk (OR = 0.6, 95%CI = 0.4-0.8, P for trend = 0.002). However, there was no association of raw vegetable consumption with GC risk. Referring to never smokers, GC risk was significantly higher in current WPT smokers (OR = 1.8, 95%CI = 1.3-2.4), and it was more evident in exclusively WPT smokers (OR = 2.7, 95%CI = 1.2-6.5). GC risk tended to be higher with daily frequency and longer duration of WPT smoking but these trends were not statistically significant (P for trend: 0.144 and 0.154, respectively). GC risk of those who started smoking WPT before the age of 25 was also significantly high (OR = 3.7, 95%CI = 1.2-11.3). Neither cigarette smoking nor alcohol drinking was related to GC risk. The present findings revealed that WPT smoking was positively associated with GC risk in Vietnamese men.
Waterpipe Tobacco Smoking and Gastric Cancer Risk among Vietnamese Men
Lai, Hang Thi Minh; Koriyama, Chihaya; Tokudome, Shinkan; Tran, Hoc Hieu; Tran, Long Thanh; Nandakumar, Athira; Akiba, Suminori; Le, Ngoan Tran
2016-01-01
Background The association of waterpipe tobacco (WPT) smoking with gastric cancer (GC) risk was suggested. Methods A hospital-based case-control study was conducted to examine the association of WPT with GC risk among Vietnamese men, in Hanoi city, during the period of 2003–2011. Newly-diagnosed GC cases (n = 454) and control patients (n = 628) were matched by age (+/- 5 years) and the year of hospitalization. Information on smoking and alcohol drinking habits and diet including salty food intake and fruits/vegetables consumption were obtained by the interview. Maximum likelihood estimates of odds ratios (ORs) and corresponding 95% confidence intervals (Cis) were obtained using conditional logistic regression models. Results The group with the highest consumption of citrus fruits showed a significantly low GC risk (OR = 0.6, 95%CI = 0.4–0.8, P for trend = 0.002). However, there was no association of raw vegetable consumption with GC risk. Referring to never smokers, GC risk was significantly higher in current WPT smokers (OR = 1.8, 95%CI = 1.3–2.4), and it was more evident in exclusively WPT smokers (OR = 2.7, 95%CI = 1.2–6.5). GC risk tended to be higher with daily frequency and longer duration of WPT smoking but these trends were not statistically significant (P for trend: 0.144 and 0.154, respectively). GC risk of those who started smoking WPT before the age of 25 was also significantly high (OR = 3.7, 95%CI = 1.2–11.3). Neither cigarette smoking nor alcohol drinking was related to GC risk. Conclusion The present findings revealed that WPT smoking was positively associated with GC risk in Vietnamese men. PMID:27802311
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John
2002-01-01
Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper two basic WPT options, using radio waves and light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John
2007-01-01
Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this presentation, two basic WPT options, using radio waves an d light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in nearterm space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.
Rejection of the maternal electrocardiogram in the electrohysterogram signal.
Leman, H; Marque, C
2000-08-01
The electrohysterogram (EHG) signal is mainly corrupted by the mother's electrocardiogram (ECG), which remains present despite analog filtering during acquisition. Wavelets are a powerful denoising tool and have already proved their efficiency on the EHG. In this paper, we propose a new method that employs the redundant wavelet packet transform. We first study wavelet packet coefficient histograms and propose an algorithm to automatically detect the histogram mode number. Using a new criterion, we compute a best basis adapted to the denoising. After EHG wavelet packet coefficient thresholding in the selected basis, the inverse transform is applied. The ECG seems to be very efficiently removed.
Identification of speech transients using variable frame rate analysis and wavelet packets.
Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung
2006-01-01
Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.
NASA Astrophysics Data System (ADS)
Liu, Mingjie
2018-06-01
The analysis of characteristics of the power and efficiency in wireless power transmission (WPT) system is the theoretical basis of magnetic coupling resonant wireless power transmission (MCR-WPT) technology. The electromagnetic field theory was employed to study the variation of the coupling degree of the two electromagnetic coils with the parameters of the coils. The equivalent circuit was used to analyze the influence of different factors on the transmission power and efficiency of the WPT system. The results show that there is an optimal radius ratio between the two coils, which makes the mutual inductance of the coils the largest. Moreover, when the WPT system operates in the under-coupling state, the transmission power of the system drops sharply, and there is a frequency splitting of the power when in the over-coupling state.
Digital transceiver implementation for wavelet packet modulation
NASA Astrophysics Data System (ADS)
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Index extraction for electromagnetic field evaluation of high power wireless charging system.
Park, SangWook
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario.
Challenges of International Programs in Commercial Wireless Power Trasmission
NASA Technical Reports Server (NTRS)
Dickinson, Richard M.
1993-01-01
The proposition is offered that only by forming international alliances will econmically viable commercial wireless poer transmission (WPT) result. Radio emissions from commercial WPT will likely extend beyond the borders of a single nation.
Investigation of negative permeability metamaterials for wireless power transfer
NASA Astrophysics Data System (ADS)
Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin
2017-11-01
In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Hang, X; Greenberg, N L; Shiota, T; Firstenberg, M S; Thomas, J D
2000-01-01
Real-time three-dimensional echocardiography has been introduced to provide improved quantification and description of cardiac function. Data compression is desired to allow efficient storage and improve data transmission. Previous work has suggested improved results utilizing wavelet transforms in the compression of medical data including 2D echocardiogram. Set partitioning in hierarchical trees (SPIHT) was extended to compress volumetric echocardiographic data by modifying the algorithm based on the three-dimensional wavelet packet transform. A compression ratio of at least 40:1 resulted in preserved image quality.
Bilgin, Suleyman; Arslan, Evren; Elmas, Onur; Yildiz, Sedat; Colak, Omer H; Bilgin, Gurkan; Koyuncuoglu, Hasan Rifat; Akkus, Selami; Comlekci, Selcuk; Koklukaya, Etem
2015-12-01
Fibromyalgia syndrome (FMS) is identified by widespread musculoskeletal pain, sleep disturbance, nonrestorative sleep, fatigue, morning stiffness and anxiety. Anxiety is very common in Fibromyalgia and generally leads to a misdiagnosis. Self-rated Beck Anxiety Inventory (BAI) and doctor-rated Hamilton Anxiety Inventory (HAM-A) are frequently used by specialists to determine anxiety that accompanies fibromyalgia. However, these semi-quantitative anxiety tests are still subjective as the tests are scored using doctor-rated or self-rated scales. In this study, we investigated the relationship between heart rate variability (HRV) frequency subbands and anxiety tests. The study was conducted with 56 FMS patients and 34 healthy controls. BAI and HAM-A test scores were determined for each participant. ECG signals were then recruited and 71 HRV subbands were obtained from these ECG signals using Wavelet Packet Transform (WPT). The subbands and anxiety tests scores were analyzed and compared using multilayer perceptron neural networks (MLPNN). The results show that a HRV high frequency (HF) subband in the range of 0.15235Hz to 0.40235Hz, is correlated with BAI scores and another HRV HF subband, frequency range of 0.15235Hz to 0.28907Hz is correlated with HAM-A scores. The overall accuracy is 91.11% for HAM-A and 90% for BAI with MLPNN analysis. Doctor-rated or self-rated anxiety tests should be supported with quantitative and more objective methods. Our results show that the HRV parameters will be able to support the anxiety tests in the clinical evaluation of fibromyalgia. In other words, HRV parameters can potentially be used as an auxiliary diagnostic method in conjunction with anxiety tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Doubleday, Kate; Markel, Tony
System right-sizing is critical to the implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study evaluates potential system designs for an on-demand employee shuttle by determining the required battery size based on the rated power at a variable number of charging locations. Vehicle power and state of charge are simulated over the drive cycle, based on position and velocity data at every second from the existing shuttle. Adding just one WPT location can halve the battery size. Many configurations are capable of self-sustaining with WPT, while others benefit from supplemental stationary charging.
Index extraction for electromagnetic field evaluation of high power wireless charging system
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario. PMID:28708840
Liu, Hao; Shao, Qi; Fang, Xuelin
2017-02-01
For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.
NASA Astrophysics Data System (ADS)
Gao, Ling; Ren, Shouxin
2005-10-01
Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.
Application of wavelet packet transform to compressing Raman spectra data
NASA Astrophysics Data System (ADS)
Chen, Chen; Peng, Fei; Cheng, Qinghua; Xu, Dahai
2008-12-01
Abstract The Wavelet transform has been established with the Fourier transform as a data-processing method in analytical fields. The main fields of application are related to de-noising, compression, variable reduction, and signal suppression. Raman spectroscopy (RS) is characterized by the frequency excursion that can show the information of molecule. Every substance has its own feature Raman spectroscopy, which can analyze the structure, components, concentrations and some other properties of samples easily. RS is a powerful analytical tool for detection and identification. There are many databases of RS. But the data of Raman spectrum needs large space to storing and long time to searching. In this paper, Wavelet packet is chosen to compress Raman spectra data of some benzene series. The obtained results show that the energy retained is as high as 99.9% after compression, while the percentage for number of zeros is 87.50%. It was concluded that the Wavelet packet has significance in compressing the RS data.
NASA Astrophysics Data System (ADS)
Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto
2018-03-01
To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.
Magnetic metamaterial superlens for increased range wireless power transfer.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2014-01-10
The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.
Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto
2018-03-01
To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.
Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
2014-12-22
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform
NASA Astrophysics Data System (ADS)
Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili
2017-08-01
A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.
Signal processing applications of massively parallel charge domain computing devices
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)
1999-01-01
The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen; Chau, K. T., E-mail: ktchau@eee.hku.hk; Liu, Chunhua
2014-05-07
This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.
Wireless Power Transfer Strategies for Implantable Bioelectronics.
Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V
2017-01-01
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.
Rooting Rose Cuttings in Whole Pine Tree Substrates
USDA-ARS?s Scientific Manuscript database
Increased demand for alternatives to pine bark (PB) and peat moss (P) has led to extensive research on wood-based substrates, such as processed whole pine trees (WPT), for nursery and greenhouse crop production. Limited information is available on how WPT may perform as a rooting substrate for cutti...
Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge
2014-11-01
Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.
NASA Astrophysics Data System (ADS)
Son Pham, Thanh; Kumara Ranaweera, Aruna; Viet Ngo, Duc; Lee, Jong-Wook
2017-08-01
To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Transformation Theory, Accelerating Frames, and Two Simple Problems
ERIC Educational Resources Information Center
Schmid, G. Bruno
1977-01-01
Presents an operator which transforms quantum functions to solve problems of the stationary state wave functions for a particle and the motion and spreading of a Gaussian wave packet in uniform gravitational fields. (SL)
Experimental study on Statistical Damage Detection of RC Structures based on Wavelet Packet Analysis
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Jayawardhan, M.
2011-07-01
A novel damage indicator based on wavelet packet transform is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single damage are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used for the damage monitoring and assessment of the structure.
Karcher, Nicole R.; Martin, Elizabeth A.; Kerns, John G.
2015-01-01
Both psychosis and anhedonia have been associated to some extent with striatal functioning. The current study examined whether either psychosis risk or social anhedonia was associated with performance on three tasks related to striatal functioning. Psychosis risk participants had extremely elevated Perceptual Aberration/Magical Ideation (PerMag) scores (n=69), with 43% of psychosis risk participants also having semi-structured interview-assessed psychotic-like experiences which further heightens their risk of psychotic disorder (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994). Compared to both extremely elevated Social Anhedonia (n=60) and control (n=68) groups, the PerMag group exhibited poorer performance on two of the striatum-related tasks, the Weather Prediction Task (WPT) and the Learned Irrelevance Paradigm, but not on Finger Tapping. In addition, PerMag participants with psychotic-like experiences were especially impaired on the WPT. Overall, this study arguably provides the first evidence that psychosis risk but not social anhedonia is associated with performance on the WPT, a task thought to be strongly associated with activation in the associative striatum, and also suggests that the WPT might be especially useful as a behavioral measure of psychosis risk. PMID:26075968
Karcher, Nicole R; Martin, Elizabeth A; Kerns, John G
2015-08-01
Both psychosis and anhedonia have been associated to some extent with striatal functioning. The current study examined whether either psychosis risk or social anhedonia was associated with performance on 3 tasks related to striatal functioning. Psychosis risk participants had extremely elevated Perceptual Aberration/Magical Ideation (PerMag) scores (n = 69), with 43% of psychosis risk participants also having semistructured interview-assessed psychotic-like experiences which further heightens their risk of psychotic disorder (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994). Compared with both extremely elevated social anhedonia (n = 60) and control (n = 68) groups, the PerMag group exhibited poorer performance on 2 of the striatum-related tasks, the Weather Prediction Task (WPT) and the Learned Irrelevance Paradigm, but not on Finger Tapping. In addition, PerMag participants with psychotic-like experiences were especially impaired on the WPT. Overall, this study arguably provides the first evidence that psychosis risk but not social anhedonia is associated with performance on the WPT, a task thought to be strongly associated with activation in the associative striatum, and also suggests that the WPT might be especially useful as a behavioral measure of psychosis risk. (c) 2015 APA, all rights reserved).
Barsky, Murray M.; Tucker, Matthew A.; Stickgold, Robert
2015-01-01
During wakefulness the brain creates meaningful relationships between disparate stimuli in ways that escape conscious awareness. Processes active during sleep can strengthen these relationships, leading to more adaptive use of those stimuli when encountered during subsequent wake. Performance on the weather prediction task (WPT), a well-studied measure of implicit probabilistic learning, has been shown to improve significantly following a night of sleep, with stronger initial learning predicting more nocturnal REM sleep. We investigated this relationship further, studying the effect on WPT performance of a daytime nap containing REM sleep. We also added an interference condition after the nap/wake period as an additional probe of memory strength. Our results show that a nap significantly boosts WPT performance, and that this improvement is correlated with the amount of REM sleep obtained during the nap. When interference training is introduced following the nap, however, this REM-sleep benefit vanishes. In contrast, following an equal period of wake, performance is both unchanged from training and unaffected by interference training. Thus, while the true probabilistic relationships between WPT stimuli are strengthened by sleep, these changes are selectively susceptible to the destructive effects of retroactive interference, at least in the short term. PMID:25769506
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
Broadband Microwave Wireless Power Transfer for Weak-Signal and Multipath Environments
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2014-01-01
In this paper, we study the potential benefits of using relatively broadband wireless power transmission WPT strategies in both weak-signal and multipath environments where traditional narrowband strategies can be very inefficient. The paper is primarily a theoretical and analytical treatment of the problem that attempts to derive results that are widely applicable to many different WPT applications, including space solar power SSP.
Characterization and optimization of the magnetron directional amplifier
NASA Astrophysics Data System (ADS)
Hatfield, Michael Craig
Many applications of microwave wireless power transmission (WPT) are dependent upon a high-powered electronically-steerable phased array composed of many radiating modules. The phase output from the high-gain amplifier in each module must be accurately controlled if the beam is to be properly steered. A highly reliable, rugged, and inexpensive design is essential for making WPT applications practical. A conventional microwave oven magnetron may be combined with a ferrite circulator and other external circuitry to create such a system. By converting it into a two-port amplifier, the magnetron is capable of delivering at least 30 dB of power gain while remaining phase-locked to the input signal over a wide frequency range. The use of the magnetron in this manner is referred to as a MDA (Magnetron Directional Amplifier). The MDA may be integrated with an inexpensive slotted waveguide array (SWA) antenna to form the Electronically-Steerable Phased Array Module (ESPAM). The ESPAM provides a building block approach to creating phased arrays for WPT. The size and shape of the phased array may be tailored to satisfy a diverse range of applications. This study provided an in depth examination into the capabilities of the MDA/ESPAM. The basic behavior of the MDA was already understood, as well as its potential applicability to WPT. The primary objective of this effort was to quantify how well the MDA could perform in this capacity. Subordinate tasks included characterizing the MDA behavior in terms of its system inputs, optimizing its performance, performing sensitivity analyses, and identifying operating limitations. A secondary portion of this study examined the suitability of the ESPAM in satisfying system requirements for the solar power satellite (SPS). Supporting tasks included an analysis of SPS requirements, modeling of the SWA antenna, and the demonstration of a simplified phased array constructed of ESPAM elements. The MDA/ESPAM is well suited for use as an amplifier or an element in a WPT phased array, providing over 75% efficiency and a fractional bandwidth exceeding 1.7% at 2.45 GHz. The results of this effort provide the WPT design engineer with tools to predict the MDA's optimum performance and limitations.
Femtosecond optical packet generation by a direct space-to-time pulse shaper.
Leaird, D E; Weiner, A M
1999-06-15
We demonstrate femtosecond operation of a direct space-to-time pulse shaper in which there is direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. We use this apparatus to generate trains of 20 pulses as an ultrafast optical data packet over an approximately 40-ps temporal window.
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Henley, M. W.; Potter, Seth D.; Howell, J.; Mankins, J. C.; Fikes, John C. (Technical Monitor)
2002-01-01
Space Solar Power (SSP). combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper WPT options using radio waves and light waves are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even from the moon. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term. we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth. Power Relay Satellites are also considered as a potential near- to mid-term means to transmit power from Earth to Space and back to distant receiving sites on Earth. This paper briefly considers microwave and laser beaming for an initial Power Relay Satellite system, and concludes that anticipated advancements in laser technology make laser-based concepts more attractive than microwave-based concepts. Social and economic considerations are briefly discussed, and a conceptual description for a laser-based system is offered for illustrative purposes. Continuing technological advances are needed if laser-based systems are to become practical and efficient or near- and far-term applications.
Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui
2017-10-01
Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.
The Auto-Bäcklund transformations for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2017-01-01
In this work, the homogeneous balance method is used to construct Auto-Bäcklund transformation of the Boiti-Leon-Manna-Pempinelli (BLMP) equation. With the aid of the transformations founded in this paper and Maple packet programme, abundant exact and explicit solutions to the BLMP equation are constructed.
Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Prohaska, Robert; Konan, Arnaud
System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles (EVs). This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by NREL called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of chargingmore » locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.« less
Trace gas detection in hyperspectral imagery using the wavelet packet subspace
NASA Astrophysics Data System (ADS)
Salvador, Mark A. Z.
This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-01-01
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500. PMID:27447632
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-07-19
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna's variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
Mei, Henry; Thackston, Kyle A; Bercich, Rebecca A; Jefferys, John G R; Irazoqui, Pedro P
2017-04-01
The goal of this paper is to create a large wireless powering arena for powering small devices implanted in freely behaving rodents. We design a cavity resonator based wireless power transfer (WPT) system and utilize our previously developed optimal impedance matching methodology to achieve effective WPT performance for operating sophisticated implantable devices, made with miniature receive coils (<8 mm in diameter), within a large volume (dimensions: 60.96 cm × 60.96 cm × 30 cm). We provide unique cavity design and construction methods which maintains electromagnetic performance of the cavity while promoting its utility as a large animal husbandry environment. In addition, we develop a biaxial receive resonator system to address device orientation insensitivity within the cavity environment. Functionality is demonstrated with chronic experiments involving rats implanted with our custom designed bioelectric recording device. We demonstrate an average powering fidelity of 93.53% over nine recording sessions across nine weeks, indicating nearly continuous device operation for a freely behaving rat within the large cavity resonator space. We have developed and demonstrated a cavity resonator based WPT system for long term experiments involving freely behaving small animals. This cavity resonator based WPT system offers an effective and simple method for wirelessly powering miniaturized devices implanted in freely moving small animals within the largest space.
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Prohaska, Robert; Konan, Arnaud
System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles. This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by the National Renewable Energy Laboratory called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variablemore » number of charging locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.« less
Analysis of reverse martensitic transformation of prehardened 16XCH steel
NASA Astrophysics Data System (ADS)
Muravyev, Vasily; Frolov, Alexey; Lonchakov, Sergey; Bakhmatov, Pavel
2015-10-01
In the paper the structural evolution of previously tempered 16XCH steel is investigated. The influence of temperature and time conditions of heating on temperature of austenization is revealed and the influence of structural changes on steel properties is defined. The analysis of the obtained results showed an increase of plasticity at the initial stage of reverse martensitic transformation and an increase of plasticity at increased durability. It is experimentally found that reverse transformation of packet and lath martensite into the initial phase (holding for a fraction of a second, temperature 400-450°C) leads to a sharp, more than 2-fold, reduction of strength and increase of plasticity. The effect of increased plasticity under reverse martensitic transformation conditions is observed. The structure of packet and lath martensite is more fine-grained in comparison with initial quenching; the durability and plasticity are much higher. Despite the derived results, the revealed effects of increased plasticity and strength require further exploration to increase the reliability of constructions made of low-alloyed steels.
None
2018-01-16
Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-22
Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less
Wireless Power Transmission Technology State-Of-The-Art
NASA Astrophysics Data System (ADS)
Dickinson, R. M. T.
2002-01-01
This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion devices for microwave ovens are approximately O.O25/W, due to the large manufacturing quantities. Comparable, remanufactured lasers for industrial applications at the 4 kW CW level are of order 25/W. Industrial klystrons cost over 1/W and solid state power amplifiers cost over 3/W. Model tethered helicopters, model airplanes, a smal1 airship and several small rovers have been powered with microwave beams at 2.45, 5.8 and 35 GHz. Smal1 rovers have been powered with laser beams. Two space-to-space microwave power link experiments have been conducted by the Japanese and with Texas A&M assistance in one case. International records for WPT link electric power delivered, range, 1ink efficiency and other salient parameters for both wireless-laser and -microwave power demonstrations win be reviewed. Also, costing models for WPT -system figure- of-merit (FOM) in terms of capital costs, in /MW -km, as a fonction of range and power level are reviewed. Records in Japan. France, Korea, Russia, Canada and the US will be reviewed for various land based WPT demonstrations. SSP applicable elements of technology in fiber and wireless links, cell phones and base stations, aircraft, and spacecraft phased arrays, industrial and scientific klystrons and lasers, military equipment (where information is available in open literature) microwave heating, and other telecommunication activities win be presented, concerning power handling, frequency or wavelength, conversion efficiency, specific mass, specific cost, etc. Previously studied and proposed applications of WPT technology will be presented to show the range of WPT technology being considered for commercial and other applications that will lead to advancing the SOA of WPT technology that win benefit SSP .
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem
2010-07-01
Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.
Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga
2013-10-01
Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Morphology and crystallographic orientation relationship in isothermally transformed Fe–N austenite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Dongling, E-mail: dljiao@scut.edu.cn; Luo, Chengping; Liu, Jiangwen
2014-02-15
The 225 °C isothermal transformation of a high-nitrogen austenite with Fe–2.71 wt.% N was investigated by means of electron microscopy. It was found that the transformation products were composed of ultrafine α-Fe and γ′-Fe{sub 4}N plus retained austenite γ, which were in two types of morphologies, namely, (i) with the retained austenite patches dispersed among the (α-Fe + γ′-Fe{sub 4}N) packets and (ii) with the ultrafine α-Fe and γ/γ′-Fe{sub 4}N laths interwoven with each other within a single bainitic packet. A cube–cube orientation relationship between the γ (austenite) and γ′-Fe{sub 4}N, and a near Greninger–Troiano (G–T) one between the γmore » (austenite) and the bainitic α-ferrite were detected. The morphology, orientation relationship and high hardness (> 1000 HV) of the transformation products indicated that the isothermal transformation of the high nitrogen austenite was analogous to a bainitic one. - Highlights: • Isothermal transformation products consisted of nano-sized α-Fe + γ′ + γ (retained). • The hardness of transformation product exceeded 1000 HV. • The α-Fe and γ/γ′-Fe{sub 4}N kept a near G-T OR in the grain interior.« less
Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media.
Zargham, Meysam; Gulak, P Glenn
2015-04-01
Delivering milliwatts of wireless power at centimeter distances is advantageous to many existing and emerging biomedical applications. It is highly desirable to fully integrate the receiver on a single chip in standard CMOS with no additional post-processing steps or external components. This paper presents a 2 × 2.18 mm(2) on-chip wireless power transfer (WPT) receiver (Rx) coil fabricated in 0.13 μm CMOS. The WPT system utilizes a 14.5 × 14.5 mm(2) transmitter (Tx) coil that is fabricated on a standard FR4 substrate. The on-chip power harvester demonstrates a peak WPT efficiency of -18.47 dB , -20.96 dB and -20.15 dB at 10 mm of separation through air, bovine muscle and 0.2 molar NaCl, respectively. The achieved efficiency enables the delivery of milliwatts of power to application circuits while staying below safe power density and electromagnetic (EM) exposure limits.
A portable wireless power transmission system for video capsule endoscopes.
Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang
2015-01-01
Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-12-16
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-01-01
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
NASA Astrophysics Data System (ADS)
Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.
2017-01-01
Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.
Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions
NASA Astrophysics Data System (ADS)
Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-04-01
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N
2018-04-20
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Local Dynamics of Baroclinic Waves in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.
2010-12-01
In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasaba, Y.; Ishisaka, K.; Kasahara, Y.; Imachi, T.; Yagitani, S.; Kojima, H.; Kurita, S.; Shoji, M.; Hori, T.; Shinbori, A.; Teramoto, M.; Miyoshi, Y.; Nakagawa, T.; Takahashi, N.; Nishimura, Y.; Matsuoka, A.; Tsuchiya, F.; Kumamoto, A.; Nomura, R.
2017-12-01
This paper summarizes the specifications and the evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), which are the key parts of Plasma Wave Experiment (PWE) aboard the Arase satellite, in their initial operations and the beginning phase of the full observations. WPT consists of the two dipole antennas as electric field sensors with 32m tip-to-tip length, with a sphere probe (6 cm diameter) attached at each end of wires (length: 15-m). They are extended orthogonally in the spin plane which is roughly perpendicular to the Sun. It enables the PWE to measure the E-field from DC to 10 MHz. This system is almost compatible to the WPT of the Plasma Wave Investigation (PWI) aboard BepiColombo Mercury Magnetospheric Orbiter, except the material of the spherical probe (ERG: Aluminium alloy, MMO: Titanium-alloy). This paper shows the extended length evaluated by the Lorentz force (spacecraft velocity x B-field) and the antenna impedance as the basic information of the E-field measurement capability of the PWE E-field receivers, with the evaluation for the possible degradation of the probe surface coated by TiAlN as BepiColombo. EFD is the 2-channel low frequency electric receiver as a part of EWO (EFD/WFC/OFA), for the measurement of 2ch electric field in the spin-plane with the sampling rate of 512 Hz (dynamic range: +-200 mV/m, +-3 V/m) and the 4ch spacecraft potential with the sampling rate of 128 Hz (dynamic range: +-100 V), respectively, with the bias control capability fed to the WPT probes. The electric field in DC - 232Hz provides the capability to detect (1) the fundamental information of the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves with their Poynting vectors with the data measured by MGF and PWE/WFC-B connected to PWE/SCM. The spacecraft potential provides the electron density information with UHR frequency. This paper also introduces the data sets and their calibration status.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
Phased Array Focusing for Acoustic Wireless Power Transfer.
Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan
2018-01-01
Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John
2008-01-01
Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth; Henley, Mark; Davis, Dean; Born, Andrew; Howell, Joe; Mankins, John
2008-01-01
Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near-term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 15 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-11-01
An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.
A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-01-01
Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
Coherently Enhanced Wireless Power Transfer.
Krasnok, Alex; Baranov, Denis G; Generalov, Andrey; Li, Sergey; Alù, Andrea
2018-04-06
Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.
Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants.
Mirbozorgi, S Abdollah; Yeon, Pyungwoo; Ghovanloo, Maysam
2017-06-01
This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.
Coherently Enhanced Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea
2018-04-01
Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.
Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foote, Andrew P; Ozpineci, Burak; Chinthavali, Madhu Sudhan
Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then,more » experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.« less
A wirelessly powered microspectrometer for neural probe-pin device
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-12-01
Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
Internal tide transformation across a continental slope off Cape Sines, Portugal
NASA Astrophysics Data System (ADS)
Small, Justin
2002-04-01
During the INTIFANTE 99 experiment in July 1999, observations were made of a prominent internal undular bore off Cape Sines, Portugal. The feature was always present and dominant in a collection of synthetic aperture radar (SAR) images of the area covering the period before, during and after the trial. During the trial, rapid dissemination of SAR data to the survey ship enabled assessment of the progression of the feature, and the consequent planning of a survey of the bore coincident with a new SAR image. Large amplitude internal waves of 50 m amplitude in 250 m water depth, and 40 m in 100 m depth, were observed. The images show that the position of the feature is linked to the phase of the tide, suggesting an internal tide origin. The individual packets of internal waves contain up to seven waves with wavelengths in the range of 500-1500 m, and successive packets are separated by internal tide distances of typically 16-20 km, suggesting phase speeds of 0.35-0.45 m s -1. The internal waves were coherent over crest lengths of between 15 and 70 km, the longer wavefronts being due to the merging of packets. This paper uses the SAR data to detail the transformation of the wave packet as it passes across the continental slope and approaches the coast. The generation sites for the feature are discussed and reasons for its unusually large amplitude are hypothesised. It is concluded that generation at critical slopes of the bathymetry and non-linear interactions are the likely explanations for the large amplitudes.
Time-frequency representation of autoionization dynamics in helium
NASA Astrophysics Data System (ADS)
Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R. J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C. L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L'Huillier, A.; Salières, P.
2018-02-01
Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Jones, Perry T
2014-01-01
While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to themore » energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.« less
Waveform Design for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Clerckx, Bruno; Bayguzina, Ekaterina
2016-12-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.
Crovato, César David Paredes; Schuck, Adalberto
2007-10-01
This paper presents a dysphonic voice classification system using the wavelet packet transform and the best basis algorithm (BBA) as dimensionality reductor and 06 artificial neural networks (ANN) acting as specialist systems. Each ANN was a 03-layer multilayer perceptron with 64 input nodes, 01 output node and in the intermediary layer the number of neurons depends on the related training pathology group. The dysphonic voice database was separated in five pathology groups and one healthy control group. Each ANN was trained and associated with one of the 06 groups, and fed by the best base tree (BBT) nodes' entropy values, using the multiple cross validation (MCV) method and the leave-one-out (LOO) variation technique and success rates obtained were 87.5%, 95.31%, 87.5%, 100%, 96.87% and 89.06% for the groups 01 to 06, respectively.
Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho
2015-06-18
Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
High-efficiency resonant coupled wireless power transfer via tunable impedance matching
NASA Astrophysics Data System (ADS)
Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra
2017-10-01
For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.
Application of wireless power transmission systems in wireless capsule endoscopy: an overview.
Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah
2014-06-19
Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.
ESP`s Tank 42 washwater transfer to the 241-F/H tank farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aponte, C.I.; Lee, E.D.
1997-12-01
As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less
Transportable Applications Environment Plus, Version 5.1
NASA Technical Reports Server (NTRS)
1994-01-01
Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.
Wireless technologies for robotic endoscope in gastrointestinal tract.
Gao, P; Yan, G; Wang, Z; Liu, H
2012-07-01
This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.
Delta function excitation of waves in the earth's ionosphere
NASA Technical Reports Server (NTRS)
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
NASA Astrophysics Data System (ADS)
Li, Qiangguo; Huang, Xuefei; Huang, Weigang
2017-12-01
A multiphase microstructure of bainite, martensite and retained austenite in a 0.3C bainitic steel was obtained by a novel bainite isothermal transformation plus quenching and partitioning (B-QP) process. The correlations between microstructural features and toughness were investigated by electron backscatter diffraction (EBSD), and the results showed that the multiphase microstructure containing approximately 50% bainite exhibits higher strength (1617 MPa), greater elongation (18.6%) and greater impact toughness (103 J) than the full martensite. The EBSD analysis indicated that the multiphase microstructure with a smaller average local misorientation (1.22°) has a lower inner stress concentration possibility and that the first formed bainitic ferrite plates in the multiphase microstructure can refine subsequently generated packets and blocks. The corresponding packet and block average size decrease from 11.9 and 2.3 to 8.4 and 1.6 μm, respectively. A boundary misorientation analysis indicated that the multiphase microstructure has a higher percentage of high-angle boundaries (67.1%) than the full martensite (57.9%) because of the larger numbers and smaller sizes of packets and blocks. The packet boundary obstructs crack propagation more effectively than the block boundary.
Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua
2014-10-01
The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.
Miao Meng; Kiani, Mehdi
2016-08-01
In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.
NASA Astrophysics Data System (ADS)
Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi
2018-01-01
Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.
NASA Technical Reports Server (NTRS)
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
NASA Astrophysics Data System (ADS)
Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.
2017-12-01
The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.
Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain
NASA Astrophysics Data System (ADS)
Nougarou, François; Massicotte, Daniel; Descarreaux, Martin
2012-12-01
The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.
Space Solar Power Technology for Lunar Polar Applications
NASA Technical Reports Server (NTRS)
Henley, Mark W.; Howell, Joe T.
2004-01-01
The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Hartmann, Carsten
2018-07-01
WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.
Wavelet Packet Entropy for Heart Murmurs Classification
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri
2012-01-01
Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...
2017-05-24
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
NASA Astrophysics Data System (ADS)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
NASA Astrophysics Data System (ADS)
Messer, Sheila R.; Agzarian, John; Abbott, Derek
2001-05-01
Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.
Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi
2018-04-01
This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.
Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-10-01
This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.
A preliminary architecture for building communication software from traffic captures
NASA Astrophysics Data System (ADS)
Acosta, Jaime C.; Estrada, Pedro
2017-05-01
Security analysts are tasked with identifying and mitigating network service vulnerabilities. A common problem associated with in-depth testing of network protocols is the availability of software that communicates across disparate protocols. Many times, the software required to communicate with these services is not publicly available. Developing this software is a time-consuming undertaking that requires expertise and understanding of the protocol specification. The work described in this paper aims at developing a software package that is capable of automatically creating communication clients by using packet capture (pcap) and TShark dissectors. Currently, our focus is on simple protocols with fixed fields. The methodologies developed as part of this work will extend to other complex protocols such as the Gateway Load Balancing Protocol (GLBP), Port Aggregation Protocol (PAgP), and Open Shortest Path First (OSPF). Thus far, we have architected a modular pipeline for an automatic traffic-based software generator. We start the transformation of captured network traffic by employing TShark to convert packets into a Packet Details Markup Language (PDML) file. The PDML file contains a parsed, textual, representation of the packet data. Then, we extract field data, types, along with inter and intra-packet dependencies. This information is then utilized to construct an XML file that encompasses the protocol state machine and field vocabulary. Finally, this XML is converted into executable code. Using our methodology, and as a starting point, we have succeeded in automatically generating software that communicates with other hosts using an automatically generated Internet Control Message Protocol (ICMP) client program.
USDA-ARS?s Scientific Manuscript database
Due to low consumer acceptance and the possibility of immature kernels, closed-shell pistachio nuts should be separated from open-shell nuts before reaching the consumer. The feasibility of a system using impact acoustics as a means of classifying closed-shell nuts from open-shell nuts has already b...
NASA Astrophysics Data System (ADS)
Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam
2018-07-01
Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S
2017-06-08
Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds. Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier. The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively. The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.
Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.
2005-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.
A distributed geo-routing algorithm for wireless sensor networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2009-01-01
Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.
NASA Astrophysics Data System (ADS)
Kim, Seong-Whan; Suthaharan, Shan; Lee, Heung-Kyu; Rao, K. R.
2001-01-01
Quality of Service (QoS)-guarantee in real-time communication for multimedia applications is significantly important. An architectural framework for multimedia networks based on substreams or flows is effectively exploited for combining source and channel coding for multimedia data. But the existing frame by frame approach which includes Moving Pictures Expert Group (MPEG) cannot be neglected because it is a standard. In this paper, first, we designed an MPEG transcoder which converts an MPEG coded stream into variable rate packet sequences to be used for our joint source/channel coding (JSCC) scheme. Second, we designed a classification scheme to partition the packet stream into multiple substreams which have their own QoS requirements. Finally, we designed a management (reservation and scheduling) scheme for substreams to support better perceptual video quality such as the bound of end-to-end jitter. We have shown that our JSCC scheme is better than two other two popular techniques by simulation and real video experiments on the TCP/IP environment.
Simulation Analysis of Wireless Power Transmission System for Biomedical Applications
NASA Astrophysics Data System (ADS)
Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping
2018-03-01
In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.
Large-Scale Multiantenna Multisine Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Huang, Yang; Clerckx, Bruno
2017-11-01
Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
Electroencephalographic compression based on modulated filter banks and wavelet transform.
Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando
2011-01-01
Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.
NASA Astrophysics Data System (ADS)
Zhao, Xue-Hui; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Sun, Yan; Guo, Yong-Jiang
2018-04-01
Under investigation in this paper is a (2+1)-dimensional Davey-Stewartson system, which describes the transformation of a wave-packet on water of finite depth. By virtue of the bell polynomials, bilinear form, Bäcklund transformation and Lax pair are got. One- and two-soliton solutions are obtained via the symbolic computation and Hirota method. Velocity and amplitude of the one-soliton solutions are relevant with the wave number. Graphical analysis indicates that soliton shapes keep unchanged and maintain their original directions and amplitudes during the propagation. Elastic overtaking and head-on interactions between the two solitons are described.
Wavelet-based higher-order neural networks for mine detection in thermal IR imagery
NASA Astrophysics Data System (ADS)
Baertlein, Brian A.; Liao, Wen-Jiao
2000-08-01
An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.
Magnetic shielding structure optimization design for wireless power transmission coil
NASA Astrophysics Data System (ADS)
Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui
2017-09-01
In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.
NASA Astrophysics Data System (ADS)
Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.
2018-03-01
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.
Forsyth, Jennifer K.; Bachman, Peter; Mathalon, Daniel H.; Roach, Brian J.; Asarnow, Robert F.
2015-01-01
Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmenting N-methyl-d-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using d-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and a n-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. The n-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg; n = 32) or placebo (n = 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on the n-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers. PMID:26621715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence J.
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less
NASA Astrophysics Data System (ADS)
Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.
2014-10-01
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Meng, Miao; Kiani, Mehdi
2017-02-01
Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (R L ) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (f c ) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic f c s is found based on the Rx thickness constrain. For a chosen f c within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different f c s to find the optimal f c and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm 3 implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at f c of 1.8 MHz was achieved for R L of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm 3 piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at f c of 1.1 MHz for R L of 2.5 [Formula: see text] at [Formula: see text], respectively.
Micro-intestinal robot with wireless power transmission: design, analysis and experiment.
Shi, Yu; Yan, Guozheng; Chen, Wenwen; Zhu, Bingquan
2015-11-01
Video capsule endoscopy is a useful tool for noninvasive intestinal detection, but it is not capable of active movement; wireless power is an effective solution to this problem. The research in this paper consists of two parts: the mechanical structure which enables the robot to move smoothly inside the intestinal tract, and the wireless power supply which ensures efficiency. First, an intestinal robot with leg architectures was developed based on the Archimedes spiral, which mimics the movement of an inchworm. The spiral legs were capable of unfolding to an angle of approximately 155°, which guaranteed stability of clamping, consistency of surface pressure, and avoided the risk of puncturing the intestinal tract. Secondly, the necessary power to operate the robot was far beyond the capacity of button batteries, so a wireless power transmission (WPT) platform was developed. The design of the platform focused on power transfer efficiency and frequency stability. In addition, the safety of human tissue in the alternating electromagnetic field was also taken into consideration. Finally, the assembled robot was tested and verified with the use of the WPT platform. In the isolated intestine, the robot system successfully traveled along the intestine with an average speed of 23 mm per minute. The obtained videos displayed a resolution of 320 × 240 and a transmission rate of 30 frames per second. The WPT platform supplied up to 500 mW of energy to the robot, and achieved a power transfer efficiency of 12%. It has been experimentally verified that the intestinal robot is safe and effective as an endoscopy tool, for which wireless power is feasible. Proposals for further improving the robot and wireless power supply are provided later in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.
Ibrahim, Ahmed; Kiani, Mehdi
2016-12-01
Power transmission efficiency (PTE) has been the key parameter for wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. It has been suggested that for mm-sized implants increasing the power carrier frequency (f p ) of the WPT link to hundreds of MHz improves PTE. However, increasing f p significantly reduces the maximum allowable power that can be transmitted under the specific absorption rate (SAR) constraints. This paper presents a new figure-of-merit (FoM) and a design methodology for optimal WPT to mm-sized implants via inductive coupling by striking a balance between PTE and maximum delivered power under SAR constraints (P L,SAR ). First, the optimal mm-sized receiver (Rx) coil geometry is identified for a wide range of f p to maximize the Rx coil quality factor (Q). Secondly, the optimal transmitter (Tx) coil geometry and f p are found to maximize the proposed FoM under a low-loss Rx matched-load condition. Finally, proper Tx coil and tissue spacing is identified based on FoM at the optimal f p . We demonstrate that f p in order of tens of MHz still offer higher P L,SAR and FoM, which is key in applications that demand high power such as optogenetics. An inductive link to power a 1 mm 3 implant was designed based on our FoM and verified through full-wave electromagnetic field simulations and measurements using de-embedding method. In our measurements, an Rx coil with 1 mm diameter, located 10 mm inside the tissue, achieved PTE and P L,SAR of 1.4% and 2.2 mW at f p of 20 MHz, respectively.
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
Robertson, Michelle M; Huang, Yueng Hsiang; Lee, Jin
2017-07-01
Computer use and its association with musculoskeletal and visual symptoms is an escalating concern. Organizations are shifting to a more proactive injury prevention perspective. Accordingly, a macroergonomics intervention consisting of flexible workplace design and office ergonomics training was designed to examine the effects on worker's computing behaviors, postures, and musculoskeletal discomfort, and their relationship to psychosocial factors. Participants were assigned to either group: 1) no-intervention control 2) flexible Workplace-only (WP-only), and 3) flexible Workplace + Training (WP+T). Observational findings indicate both intervention groups experienced positive, significant changes in improved workstation arrangements and computing postures, with the WP+T intervention group exhibiting a higher, significant change of behavioral translation. Also, significant, positive relationships between observed postures and musculoskeletal discomfort/pain were found. The intervention effect was stronger when management was responsive to workers' ergonomics needs. This study suggests that a macroergonomics intervention can produce beneficial effects for office and computer workers and organizations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kelmendi, Benjamin; Adams, Thomas; Jakubovski, Ewgeni; Hawkins, Keith A.; Coric, Vladimir; Pittenger, Christopher
2016-01-01
Deficits in implicit learning, a process by which knowledge is acquired accretively through practice independent of conscious awareness, have been implicated in Obsessive-Compulsive Disorder (OCD). The weather-prediction task (WPT) was used to assess implicit learning in 26 unmedicated patients with OCD and 23 healthy controls. An additional analysis compared these two groups with 25 medicated patients with OCD. In the comparison of unmedicated patients with healthy controls there was a subtle but statistically significant group-by-block interaction. Patients with OCD showed slower improvement in performance during the middle phase of learning. In a three-group comparison, there was no main effect of group; in post-hoc tests, medicated patients with OCD differed from unmedicated patients and were not different from healthy controls. Unmedicated patients with OCD have a subtle deficit in implicit learning in the WPT. This may be mitigated by pharmacotherapy, although prospective studies would be required to confirm this conclusion. PMID:27134820
AmeriFlux US-WPT Winous Point North Marsh
Chen, Jiquan [University of Toledo / Michigan State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-WPT Winous Point North Marsh. Site Description - The marsh site has been owned by the Winous Point Shooting Club since 1856 and has been managed by wildlife biologists since 1946. The hydrology of the marsh is relatively isolated by the surrounding dikes and drainages and only receives drainage from nearby croplands through three connecting ditches. Since 2001, the marsh has been managed to maintain year-round inundation with the lowest water levels in September. Within the 0–250 m fetch of the tower, the marsh comprises 42.9% of floating-leaved vegetation, 52.7% of emergent vegetation, and 4.4% of dike and upland during the growing season. Dominant emergent plants include narrow-leaved cattail (Typha angustifolia), rose mallow (Hibiscus moscheutos), and bur reed (Sparganium americanum). Common floating-leaved species are water lily (Nymphaea odorata) and American lotus (Nelumbo lutea) with foliage usually covering the water surface from late May to early October.
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Wang, X.
1992-01-01
During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.
Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration.
Leaird, D E; Weiner, A M
2004-07-01
We demonstrate femtosecond operation of an integrated-optic direct space-to-time pulse shaper for which there is a direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. The apparatus is used to generate trains of more than 30 pulses as an ultrafast optical data packet over approximately an 80-ps temporal window.
Scattering Matrix Elements for the Nonadiabatic Collision
2010-12-01
orthogonality relationship expressed in (77). This technique, known as the Channel Packet Method (CPM), is laid out by Weeks and Tannor [2...time and energy are Fourier transform pairs, and share the same relationship as the coordinate/momentum pairs: max min 2E t t π ∆ = − (99) As...elements, will exibit ringing. Selection of an inappropriatly large time step introduces an erroneous phase shift in the correlation funtion . This
Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients
NASA Astrophysics Data System (ADS)
Wang, Dong; Tsui, Kwok-Leung
2017-05-01
Thanks to some recent research works, dynamic Bayesian wavelet transform as new methodology for extraction of repetitive transients is proposed in this short communication to reveal fault signatures hidden in rotating machine. The main idea of the dynamic Bayesian wavelet transform is to iteratively estimate posterior parameters of wavelet transform via artificial observations and dynamic Bayesian inference. First, a prior wavelet parameter distribution can be established by one of many fast detection algorithms, such as the fast kurtogram, the improved kurtogram, the enhanced kurtogram, the sparsogram, the infogram, continuous wavelet transform, discrete wavelet transform, wavelet packets, multiwavelets, empirical wavelet transform, empirical mode decomposition, local mean decomposition, etc.. Second, artificial observations can be constructed based on one of many metrics, such as kurtosis, the sparsity measurement, entropy, approximate entropy, the smoothness index, a synthesized criterion, etc., which are able to quantify repetitive transients. Finally, given artificial observations, the prior wavelet parameter distribution can be posteriorly updated over iterations by using dynamic Bayesian inference. More importantly, the proposed new methodology can be extended to establish the optimal parameters required by many other signal processing methods for extraction of repetitive transients.
Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.
Cheng, Ching-Hsue; Liu, Wei-Xiang
2018-05-28
Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.
78 FR 13084 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
..., WPT LLC, and Westlake Polymers LLC (collectively ``Defendants'') for civil penalties and injunctive... General, Environment and Natural Resources Division, and should refer to United States v. Westlake... Section Chief, Environmental Enforcement Section, Environment and Natural Resources Division. [FR Doc...
Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C.; Campbell, Steven L.; Seiber, Larry Eugene
Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazardsmore » in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project, ORNL and Toyota TEMA worked closely on the vehicle integration plans, compatibility, and the interoperability of the wireless charging technology developed by ORNL for the vehicles manufactured by Toyota. These vehicles include a Toyota Prius Plug-in Hybrid electric vehicle, a Scion iQ electric vehicle, and two Toyota RAV4 electric vehicles. The research include not only the hardware integration but also the controls and communication systems development to control and automate the charging process for these vehicles by utilizing a feedback channel from vehicle to the stationary unit for power regulation.« less
2013-06-01
of the ATCIS in the NetSPIN Name Main functions Terminal Functions as the terminal that generates traffics MFE (Multi-Function accessing...generates traffics : MFE Function to transform messages of SST into TCP liP packets (Multi-Function accessing Equipment) Termmal PPP Functions of the...center Operation battalion DMT Computer shelter DLP Operation center MFE DMTTerminal Command post of a corps Brigade communication Operation
Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.
Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan
2018-01-01
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.
Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain
Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan
2018-01-01
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Packet Fragmentation and Reassembly in Molecular Communication.
Furubayashi, Taro; Nakano, Tadashi; Eckford, Andrew; Okaie, Yutaka; Yomo, Tetsuya
2016-04-01
This paper describes packet fragmentation and reassembly to achieve reliable molecular communication among bionanomachines. In the molecular communication described in this paper, a sender bionanomachine performs packet fragmentation, dividing a large molecular message into smaller pieces and embedding into smaller molecular packets, so that molecular packets have higher diffusivity to reach the receiver bionanomachine. The receiver bionanomachine then performs packet reassembly to retrieve the original molecular message from a set of molecular packets that it receives. To examine the effect of packet fragmentation and reassembly, we develop analytical models and conduct numerical experiments. Numerical results show that packet fragmentation and reassembly can improve the message delivery performance. Numerical results also indicate that packet fragmentation and reassembly may degrade the performance in the presence of drift in the environment.
A novel lost packets recovery scheme based on visual secret sharing
NASA Astrophysics Data System (ADS)
Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao
2017-08-01
In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).
VLSI Implementation of Digital Fourier Transforms.
1982-11-01
If we use this lemna and the identities (29) and (30) to expand (34). we arrive at ",)(l., , )BR l - ) • • , ,, - - , (36) :.:"s "’" n -( 01)/(L...moving potential wells, that travel along the surface of the silicon crystal. Information is contained as a packet of minority carriers in these moving...drain areas (figure 29). Charge coupled devices on the other hand move minority carriers through lightly doped substrate regions close to the surface. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Dong; Li, Shaohong; Li, Jun
Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modesmore » for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.« less
30 CFR 250.1167 - What information must I submit with forms and for approvals?
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas... through 6: WPT MMS-126 (2 copies) SRI MMS-127 (2 copies) Gas cap production Downhole commingling Reservoir... well penetrating the reservoirs, highlighting subject wells; reservoir boundaries; and original and...
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-09-01
In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.
Evaluation of nonuniform field exposures with coupling factors.
Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo
2015-10-21
In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.
Wagshal, Dana; Knowlton, Barbara Jean; Suthana, Nanthia Ananda; Cohen, Jessica Rachel; Poldrack, Russel Alan; Bookheimer, Susan Yost; Bilder, Robert Martin; Asarnow, Robert Franklin
2014-09-01
Patients with schizophrenia perform poorly on cognitive skill learning tasks. This study is the first to investigate the neural basis of impairment in cognitive skill learning in first-degree adolescent relatives of patients with schizophrenia. We used functional magnetic resonance imaging to compare activation in 16 adolescent siblings of patients with childhood-onset schizophrenia (COS) and 45 adolescent controls to determine whether impaired cognitive skill learning in individuals with genetic risk for schizophrenia was associated with specific patterns of neural activation. The siblings of patients with COS were severely impaired on the Weather Prediction Task (WPT) and showed a relative deactivation in frontal regions and in the striatum after extensive training on the WPT compared with controls. These differences were not accounted for by performance differences in the 2 groups. The results suggest that corticostriatal dysfunction may be part of the liability for schizophrenia. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Osborne, A. R.
2014-01-01
Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.
NASA Astrophysics Data System (ADS)
Cummings, Patrick
We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.
NASA Astrophysics Data System (ADS)
Walker, David Lee
1999-12-01
This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
NASA Astrophysics Data System (ADS)
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and spiral topologies or 3-D structures, lower the operating frequency of SCMR systems, thereby reducing their size. Finally, SCMR systems are discussed and designed for various applications, such as biomedical devices and simultaneous powering of multiple devices.
Coding and transmission of subband coded images on the Internet
NASA Astrophysics Data System (ADS)
Wah, Benjamin W.; Su, Xiao
2001-09-01
Subband-coded images can be transmitted in the Internet using either the TCP or the UDP protocol. Delivery by TCP gives superior decoding quality but with very long delays when the network is unreliable, whereas delivery by UDP has negligible delays but with degraded quality when packets are lost. Although images are delivered currently over the Internet by TCP, we study in this paper the use of UDP to deliver multi-description reconstruction-based subband-coded images. First, in order to facilitate recovery from UDP packet losses, we propose a joint sender-receiver approach for designing optimized reconstruction-based subband transform (ORB-ST) in multi-description coding (MDC). Second, we carefully evaluate the delay-quality trade-offs between the TCP delivery of SDC images and the UDP and combined TCP/UDP delivery of MDC images. Experimental results show that our proposed ORB-ST performs well in real Internet tests, and UDP and combined TCP/UDP delivery of MDC images provide a range of attractive alternatives to TCP delivery.
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini
2011-01-01
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.
Method and Apparatus for Processing UDP Data Packets
NASA Technical Reports Server (NTRS)
Murphy, Brandon M. (Inventor)
2017-01-01
A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.
Packet flow monitoring tool and method
Thiede, David R [Richland, WA
2009-07-14
A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.
I/O routing in a multidimensional torus network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
2017-02-07
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
I/O routing in a multidimensional torus network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destinationmore » address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.« less
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
NASA Astrophysics Data System (ADS)
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys
NASA Astrophysics Data System (ADS)
Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.
2016-01-01
We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.
Random access with adaptive packet aggregation in LTE/LTE-A.
Zhou, Kaijie; Nikaein, Navid
While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.
Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1983-01-01
Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.
Error recovery to enable error-free message transfer between nodes of a computer network
Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.
2016-01-26
An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.
Concerning the Spatial Heterodyne Spectrometer
Lenzner, Matthias; Diels, Jean -Claude
2016-01-22
A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less
Evidence for four- and three-wave interactions in solar type III radio emissions
NASA Astrophysics Data System (ADS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2013-08-01
The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1) the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2) the coalescence of the oppositely propagating up- and down-shifted daughter Langmuir waves excited by the OTSI probably is the emission mechanism of the second harmonic radiation, and (3) the Langmuir collapse follows the route of OTSI in some of the type III radio bursts.
A multi-ring optical packet and circuit integrated network with optical buffering.
Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya
2012-12-17
We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.
Speech transport for packet telephony and voice over IP
NASA Astrophysics Data System (ADS)
Baker, Maurice R.
1999-11-01
Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.
Threatened and Endangered Species: Tour Packet.
ERIC Educational Resources Information Center
Coats, Victoria; Samia, Cory
This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…
Development of optical packet and circuit integrated ring network testbed.
Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya
2011-12-12
We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Short Range Wireless Power Transfer (WPT) for UAV/UAS Battery Charging - Phase 1
2014-12-01
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) Department of Electrical and Computer Engineering 8...Research Computer Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The...battery charging, spacecraft recharging and station keeping, and direct propulsion of UAVs and hovering airships . The client antenna is usually of low
NASA Astrophysics Data System (ADS)
Chung, Y. D.; Kim, D. W.; Lee, C. Y.
2017-07-01
This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method.
Tseng, Angela; Zhao, Yanyun
2013-05-01
Wine grape pomace (WGP) as a source of antioxidant dietary fibre (ADF) was fortified in yogurt (Y), Italian (I) and Thousand Island (T) salad dressings. During the 3 weeks of storage at 4 °C, viscosity and pH of WGP-Y increased and decreased, respectively, but syneresis and lactic acid percentage of WGP-Y and pH of WGP-I and WGP-T were stable. Adding WGP resulted in 35-65% reduction of peroxide values in all samples. Dried whole pomace powder (WP) fortified products had dietary fibre content of 0.94-3.6% (w/w product), mainly insoluble fractions. Total phenolic content and DPPH radical scavenging activity were 958-1340 mg GAE/kg product and 710-936 mg AAE/kg product, respectively. The highest ADF was obtained in 3% WP-Y, 1% WP-I and 2% WP-T, while 1% WP-Y, 0.5% WP-I and 1% WP-T were mostly liked by consumers based on the sensory study. Study demonstrated that WGP may be used as a functional food ingredient for promoting human health and extending shelf-life of food products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai
2014-07-07
In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, A.; Markel, T.; Burton, E.
Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by thesemore » seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.« less
NASA Astrophysics Data System (ADS)
Chen, Xi Lin; De Santis, Valerio; Esai Umenei, Aghuinyue
2014-07-01
In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.
Photonic integrated circuit optical buffer for packet-switched networks.
Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E
2009-04-13
A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.
A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Seiber, Larry Eugene; White, Cliff P
Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehiclemore » side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.« less
Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches
NASA Astrophysics Data System (ADS)
Jeong, Han-You; Seo, Seung-Woo
2000-09-01
The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.
Wind Turbines Adaptation to the Variability of the Wind Field
NASA Astrophysics Data System (ADS)
Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia
2010-05-01
WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.
Discrete transparent boundary conditions for the mixed KDV-BBM equation
NASA Astrophysics Data System (ADS)
Besse, Christophe; Noble, Pascal; Sanchez, David
2017-09-01
In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) and Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.
SpaceWire Protocol ID: What Does It Mean To You?
NASA Technical Reports Server (NTRS)
Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parks, Steve
2006-01-01
Spacewire is becoming a popular solution for satellite high-speed data buses because it is a simple standard that provides great flexibility for a wide range of system requirements. It is simple in packet format and protocol, allowing users to easily tailor their implementation for their specific application. Some of the attractive aspects of Spacewire that make it easy to implement also make it hard for future reuse. Protocol reuse is difficult because Spacewire does not have a defined mechanism to communicate with the higher layers of the protocol stack. This has forced users of Spacewire to define unique packet formats and define how these packets are to be processed. Each mission writes their own Interface Control Document (ICD) and tailors Spacewire for their specific requirements making reuse difficult. Part of the reason for this habit may be because engineers typically optimize designs for their own requirements in the absence of a standard. This is an inefficient use of project resources and costs more to develop missions. A new packet format for Spacewire has been defined as a solution for this problem. This new packet format is a compliment to the Spacewire standard that will support protocol development upon Spacewire. The new packet definition does not replace the current packet structure, i.e., does not make the standard obsolete, but merely extends the standard for those who want to develop protocols over Spacewire. The Spacewire packet is defined with the first part being the Destination Address, which may be one or more bytes. This is followed by the packet cargo, which is user defined. The cargo is truncated with an End-Of-Packet (EOP) marker. This packet structure offers low packet overhead and allows the user to define how the contents are to be formatted. It also provides for many different addressing schemes, which provide flexibility in the system. This packet flexibility is typically an attractive part of the Spacewire. The new extended packet format adds one new field to the packet that greatly enhances the capability of Spacewire. This new field called the Protocol Identifier (ID) is used to identify the packet contents and the associated processing for the packet. This feature along with the restriction in the packet format that uses the Protocol ID, allows a deterministic method of decoding packets that was not before possible. The first part of the packet is still the Destination Address, which still conforms to the original standard but with one restriction. The restriction is that the first byte seen at the destination by the user needs to be a logical address, independent of the addressing scheme used. The second field is defined as the Protocol ID, which is usually one byte in length. The packet cargo (user defined) follows the Protocol ID. After the packet cargo is the EOP, which defines the end of packet. The value of the Protocol ID is assigned by the Spacewire working group and the protocol description published for others to use. The development of Protocols for Spacewire is currently the area of greatest activity by the Spacewire working group. The first protocol definition by the working group has been completed and is now in the process of formal standardization. There are many other protocols in development for missions that have not yet received formal Protocol ID assignment, but even if the protocols are not formally assigned a value, this effort will provide synergism for future developments.
Wireless Avionics Packet to Support Fault Tolerance for Flight Applications
NASA Technical Reports Server (NTRS)
Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad
2009-01-01
In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit.
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan
2011-09-01
In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.
Priority arbitration mechanism
Garmire, Derrick L [Kingston, NY; Herring, Jay R [Poughkeepsie, NY; Stunkel, Craig B [Bethel, CT
2007-03-06
A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Wiese, U.-J.
2009-12-01
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
Interconnecting network for switching data packets and method for switching data packets
Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian
2010-05-25
The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).
2005-09-01
This research explores the need for a high throughput, high speed network for use in a network centric wartime environment and how commercial...Automated Digital Network System (ADNS). This research explores the need for a high-throughput, high-speed network for use in a network centric ...1 C. DEPARTMENT OF DEFENSE (DOD) DESIRED END STATE ..............2 1. DOD Transformation to Network Centric Warfare (NCW) Operations
NASA Astrophysics Data System (ADS)
Cizek, P.; Wynne, B. P.; Davies, C. H. J.; Hodgson, P. D.
2015-01-01
The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed "acicular ferrite") produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.
ERIC Educational Resources Information Center
Paris, Kathleen A.
The Wisconsin Workplace Partnership Training (WPT) program, which provides job-specific basic skills education to employees at their worksites, is a cooperative effort between the state's board of education, labor unions, and manufacturers association. At the time of the evaluation of the its third year, the program was operating at 23 sites…
Atmospheric turbulence effects on the performance of the laser wireless power transfer system
NASA Astrophysics Data System (ADS)
Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.
2017-02-01
Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.
NASA Astrophysics Data System (ADS)
Mahmud, Mohammad Hazzaz
There is a developing enthusiasm for electric vehicle (EV) innovations as a result of their lessened fuel utilization and greenhouse emission especially through wireless power transfer (WPT) due to the convenience and continuous charging. Numerous research initiatives target on wireless power transfer (WPT) system in the attempt to improve the transportation for last few decades. But several problems like less efficiency, high frequency, long distance energy transfer etc. were always been occupied by the wireless power transfer system. Two ideas have been developed in this research to resolve the two main problems of WPT for electric vehicles which are low efficiency due to large distance between the two coils and slow charging time. As the first phase of study, a proper model, including the coils and cores were required. The selected model was a finite element (FE) modeling. Another part of this study was to create a modified cement that will act as a semi-conductive material for covering the transmitting antenna area. A high frequency wide band gap switch will be used for transferring high amount of power in a very short time. More over this research also proves that, if cores could be added with the transmitter coil and receiver coil then the output efficiency dramatically increased comparing with without core model of transmitter and receiver. The wireless charging is not restricted to parking lot, since it's planned to be embedded into parking space concrete or roadway concrete or asphalt. Therefore, it can also be installed at junctions (behind red lights), stop signs or any spot that the vehicle might stop for several moments. This technology will become more feasible, if the charging time decreases. Therefore, a new model of for wireless power transfer has been proposed in this study which has shown significant improvement. Another motive of this study was to improve the conductivity and permeability in such a way that the medium that is on the top of the transmitting antenna can transfer the power efficiently to the receiving antenna. The best efficiency of 83% was achieved by using this model and the medium.
Estimation of network path segment delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Kathleen Marie
A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less
Interface Supports Lightweight Subsystem Routing for Flight Applications
NASA Technical Reports Server (NTRS)
Lux, James P.; Block, Gary L.; Ahmad, Mohammad; Whitaker, William D.; Dillon, James W.
2010-01-01
A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.
106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11
2017-07-01
11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... approved. ANDA applicants do not have to repeat the extensive clinical testing otherwise necessary to gain... mEq/packet and 20 mEq/packet, is the subject of NDA 19-647, held by Nova-K LLC, and initially...
Packet loss mitigation for biomedical signals in healthcare telemetry.
Garudadri, Harinath; Baheti, Pawan K
2009-01-01
In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.
NASA Astrophysics Data System (ADS)
Isasti, N.; Jorge-Badiola, D.; Taheri, M. L.; López, B.; Uranga, P.
2011-12-01
Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.
Dolphin "packet" use during long-range echolocation tasks.
Finneran, James J
2013-03-01
When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Ludovic; Vaeck, Nathalie; Justum, Yves
2015-04-07
Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd{sup +} ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödingermore » equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip
2013-01-29
A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com
2016-03-15
The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less
Deep Packet/Flow Analysis using GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Qian; Wu, Wenji; DeMar, Phil
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less
Trade Related Reading Packets for Disabled Readers.
ERIC Educational Resources Information Center
Davis, Beverly; Woodruff, Nancy S.
Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…
Standard services for the capture, processing, and distribution of packetized telemetry data
NASA Technical Reports Server (NTRS)
Stallings, William H.
1989-01-01
Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.
2016-07-27
ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society
Transmit coil design for Wireless Power Transfer for medical implants.
Lemdiasov, Rosti; Venkatasubramanian, Arun
2017-07-01
A new design approach for the design of transmit coils for Wireless Power Transfer (WPT) is presented. The theoretical formulation involves a figure of merit that has to be maximized to solve for the surface current. Numerical predictions and comparisons with practical measurements for the coil parameters (inductance. resistance) underscore the success of this approach in terms of achieving strong coupling with a receive coil while maintaining low resistance.
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
Gonzalez, Raul; Jacobus, Joanna; Amatya, Anup K.; Quartana, Phillip J.; Vassileva, Jasmin; Martin, Eileen M.
2008-01-01
HIV and drugs of abuse affect common neural systems underlying procedural memory, including the striatum. We compared performance of 48 HIV seropositive (HIV+) and 48 HIV seronegative (HIV−) participants with history of cocaine and/or heroin dependence across multiple Trial Blocks of three procedural learning (PL) tasks: Rotary Pursuit (RPT), Mirror Star Tracing (MST), and Weather Prediction (WPT). Groups were well matched on demographic, psychiatric, and substance use parameters, and all participants were verified abstinent from drugs. Mixed model ANOVAs revealed that the HIV+ group performed more poorly across all tasks, with a significant main effect of HIV serostatus observed on the MST and a trend toward significance obtained for the RPT. No significant differences were observed on the WPT. Both groups demonstrated significant improvements in performance across all three PL tasks. Importantly, no significant Serostatus X Trial Block interactions were observed on any task. Thus, the HIV+ group tended to perform worse than the HIV− group across all trial blocks of PL tasks with motor demands, but showed no differences in their rate of improvement across all tasks. These findings are consistent with HIV-associated deficits in complex motor skills, but not in procedural learning. PMID:18999351
NASA Astrophysics Data System (ADS)
Gao, Pengfei; Tian, Zijian; Wang, Xuqi; Wu, Jun; Gui, Weifeng
2018-03-01
Wireless power transfer (WPT) via coupled magnetic resonance is a promising technology to be applied in many fields. In general, there will be a radial gap in practical application, and some special application environments need to limit the radius of the coils. Therefore, in this paper, considering the comprehensive analysis of the radial gap and the radius of the coils, the concept of the ratio of radial gap to the radius of the coils was proposed. Based on the circuit theory, the formula between the ratio and transmission efficiency of WPT was deduced, and the effects of the ratio on the transmission efficiency were studied respectively at different axial distances. Simulation experiments were carried out and the results not only demonstrate the influence law of the ratio on transmission efficiency, but also validate the value of the ratio which the axial distance has the greatest effect on the transmission efficiency. Besides, the results shows the relationship between the effect of the ratio on the efficiency and the effect of the axial distance on the efficiency. The experimental results show that the theoretical analysis is correct, thus providing an useful theoretical reference for the design and further research on the wireless power transfer system in complicated environment.
Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan
2016-01-01
It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.
Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan
2016-01-01
It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning. PMID:27445958
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
Retrieval of charge mobility from apparent charge packet movements in LDPE thin films
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2017-03-01
The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.
Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno
Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less
Jasemian, Yousef; Arendt-Nielsen, Lars
2005-01-01
A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.
Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Experimental evaluation of the impact of packet capturing tools for web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee
Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study
NASA Astrophysics Data System (ADS)
Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak
2017-04-01
In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.
Sinha, Debdeep; Ghosh, Pijush K
2015-04-01
A class of nonlocal nonlinear Schrödinger equations (NLSEs) is considered in an external potential with a space-time modulated coefficient of the nonlinear interaction term as well as confining and/or loss-gain terms. This is a generalization of a recently introduced integrable nonlocal NLSE with self-induced potential that is parity-time-symmetric in the corresponding stationary problem. Exact soliton solutions are obtained for the inhomogeneous and/or nonautonomous nonlocal NLSE by using similarity transformation, and the method is illustrated with a few examples. It is found that only those transformations are allowed for which the transformed spatial coordinate is odd under the parity transformation of the original one. It is shown that the nonlocal NLSE without the external potential and a (d+1)-dimensional generalization of it admits all the symmetries of the (d+1)-dimensional Schrödinger group. The conserved Noether charges associated with the time translation, dilatation, and special conformal transformation are shown to be real-valued in spite of being non-Hermitian. Finally, the dynamics of different moments are studied with an exact description of the time evolution of the "pseudowidth" of the wave packet for the special case in which the system admits a O(2,1) conformal symmetry.
Children's Literature with a Science Emphasis: Twenty Teacher-Developed K-8 Activity Packets.
ERIC Educational Resources Information Center
Butler, Malcolm B.
This document features 10 science activity packets developed for elementary students by science teachers in a graduate seminar. The activity packets were designed to cover existing commercial children's books on specific content areas. The 10 activity packets are: (1) "Bringing the Rain to Kapiti Plain," which explains the water cycle;…
[KIND Worksheet Packet: Wild Animals (Junior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
[KIND Worksheet Packet: Wild Animals (Senior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…
Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…
106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink
2017-07-31
Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16...packet is defined as a free -running 12-bit counter. The PT test counter packet shall consist of one 12-bit word and shall be encoded as one 24-bit
The Effect of Background Traffic Packet Size to VoIP Speech Quality
NASA Astrophysics Data System (ADS)
Triyason, Tuul; Kanthamanon, Prasert; Warasup, Kittipong; Yamsaengsung, Siam; Supattatham, Montri
VoIP is gaining acceptance into the corporate world especially, in small and medium sized business that want to save cost for gaining advantage over their competitors. The good voice quality is one of challenging task in deployment plan because VoIP voice quality was affected by packet loss and jitter delay. In this paper, we study the effect of background traffic packet size to voice quality. The background traffic was generated by Bricks software and the speech quality was assessed by MOS. The obtained result shows an interesting relationship between the voice quality and the number of TCP packets and their size. With the same amount of data smaller packets affect the voice's quality more than the larger packet.
NASA Astrophysics Data System (ADS)
Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.
2016-04-01
The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50- z Ga z (0 ⩽ z ⩽ 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature-concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2 M) martensite, and the 10 M and 14 M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011} B2. Martensite crystals are twinned along one of the 24 24{ {011} }{< {01bar 1} rangle _{B2}} "soft" twinning shear systems, which provides coherent accommodation of the martensitic transformation-induced elastic stresses.
A Wavelet Packet Transform Inspired Method of Neutron-Gamma Discrimination
NASA Astrophysics Data System (ADS)
Shippen, David I.; Joyce, Malcolm J.; Aspinall, Michael D.
2010-10-01
A Simplified Digital Charge Collection (SDCC) method of discrimination between neutron and gamma pulses in an organic scintillator is presented and compared to the Pulse Gradient Analysis (PGA) discrimination method. Data used in this research were gathered from events arising from the 7Li(p,n)7Be reaction detected by an EJ-301 organic liquid scintillator recorded with a fast digital oscilloscope. Time-of-Flight (TOF) data were also recorded and used as a second means of identification. The SDCC method is found to improve on the figure of merit (FOM) given by PGA method at the equivalent sampling rate.
Experience with the EURECA Packet Telemetry and Packet Telecommand system
NASA Technical Reports Server (NTRS)
Sorensen, Erik Mose; Ferri, Paolo
1994-01-01
The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is seventh in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet, one explaining the differences between periodic and merit pay increases and between flat amount and…
A Practical Terrestrial Packet Radio Network.
1983-11-01
12 Howard Frank, Israel Gitman and Richard Van Slyke , "Packet Radio System--Network Considerations," AFIPS Conference Proceedings, Anaheim, 1975...p, 1396. 33 Howard Frank, Israel Gitman and Richard Van Slyke, "Packet Radio System--Network Considerations," AFIPS...44, 1975 NCC, Anaheim, pp. 233-242. J 149 I : Frank, Howard, Israel Gitman and Richard Van Slyke, "Packet Radio System — Network
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is fifth in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet: the first describing the various ways of being paid: salary (including overtime and compensatory time),…
Precise Interval Timer for Software Defined Radio
NASA Technical Reports Server (NTRS)
Pozhidaev, Aleksey (Inventor)
2014-01-01
A precise digital fractional interval timer for software defined radios which vary their waveform on a packet-by-packet basis. The timer allows for variable length in the preamble of the RF packet and allows to adjust boundaries of the TDMA (Time Division Multiple Access) Slots of the receiver of an SDR based on the reception of the RF packet of interest.
NASA Astrophysics Data System (ADS)
Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas
2017-09-01
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.
NASA Astrophysics Data System (ADS)
Moayedi, Maryam; Foo, Yung Kuan; Chai Soh, Yeng
2011-03-01
The minimum-variance filtering problem in networked control systems, where both random measurement transmission delays and packet dropouts may occur, is investigated in this article. Instead of following the many existing results that solve the problem by using probabilistic approaches based on the probabilities of the uncertainties occurring between the sensor and the filter, we propose a non-probabilistic approach by time-stamping the measurement packets. Both single-measurement and multiple measurement packets are studied. We also consider the case of burst arrivals, where more than one packet may arrive between the receiver's previous and current sampling times; the scenario where the control input is non-zero and subject to delays and packet dropouts is examined as well. It is shown that, in such a situation, the optimal state estimate would generally be dependent on the possible control input. Simulations are presented to demonstrate the performance of the various proposed filters.
Packet utilisation definitions for the ESA XMM mission
NASA Technical Reports Server (NTRS)
Nye, H. R.
1994-01-01
XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Analysis of the packet formation process in packet-switched networks
NASA Astrophysics Data System (ADS)
Meditch, J. S.
Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.
Detecting illegal intra-corporeal cocaine containers: Which factors influence their density?
Platon, Alexandra; Herrera, Bruno; Becker, Minerva; Perneger, Thomas; Getaz, Laurent; Wolff, Hans; Lock, Eric; Rutschmann, Olivier; Poletti, Pierre-Alexandre
2018-05-30
To determine parameters related to hyperdensity (>40 HU) of intra-corporeal cocaine packets on low-dose CT (LDCT); hyperdensity increases detectability on abdominal radiographs. LDCT showing drug packets (n = 46) were analyzed for mean radiological density and packets volume. Following expulsion, packets weight and cocaine concentration were measured. Hypercompaction was defined as >0.9 g/cm 3 . Packets were hyperdense in 33 cases (72%). Mean compaction was 1.0 g/cm 3 , mean density 118.5 HU and mean cocaine concentration 44.2%. On multivariate analysis, only high compaction remained significantly related to hyperdensity (p = 0.001). Compaction >0.9 g/cm 3 is the only parameter significantly associated with hyperdense packets. Copyright © 2018 Elsevier Inc. All rights reserved.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
Nonlinear heating of ions by electron cyclotron frequency waves
NASA Astrophysics Data System (ADS)
Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.
2010-11-01
We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
NASA Astrophysics Data System (ADS)
Sarma, Manabendra; Singh, Raman K.; Mishra, Manoj K.
2007-12-01
Vibrational excitation cross-sections σn←m(E) in resonant e-N2, e-CO and e-H2 scattering are calculated from transition matrix elements Tn←m(E) obtained using Fourier transform of the cross correlation function <φn(R)|ψm(R,t)> where ψm(R,t); e-iHA-(R)t/ℏφm(R). Time evolution under the influence of the resonance anionic Hamiltonian HA-(A- = N2-/CO/H2-) is effected using Lanczos and fast Fourier transforms and the target (A) vibrational eigenfunctions φm(R) and φn(R) are calculated using Fourier grid Hamiltonian method applied to PE curve of the neutral target. The resulting vibrational excitation cross-section profiles provide reasonable agreement with experimental results and the cross correlation functions offer an unequivocal differentiation between the boomerang and impulse models.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
Combined guaranteed throughput and best effort network-on-chip
Chen, Gregory K.; Anders, Mark A.; Kaul, Himanshu; Krishnamurthy, Ram K.; Stillmaker, Aaron T.
2018-05-22
A first packet-switched reservation request is received. Data associated with the first packet-switched reservation request is communicated through a first circuit-switched channel according to a best effort communication scheme. A second packet-switched reservation request is received. Data associated with the second packet-switched reservation request is communicated through a second circuit-switched channel according to a guaranteed throughput communication scheme.
Williams, Jessica R; Caceda-Castro, Lizbeth E; Dusablon, Tracy; Stipa, Melissa
2016-06-01
Printed educational materials (PEMs) are one of the most common dissemination strategies for communicating information about evidence-based practices (EBPs) to healthcare professionals and organizations; however, evidence is conflicting regarding the conditions and circumstances in which PEMs are effective in achieving desired outcomes. The effectiveness of PEMs is largely dependent on the manner in which they are developed. This article reports on the findings from a comprehensive review of the literature regarding best practices for creating PEMs for health professionals and illustrates how these practices were used to design, develop, and evaluate an informational packet to disseminate information about motivational interviewing. The informational packet was disseminated to 92 community health organizations not currently implementing motivational interviewing. Evaluation surveys were completed by 212 healthcare directors and providers to examine quality and perceived helpfulness of the packets, intention to use information from the packet, and sharing of the packet with others. Associations between these and individual and organizational characteristics were also assessed. Overall, the packet was perceived as appropriate and helpful in making a decision to implement motivational interviewing. For example, 84.9% of participants stated that the content was 'about right'. Three-quarters (75.9%) of participants reported plans to use the information in the packet and almost half (46.7%) reported talking about the packet with others in the organizations. Higher levels of baseline interest in motivational interviewing adoption were significantly related to packet use and wanting to utilize additional resources presented in the packet. Positive attitudes toward EBPs were also significantly related to the desire to obtain resources in the packet. Perceptions of the packet did not differ by type of community health organization (i.e., community health center, community behavioral health organization) or whether the individual was a director or provider. Results indicated that PEMs can be a useful tool to disseminate EBP information to healthcare professionals particularly if they have a prior interest in the EBP and have general attitudes supportive of EBPs. Recommendations for the improvement of future PEMs are discussed.
Environment Resource Packets Get Wide Use
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Announces the availability of the resource packet entitled "Noise Pollution," the third in the series prepared by the University of Maryland, and the main topics which will be covered in the remaining three packets. (CC)
PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang
2016-11-01
In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Kent, Alexander Dale [Los Alamos, NM
2008-09-02
Methods and systems in a data/computer network for authenticating identifying data transmitted from a client to a server through use of a gateway interface system which are communicately coupled to each other are disclosed. An authentication packet transmitted from a client to a server of the data network is intercepted by the interface, wherein the authentication packet is encrypted with a one-time password for transmission from the client to the server. The one-time password associated with the authentication packet can be verified utilizing a one-time password token system. The authentication packet can then be modified for acceptance by the server, wherein the response packet generated by the server is thereafter intercepted, verified and modified for transmission back to the client in a similar but reverse process.
Spatial control of recollision wave packets with attosecond precision.
Kitzler, Markus; Lezius, Matthias
2005-12-16
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.
A new time-frequency method for identification and classification of ball bearing faults
NASA Astrophysics Data System (ADS)
Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel
2017-06-01
In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.
Enabling Secure High-Performance Wireless Ad Hoc Networking
2003-05-29
destinations, consuming energy and available bandwidth. An attacker may similarly create a routing black hole, in which all packets are dropped: by sending...of the vertex cut, for example by forwarding only routing packets and not data packets, such that the nodes waste energy forwarding packets to the...with limited resources, including network bandwidth and the CPU processing capacity, memory, and battery power ( energy ) of each individual node in the
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2008-08-01
vision for multiple concurrent communication settings, i.e., a many-to-many framework where multi-packet transmissions (MPTs) and multi-packet...modelling framework of capacity-delay tradeoffs We have introduced the first unified modeling framework for the computation of fundamental limits o We...dalities in wireless n twor i-packet modelling framework to account for the use of m lti-packet reception (MPR) f ad hoc networks with MPT under
Design of an All-Optical Network Based on LCoS Technologies
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Shiau, Yhi
2016-06-01
In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.
The impact of neighboring infection on the computer virus spread in packets on scale-free networks
NASA Astrophysics Data System (ADS)
Lazfi, S.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.
2017-12-01
In this paper, we introduce the effect of neighbors on the infection of packets by computer virus in the SI and SIR models using the minimal traffic routing protocol. We have applied this model to the Barabasi-Albert network to determine how intrasite and extrasite infection rates affect virus propagation through the traffic flow of information packets in both the free-flow and the congested phases. The numerical results show that when we change the intrasite infection rate λ1 while keeping constant the extrasite infection rate λ2, we get normal behavior in the congested phase: in the network, the proportion of infected packets increases to reach a peak and then decreases resulting in a simultaneous increase of the recovered packets. In contrast, when the intrasite infection rate λ1 is kept fixed, an increase of the extrasite infection rate results in two regimes: The first one is characterized by an increase of the proportion of infected packets until reaching some peak value and then decreases smoothly. The second regime is characterized by an increase of infected packets to some stationary value.
TCP Packet Trace Analysis. M.S. Thesis
NASA Technical Reports Server (NTRS)
Shepard, Timothy J.
1991-01-01
Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.
2001-12-01
A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying
2015-05-28
Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.
Theory for low-frequency modulated Langmuir wave packets
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1992-01-01
Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Dispatching packets on a global combining network of a parallel computer
Almasi, Gheorghe [Ardsley, NY; Archer, Charles J [Rochester, MN
2011-07-19
Methods, apparatus, and products are disclosed for dispatching packets on a global combining network of a parallel computer comprising a plurality of nodes connected for data communications using the network capable of performing collective operations and point to point operations that include: receiving, by an origin system messaging module on an origin node from an origin application messaging module on the origin node, a storage identifier and an operation identifier, the storage identifier specifying storage containing an application message for transmission to a target node, and the operation identifier specifying a message passing operation; packetizing, by the origin system messaging module, the application message into network packets for transmission to the target node, each network packet specifying the operation identifier and an operation type for the message passing operation specified by the operation identifier; and transmitting, by the origin system messaging module, the network packets to the target node.
High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabaan, Rakan
The objective of this project is to develop, implement, and demonstrate a wireless power transfer (WPT) system that is capable of the following metrics: Total system efficiencies of more than 85 percent with minimum 20 cm coil-to-coil gap; System output power at least 6.6 kW; but design system up to 19.2 kW for future higher power study; Maximum lateral positioning tolerance achievable while meeting regulatory emission guidelines.
WISPER: Wirless Space Power Experiment
NASA Technical Reports Server (NTRS)
Hawkins, Joseph
1993-01-01
The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.
Miller, Edward Alan; Wang, Lili; Feng, Zhanlian; Mor, Vincent
2013-01-01
Because states play such a prominent role in the U.S. health care system, they have long grappled with how to best control health care costs while maintaining high quality of care. There are many policy tools available to address efficiency and quality concerns — from pure state regulation to market-oriented competition designs. Given public discourse and official party platforms, one would assume that states controlled by Democrats would be more likely to adopt regulatory reforms. This study examines whether party control, as well as other economic and political factors, is associated with adopting wage pass-through (WPT) policies, which direct a portion of Medicaid reimbursement or its increase toward nursing home staff in an effort to reduce staff turnover, thereby increasing efficiency and the quality of care provided. Contrary to expectations, results indicate that states with Republican governors were against WPT adoption only when for-profit industry pressure increased; otherwise, they were more likely to favor adoption than their Democratic counterparts. This suggests a more complex relationship between partisanship and state-level policy adoption than is typically assumed. Results also indicate that state officials reacted predictably to prevailing political and economic conditions affecting state fiscal-year decisions but required sufficient governing capacity to successfully integrate WPTs into existing reimbursement system arrangements. This suggests that WPTs represent a hybrid between comprehensive and incremental policy change. PMID:22323236
Gonzalez, Raul; Schuster, Randi M.; Vassileva, Jasmin; Martin, Eileen M.
2013-01-01
Marijuana (MJ) use and HIV infection are both associated with neurocognitive deficits, yet there is little research to date examining their interactions, specifically how they pertain to procedural learning (PL). We examined a sample of 86 individuals with a history of dependence for multiple substances who underwent a comprehensive evaluation including measures of mental health, substance use history, and three measures of PL: the photoelectric Rotary Pursuit Task (RPT), the Star Mirror Tracing Task (SMT), and the Weather Prediction Task (WPT). We found that a positive HIV serostatus and a history of marijuana dependence were both independently associated with overall poorer performance on the SMT and RPT in this sample of individuals with a history of dependence for multiple substances. Rate of improvement across trial blocks did not differ as a function of HIV serostatus or history of marijuana dependence. Although we found no significant HIV × MJ interaction for any of the PL tasks, we did observe evidence of additive negative effects from HIV and a history of marijuana dependence on overall performance on the SMT and RPT, but not the WPT. The findings suggest that complex motor skills are adversely affected among abstinent polysubstance users with a history of marijuana dependence and that such deficits are compounded by HIV. PMID:21480022
Serum Lp-PLA2: as a novel viewpoint in periodontal treatment of hyperlipidaemics.
Fentoğlu, Özlem; Kirzioğlu, Fatma Yeşim; Tözüm Bulut, Memduha; Kurgan, Şivge; Koçak, Havva; Sütcü, Recep; Kale Köroğlu, Banu; Günhan, Meral
2015-01-01
To evaluate the effects of periodontal treatment on serum lipoprotein-associated phospholipase A2 (Lp-PLA2) and C-reactive protein (CRP) levels in hyperlipidaemic patients with periodontitis. The study included 52 hyperlipidaemics and 28 systemically healthy controls (C) with periodontitis. Of the 52 hyperlipidaemics, 29 received a suggested diet (HD), and 23 of them were prescribed statin (HS). Clinical periodontal parameters, serum lipids, Lp-PLA2, and CRP levels were assessed at the baseline and 2 months after the completion of the nonsurgical periodontal treatment (2MPT). Serum parameters were also evaluated 1 week following the periodontal treatment (1WPT). At the baseline, patients in the HS group had a higher percentage of bleeding on probing than those in the C and HD groups. Hyperlipidaemics had higher serum triglyceride levels than the control group at 2MPT compared to the baseline. At 2MPT, the levels of Lp-PLA2 in the HS group were significantly higher compared to the baseline and 1WPT. There were no statistically significant differences in CRP levels between study periods for all groups. The periodontal treatment may affect the inflammatory control of hyperlipidaemic patients with periodontitis via increased Lp-PLA2 levels and severity of the impaired lipid metabolism. These findings may be important regarding the therapeutic strategies for hyperlipidaemics with periodontitis.
Bell, Kirsten; Dennis, Simone; Robinson, Jude; Moore, Roland
2015-10-01
Throughout the twentieth century, packaging was a carefully cultivated element of the appeal of the cigarette. However, the tobacco industry's control over cigarette packaging has been steadily eroded through legislation that aims to rebrand the packet from a desirable to a dangerous commodity-epitomized in Australia's introduction of plain packaging in 2012. Evident in both the enactment of cigarette packaging legislation and industry efforts to overturn it is the assumption that packets do things-i.e. that they have a critical role to play in either promoting or discouraging the habit. Drawing on 175 ethnographic interviews conducted with people smoking in public spaces in Vancouver, Canada; Canberra, Australia; Liverpool, England; and San Francisco, USA, we produce a 'thick description' of smokers' engagements with cigarette packets. We illustrate that despite the very different types of cigarette packaging legislation in place in the four countries, there are marked similarities in the ways smokers engage with their packets. In particular, they are not treated as a purely visual sign; instead, a primary means through which one's own cigarette packet is apprehended is by touch rather than by sight. Smokers perceive cigarette packets largely through the operations of their hands-through their 'handiness'. Thus, our study findings problematize the assumption that how smokers engage with packets when asked to do so on a purely intellectual or aesthetic level reflects how they engage with packets as they are enfolded into their everyday lives. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.
1991-01-01
We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.
1992-01-01
A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A scheme for synchronizing clocks connected by a packet communication network
NASA Astrophysics Data System (ADS)
dos Santos, R. V.; Monteiro, L. H. A.
2012-07-01
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.
Ingestion of Laundry Detergent Packets in Children.
Shah, Lindsey Wilson
2016-08-01
Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). ©2016 American Association of Critical-Care Nurses.
Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area Network
2010-06-01
Successful number of data packets % b. PSUP = Successful number of Utility packets % c. PSB = Successful number of byte Tx. % d. PSPRT = Number of sub...g. PFU = Number of failed utilities Tx failures with time log of failure % h. PTO = Number of Time-outs 55 function [PSDP,PSUP, PSB ,PSPRT,PFP,PFSP...transmitted PSB = 0 ; % Number of Bytes transmitted PSPRT = 0; % Number of sub-packets retransmitted PFP = 0; % Number of failed packets event PFSP
Fast packet switch architectures for broadband integrated services digital networks
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.
1990-01-01
Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.
Identification of Low-Latency Obfuscated Traffic Using Multi-Attribute Analysis
2017-03-01
the distribution of common Tor packet sizes. Herrmann et al. also contend that the remaining variations in observed packet sizes are caused by OS...specific fragmentation and that Tor’s variation in packet size provides an additional level of protection as the false positive rate (FPR) using packet...three pre-filter variations , the observed FPR for non-Tor ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3
Pincavage, Amber T; Lee, Wei Wei; Venable, Laura Ruth; Prochaska, Megan; Staisiunas, Daina D; Beiting, Kimberly J; Czerweic, M K; Oyler, Julie; Vinci, Lisa M; Arora, Vineet M
2015-02-01
Few patient-centered interventions exist to improve year-end residency clinic handoffs. Our purpose was to assess the impact of a patient-centered transition packet and comic on clinic handoff outcomes. The study was conducted at an academic medicine residency clinic. Participants were patients undergoing resident clinic handoff 2011-2013 PROGRAM DESCRIPTION: Two months before the 2012 handoff, patients received a "transition packet" incorporating patient-identified solutions (i.e., a new primary care provider (PCP) welcome letter with photo, certificate of recognition, and visit preparation tool). In 2013, a comic was incorporated to stress the importance of follow-up. Patients were interviewed by phone with response rates of 32 % in 2011, 43 % in 2012 and 36 % in 2013. Most patients who were interviewed were aware of the handoff post-packet (95 %). With the comic, more patients recalled receiving the packet (44 % 2012 vs. 64 % 2013, p< 0.001) and correctly identified their new PCP (77 % 2012 vs. 98 % 2013, p< 0.001). Among patients recalling the packet, most (70 % 2012; 65 % 2013) agreed it helped them establish rapport. Both years, fewer patients missed their first new PCP visit (43 % in 2011, 31 % in 2012 and 26 % in 2013, p< 0.001). A patient-centered transition packet helped prepare patients for clinic handoffs. The comic was associated with increased packet recall and improved follow-up rates.
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
Effect of Austenitising Temperature on Mechanical Properties of Nanostructured Bainitic Steel.
Zhao, Jing; Li, Jiemin; Ji, Honghong; Wang, Tiansheng
2017-07-28
Nanostructured bainite was obtained in high-carbon Si-Al-rich steel by low-temperature (220-260 °C) isothermal transformation after austenitisation at different temperatures (900 °C, 1000 °C, and 1150 °C). Improved strength-ductility-toughness balance was achieved in the nanostructured bainitic steel austenitised at low temperatures (900 °C and 1000 °C). Increasing the austenitising temperature not only coarsened prior austenite grains and bainite packets, but also increased the size and fraction of blocky retained austenite. High austenitising temperature (1150 °C) remarkably decreased ductility and impact toughness, but had a small effect on strength and hardness.
Effect of Austenitising Temperature on Mechanical Properties of Nanostructured Bainitic Steel
Zhao, Jing; Li, Jiemin; Ji, Honghong
2017-01-01
Nanostructured bainite was obtained in high-carbon Si-Al-rich steel by low-temperature (220–260 °C) isothermal transformation after austenitisation at different temperatures (900 °C, 1000 °C, and 1150 °C). Improved strength-ductility-toughness balance was achieved in the nanostructured bainitic steel austenitised at low temperatures (900 °C and 1000 °C). Increasing the austenitising temperature not only coarsened prior austenite grains and bainite packets, but also increased the size and fraction of blocky retained austenite. High austenitising temperature (1150 °C) remarkably decreased ductility and impact toughness, but had a small effect on strength and hardness. PMID:28773233
Spatial distribution of traffic in a cellular mobile data network
NASA Astrophysics Data System (ADS)
Linnartz, J. P. M. G.
1987-02-01
The use of integral transforms of the probability density function for the received power to analyze the relation between the spatial distributions of offered and throughout packet traffic in a mobile radio network with Rayleigh fading channels and ALOHA multiple access was assessed. A method to obtain the spatial distribution of throughput traffic from a prescribed spatial distribution of offered traffic is presented. Incoherent and coherent addition of interference signals is considered. The channel behavior for heavy traffic loads is studied. In both the incoherent and coherent case, the spatial distribution of offered traffic required to ensure a prescribed spatially uniform throughput is synthesized numerically.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
Acoustic emission detection for mass fractions of materials based on wavelet packet technology.
Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing
2015-07-01
Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi
2017-03-01
In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.
A novel EPON architecture for supporting direct communication between ONUs
NASA Astrophysics Data System (ADS)
Wang, Liqian; Chen, Xue; Wang, Zhen
2008-11-01
In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.
On-Line Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)
1999-01-01
The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.
2015-08-01
Experimental environment 5 Table 1 Hardware specifications Name Manufacture Model CPU Memory Hard Drive IP Address Bilbo Dell PowerEdge R610 Intel...10 we replayed the same hour of network traffic from the CDX 20093 that we used in our theoretical2 exploration to show the impact of our packet... replay the traffic at arbitrary speeds. Table 3 lists the speed multiplier that we used and the packet loss we observed. Table 3 Network packet loss
Crossbar Switches For Optical Data-Communication Networks
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
Glider Observations of Internal Tide Packets on the Australian Northwest Shelf
NASA Astrophysics Data System (ADS)
Book, J. W.; Steinberg, C. R.; Brinkman, R. M.; Jones, N. L.; Lowe, R.; Ivey, G. N.; Pattiaratchi, C. B.; Rice, A. E.
2016-02-01
The rapid profiling capabilities (less than 10 minutes per profile in 100 m of water excluding surfacing times) of autonomous gliders were utilized to study the structure of non-linear internal tide packets on the Australian Northwest Shelf. A total of five gliders were deployed on the shelf from 11 February - 21 April 2012 with more than 2900 glider CTD profiles collected during the final three weeks of this time period when the internal tide activity was intense. In general the internal tide packets showed high degrees of non-linearity, for example in one case a glider observed a 62 m rise of the 28° isotherm over 2.25 hours in a shelf location of 90 meters water depth. In addition to the glider measurements, moored strings of CTD sensors were used to measure the internal tide packets at fixed positions and the results show that the wave packets vary significantly with respect to their structure and arrival times from one tidal period to the next. This fact complicates interpretation of the glider data as wave packet spatial evolution is non-stationary and cannot be simply recovered from repeat glider visits to the same location. Furthermore, the packets were found to move at speeds near or greater (e.g., 0.55 m/s) than the speed that the gliders were moving. Despite these challenges, the gliders offer the only resource that can measure the spatial structure of the wave packets beyond the scope of our limited mooring positions. Therefore, we have implemented methods such as time-augmented empirical orthogonal functions to combine these glider measurements with the fixed mooring measurements in order to better understand the spatial and temporal patterns of the wave packet evolution over the slope and shelf of this region.
New hybrid frequency reuse method for packet loss minimization in LTE network.
Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H
2015-11-01
This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.
Hoenicke, Dirk
2014-12-02
Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.
Statistics of Gaussian packets on metric and decorated graphs.
Chernyshev, V L; Shafarevich, A I
2014-01-28
We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
Furukawa, Hiroshi
2017-01-01
Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164
ERIC Educational Resources Information Center
Astronomical Society of the Pacific, San Francisco, CA.
One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…
Notes from beyond the Cognitive Domain.
ERIC Educational Resources Information Center
Brand, Alice, Comp.; Graves, Dick, Comp.
This packet summarizes the ideas, concepts, suggestions, and speculations growing out of a think tank which explored the uncharted region beyond cognitive learning. The packet shows that participants were divided into groups to discuss teaching, research, bibliographic information, theoretical ideas, and professional issues. The packet contains:…
Multi-Media Instructional Packets.
ERIC Educational Resources Information Center
Brophy, John W.
This is a collection of multi-media packets for each of the following business subjects: (1) Introduction to Business; (2) Principles of Marketing; (3) Principles of Advertising; (4) Principles of Retailing/Merchandising; and (5) Principles of Salesmanship. Each packet includes information regarding: (1) most relevant textbooks; (2) Suggested…
Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method
NASA Astrophysics Data System (ADS)
Fali Oklilas, Ahmad; Tasmi
2017-04-01
Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
NASA Astrophysics Data System (ADS)
Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie
2018-05-01
In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1979-01-01
A set of standard telemetry protocols for downlink data flow facilitating the end-to-end transport of instrument data from the spacecraft to the user in real time is proposed. The direct switching of data by autonomous message 'packets' that are assembled by the source instrument on the spacecraft is discussed. The data system consists thus of a format on a message rather than word basis, and such packet telemetry would include standardized protocol headers. Standards are being developed within the NASA End-to-End Data System (NEEDS) program for the source packet and transport frame protocols. The source packet protocol contains identification of both the sequence number of the packet as it is generated by the source and the total length of the packet, while the transport frame protocol includes a sequence count defining the serial number of the frame as it is generated by the spacecraft data system, and a field specifying any 'options' selected in the format of the frame itself.
Support for non-locking parallel reception of packets belonging to a single memory reception FIFO
Chen, Dong [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Salapura, Valentina [Yorktown Heights, NY; Senger, Robert M [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugawara, Yutaka [Yorktown Heights, NY
2011-01-27
A method and apparatus for distributed parallel messaging in a parallel computing system. A plurality of DMA engine units are configured in a multiprocessor system to operate in parallel, one DMA engine unit for transferring a current packet received at a network reception queue to a memory location in a memory FIFO (rmFIFO) region of a memory. A control unit implements logic to determine whether any prior received packet destined for that rmFIFO is still in a process of being stored in the associated memory by another DMA engine unit of the plurality, and prevent the one DMA engine unit from indicating completion of storing the current received packet in the reception memory FIFO (rmFIFO) until all prior received packets destined for that rmFIFO are completely stored by the other DMA engine units. Thus, there is provided non-locking support so that multiple packets destined for a single rmFIFO are transferred and stored in parallel to predetermined locations in a memory.
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
2016-03-21
2016 2 i.e., wireless power transfer (WPT) and wireless information transfer (WIT), fundamental changes to the designs of green communication networks...simulta- neous wireless information and power transfer ,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93, Apr. 2015. [6] H. Tabassum, E. Hossain, A...broadcasting for simultaneous wire- less information and power transfer ,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013. [9] K. Huang
Framework based on stochastic L-Systems for modeling IP traffic with multifractal behavior
NASA Astrophysics Data System (ADS)
Salvador, Paulo S.; Nogueira, Antonio; Valadas, Rui
2003-08-01
In a previous work we have introduced a multifractal traffic model based on so-called stochastic L-Systems, which were introduced by biologist A. Lindenmayer as a method to model plant growth. L-Systems are string rewriting techniques, characterized by an alphabet, an axiom (initial string) and a set of production rules. In this paper, we propose a novel traffic model, and an associated parameter fitting procedure, which describes jointly the packet arrival and the packet size processes. The packet arrival process is modeled through a L-System, where the alphabet elements are packet arrival rates. The packet size process is modeled through a set of discrete distributions (of packet sizes), one for each arrival rate. In this way the model is able to capture correlations between arrivals and sizes. We applied the model to measured traffic data: the well-known pOct Bellcore, a trace of aggregate WAN traffic and two traces of specific applications (Kazaa and Operation Flashing Point). We assess the multifractality of these traces using Linear Multiscale Diagrams. The suitability of the traffic model is evaluated by comparing the empirical and fitted probability mass and autocovariance functions; we also compare the packet loss ratio and average packet delay obtained with the measured traces and with traces generated from the fitted model. Our results show that our L-System based traffic model can achieve very good fitting performance in terms of first and second order statistics and queuing behavior.
ERIC Educational Resources Information Center
Little, Mildred J.; Smith, Carole F.
Designed to be used in conjunction with the book "Canoeing", published by the American Red Cross in 1977, the teaching packet provides assistance in organizing and teaching a basic canoeing class. The packet lists 20 class objectives and details essential and recommended equipment and safety precautions. The packet contains a 15-day unit…
78 FR 10263 - Proposed Collection; Comment Request for ADA Accommodations Request Packet
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for ADA... the ADA Accommodations Packet. DATES: Written comments should be received on or before April 15, 2013...: ADA Accommodations Request Packet. OMB Number: 1545-2027. Abstract: Information is collected so that...
Advertising and the Economy: A Teaching Package.
ERIC Educational Resources Information Center
Proctor and Gamble Co., Cincinnati, OH.
This teaching packet is designed to enrich lessons and motivate students, and is based on real-life marketing problems. The packet includes a booklet containing background for instructors on advertising's crucial economic role and its history in the United States, eight reproducible lessons, and teaching tips for each lesson. The packet also…
Continuing Development of California State Packet Radio Project.
ERIC Educational Resources Information Center
Brownrigg, Edwin
1992-01-01
Provides background on the California State Library Packet Radio project, which will use packet radios to deploy a wireless, high-speed, wide-area network of 600 nodes, including 100 libraries, in the San Francisco Bay Area. Project goals and objectives, plan of operation, equipment, and evaluation plans are summarized. (MES)
Vocational and Industrial Arts Packets.
ERIC Educational Resources Information Center
Maine Audubon Society, Falmouth.
This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…
ERIC Educational Resources Information Center
Peace Corps, Manila (Philippines).
The materials in this packet were designed for the rapid Cebuano language training of Peace Corps volunteers, focusing on daily communication needs in this context. The packet contains: lists of common phrases, expressions, and vocabulary on a variety of topics related to Peace Corps work; a list of core competencies for specific topics…
Learn about Seabirds. Teaching Packet, Grades 4-6.
ERIC Educational Resources Information Center
Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.
This teaching packet is designed to teach Alaskan students in grades 4-6 about Alaska's seabird populations, the worldwide significance of seabirds, and the environmental conditions to which seabirds are sensitive. The packet includes a curriculum guide (containing a teacher's background story and 12 teaching activities), a separately published…
Personal Skills. Facilitator's Skill Packets 1-7. Social Skills Training.
ERIC Educational Resources Information Center
Model Classrooms, Bellevue, WA.
This document contains the following seven facilitators' skill packets on personal skills: (1) personal hygiene; (2) personal appearance; (3) locker hygiene; (4) dorm cleanliness; (5) punctuality and attendance; (6) responding to supervision; and (7) teamwork. Each packet contains the following sections: definition of personal skills; objective;…
Student Activity Packet for the California State Capitol Museum.
ERIC Educational Resources Information Center
2001
This packet contains materials to help fourth and fifth grade teachers provide their students with background information for field trips to the California State Capitol Museum (Sacramento). The working museum focuses on the theme areas of California history, the state government/legislative process, and state symbols. The packet presents teacher…
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Coherent wave packet dynamics in a double-well potential in cavity
NASA Astrophysics Data System (ADS)
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Transfer of a wave packet in double-well potential
NASA Astrophysics Data System (ADS)
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Securing internet by eliminating DDOS attacks
NASA Astrophysics Data System (ADS)
Niranchana, R.; Gayathri Devi, N.; Santhi, H.; Gayathri, P.
2017-11-01
The major threat caused to the authorised usage of Internet is Distributed Denial of Service attack. The mechanisms used to prevent the DDoS attacks are said to overcome the attack’s ability in spoofing the IP packets source addresses. By utilising Internet Protocol spoofing, the attackers cause a consequential load over the networks destination for policing attack packets. To overcome the IP Spoofing level on the Internet, We propose an Inter domain Packet Filter (IPF) architecture. The proposed scheme is not based on global routing information. The packets with reliable source addresses are not rejected, the IPF frame work works in such a manner. The spoofing capability of attackers is confined by IPF, and also the filter identifies the source of an attack packet by minimal number of candidate network.
Fast WEP-Key Recovery Attack Using Only Encrypted IP Packets
NASA Astrophysics Data System (ADS)
Teramura, Ryoichi; Asakura, Yasuo; Ohigashi, Toshihiro; Kuwakado, Hidenori; Morii, Masakatu
Conventional efficient key recovery attacks against Wired Equivalent Privacy (WEP) require specific initialization vectors or specific packets. Since it takes much time to collect the packets sufficiently, any active attack should be performed. An Intrusion Detection System (IDS), however, will be able to prevent the attack. Since the attack logs are stored at the servers, it is possible to prevent such an attack. This paper proposes an algorithm for recovering a 104-bit WEP key from any IP packets in a realistic environment. This attack needs about 36, 500 packets with a success probability 0.5, and the complexity of our attack is equivalent to about 220 computations of the RC4 key setups. Since our attack is passive, it is difficult for both WEP users and administrators to detect our attack.
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
NASA Astrophysics Data System (ADS)
Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi
This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Feature and Statistical Model Development in Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Kim, Inho
All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.
Artificial magnetic-field quenches in synthetic dimensions
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2018-02-01
Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Capture and playback synchronization in video conferencing
NASA Astrophysics Data System (ADS)
Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song
1995-03-01
Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.
4D visualization of embryonic, structural crystallization by single-pulse microscopy
Kwon, Oh-Hoon; Barwick, Brett; Park, Hyun Soon; Baskin, J. Spencer; Zewail, Ahmed H.
2008-01-01
In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding. PMID:18562291
Antonakis, John; House, Robert J; Simonton, Dean Keith
2017-07-01
Although researchers predominately test for linear relationships between variables, at times there may be theoretical and even empirical reasons for expecting nonlinear functions. We examined if the relation between intelligence (IQ) and perceived leadership might be more accurately described by a curvilinear single-peaked function. Following Simonton's (1985) theory, we tested a specific model, indicating that the optimal IQ for perceived leadership will appear at about 1.2 standard deviations above the mean IQ of the group membership. The sample consisted of midlevel leaders from multinational private-sector companies. We used the leaders' scores on the Wonderlic Personnel Test (WPT)-a measure of IQ-to predict how they would be perceived on prototypically effective leadership (i.e., transformational and instrumental leadership). Accounting for the effects of leader personality, gender, age, as well as company, country, and time fixed effects, analyses indicated that perceptions of leadership followed a curvilinear inverted-U function of intelligence. The peak of this function was at an IQ score of about 120, which did not depart significantly from the value predicted by the theory. As the first direct empirical test of a precise curvilinear model of the intelligence-leadership relation, the results have important implications for future research on how leaders are perceived in the workplace. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
James, Sally
Four packets comprise the electricity component of an enrichment program for gifted elementary students. Provided in the introductory packet are sample pre- and posttests for the unit. Remaining packets present vocabulary lists, student worksheets on beginning circuitry, and suggestions for student projects (such as making a battery, constructing…
Environmental Microbiology Modules. Final Report.
ERIC Educational Resources Information Center
Walke, Raymond H.; Walke, Jayne G.
This publication is the result of a project to develop microbiology instructional materials for vocational college students. These materials are a series of self-paced modules. Each module includes a pre-test, an introduction and historical packet, an organizational packet to set the framework for in-depth study, one or more in-depth packets, a…
Guide to Alternative Mortgage Instruments. Teachers Instructional Packet, TIP No. 4, Spring 1985.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Texas Real Estate Research Center.
Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand the various alternative mortgage instruments, including their major advantages and disadvantages. First, an evaluation form for the packet is presented. Next, a summary presentation on four basic…
Forests and Flowers. A Spring Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on plants and…
Performance Evaluation of Multihop Packet Radio Networks by Simulation
1987-03-01
Multihop Packet Radio Networks," Proc. IEEE, Vol. 75, No. 1, January 1987. [15] 1. Gitman , "On the Capacity of Slotted ALOHA Networks and Some Design...Networks in the Presence of Noise," Proc. Infocom, Washington D. C., April 1985 [40] H. Frank, I. Gitman and R. Van Slyke, " Packet Radio System
Energy Conservation Activity Packet, Grade 3.
ERIC Educational Resources Information Center
Bakke, Ruth
This activity packet for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…
Signs of Fall. A Fall Activity Packet for Pre-School.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Nature's Hitchhikers. A Fall Activity Packet for Second Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
...- Demutualization Trading Permits, Tier Appointment and Bandwidth Packets June 25, 2010. Pursuant to Section 19(b)(1...-demutualization Trading Permits, tier appointment and bandwidth packets. The text of the proposed rule change is..., tier appointment and bandwidth packets. These post-demutualization Trading Permits, tier appointment...
Temperature, Pulse, and Respiration. Instructor's Packet. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This instructor's packet accompanies the learning activity package (LAP) on temperature, pulse, and respiration. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to…
Dance Theatre of Harlem--Theater Activity Packet.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
Intended to complement the New York City communication arts curriculum, this packet introduces young students, guided by the classroom teacher, to a dress rehearsal performance of the Dance Theatre of Harlem ballet company. The packet is one of a series in the "Early Stages" program, a joint effort of the Mayor's Office of Film, Theater…
Energy Around Us. A Fall Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…
Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…
Tropical Animal Tour Packet. Metro.
ERIC Educational Resources Information Center
Metro Washington Park Zoo, Portland, OR. Educational Services Div.
This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…
Michigan Natural History. A Spring Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…
Reading the Rocks. A Fall Activity Packet for Fifth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on various geological…
Understanding and Minimizing Staff Burnout. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…
Spring Birds. A Spring Activity Packet for First Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Animal Homes and Habitats. A Fall Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on animal populations and…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
MPNACK: an optical switching scheme enabling the buffer-less reliable transmission
NASA Astrophysics Data System (ADS)
Yu, Xiaoshan; Gu, Huaxi; Wang, Kun; Xu, Meng; Guo, Yantao
2016-01-01
Optical data center networks are becoming an increasingly promising solution to solve the bottlenecks faced by electrical networks, such as low transmission bandwidth, high wiring complexity, and unaffordable power consumption. However, the optical circuit switching (OCS) network is not flexible enough to carry the traffic burst while the optical packet switching (OPS) network cannot solve the packet contention in an efficient way. To this end, an improved switching strategy named OPS with multi-hop Negative Acknowledgement (MPNACK) is proposed. This scheme uses a feedback mechanism, rather than the buffering structure, to handle the optical packet contention. The collided packet is treated as a NACK packet and sent back to the source server. When the sender receives this NACK packet, it knows a collision happens in the transmission path and a retransmission procedure is triggered. Overall, the OPS-NACK scheme enables a reliable transmission in the buffer-less optical network. Furthermore, with this scheme, the expensive and energy-hungry elements, optical or electrical buffers, can be removed from the optical interconnects, thus a more scalable and cost-efficient network can be constructed for cloud computing data centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeibel, J. G.; Jones, R. R.
2003-08-01
Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less
Unified study of Quality of Service (QoS) in OPS/OBS networks
NASA Astrophysics Data System (ADS)
Hailu, Dawit Hadush; Lema, Gebrehiwet Gebrekrstos; Yekun, Ephrem Admasu; Kebede, Samrawit Haylu
2017-07-01
With the growth of Internet traffic, an inevitable use of optical networks provide a large bandwidth, fast data transmission rates and Quality of Service (QoS) support. Currently, Optical Burst Switched (OBS)/Optical Packet Switched (OPS) networks are under study as future solutions for addressing the increase demand of Internet traffic. However, due to their high blocking probability in the intermediate nodes they have been delayed in the industries. Packet loss in OBS/OPS networks is mainly occur due to contention. Hence, the contribution of this study is to analyze the file loss ratio (FLR), packet overhead and number of disjoint paths, and processing delay over Coded Packet Transport (CPT) scheme for OBS/OPS network using simulation. The simulations show that CPT scheme reduces the FLR in OBS/OPS network for the evaluated scenarios since the data packets are chopped off into blocks of the data packet for transmission over a network. Simulation results for secrecy and survivability are verified with the help of the analytical model to define the operational range of CPT scheme.
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection
Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.
A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network
NASA Astrophysics Data System (ADS)
Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren
2005-10-01
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.
NASA Astrophysics Data System (ADS)
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Integral representations of solutions of the wave equation based on relativistic wavelets
NASA Astrophysics Data System (ADS)
Perel, Maria; Gorodnitskiy, Evgeny
2012-09-01
A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe
NASA Astrophysics Data System (ADS)
Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John
Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.
Napolitano, Jr., Leonard M.
1995-01-01
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
An optical disk archive for a data base management system
NASA Technical Reports Server (NTRS)
Thomas, Douglas T.
1985-01-01
An overview is given of a data base management system that can catalog and archive data at rates up to 50M bits/sec. Emphasis is on the laser disk system that is used for the archive. All key components in the system (3 Vax 11/780s, a SEL 32/2750, a high speed communication interface, and the optical disk) are interfaced to a 100M bits/sec 16-port fiber optic bus to achieve the high data rates. The basic data unit is an autonomous data packet. Each packet contains a primary and secondary header and can be up to a million bits in length. The data packets are recorded on the optical disk at the same time the packet headers are being used by the relational data base management software ORACLE to create a directory independent of the packet recording process. The user then interfaces to the VAX that contains the directory for a quick-look scan or retrieval of the packet(s). The total system functions are distributed between the VAX and the SEL. The optical disk unit records the data with an argon laser at 100M bits/sec from its buffer, which is interfaced to the fiber optic bus. The same laser is used in the read cycle by reducing the laser power. Additional information is given in the form of outlines, charts, and diagrams.
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
Two-point coherence of wave packets in turbulent jets
NASA Astrophysics Data System (ADS)
Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.
2017-02-01
An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M; Rakouth, Heri; Suh, In-Soo
This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University.more » The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.« less
Sodium transport modes in AMTEC electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Homer, M.L.; Lara, L.
1998-07-01
Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Sodium transport has been characterized in a variety of AMTEC electrodes and several different transport modes clearly exist. Free molecular flow is the dominant transport mechanism in clean porous molybdenum and tungsten electrodes, and contributes to sodium transport in all porous electrodes, including WPt{sub 2}, WRh{sub 3}, and TiN. Molybdenum and tungsten electrodes containing phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}WO{sub 4} exhibit very efficient sodium ion transport through themore » electrode in the ionic conducting phase. These electrodes also show reversible electrochemical reactions in which sodium ions and electrons are inserted or removed from into phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}Mo{sub 3}O{sub 6} which are present in the electrode WPt{sub 2} and WRh{sub 3} electrodes typically exhibit both free molecular flow transport as well as an enhanced thermally activated transport mode which is probably surface and/or grain boundary diffusion of sodium in the alloy electrode. Data for large area WPt{sub 2} electrodes within a cylindrical heat shield are reported in this paper. Sodium transport away from these electrodes is effected by both the electrode's properties and the exterior environment which inhibits sodium gas flow to the condenser. Liquid alloy electrodes have been examined and have fairly efficient transport properties by liquid phase diffusion, but have generally not been considered advantageous for development. Titanium nitride, TiN, electrodes used in AMTEC cells, and similar electronically conducting refractory compounds such as TiB{sub 2} and NbN are always physically porous to some degree as formed by sputter deposition or screen printing, and these compounds sinter quite slowly. Hence free molecular flow is always a significant sodium transport mode in these electrodes. However, the sodium transport rate computed from the physical morphology of the electrodes is not as efficient as actual sodium transport in TiN electrodes, implicating an enhanced transport mode, which remains operational at lower AMTEC operating temperatures. Some TiN electrodes also have been found to exhibit electrochemical reactions involving electrode phases which persist in sodium exposure test cells at 1223K, as reported in this paper.« less
In the Public Interest: Law, Government, and Media. Maryland Women's History Resource Packet--1986.
ERIC Educational Resources Information Center
Maryland State Commission for Women, Baltimore.
Designed to be used for National Women's History Week (March 2-8), this 1986 Maryland women's history resource packet centers around Maryland women who have made significant volunteer and career contributions in the areas of government, law, and the public interest media. The packet begins with suggested student activity lists and activity sheets…
Environmental Fluctuations and Acoustic Data Communications
2015-09-30
July 2011 along with subsequent analysis of the experiment data. KAM11 Experiment (2011) A shallow water acoustic communications experiment...packet and packet-to-packet variability. Algorithm Design and Experiment Data Analysis Communication receiver algorithm design for shallow water is...exhibited substantial daily oceanographic variability. Analysis of the KAM11 experiment data this past year has focused on fixed source transmissions
Assessing To Address Barriers to Learning. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Schools committed to the success of all children must have an array of activities designed to address barriers to learning. This introductory packet contains some aids to help school staff find new ways of thinking about how schools should assess barriers to learning. The following items are included in the packet: (1) a chart of "Barriers to…
The Noble Path: Buddhist Art of South Asia and Tibet. Teacher's Packet.
ERIC Educational Resources Information Center
Sierra Community Coll., Rocklin, CA. Mathematics Dept.
A teaching packet was developed in association with the exhibition, "The Noble Path: Buddhist Art of South Asia and Tibet," held at the Arthur M. Sackler Gallery, Smithsonian Institution, Washington, D.C., from October 1, 1989 to March 31, 1990. The packet aims to provide students in middle and secondary schools with introductory…
The purpose of this SOP is to describe the assembly of household (HH) packets into data processing batches. The batching process enables orderly tracking of packets or forms through data processing and limits the potential for packet or form loss. This procedure was used for th...
Packet Switching Networks: An Introduction with Some Attention to Selected Vendors.
ERIC Educational Resources Information Center
Sanchez, James Joseph
The purpose of this paper is to provide an overview of the history, development, and services of the packet switching network services that currently exist in the United States. The character of packet switching, a computerized method of transmitting data, is used as the basis for tracing the development of the industry itself. Contending that the…
2017-03-03
When a neighbor receives one of these packets, it waits until the end of the transmit time and then responds with its own hello packet, containing its...and 3 respond with their own hello packet. Location Tracking Another important feature is location tracking. Due to node mobility, it is vital that
Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking
2017-03-03
of these packets, it waits until the end of the transmit time and then responds with its own hello packet, containing its own location, as well as...own hello packet. Location Tracking Another important feature is location tracking. Due to node mobility, it is vital that each node tracks the
Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…
Accounting Clerk Guide, Test Packet--Part I.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The test packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The test packet contains both pretests and post-tests for lessons 1 through 12. The unit is concerned with the basic accounting theory found in the accounting…
Learning Disabilities in the Workplace: A Professional Development Packet. Session 1 & 2.
ERIC Educational Resources Information Center
Corley, Mary Ann; Tibbetts, John
This field-tested training packet, which was designed for adult literacy providers, contains preparation materials, facilitator's notes, handout masters, and transparency masters for two 3-hour sessions on learning disabilities (LD) in the workplace. (At the end of the first session supported by the packet, participants will be able to do the…
The purpose of this SOP is to describe the assembly of household (HH) packets into data processing batches. The batching process enables orderly tracking of packets or forms through data processing and limits the potential for packet or form loss. This procedure was used for th...
Virtual detector theory for strong-field atomic ionization
NASA Astrophysics Data System (ADS)
Wang, Xu; Tian, Justin; Eberly, J. H.
2018-04-01
A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
On-board closed-loop congestion control for satellite based packet switching networks
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Ivancic, William D.; Kim, Heechul
1993-01-01
NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.
NASA Astrophysics Data System (ADS)
Biswas, Tutul; Kanti Ghosh, Tarun
2018-02-01
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for 0<α<1 the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for α=0 and α=1 . It is also unveiled that the frequency of ZB corresponding to α=1 gets exactly half of that corresponding to the α=0 case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
Biswas, Tutul; Kanti Ghosh, Tarun
2018-01-22
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T 3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Propagation velocity of Alfven wave packets in a dissipative plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagishi, Y.; Nakagawa, H.; Tanaka, M.
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in themore » anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.« less
Propagation velocity of Alfvén wave packets in a dissipative plasma
NASA Astrophysics Data System (ADS)
Amagishi, Yoshimitsu; Nakagawa, Hiroyuki; Tanaka, Masayoshi
1994-09-01
We have experimentally studied the behavior of Alfvén wave packets in a dissipative plasma due to ion-neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Packet-Based Protocol Efficiency for Aeronautical and Satellite Communications
NASA Technical Reports Server (NTRS)
Carek, David A.
2005-01-01
This paper examines the relation between bit error ratios and the effective link efficiency when transporting data with a packet-based protocol. Relations are developed to quantify the impact of a protocol s packet size and header size relative to the bit error ratio of the underlying link. These relations are examined in the context of radio transmissions that exhibit variable error conditions, such as those used in satellite, aeronautical, and other wireless networks. A comparison of two packet sizing methodologies is presented. From these relations, the true ability of a link to deliver user data, or information, is determined. Relations are developed to calculate the optimal protocol packet size forgiven link error characteristics. These relations could be useful in future research for developing an adaptive protocol layer. They can also be used for sizing protocols in the design of static links, where bit error ratios have small variability.
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
An Efficient Conflict Detection Algorithm for Packet Filters
NASA Astrophysics Data System (ADS)
Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung
Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.
Easements in Texas. Teachers Instructional Packet, TIP No. 5, Spring 1985.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Texas Real Estate Research Center.
Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand public and private easements, which most commonly entail the right of a person (or the public) to use the land of another in a certain manner. Following an evaluation form for the packet, a…
Graphics processing unit-assisted lossless decompression
Loughry, Thomas A.
2016-04-12
Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
21 CFR 520.1660d - Oxytetracycline powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...
Women's Studies for Teachers and Administrators: A Packet of Inservice Education Materials.
ERIC Educational Resources Information Center
Froschl, Merle, Ed.; And Others
This packet of materials is designed for elementary and secondary teachers and administrators who are engaged in inservice education and interested in the movement to eliminate sexism in schools. Two major purposes of the packet are to help a school district start an inservice course on sexism in education and to show the potential of such a…
ERIC Educational Resources Information Center
Seif, Elliott
The document presents student learning packets designed to provide an alternative social studies experience for high school students. The objective is to enable students to better understand themselves and their environment and other individuals and groups. Written at a junior high school reading level, the packets are intended to be used with low…
Opciones (Options). Spanish Correspondence. Level 1. Learning Activity Packet.
ERIC Educational Resources Information Center
Brown, James W.
The purpose of this learning activity packet is to acquaint students of Spanish as a second language with letter-writing in Spanish. Upon completion of the packet, students should be able to: (1) identify some of the major differences in mailing customs between the U.S. and Hispanic countries, (2) read and write mailing and return adresses, (3)…
The United States History (Laotian Edition). [34 Self-Learning Packets for Laotian Students.
ERIC Educational Resources Information Center
Nhi, Do Dien; And Others
Designed primarily for Indochinese students in grades 9-12, 34 United States history self-learning packets are presented in eight sections. The publication could be used by mainstream teachers who have a number of limited English proficient (LEP) Laotian students in their classes or by parents to tutor their children. The packets were adapted from…
The United States History = Lich Su Hoa Ky. [34 Self-Learning Packets for Vietnamese Students.
ERIC Educational Resources Information Center
Nhi, Do Dien; And Others
Designed primarily for Indochinese students in grades 9-12, 34 United States history self-learning packets are presented in eight sections. The publication could be used by mainstream teachers who have a number of limited English proficient (LEP) Vietnamese students in their classes or by parents to tutor their children. The packets were adapted…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
Napolitano, L.M. Jr.
1995-11-28
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks
Wang, Haiyan; He, Ke
2018-01-01
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.
Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin
2018-04-23
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.
Solids precipitation in crude oils, gas-to-liquids and their blends
NASA Astrophysics Data System (ADS)
Ramanathan, Karthik
Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a thermodynamic model based on a modified regular solution theory. A study was done to test the sensitivity of the thermodynamic model to varying levels of crude oil characterization input data for a fourth crude oil sample. The differentiation of the solute fraction (C25+) into the normal alkane, non-n-alkane and the aromatic fractions was found to be important for improving the predictive accuracy of the model. The n-alkane and non-n-alkane distribution used in the modeling of wax precipitation for the three crude oils blended with the GTL liquid gave the WPT's that agreed to within 5% of the experimental values. The precipitated solid amounts were overestimated using this method.
Low-Complexity Adaptive Multisine Waveform Design for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Clerckx, Bruno; Bayguzina, Ekaterina
Far-field Wireless Power Transfer (WPT) has attracted significant attention in the last decade. Recently, channel-adaptive waveforms have been shown to significantly increase the DC power level at the output of the rectifier. However the design of those waveforms is generally computationally complex and does not lend itself easily to practical implementation. We here propose a low-complexity channel-adaptive multisine waveform design whose performance is very close to that of the optimal design. Performance evaluations confirm the benefits of the new design in various rectifier topologies.