Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel.
Stinchcombe, Thomas E
2007-08-01
Standard formulation paclitaxel requires the use of solvents, such as Cremphor-EL, which contribute to some of the toxicities commonly associated with paclitaxel-based therapy. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a novel solvent-free formulation of paclitaxel. The formulation is prepared by high-pressure homogenization of paclitaxel in the presence of serum albumin into a nanoparticle colloidal suspension. The human albumin-stabilized paclitaxel particles have an average size of 130 nm. Nab-paclitaxel has several practical advantages over Cremphor-EL-paclitaxel, including a shorter infusion time (30 min) and no need for premedications for hypersensitivity reactions. The nab-paclitaxel formulation eliminates the impact of Cremphor-EL on paclitaxel pharmacokinetics and utilizes the endogenous albumin transport mechanisms to concentrate nab-paclitaxel within the tumor. A recent Phase III trial compared nab- and Cremphor-EL-paclitaxel in patients with metastatic breast cancer. Patients treated with nab-paclitaxel experienced a higher response, longer time to tumor progression and, in patients receiving second-line or greater therapy, a longer median survival. Patients treated with nab-paclitaxel had a significantly lower rate of severe neutropenia and a higher rate of sensory neuropathy. The preclinical and clinical data indicate that the nab-paclitaxel formulation has significant advantages over Cremphor-EL-paclitaxel.
Lu, Yimin; Wang, Jun; Liu, Lei; Yu, Lequn; Zhao, Nian; Zhou, Xingju; Lu, Xudong
2017-04-01
Non-small-cell lung cancer is one of the most lethal cancers in the worldwide. Although Paclitaxel-based combinational therapies have long been used as a standard treatment in aggressive non-small-cell lung cancers, Paclitaxel resistance emerges as a major clinical problem. It has been demonstrated that Curcumin from Curcuma longa as a traditional Chinese medicine can inhibit cancer cell proliferation. However, the role of Curcumin in Paclitaxel-resistant non-small-cell lung cancer cells is not clear. In this study, we investigated the effect of Curcumin on the Paclitaxel-resistant non-small-cell lung cancer cells and found that Curcumin treatment markedly increased the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel. Mechanically, the study revealed that Curcumin could reduce the expression of metastasis-associated gene 1 (MTA1) gene through upregulation of microRNA-30c in Paclitaxel-resistant non-small-cell lung cancer cells. During the course, MTA1 reduction sensitized Paclitaxel-resistant non-small-cell lung cancer cells and enhanced the effect of Paclitaxel. Taken together, our studies indicate that Curcumin increases the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Curcumin might be a potential adjuvant for non-small-cell lung cancer patients during Paclitaxel treatment.
Griffiths, Lisa A; Flatters, Sarah J L
2015-10-01
Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hou, Mei-Ling; Lu, Chia-Ming; Tsai, Tung-Hu
2016-01-01
Paclitaxel is effective against breast cancer. The herbal medicine, Jia-Wei-Xiao-Yao-San (JWXYS), is the most frequent prescription used to relieve the symptoms of breast cancer treatments. The aim of the study was to investigate the herb-drug interaction effects of a herbal medicine on the distribution of paclitaxel to lymph. A validated ultraperformance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was used to determine the paclitaxel levels in rat plasma and lymph after intravenous infusion of paclitaxel alone with or without 7 days of JWXYS pretreatment. The pharmacokinetic results indicate that paclitaxel concentrations in plasma exceeded those in lymph by approximately 3.6-fold. The biodistribution of paclitaxel from plasma to lymph was 39 ± 5%; however, this increased to 45 ± 4% with JWXYS pretreatment. With JWXYS pretreatment, the AUC and C max of paclitaxel in plasma were significantly reduced by approximately 1.5-fold, compared to paclitaxel alone. Additionally, JWXYS decreased the AUC and C max of paclitaxel in lymph. However, the lymph absorption rate of paclitaxel with or without JWXYS pretreatment was not significantly changed (27 ± 3 and 30 ± 2%, resp.). Our findings demonstrate that when paclitaxel is prescribed concurrently with herbal medicine, monitoring of the blood pharmacokinetics of paclitaxel is recommended.
Effect of several compounds on biliary excretion of paclitaxel and its metabolites in guinea-pigs.
Bun, Sok-Siya; Giacometti, Sarah; Fanciullino, Raphaëlle; Ciccolini, Joseph; Bun, Hot; Aubert, Claude
2005-07-01
The objective of this study was to evaluate the in vivo metabolic profile of paclitaxel and to examine the effect of potential co-administered drugs on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. We first investigated in vitro paclitaxel metabolism using liver microsomes obtained from various species to identify the most suitable animal model with a similar metabolism to humans. Then, in vivo paclitaxel metabolism was investigated in male guinea-pigs. The levels of paclitaxel and its metabolites were measured by high-performance liquid chromatography in bile samples from guinea-pigs after paclitaxel i.v. injection (6 mg/kg). We further evaluated the effects of various drugs (quercetin, ketoconazole, dexamethasone, cotrimoxazole) on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. This work demonstrated significant in vitro interspecies differences in paclitaxel metabolism. Our findings showed both in vitro and in vivo similarities between human and guinea-pig biotransformation of paclitaxel. 6alpha-Hydroxypaclitaxel, the main human metabolite of paclitaxel, was found in guinea-pig bile. After paclitaxel combination with ketoconazole or quercetin in guinea-pigs, the cumulative biliary excretion of paclitaxel and its metabolites up to 6 h was significantly decreased by 62 and 76%, respectively. The co-administration of cotrimoxazole or pretreatment with dexamethasone did not alter significantly cumulative biliary excretion. The guinea-pig is a suitable model to study metabolism and biliary excretion of paclitaxel, and to investigate in vivo drug interactions.
Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee
2017-05-01
1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.
2014-01-01
Background Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. Results The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. Conclusions Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi. PMID:24460898
Hou, Mei-Ling; Lu, Chia-Ming
2016-01-01
Paclitaxel is effective against breast cancer. The herbal medicine, Jia-Wei-Xiao-Yao-San (JWXYS), is the most frequent prescription used to relieve the symptoms of breast cancer treatments. The aim of the study was to investigate the herb-drug interaction effects of a herbal medicine on the distribution of paclitaxel to lymph. A validated ultraperformance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was used to determine the paclitaxel levels in rat plasma and lymph after intravenous infusion of paclitaxel alone with or without 7 days of JWXYS pretreatment. The pharmacokinetic results indicate that paclitaxel concentrations in plasma exceeded those in lymph by approximately 3.6-fold. The biodistribution of paclitaxel from plasma to lymph was 39 ± 5%; however, this increased to 45 ± 4% with JWXYS pretreatment. With JWXYS pretreatment, the AUC and C max of paclitaxel in plasma were significantly reduced by approximately 1.5-fold, compared to paclitaxel alone. Additionally, JWXYS decreased the AUC and C max of paclitaxel in lymph. However, the lymph absorption rate of paclitaxel with or without JWXYS pretreatment was not significantly changed (27 ± 3 and 30 ± 2%, resp.). Our findings demonstrate that when paclitaxel is prescribed concurrently with herbal medicine, monitoring of the blood pharmacokinetics of paclitaxel is recommended. PMID:27057200
Lazzaro, Carlo; Bordonaro, Roberto; Cognetti, Francesco; Fabi, Alessandra; De Placido, Sabino; Arpino, Grazia; Marchetti, Paolo; Botticelli, Andrea; Pronzato, Paolo; Martelli, Elisa
2013-01-01
Purpose Paclitaxel albumin (nab-paclitaxel) is a nanoparticle albumin-bound paclitaxel formulation aimed at increasing therapeutic index in metastatic breast cancer. When compared to conventional paclitaxel, nab-paclitaxel has a reported longer time to progression, higher response, lower incidence of neutropenia, no need for premedication, shorter time of administration, and in pretreated metastatic breast cancer patients, extended overall survival. This study investigates the cost-effectiveness of nab-paclitaxel versus conventional paclitaxel for pretreated metastatic breast cancer patients in Italy. Materials and methods A Markov model with progression-free, progressed, and dead states was developed to estimate costs, outcomes, and quality adjusted life years over 5 years from the Italian National Health Service viewpoint. Patients were assumed to receive nab-paclitaxel 260 mg/m2 three times weekly or conventional paclitaxel 175 mg/m2 three times weekly. Data on health care resource consumption was collected from a convenience sample of five Italian centers. Resources were valued at Euro (€) 2011. Published utility weights were applied to health states to estimate the impact of response, disease progression, and adverse events on quality adjusted life years. Three sensitivity analyses tested the robustness of the base case incremental cost-effectiveness ratio (ICER). Results and conclusion Compared to conventional paclitaxel, nab-paclitaxel gains an extra 0.165 quality adjusted life years (0.265 life years saved) and incurs additional costs of €2506 per patient treated. This translates to an ICER of €15,189 (95% confidence interval: €11,891–€28,415). One-way sensitivity analysis underscores that ICER for nab-paclitaxel remains stable despite varying taxanes cost. Threshold analysis shows that ICER for nab-paclitaxel exceeds €40,000 only if cost per mg of conventional paclitaxel is set to zero. Probabilistic sensitivity analysis highlights that nab-paclitaxel has a 0.99 probability to be cost-effective for a threshold value of €40,000 and is the optimal alternative from a threshold value of €16,316 onwards. Based on these findings, nab-paclitaxel can be considered highly cost-effective when compared to the acceptability range for ICER proposed by the Italian Health Economics Association (€25,000–€40,000). PMID:23610525
Socinski, Mark A; Govindan, Ramaswamy; Spigel, David
2012-10-01
Treatments for non-small cell lung cancer (NSCLC) are based on the broad categories of squamous or non-squamous histology. Frontline treatment options include pemetrexed and cisplatin, pemetrexed and a taxane, gemcitabine with cisplatin, and the addition of bevacizumab to a taxane and carboplatin. Pemetrexed is used for maintenance therapy for non-squamous NSCLC, whereas patients with squamous NSCLC lack easy options for maintenance therapy. nab-Paclitaxel overcomes the solubility and toxicity issues of solvent-based paclitaxel, and the albumin in nab-paclitaxel improves the concentration of the drug in the tumor. A recent phase III trial in NSCLC compared nab-paclitaxel with carboplatin versus solvent-based paclitaxel with carboplatin, and found improved overall response rates (ORRs) in the nab-paclitaxel arm (33% vs 25%; P=.005). In a subset analysis, NSCLC patients with squamous histology had a higher ORR (41%) with nab-paclitaxel than with solvent-based paclitaxel (24%; P<.001). Another subset analysis found that patients ages 70 years and older had improved overall survival (median 19.9 months) with nab-paclitaxel compared with solvent-based paclitaxel (median 10.4 months; P=.009). Patients in the nab-paclitaxel arm had less neuropathy, less hearing loss, and fewer interruptions in daily living than patients in the solvent-based paclitaxel arm.
Ototoxicity of paclitaxel in rat cochlear organotypic cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yang; Center for Hearing and Deafness, University at Buffalo, NY 14214; Ding, Dalian
Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1more » to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.« less
Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway.
Ismail, Ismail Ahmed; El-Sokkary, Gamal H; Saber, Saber H
2018-04-27
Paclitaxel (taxol) is an important agent against many tumours, including breast cancer. Ample data documents that paclitaxel inhibits breast cancer metastasis while others prove that paclitaxel enhances breast cancer metastasis. The mechanisms by which paclitaxel exerts its action are not well established. This study focuses on the effect of paclitaxel, particularly the low doses on breast cancer metastasis and the mechanisms that regulate it. Current results show that, paclitaxel exerts significant cytotoxicity even at low doses in both MCF-7 and MDA-MB-231 cells. Interestingly, paclitaxel significantly inhibits cell invasion and migration, decreases Snail and increases E-cadherin mRNA expression levels at the indicated low doses. Furthermore, paclitaxel-inhibiting breast cancer metastasis is associated with down-regulation of DJ-1 and ID-1 mRNA expression level with a concurrent increase in KLF17 expression. Under the same experimental conditions, paclitaxel induces KLF17 and concurrently represses ID-1 protein levels. Our results show for the first time that paclitaxel inhibits breast cancer metastasis through regulating DJ-1/KLF17/ID-1 signalling pathway; repressed DJ-1 and ID-1 and enhanced KLF17 expression. © 2018 John Wiley & Sons Australia, Ltd.
Kathawala, Rishil J.; Sodani, Kamlesh; Chen, Kang; Patel, Atish; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng
2014-01-01
Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, significantly attenuates paclitaxel resistance in HEK293 cells transfected with ABCC10. Our in vitro studies indicated that masitinib (2.5 μM) enhanced the intracellular accumulation and decreased the efflux of paclitaxel by inhibiting the ABCC10 transport activity without altering the expression level of ABCC10 protein. Furthermore, masitinib, in combination with paclitaxel, significantly inhibited the growth of ABCC10-expressing tumors in nude athymic mice in vivo. Masitinib administration also resulted in a significant increase in the levels of paclitaxel in the plasma, tumors and lungs compared to paclitaxel alone. In conclusion, the combination of paclitaxel and masitinib could serve as a novel and useful therapeutic strategy to reverse paclitaxel resistance mediated by ABCC10. PMID:24431074
Li, Jian-Ang; Xu, Xue-Feng; Han, Xu; Fang, Yuan; Shi, Chen-Ye; Jin, Da-Yong; Lou, Wen-Hui
2016-03-01
To investigate the antitumor activity of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) plus S-1 in patient-derived pancreatic cancer xenograft mouse models and to explore biomarkers that could predict drug efficacy. Ten patient-derived xenograft models were established. The third-generation tumor-bearing mice were randomized into 4 treatment groups: (1) control; (2) S-1; (3) nab-paclitaxel; (4) S-1 plus nab-paclitaxel. Resected tumors were tested by immunohistochemistry for the expression of thymidylate synthase, orotate phosphoribosyltransferase (OPRT), dihydropyrimidine dehydrogenase (DPD), secreted protein that is acidic and rich in cysteine, human epidermal growth factor receptor 2 (HER2), collagen-1, and CD31. Tumor growth inhibition of the S-1 group, nab-paclitaxel group, and combination group was 69.52%, 86.63%, 103.56%, respectively (P < 0.05). The efficacy of S-1 is better in thymidylate synthase-negative, OPRT-positive, and DPD-negative tumors. The efficacy of nab-paclitaxel is better in HER2-positive tumors. Collagen-1 was decreased and CD31 was increased in tumors treated with nab-paclitaxel and S-1 plus nab-paclitaxel compared with control or S-1. This preclinical study showed that S-1 plus nab-paclitaxel exerted significantly better antitumor activity than S-1 or nab-paclitaxel alone. Thymidylate synthase, OPRT, and DPD were possibly biomarkers of S-1 and HER2 of nab-paclitaxel.
Synthesis and characterization of a fluorescent water-soluble paclitaxel prodrug.
Sohn, Jeong-Sun; Choi, Eun-Sun; Jo, Byung-Wook; Hess, Michael; Han, Song-Hee
2010-05-01
A fluorescence susceptible water-soluble paclitaxel was synthesized by a condensation reaction between PEGylated paclitaxel (namely, PP7) and 1-pyrene butyric acid (PBA) in order to obtain a better understanding of the mechanism of action of paclitaxel as well as of the environment of the paclitaxel-binding site. The reaction was performed successfully and the resulting paclitaxel was characterized by FT-NMR, analytical-HPLC, UV spectro photometry, and fluorescence spectrometry. The synthesized paclitaxel analogue showed a high susceptibility to fluorescence in both excitation and emission spectra. And we have investigated the time-resolved fluorescence behavior of them in different solvents and at different excitation wavelengths.
Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model.
Li, Qi; Ma, Zhuang; Liu, Yinhua; Kan, Xiaoxi; Wang, Changjun; Su, Bingnan; Li, Yuchen; Zhang, Yingmei; Wang, Pingzhang; Luo, Yang; Na, Daxiang; Wang, Lanlan; Zhang, Guoying; Zhu, Xiaoxin; Wang, Lu
2016-08-01
Paclitaxel is the most commonly used chemotherapeutic agent in breast cancer treatment. In addition to its well-known cytotoxic effects, recent studies have shown that paclitaxel has tumor-supportive activities. Importantly, paclitaxel levels are not maintained at the effective concentration through one treatment cycle; rather, the concentration decreases during the cycle as a result of drug metabolism. Therefore, a comprehensive understanding of paclitaxel's effects requires insight into the dose-specific activities of paclitaxel and their influence on cancer cells and the host microenvironment. Here we report that a low dose of paclitaxel enhances metastasis of breast cancer cells to the liver in mouse models. We used microarray analysis to investigate gene expression patterns in invasive breast cancer cells treated with low or clinically relevant high doses of paclitaxel. We also investigated the effects of low doses of paclitaxel on cell migration, invasion and metastasis in vitro and in vivo. The results showed that low doses of paclitaxel promoted inflammation and initiated the epithelial-mesenchymal transition, which enhanced tumor cell migration and invasion in vitro. These effects could be reversed by inhibiting NF-κB. Furthermore, low doses of paclitaxel promoted liver metastasis in mouse xenografts, which correlated with changes in estrogen metabolism in the host liver. Collectively, these findings reveal the paradoxical and dose-dependent effects of paclitaxel on breast cancer cell activity, and suggest that increased consideration be given to potential adverse effects associated with low concentrations of paclitaxel during treatment. Gene expression microarray data are available in the GEO database under accession number GSE82048. © 2016 Federation of European Biochemical Societies.
Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery
Wang, Yonglu; Li, Xueming; Wang, Liyao; Xu, Yuanlong; Cheng, Xiaodan; Wei, Ping
2011-01-01
Paclitaxel is a diterpenoid isolated from Taxus brevifolia. It is effective for various cancers, especially ovarian and breast cancer. Due to its aqueous insolubility, it is administered dissolved in ethanol and Cremophor® EL (BASF, Ludwigshafen, Germany), which can cause serious allergic reactions. In order to eliminate Cremophor EL, paclitaxel was formulated as a nanosuspension by high-pressure homogenization. The nanosuspension was lyophilized to obtain the dry paclitaxel nanoparticles (average size, 214.4 ± 15.03 nm), which enhanced both the physical and chemical stability of paclitaxel nanoparticles. Paclitaxel dissolution was also enhanced by the nanosuspension. Differential scanning calorimetry showed that the crystallinity of paclitaxel was preserved during the high-pressure homogenization process. The pharmacokinetics and tissue distribution of paclitaxel were compared after intravenous administration of paclitaxel nanosuspension and paclitaxel injection. In rat plasma, paclitaxel nanosuspension exhibited a significantly (P < 0.01) reduced area under the concentration curve (AUC)0–∞ (20.343 ± 9.119 μg · h · mL−1 vs 5.196 ± 1.426 μg · h · mL−1), greater clearance (2.050 ± 0.616 L · kg−1 · h−1 vs 0.556 ± 0.190 L · kg−1 · h−1), and shorter elimination half-life (5.646 ± 2.941 vs 3.774 ± 1.352 hours) compared with the paclitaxel solution. In contrast, the paclitaxel nanosuspension resulted in a significantly greater AUC0–∞ in liver, lung, and spleen (all P < 0.01), but not in heart or kidney. PMID:21796250
Pan, Zhi; Avila, Andrew; Gollahon, Lauren
2014-01-01
Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172
Gui, Yulong; Zhang, Jie; Chen, Liang; Duan, Shunyuan; Tang, Jing; Xu, Wei; Li, Aiyuan
2018-01-01
Background One of the most common side effects of paclitaxel was dosage-dependently painful neuropathy. Various reports indicated that spinal neuroinflammation was involved in paclitaxel-induced neuropathic pain. This study investigated the effect of icariin on paclitaxel-induced neuroinflammation and peripheral neuropathy in rats. Methods Two parts were included in this study. In part one, the effect of icariin on paclitaxel-induced neuropathic pain was investigated. Mechanical thresholds were measured as primary outcomes. Production of proinflammatory factors (tumor necrosis factor-α, interleukin-1 β, and interleukin-6), activation of nuclear factor-κB (NF-κB(p65)) signal, and activation of astrocytes were detected as secondary outcomes. Spinal Sirtuin 1 (SIRT1) expression, H4 acetylation, and NAD + content were measured to investigate the effect of icariin on spinal SIRT1 signal pathway. In part two, the role of SIRT1 signal on icariin-induced effect in rats was investigated, and EX527, a SIRT1 inhibitor, was employed. Results The results showed paclitaxel treatment induced significant decrease in mechanical thresholds. Paclitaxel treatment also induced NF-κB(p65) activation and upregulation of proinflammatory factors (TNF-α, IL-1β, and IL-6). Paclitaxel also induced astrocyte activation in the spinal cord. However, 100 mg/kg icariin treatment significantly alleviated paclitaxel-induced mechanical allodynia and spinal neuroinflammation. Furthermore, icariin treatment dosage-dependently reversed paclitaxel-induced SIRT1 downregulation and H4 acetylation. EX527, a selective SIRT1 inhibitor, completely reversed icariin-induced anti-neuroinflammation and anti-allodynia effects in paclitaxel-induced neuropathic pain rats. Conclusions This meant that spinal SIRT1 activation was involved in icariin-induced effects in paclitaxel-induced neuropathic pain rats. Icariin could be a potential agent for the treatment of paclitaxel-induced neuropathic pain.
Dang, Yu-Ping; Yuan, Xiao-Ying; Tian, Rong; Li, Dong-Guang; Liu, Wei
2015-04-01
Paclitaxel, isolated from Taxus brevifolia , is considered to be an efficacious agent against a wide spectrum of human cancers, including human cervical cancer. However, dose-limiting toxicity and high cost limit its clinical application. Curcumin, a nontoxic food additive, has been reported to improve paclitaxel chemotherapy in mouse models of cervical cancer. However, the underlying mechanisms remain unclear. In this study, two human cervical cancer cell lines, CaSki [human papilloma virus (HPV)16-positive] and HeLa (HPV18-positive), were selected in which to investigate the effect of curcumin on the anticancer action of paclitaxel and further clarify the mechanisms. Flow cytometry and MTT analysis demonstrated that curcumin significantly promoted paclitaxel-induced apoptosis and cytotoxicity in the two cervical cell lines compared with that observed with paclitaxel alone (P<0.05). Reverse transcription-polymerase chain reaction indicated that the decline of HPV E6 and E7 gene expression induced by paclitaxel was also assisted by curcumin. The expression levels of p53 protein and cleaved caspase-3 were increased significantly in the curcumin plus paclitaxel-treated HeLa and CaSki cells compared with those in the cells treated with paclitaxel alone (P<0.01). Significant reductions in the levels of phosphorylation of IκBα and the p65-NF-κB subunit in CaSki cells treated with curcumin and paclitaxel were observed compared with those in cells treated with paclitaxel alone (P<0.05). This suggests that the combined effect of curcumin and paclitaxel was associated with the NF-κB-p53-caspase-3 pathway. In conclusion, curcumin has the ability to improve the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cell lines via the NF-κB-p53-caspase-3 pathway. Curcumin in combination with paclitaxel may provide a superior therapeutic effect on human cervical cancer.
Guo, Xin D; Tan, Jeremy P K; Kim, Sung H; Zhang, Li J; Zhang, Ying; Hedrick, James L; Yang, Yi Y; Qian, Yu
2009-11-01
Paclitaxel-loaded poly(ethylene oxide)-b-poly(lactide) (PEO-b-PLA) systems have been observed to assemble into fiber structures with remarkably different properties using different chirality and molecular weight of PLA segments. In this study, dissipative particle dynamics (DPD) simulations were carried out to elaborate the microstructures and properties of pure paclitaxel and paclitaxel-loaded PEO-b-PLA systems. Paclitaxel molecules formed ribbon or fiber like structures in water. With the addition of PEO-b-PDLA, PEO-b-PLLA and their stereocomplex, paclitaxel acted as a template and polymer molecules assembled around the paclitaxel structure to form core/shell structured fibers having a PEO shell. For PEO19-b-PDLA27 and PEO19-b-PLLA27 systems, PLA segments and paclitaxel molecules were distributed homogeneously in the core of fibers based on the hydrophobic interactions. In the stereocomplex formulation, paclitaxel molecules were more concentrated in the inner PLA stereocomplex core, which led to slower release of paclitaxel. By increasing the length of PLA segments (e.g. 8,16,22 and 27), the crystalline structure of paclitaxel was gradually weakened and destroyed, which was further proved by X-ray diffraction studies. All the simulation results agreed well with experimental data, suggesting that the DPD simulations may provide a powerful tool for designing drug delivery systems.
Webber-Foster, Rachel; Kvizhinadze, Giorgi; Rivalland, Gareth; Blakely, Tony
2014-07-01
There have been recent important changes to adjuvant regimens and costs of taxanes for the treatment of early breast cancer, requiring a re-evaluation of comparative cost effectiveness. In particular, weekly paclitaxel is now commonly used but has not been subjected to cost-effectiveness analysis. Our aim was to estimate the cost effectiveness of adjuvant docetaxel and weekly paclitaxel versus each other, and compared with standard 3-weekly paclitaxel, in women aged ≥25 years diagnosed with regional breast cancer in New Zealand. A macrosimulation Markov model was used, with a lifetime horizon and health system perspective. The model compared 3-weekly docetaxel and weekly paclitaxel versus standard 3-weekly paclitaxel (E1199 regimen) in the hospital setting. Data on overall survival and toxicities (febrile neutropenia and peripheral neuropathy) were derived from relevant published clinical trials. Epidemiological and cost data were derived from New Zealand datasets. Health outcomes were measured with health-adjusted life-years (HALYs), similar to quality-adjusted life-years (QALYs). Costs included intervention and health system costs in year 2011 values, with 3% per annum discounting on costs and HALYs. The mean HALY gain per patient compared with standard 3-weekly paclitaxel was 0.51 with weekly paclitaxel and 0.21 with docetaxel, while incremental costs were $NZ 12,284 and $NZ 4,021, respectively. The incremental cost-effectiveness ratio (ICER) of docetaxel versus 3-weekly paclitaxel was $NZ 19,400 (purchasing power parity [PPP]-adjusted $US 13,100) per HALY gained, and the ICER of weekly paclitaxel versus docetaxel was $NZ 27,100 ($US 18,300) per HALY gained. In terms of net monetary benefit, weekly paclitaxel was the optimal strategy for willingness-to-pay (WTP) thresholds >$NZ 27,000 per HALY gained. However, the model was highly sensitive to uncertainty around survival differences, while toxicity-related morbidity had little impact. Thus, if it was assumed that weekly paclitaxel and docetaxel had the same efficacy, docetaxel would be favoured over weekly paclitaxel. Both weekly paclitaxel and docetaxel are likely to be cost effective compared with standard 3-weekly paclitaxel. Weekly paclitaxel was the optimal choice for WTP thresholds greater than $NZ27,000 per HALY gained (PPP-adjusted $US 18,000). However, uncertainty remains around relative survival benefits, and weekly paclitaxel becomes cost ineffective versus docetaxel if it is assumed that the two regimens have equal effectiveness. Reduced uncertainty about the relative survival benefits may improve decision making for funding.
Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian
2017-07-01
Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells
Lee, Na-Young; Lee, Ha-Eun; Kang, Young-Sook
2014-01-01
When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel was time- and temperature-dependent. Paclitaxel was eliminated about 50% from the cells within 30 min. The uptake of paclitaxel was saturable with Km of 168 μM and 371 μM in TR-TBT 18d-1 and TR-TBT 18d-2, respectively. [3H]Paclitaxel uptake was markedly inhibited by cyclosporine and verapamil, well-known substrates of P-glycoprotein (P-gp) transporter. However, several MRP substrates and organic anions had no effect on [3H]paclitaxel uptake in TR-TBT cells. These results suggest that P-gp may be involved in paclitaxel transport at the placenta. TR-TBT cells expressed mRNA of P-gp. These findings are important for therapy of breast and ovarian cancer of pregnant women, and should be useful data in elucidating teratogenicity of paclitaxel during pregnancy. PMID:24596624
Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord.
Chiba, Terumasa; Oka, Yusuke; Kambe, Toshie; Koizumi, Naoya; Abe, Kenji; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji
2016-01-05
Peripheral neuropathy is a common adverse effect of paclitaxel treatment. The major dose-limiting side effect of paclitaxel is peripheral sensory neuropathy, which is characterized by painful paresthesia of the hands and feet. To analyze the contribution of substance P to the development of paclitaxel-induced mechanical hyperalgesia, substance P expression in the superficial layers of the rat spinal dorsal horn was analyzed after paclitaxel treatment. Behavioral assessment using the von Frey test and the paw thermal test showed that intraperitoneal administration of 2 and 4mg/kg paclitaxel induced mechanical allodynia/hyperalgesia and thermal hyperalgesia 7 and 14 days after treatment. Immunohistochemistry showed that paclitaxel (4mg/kg) treatment significantly increased substance P expression (37.6±3.7% on day 7, 43.6±4.6% on day 14) in the superficial layers of the spinal dorsal horn, whereas calcitonin gene-related peptide (CGRP) expression was unchanged. Moreover, paclitaxel (2 and 4mg/kg) treatment significantly increased substance P release in the spinal cord on day 14. These results suggest that paclitaxel treatment increases release of substance P, but not CGRP in the superficial layers of the spinal dorsal horn and may contribute to paclitaxel-induced painful peripheral neuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Zhen-Zhen; Li, Dai; Liu, Cui-Cui; Cui, Yu; Zhu, He-Quan; Zhang, Wen-Wen; Li, Yong-Yong; Xin, Wen-Jun
2014-08-01
Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.
Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection
NASA Astrophysics Data System (ADS)
Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration
Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.
Flores, M Luz; Castilla, Carolina; Ávila, Rainiero; Ruiz-Borrego, Manuel; Sáez, Carmen; Japón, Miguel A
2012-06-01
Taxanes are being used for the treatment of breast cancer. However, cancer cells frequently develop resistance to these drugs with the subsequent recurrence of the tumor. MDA-MB-231 and T-47D breast cancer cell lines were used to assess the effect of paclitaxel treatment on apoptosis and cell cycle, the possible mechanisms of paclitaxel resistance as well as the enhancement of paclitaxel-induced apoptosis based on its combination with phenylethyl isothiocyanate (PEITC). T-47D cells undergo apoptosis in response to paclitaxel treatment. The induction of apoptosis was associated with a robust mitotic arrest and the disruption of Bcl-xL/Bak interaction. By contrary, MDA-MB-231 cells were insensitive to paclitaxel-induced apoptosis and this was associated with a high percentage of cells that slip out of paclitaxel-imposed mitotic arrest and also with the maintenance of Bcl-xL/Bak interaction. The sequential treatment of MDA-MB-231 cells with PEITC followed by paclitaxel inhibited the slippage induced by paclitaxel and increased the apoptosis induction achieved with any of the drugs alone. In breast cancer tissues, high Bcl-xL expression was correlated with a shorter time of disease-free survival in patients treated with a chemotherapeutic regimen that contains paclitaxel, in a statistically significant way. Thus, resistance to paclitaxel in MDA-MB-231 cells is related to the inability to disrupt the Bcl-xL/Bak interaction and increased slippage. In this context, the combination of a drug that induces a strong mitotic arrest, such as paclitaxel, with another that inhibits slippage, such as PEITC, translates into increased apoptotic induction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huang-Joe; Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan; Lo, Wan-Yu
Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease inmore » TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.« less
Development of paclitaxel-TyroSpheres for topical skin treatment
Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.
2012-01-01
A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474
Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.
Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich
2015-12-01
Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of <12%. The median relative deviation of the estimated Tc > 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in clinical routine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@
Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to paclitaxel. • Paclitaxel resistance was associated with increased levels of ABCB1 and ABCC3 protein. • ABCB1 silencing increased significantly sensitivity to both paclitaxel and doxorubicin.« less
Baek, Jong-Suep; Cho, Cheong-Weon
2017-01-01
The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731
Beutler, Bryce D; Cohen, Philip R
2015-04-01
Taxanes [paclitaxel, nab-paclitaxel (Abraxane, Celgene Corp, USA), and docetaxel]-used in the treatment of lung, breast, and head and neck cancers-have been associated with cutaneous adverse effects, including photodermatoses. We describe a woman with non-small cell lung cancer who developed a photodistributed dermatitis associated with her nab-paclitaxel therapy and review photodermatoses in patients receiving taxanes. The features of a woman with a nab-paclitaxel-associated photodistributed dermatitis are presented and the literature on nab-paclitaxel-associated photosensitivity is reviewed. Our patient developed nab-paclitaxel-associated photodistributed dermatitis on the sun-exposed surfaces of her upper extremities, which was exacerbated with each course of nab-paclitaxel. Biopsies revealed an interface dermatitis and laboratory studies were negative for lupus erythematosus and dermatomyositis. Her condition improved following topical corticosteroid cream application and strict avoidance of sunlight. Chemotherapy can be associated with adverse mucocutaneous events, including dermatoses on sun-exposed areas of the skin. Paclitaxel and nab-paclitaxel have both been associated with photodermatoses, including dermatitis, erythema multiforme, onycholysis, and subacute cutaneous lupus erythematosus. Strict avoidance of sun exposure, topical or oral corticosteroids, and/or discontinuation of the drug results in improvement with progressive resolution of symptoms and skin lesions. Development of photodermatoses is not an absolute contraindication to continuing chemotherapy, provided that the cutaneous condition resolves with dermatosis-directed treatment and the patient avoids sun exposure.
Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment
Mo, Michelle; Erdelyi, Ildiko; Szigeti-Buck, Klara; Benbow, Jennifer H.; Ehrlich, Barbara E.
2012-01-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect that occurs in many patients undergoing chemotherapy. It is often irreversible and frequently leads to early termination of treatment. In this study, we have identified two compounds, lithium and ibudilast, that when administered as a single prophylactic injection prior to paclitaxel treatment, prevent the development of CIPN in mice at the sensory-motor and cellular level. The prevention of neuropathy was not observed in paclitaxel-treated mice that were only prophylactically treated with a vehicle injection. The coadministration of lithium with paclitaxel also allows for administration of higher doses of paclitaxel (survival increases by 60%), protects against paclitaxel-induced cardiac abnormalities, and, notably, does not interfere with the antitumor effects of paclitaxel. Moreover, we have determined a mechanism by which CIPN develops and have discovered that lithium and ibudilast inhibit development of peripheral neuropathy by disrupting the interaction between paclitaxel, neuronal calcium sensor 1 (NCS-1), and the inositol 1,4,5-trisphosphate receptor (InsP3R) to prevent treatment-induced decreases in intracellular calcium signaling. This study shows that lithium and ibudilast are candidate therapeutics for the prevention of paclitaxel-induced neuropathy and could enable patients to tolerate more aggressive treatment regimens.—Mo, M., Erdelyi, I., Szigeti-Buck, K., Benbow, J. H., Ehrlich, B. E. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. PMID:22889832
[Effect of ginseng rare ginsenoside components combined with paclitaxel on A549 lung cancer].
Yang, Lei; Zhang, Zhen-Hai; Jia, Xiao-Bin
2018-04-01
Traditional Chinese medicine combined with anticancer drugs is a new direction of clinical cancer therapy in recent years. In this study, the optimal ratio of ginseng rare ginsenoside components and paclitaxel was optimized by MTT method, and the proliferative, apoptotic and anti-tumor effects of lung cancer A549 cells were investigated. It was found that the inhibitory effect on the proliferation of lung cancer A549 cells was the same as that on paclitaxel when the ratio of rare ginseng rare ginsenoside components to paclitaxel was 4∶6. Further studies showed that the combined therapy significantly increased the inductive effect of apoptosis in A549 cells, and up-regulated the expression of caspase-3 protein and down-regulated the ratio of Bcl-2/Bax. The tumor-bearing mice model showed that the combination therapy of ginseng rare ginsenoside components and paclitaxel could significantly inhibit the growth of tumor and alleviate the toxic and side effects of paclitaxel on liver. A multi-component system of ginseng rare ginsenoside components-paclitaxel was established in this paper. The proliferation and growth of lung cancer A549 cells were inhibited by paclitaxel-induced apoptosis, the dosage of paclitaxel and the toxicity of paclitaxel were reduced, and the effect of anti-lung cancer was enhanced, which provided a theoretical basis for later studies and clinical application. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705
Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less
Taghian, Alphonse G; Assaad, Sherif I; Niemierko, Andrzej; Floyd, Scott R; Powell, Simon N
2005-06-01
To evaluate and quantify the effect of irradiated lung volume, radiation dose, and paclitaxel chemotherapy on the development of radiation pneumonitis (RP) in breast cancer patients with positive lymph nodes. We previously reported the incidence of RP among 41 patients with breast cancer treated with radiotherapy (RT) and adjuvant paclitaxel-containing chemotherapy. We recorded the central lung distance, a measure of the extent of lung included in the RT volume, in these patients. We used this measure and the historical and observed rates of RP in our series to model the lung tolerance to RT in patients receiving chemotherapy (CHT) both with and without paclitaxel. To evaluate the risk factors for the development of RP, we performed a case-control study comparing paclitaxel-treated patients who developed RP with those who did not, and a second case-control study comparing patients receiving paclitaxel in addition to standard CHT/RT (n = 41) and controls receiving standard CHT/RT alone (n = 192). The actuarial rate of RP in the paclitaxel-treated group was 15.4% compared with 0.9% among breast cancer patients treated with RT and non-paclitaxel-containing CHT. Our mathematical model found that the effective lung tolerance for patients treated with paclitaxel was reduced by approximately 24%. No statistically significant difference was found with regard to the dose delivered to specific radiation fields, dose per fraction, central lung distance, or percentage of lung irradiated in the case-control study of paclitaxel-treated patients who developed RP compared with those who did not. In the comparison of 41 patients receiving RT and CHT with paclitaxel and 192 matched controls receiving RT and CHT without paclitaxel, the only significant differences identified were the more frequent use of a supraclavicular radiation field and a decrease in the RT lung dose among the paclitaxel-treated patients. This finding indicates that the major factor associated with development of RP was paclitaxel treatment. The use of paclitaxel chemotherapy and RT in the primary treatment of node-positive breast cancer is likely to increase the incidence of RP. In patients treated with paclitaxel, reducing the percentage of lung irradiated by 24% should reduce the risk of RP to 1%, according to our calculations of lung tolerance. Future clinical trials using combination CHT that includes paclitaxel and RT should carefully evaluate the incidence and severity of RP and should also accurately monitor the extent of lung included within the RT volume to develop safe guidelines for the delivery of what is becoming standard therapy for node-positive breast cancer.
Zong, Yu; Wu, Jiayi; Shen, Kunwei
2017-03-07
The value of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in neoadjuvant systemic therapy for breast cancer remains uncertain. Both electronic databases and proceedings of oncologic meetings were included in systematic literature search. Pooled rates of pathological complete response (pCR), odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using fixed-effect or random-effect model to determine the effect of neoadjuvant nab-paclitaxel. Twenty-one studies with 2357 patients were included, 3 of which were randomized clinical trials. The aggregate pCR(ypT0/is ypN0) rate was 32% (95% CI 25-38%) in unselected breast cancer patients and variated in different subtypes. Within randomized clinical trials, the probability of achieving pCR was significantly higher in the nab-paclitaxel group than in the conventional taxanes group (OR = 1.383, 95%CI 1.141-1.676, p = 0.001). For non-hematological toxic effect, any grade and grade 3-4 peripheral sensory neuropathy occurred more frequently with nab-paclitaxel compared to paclitaxel (any grade, OR = 2.090, 95%CI 1.016-4.302, p = 0.045; grade3-4, OR = 3.766, 95%CI 2.324-6.100, p < 0.001). Hypersensitivity was more common with paclitaxel than nab-paclitaxel at any grade and grade 3-4. nab-paclitaxel is an effective cytotoxic drug in neoadjuvant treatment of breast cancer, especially for aggressive tumors in terms of pCR. Exchange of nab-paclitaxel for conventional taxanes could significantly improve pCR rate with reasonable toxicities.
Chen, Xing-Xiu; Gao, Feng; Wang, Qi; Huang, Xing; Wang, Dan
2014-01-01
Two spiro paclitaxel-mimics consisting only of an oxetane D-ring and a C-13 side chain were designed and synthesized on the basis of analysis of structure-activity relationships (SAR) of paclitaxel. In vitro microtubule-stabilizing and antiproliferative assays indicated a moderate weaker activity of the mimics than paclitaxel, but which still represented the first example of simplified paclitaxel analogues with significant anti-tumor biological activity. Copyright © 2013 Elsevier B.V. All rights reserved.
Ahmed, Ahmed Ashour; Mills, Anthony D; Ibrahim, Ashraf E K; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E; Iyer, N Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D; Earl, Helena M; Laskey, Ronald A; Caldas, Carlos; Brenton, James D
2007-12-01
The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability.
Nab-paclitaxel after docetaxel hypersensitivity reaction: case report and literature review.
Pellegrino, Benedetta; Boggiani, Daniela; Tommasi, Chiara; Palli, Dante; Musolino, Antonino
2017-10-23
Taxanes, including paclitaxel and docetaxel, are one of the most active cytotoxic agents in breast cancer treatment including Her-2 positive subtype characterized by aggressive clinical and pathological features since the early stage. However, their use is sometimes limited by the occurrence of hypersensivity reactions (HSRs) characterized by erythematous rashes, bronchospasm, respiratory distress, hypotension, and pulmonary edema. Cross-reactions between paclitaxel and docetaxel are described in literature with a rate ranging from 49% to 90%. Abraxane (nab-paclitaxel), an albumin-bound form of paclitaxel, has a different toxicity profile from solvent-based paclitaxel and a lower rate of HSRs. Interestingly, several authors have recently reported cases of patients who developed HSRs to taxanes, principally paclitaxel, and were then safety treated with Abraxane, suggesting the absence of cross-reactivity between these drugs. Based on these considerations, we report our clinical experience and perform a literature review on this topic with the aim to investigate the cross-reactivity between nab-paclitaxel and other taxanes, in particular with docetaxel.
Jiang, Kanqiu; Shen, Mingjing; Xu, Weihua
2018-01-01
In this study, a novel arginine, glycine, aspartic acid peptide (RGD)-modified paclitaxel and curcumin co-loaded liposomes were developed to evaluate their antitumor activity in vitro and in vivo. Co-loaded liposomes were prepared using the solvent evaporation method. The particles had spherical shapes under electron microscopy with sizes <130 nm. By comparison with the free drug, RGD-modified paclitaxel and curcumin co-loaded liposomes and paclitaxel and curcumin co-loaded liposomes have sustained-release properties in vitro. In vivo, there was no significant difference in pharmacokinetic parameters between the RGD-modified paclitaxel and curcumin co-loaded liposomes and paclitaxel and curcumin co-loaded liposomes. A strong green fluorescence was observed in the cytoplasmic region after incubation of RGD-modified paclitaxel and curcumin co-loaded liposomes for 2 h. RGD-modified paclitaxel and curcumin co-loaded liposomes showed a superior antiproliferative effect on A549 cells with a possible mechanism that suppressed the multidrug resistance phenomenon and exhibited a clear synergistic effect. The results indicate that RGD-modified paclitaxel and curcumin co-loaded liposomes had a better antitumor effect in vivo than the non-modified LPs. These results indicate that RGD-modified co-loaded liposomes are a promising candidate for antitumor drug delivery.
Hou, Dongming; Huibregtse, Barbara A; Eppihimer, Michael; Stoffregen, William; Kocur, Gordon; Hitzman, Cory; Stejskal, Elizabeth; Heil, John; Dawkins, Keith D
2016-08-20
Our aim was to evaluate arterial responses to paclitaxel and a novel fluorocopolymer-coated nitinol low-dose paclitaxel-eluting stent (FP-PES). Human smooth muscle cell (SMC) migration was assessed after exposure to paclitaxel in vitro. For pharmacokinetics and vascular response, FP-PES or bare metal stents (BMS) were implanted in porcine iliofemoral arteries. Paclitaxel significantly inhibited human coronary and femoral artery SMC migration at doses as low as 1 pM. Inhibition was significantly greater for femoral compared with coronary artery SMCs from 1 pM to 1 μM. Pharmacokinetics showed consistent paclitaxel release from FP-PES over the study duration. The peak arterial wall paclitaxel level was 3.7 ng/mg at 10 days, with levels decreasing to 50% of peak at 60 days and 10% at 180 days. Paclitaxel was not detected in blood or remote organs. Arteriogram and histomorphometry analyses showed FP-PES significantly inhibits neointimal proliferation versus BMS at 30 and 90 days. Re-endothelialisation scores were not different between groups. Paclitaxel affected femoral artery SMC migration at lower concentrations and to a greater degree than it did coronary artery SMCs. The novel FP-PES used in this preclinical study demonstrated a vascular healing response similar to BMS, while significantly inhibiting neointimal formation up to 90 days.
Paclitaxel modulates TGFbeta signaling in scleroderma skin grafts in immunodeficient mice.
Liu, Xialin; Zhu, Shoukang; Wang, Tao; Hummers, Laura; Wigley, Fredrick M; Goldschmidt-Clermont, Pascal J; Dong, Chunming
2005-12-01
Systemic sclerosis (SSc) is characterized by excessive fibrosis and obliterative vascular lesions. Abnormal TGFbeta activation is implicated in the pathogenesis of SSc. Aberrant TGFbeta/Smad signaling can be controlled by stabilization of microtubules with paclitaxel. SSc and healthy human skin biopsies were incubated in the presence or absence of paclitaxel followed by transplantation into severe combined immunodeficient mice. TGFbeta signaling, fibrosis, and neovessel formation were evaluated by quantitative RT-PCR and immunohistochemical staining. Paclitaxel markedly suppressed Smad2 and Smad3 phosphorylation and collagen deposition in SSc grafts. As a result, the autonomous maintenance/reconstitution of the SSc phenotype was prevented. Remarkably, SSc grafts showed a 2-fold increase in neovessel formation relative to normal grafts, regardless of paclitaxel treatment. Angiogenesis in SSc grafts was associated with a substantial increase in mouse PECAM-1 expression, indicating the mouse origin of the neovascular cells. Low-dose paclitaxel can significantly suppress TGFbeta/Smad activity and lessen fibrosis in SCID mice. Transplantation of SSc skin into SCID mice elicits a strong angiogenesis-an effect not affected by paclitaxel. Although prolonged chemotherapy with paclitaxel at higher doses is associated with pro-fibrotic and anti-angiogenic changes, the findings described here indicate that low-dose paclitaxel may have therapeutic benefits for SSc via modulating TGFbeta signaling.
Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri
2007-06-29
Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.
Duggett, Natalie A.; Griffiths, Lisa A.; Flatters, Sarah J.L.
2017-01-01
Abstract Painful neuropathy is the major dose-limiting side effect of paclitaxel chemotherapy. Mitochondrial dysfunction and adenosine triphosphate (ATP) deficit have previously been shown in peripheral nerves of paclitaxel-treated rats, but the effects of paclitaxel in the dorsal root ganglia (DRGs) have not been explored. The aim of this study was to determine the bioenergetic status of DRG neurons following paclitaxel exposure in vitro and in vivo. Utilising isolated DRG neurons, we measured respiratory function under basal conditions and at maximal capacity, glycolytic function, and Adenosine diphosphate (ADP)/ATP levels at 3 key behavioural timepoints; prior to pain onset (day 7), peak pain severity and pain resolution. At day 7, maximal respiration and spare reserve capacity were significantly decreased in DRG neurons from paclitaxel-treated rats. This was accompanied by decreased basal ATP levels and unaltered ADP levels. At peak pain severity, respiratory function was unaltered, yet glycolytic function was significantly increased. Reduced ATP and unaltered ADP levels were also observed at the peak pain timepoint. All these effects in DRG neurons had dissipated by the pain resolution timepoint. None of these paclitaxel-evoked changes could be replicated from in vitro paclitaxel exposure to naive DRG neurons, demonstrating the impact of in vivo exposure and the importance of in vivo models. These data demonstrate the nature of mitochondrial dysfunction evoked by in vivo paclitaxel in the DRG for the first time. Furthermore, we have identified paclitaxel-evoked changes in the bioenergetics of DRG neurons, which result in a persistent energy deficit that is causal to the development and maintenance of paclitaxel-induced pain. PMID:28541258
Rossato, Mateus Fortes; Rigo, Flavia Karine; Oliveira, Sara Marchesan; Guerra, Gustavo Petri; Silva, Cássia Regina; Cunha, Thiago Mattar; Gomez, Marcus Vinícius; Ferreira, Juliano; Trevisan, Gabriela
2018-06-05
The clinical use of paclitaxel as a chemotherapeutic agent is limited by the severe acute and chronic hypersensitivity caused when it is administered via intraperitoneal or intravenous routes. Thus far, evidence has suggested that transient receptor potential vanilloid-1 (TRPV1) has a key role in the chronic neuropathy induced by paclitaxel. Despite this, the role of TRPV1 in paclitaxel -related acute nociception, especially the development of visceral nociception, has not been evaluated. Thus, the goal of this study was to evaluate the participation of TRPV1 in a model of acute nociception induced by paclitaxel in rats and mice. A single intraperitoneal (i.p.) paclitaxel administration (1 mg/kg, i.p.) produced an immediate visceral nociception response 1 h after administration, caused mechanical and heat hypersensitivity, and diminished burrowing behaviour 24 h after administration. These nociceptive responses were reduced by SB-366791 treatment (0.5 mg/kg, i.p., a TRPV1 antagonist). In addition, TRPV1-positive sensory fibre ablation (using resiniferatoxin, 200 µg/kg, s.c.) reduced visceral nociception and mechanical or heat hypersensitivity caused by paclitaxel injection. Similarly, TRPV1 deficient mice showed a pronounced reduction in mechanical allodynia to paclitaxel acute injection and did not develop heat hypersensitivity. Moreover, 24 h after its injection, paclitaxel induced chemical hypersensitivity to capsaicin (a TRPV1 agonist, 0.01 nmol/site) and increased TRPV1 immunoreactivity in the dorsal root ganglion and sciatic nerve. In conclusion, TRPV1 is involved in mechanical and heat hypersensitivity and spontaneous-pain behaviour induced 24 h after a single paclitaxel injection. This receptor is also involved in visceral nociception induced immediately after paclitaxel administration. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Yeong-In; Lee, Kyung-Tae; Park, Hee-Juhn; Kim, Tae Jin; Choi, Youn Seok; Shih, Ie-Ming; Choi, Jung-Hye
2012-12-01
Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.
WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response.
Janczar, Szymon; Nautiyal, Jaya; Xiao, Yi; Curry, Edward; Sun, Mingjun; Zanini, Elisa; Paige, Adam Jw; Gabra, Hani
2017-07-27
There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer.
Palisoul, Marguerite L; Quinn, Jeanne M; Schepers, Emily; Hagemann, Ian S; Guo, Lei; Reger, Kelsey; Hagemann, Andrea R; McCourt, Carolyn K; Thaker, Premal H; Powell, Matthew A; Mutch, David G; Fuh, Katherine C
2017-12-01
Uterine serous cancer (USC) is aggressive, and the majority of recurrent cases are chemoresistant. Because the receptor tyrosine kinase AXL promotes invasion and metastasis of USC and is implicated in chemoresistance in other cancers, we assessed the role of AXL in paclitaxel resistance in USC, determined the mechanism of action, and sought to restore chemosensitivity by inhibiting AXL in vitro and in vivo We used short hairpin RNAs and BGB324 to knock down and inhibit AXL. We assessed sensitivity of USC cell lines to paclitaxel and measured paclitaxel intracellular accumulation in vitro in the presence or absence of AXL. We also examined the role of the epithelial-mesenchymal transition (EMT) in AXL-mediated paclitaxel resistance. Finally, we treated USC xenografts with paclitaxel, BGB324, or paclitaxel plus BGB324 and monitored tumor burden. AXL expression was higher in chemoresistant USC patient tumors and cell lines than in chemosensitive tumors and cell lines. Knockdown or inhibition of AXL increased sensitivity of USC cell lines to paclitaxel in vitro and increased cellular accumulation of paclitaxel. AXL promoted chemoresistance even in cells that underwent the EMT in vitro Finally, in vivo studies of combination treatment with BGB324 and paclitaxel showed a greater than 51% decrease in tumor volume after 2 weeks of treatment when compared with no treatment or single-agent treatments ( P < 0.001). Our results show that AXL expression mediates chemoresistance independent of EMT and prevents accumulation of paclitaxel. This study supports the continued investigation of AXL as a clinical target, particularly in chemoresistant USC. Mol Cancer Ther; 16(12); 2881-91. ©2017 AACR . ©2017 American Association for Cancer Research.
Paclitaxel Impairs Adipose Stem Cell Proliferation and Differentiation
Choron, Rachel L.; Chang, Shaohua; Khan, Sophia; Villalobos, Miguel A.; Zhang, Ping; Carpenter, Jeffrey P.; Tulenko, Thomas N.; Liu, Yuan
2015-01-01
BACKGROUND Cancer patients with chemotherapy-induced immunosuppression have poor surgical site wound healing. Prior literature supports the use of human adipose-derived stem cell (hASC) lipoinjection to improve wound healing. It has been established multipotent hASCs facilitate neovascularization, accelerated epithelialization, and wound closure in animal models. While hASC wound therapy may benefit surgical cancer patients, the chemotherapeutic effects on hASCs are unknown. We hypothesized Paclitaxel, a chemotherapeutic agent, impairs hASC growth, multipotency, and induces apoptosis. METHODS hASCs were isolated and harvested from consented, chemotherapy and radiation naïve patients. Growth curves, MTT, and EdU assays measured cytotoxicity and proliferation. Oil-Red-O stain, Alazarin-Red stain, Matrigel tube-formation assay, and qPCR analyzed hASC differentiation. Annexin V assay measured apoptosis. Immunostaining and Western blot determined TNF-α expression. RESULTS hASCs were selectively more sensitive to Paclitaxel (0.01μM–30μM) than fibroblasts (p<0.05). After 12 days, Paclitaxel caused hASC growth arrest whereas control hASCs proliferated (p=0.006). Paclitaxel caused an 80.6% reduction in new DNA synthesis (p<0.001). Paclitaxel severely inhibited endothelial differentiation and capillary-like tube formation. Differentiation markers LPL (adipogenic), alkaline phosphatase (osteogenic), CD31 and vWF (endothelial) were significantly decreased (all: p<0.05) confirming Paclitaxel impaired differentiation. Paclitaxel was also found to induce apoptosis and TNF-α was up-regulated in Paclitaxel-treated hASCs (p<0.001). CONCLUSION Paclitaxel is more cytotoxic to hASCs than fibroblasts. Paclitaxel inhibits hASC proliferation, differentiation, and induces apoptosis, possibly through the TNF-α pathway. Paclitaxel’s severe inhibition of endothelial differentiation indicates neovascularization disruption, possibly causing poor wound healing in cancer patients receiving chemotherapy. PMID:25891676
Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer.
Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A; Sáez, Carmen
2016-08-16
FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.
Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer
Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A.; Sáez, Carmen
2016-01-01
FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment. PMID:27409838
The co-solvent Cremophor EL limits absorption of orally administered paclitaxel in cancer patients.
Malingré, M M; Schellens, J H; Van Tellingen, O; Ouwehand, M; Bardelmeijer, H A; Rosing, H; Koopman, F J; Schot, M E; Ten Bokkel Huinink, W W; Beijnen, J H
2001-11-16
The purpose of this study was to investigate the effect of the co-solvents Cremophor EL and polysorbate 80 on the absorption of orally administered paclitaxel. 6 patients received in a randomized setting, one week apart oral paclitaxel 60 mg m(-2) dissolved in polysorbate 80 or Cremophor EL. For 3 patients the amount of Cremophor EL was 5 ml m(-2), for the other three 15 ml m(-2). Prior to paclitaxel administration patients received 15 mg kg(-1) oral cyclosporin A to enhance the oral absorption of the drug. Paclitaxel formulated in polysorbate 80 resulted in a significant increase in the maximal concentration (C(max)) and area under the concentration-time curve (AUC) of paclitaxel in comparison with the Cremophor EL formulations (P = 0.046 for both parameters). When formulated in Cremophor EL 15 ml m(-2), paclitaxel C(max) and AUC values were 0.10 +/- 0.06 microM and 1.29 +/- 0.99 microM h(-1), respectively, whereas these values were 0.31 +/- 0.06 microM and 2.61 +/- 1.54 microM h(-1), respectively, when formulated in polysorbate 80. Faecal data revealed a decrease in excretion of unchanged paclitaxel for the polysorbate 80 formulation compared to the Cremophor EL formulations. The amount of paclitaxel excreted in faeces was significantly correlated with the amount of Cremophor EL excreted in faeces (P = 0.019). When formulated in Cremophor EL 15 ml m(-2), paclitaxel excretion in faeces was 38.8 +/- 13.0% of the administered dose, whereas this value was 18.3 +/-15.5% for the polysorbate 80 formulation. The results show that the co-solvent Cremophor EL is an important factor limiting the absorption of orally administered paclitaxel from the intestinal lumen. They highlight the need for designing a better drug formulation in order to increase the usefulness of the oral route of paclitaxel
KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells
Kim, Ki Hyung; Xie, Yanhua; Tytler, Ewan M; Woessner, Richard; Mor, Gil; Alvero, Ayesha B
2009-01-01
Background We previously described a sub-population of epithelial ovarian cancer (EOC) cells with a functional TLR-4/MyD88/NF-κB pathway (Type I EOC cells), which confers the capacity to respond to Paclitaxel, a known TLR-4 ligand, by enhancing NF-κB activity and upregulating cytokine secretion – events that are known to promote tumor progression. It is therefore important to distinguish those patients that should not receive Paclitaxel; it is also important to identify alternative chemotherapy options that would benefit this sub-group of patients. The objective of this study is to determine if the KSP inhibitor, ARRY-520, can be a substitute for Paclitaxel in patients with Type I EOC. Methods EOC cells isolated from either ascites or tumor tissue were treated with increasing concentrations of ARRY-520 or Paclitaxel and cell viability determined. Activation of the apoptotic pathway was determined using Western blot analysis. Mitochondrial integrity was quantified using JC1 dye. Cytokine profiling was performed from supernatants using xMAP technology. NF-κB activity was measured using a Luciferase reporter system. In vivo activity was determined using a subcutaneous xenograft mouse model. Results ARRY-520 and Paclitaxel exhibited the same cytotoxic effect on Type I and II cells. The GI50 at 48 h for Type II EOC cells was 0.0015 μM and 0.2 μM for ARRY-520 and Paclitaxel, respectively. For Type I EOC cells, the GI50 at 48 h was > 3 μM and >20 μM for ARRY-520 and Paclitaxel, respectively. Decrease in the number of viable cells was accompanied by mitochondrial depolarization and caspase activation. Unlike Paclitaxel, ARRY-520 did not induce NF-κB activation, did not enhance cytokine secretion, nor induce ERK phosphorylation in Type I EOC cells. Conclusion Administration of Paclitaxel to patients with high percentage Type I cancer cells could have detrimental effects due to Paclitaxel-induced enhancement of NF-κB and ERK activities, and cytokine production (e.g. IL-6), which promote chemoresistance and tumor progression. ARRY-520 has similar anti-tumor activity in EOC cells as that of Paclitaxel. However, unlike Paclitaxel, it does not induce these pro-tumor effects in Type I cells. Therefore, the KSP inhibitor ARRY-520 may represent an alternative to Paclitaxel in this subgroup of EOC patients. PMID:19619321
Awada, Ahmad; Colomer, Ramon; Inoue, Kenichi; Bondarenko, Igor; Badwe, Rajendra A; Demetriou, Georgia; Lee, Soo-Chin; Mehta, Ajay O; Kim, Sung-Bae; Bachelot, Thomas; Goswami, Chanchal; Deo, Suryanarayan; Bose, Ron; Wong, Alvin; Xu, Feng; Yao, Bin; Bryce, Richard; Carey, Lisa A
2016-12-01
Efficacious ERBB2 (formerly HER2 or HER2/neu)-directed treatments, in addition to trastuzumab and lapatinib, are needed. To determine whether neratinib, an irreversible pan-ERBB tyrosine kinase inhibitor, plus paclitaxel improves progression-free survival compared with trastuzumab plus paclitaxel in the first-line treatment of recurrent and/or metastatic ERBB2-positive breast cancer. In the randomized, controlled, open-label NEfERT-T trial conducted from August 2009 to December 2014 at 188 centers in 34 countries in Europe, Asia, Africa, and North America, 479 women with previously untreated recurrent and/or metastatic ERBB2-positive breast cancer were randomized to 1 of 2 treatment arms (neratinib-paclitaxel [n = 242] or trastuzumab-paclitaxel [n = 237]). Women with asymptomatic central nervous system metastases were eligible, and randomization was stratified by prior trastuzumab and lapatinib exposure, hormone-receptor status, and region. Women received neratinib (240 mg/d orally) or trastuzumab (4 mg/kg then 2 mg/kg weekly), each combined with paclitaxel (80 mg/m2 on days 1, 8, and 15 every 28 days). Primary prophylaxis for diarrhea was not mandatory. The primary outcome was progression-free survival. Secondary end points were response rate, clinical benefit rate, duration of response, frequency, and time to symptomatic and/or progressive central nervous system lesions, and safety. The intent-to-treat population comprised 479 women 18 years or older (neratinib-paclitaxel, n = 242; trastuzumab-paclitaxel, n = 237) randomized and stratified in their respective treatment arms by prior trastuzumab and lapatinib exposure, hormone-receptor status, and region. Median progression-free survival was 12.9 months (95% CI, 11.1-14.9) with neratinib-paclitaxel and 12.9 months (95% CI, 11.1-14.8) with trastuzumab-paclitaxel (hazard ratio [HR], 1.02; 95% CI, 0.81-1.27; P =.89). With neratinib-paclitaxel, the incidence of central nervous system recurrences was lower (relative risk, 0.48; 95% CI, 0.29-0.79; P = .002) and time to central nervous system metastases delayed (HR, 0.45; 95% CI, 0.26-0.78; P = .004). Common grade 3 to 4 adverse events were diarrhea (73 of 240 patients [30.4%] with neratinib-paclitaxel and 9 of 234 patients [3.8%] with trastuzumab-paclitaxel), neutropenia (31 patients [12.9%] vs 34 patients [14.5%]) and leukopenia (19 patients [7.9%] vs 25 patients [10.7%]); no grade 4 diarrhea was observed. In first-line ERBB2-positive metastatic breast cancer, neratinib-paclitaxel was not superior to trastuzumab-paclitaxel in terms of progression-free survival. In spite of similar overall efficacy, neratinib-paclitaxel may delay the onset and reduce the frequency of central nervous system progression, a finding that requires a larger study to confirm. clinicaltrials.gov Identifier: NCT00915018.
Ahmed, Ahmed Ashour; Mills, Anthony D.; Ibrahim, Ashraf E.K.; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E.; Iyer, N. Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D.; Earl, Helena M.; Laskey, Ronald A.; Caldas, Carlos; Brenton, James D.
2007-01-01
Summary The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability. PMID:18068629
Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.
Castilla, Carolina; Flores, M Luz; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Tortolero, María; Japón, Miguel A; Sáez, Carmen
2014-10-01
PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. ©2014 American Association for Cancer Research.
Efficacy and toxicological studies of cremophor EL free alternative paclitaxel formulation.
Utreja, Puneet; Jain, Subheet; Yadav, Subodh; Khandhuja, K L; Tiwary, A K
2011-11-01
In the present study, Cremophor EL free paclitaxel elastic liposomal formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate was developed and optimized. The toxicological profile, antitumor efficacy and hemolytic toxicity of paclitaxel elastic liposomal formulation in comparison to Cremophor EL based marketed formulation were evaluated. Paclitaxel elastic liposomal formulations were prepared and characterized in vitro, ex-vivo and in vivo. Single dose toxicity study of paclitaxel elastic liposomal and marketed formulation was carried out in dose range of 10, 20, 40, 80, 120, 160 and 200 mg/kg. Cytotoxicity of developed formulation was evaluated using small cell lung cancer cell line (A549). Antitumor activity of developed formulation was compared with the marketed formulation using Cytoselect™ 96-well cell transformation assay. In vivo administration of paclitaxel elastic liposomal formulation into mice showed 6 fold increase in Maximum Tolerated Dose (MTD) in comparison to the marketed formulation. Similarly, LD50 (141.6 mg/kg) was also found to increase significantly than the marketed formulation (16.7 mg/kg). Result of antitumor assay revealed a high reduction of tumor density with paclitaxel elastic liposomal formulation. Reduction in hemolytic toxicity was also observed with paclitaxel elastic liposomal formulation in comparison to the marketed formulation. The carrier based approach for paclitaxel delivery demonstrated significant reduction in toxicity as compared to the Cremophor EL based marketed formulation following intra-peritoneal administration in mice model. The reduced toxicity and enhanced anti-cancer activity of elastic liposomal formulation strongly indicate its potential for safe and effective delivery of paclitaxel.
Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy
Komatsu, Masaaki; Wheeler, Heather E.; Chung, Suyoun; Low, Siew-Kee; Wing, Claudia; Delaney, Shannon M.; Gorsic, Lidija K.; Takahashi, Atsushi; Kubo, Michiaki; Kroetz, Deanna L.; Zhang, Wei; Nakamura, Yusuke; Dolan, M. Eileen
2015-01-01
Purpose Paclitaxel is used worldwide in the treatment of breast, lung, ovarian and other cancers. Sensory peripheral neuropathy is an associated adverse effect that cannot be predicted, prevented or mitigated. To better understand the contribution of germline genetic variation to paclitaxel-induced peripheral neuropathy, we undertook an integrative approach that combines genome-wide association study (GWAS) data generated from HapMap lymphoblastoid cell lines (LCLs) and Asian patients. Methods GWAS was performed with paclitaxel-induced cytotoxicity generated in 363 LCLs and with paclitaxel-induced neuropathy from 145 Asian patients. A gene-based approach was used to identify overlapping genes and compare to a European clinical cohort of paclitaxel-induced neuropathy. Neurons derived from human induced pluripotent stem cells were used for functional validation of candidate genes. Results SNPs near AIPL1 were significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs (P < 10−6). Decreased expression of AIPL1 resulted in decreased sensitivity of neurons to paclitaxel by inducing neurite morphological changes as measured by increased relative total outgrowth, number of processes and mean process length. Using a gene-based analysis, there were 32 genes that overlapped between Asian LCL cytotoxicity and Asian patient neuropathy (P < 0.05) including BCR. Upon BCR knockdown, there was an increase in neuronal sensitivity to paclitaxel as measured by neurite morphological characteristics. Conclusion We identified genetic variants associated with Asian paclitaxel-induced cytotoxicity and functionally validated the AIPL1 and BCR in a neuronal cell model. Furthermore, the integrative pharmacogenomics approach of LCL/patient GWAS may help prioritize target genes associated with chemotherapeutic-induced peripheral neuropathy. PMID:26015512
WANG, YUNYUN; LIU, YONG; LI, GUO; SU, ZHONGWU; REN, SHULING; TAN, PINGQING; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN
2015-01-01
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC. PMID:25351620
Brusco, Indiara; Silva, Cássia Regina; Trevisan, Gabriela; de Campos Velho Gewehr, Camila; Rigo, Flávia Karine; La Rocca Tamiozzo, Lidia; Rossato, Mateus Fortes; Tonello, Raquel; Dalmolin, Gerusa Duarte; de Almeida Cabrini, Daniela; Gomez, Marcus Vinícius; Ferreira, Juliano; Oliveira, Sara Marchesan
2017-12-01
Paclitaxel is a chemotherapeutic agent used to treat solid tumours. However, it causes an acute and neuropathic pain syndrome that limits its use. Among the mechanisms involved in neuropathic pain caused by paclitaxel is activation of kinin receptors. Angiotensin converting enzyme (ACE) inhibitors can enhance kinin receptor signalling. The goal of this study was to evaluate the role of kinins on paclitaxel-associated acute pain syndromes (P-APS) and the effect of ACE inhibition on P-APS and paclitaxel-associated chronic peripheral neuropathy (P-CPN) in mice. Herein, we show that paclitaxel caused mechanical allodynia and spontaneous nociceptive behaviour that was reduced by antagonists of kinin receptors B 1 (DALBk and SSR240612) and B 2 (Hoe140 and FR173657). Moreover, enalapril (an ACE inhibitor) enhanced the mechanical allodynia induced by a low dose of paclitaxel. Likewise, paclitaxel injection inhibited ACE activity and increased the expressions of B 1 and B 2 receptors and bradykinin-related peptides levels in peripheral tissue. Together, our data support the involvement of kinin receptors in the P-APS and suggest kinin receptor antagonists to treat this syndrome. Because hypertension is the most frequent comorbidity affecting cancer patients, treatment of hypertension with ACE inhibitors in patients undergoing paclitaxel chemotherapy should be reviewed, since this could enhance the P-APS and P-CPN.
Helgason, H H; Kruijtzer, C M F; Huitema, A D R; Marcus, S G; ten Bokkel Huinink, W W; Schot, M E; Schornagel, J H; Beijnen, J H; Schellens, J H M
2006-10-09
Paclitaxel is an important chemotherapeutic agent for breast cancer. Paclitaxel has high affinity for the P-glycoprotein (P-gp) (drug efflux pump) in the gastrointestinal tract causing low and variable oral bioavailability. Previously, we demonstrated that oral paclitaxel plus the P-gp inhibitor cyclosporin (CsA) is safe and results in adequate exposure to paclitaxel. This study evaluates the activity, toxicity and pharmacokinetics of paclitaxel combined with CsA in breast cancer patients. Patients with measurable metastatic breast cancer were given oral paclitaxel 90 mg m-2 combined with CsA 10 mg kg-1 (30 min prior to each paclitaxel administration) twice on one day, each week. Twenty-nine patients with a median age of 50 years were entered. All patients had received prior treatments, 25 had received prior anthracycline-containing chemotherapy and 19 had three or more metastatic sites. Total number of weekly administrations was 442 (median: 15/patient) and dose intensity of 97 mg m-2 week-1. Most patients needed treatment delay and 17 patients needed dose reductions. In intention to treat analysis, the overall response rate was 52%, the median time to progression was 6.5 months and overall survival was 16 months. The pharmacokinetics revealed moderate inter- and low intrapatient variability. Weekly oral paclitaxel, combined with CsA, is active in patients with advanced breast cancer.
Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats.
Föger, Florian; Malaivijitnond, Suchinda; Wannaprasert, Thanakul; Huck, Christian; Bernkop-Schnürch, Andreas; Werle, Martin
2008-02-01
The anticancer agent paclitaxel is currently commercially available only as an infusion due to its low oral bioavailability. An oral formulation would be highly beneficial for patients. Besides the low solubility, the main reason for the limited oral bioavailability of paclitaxel is that it is a substrate of the efflux pump P-glycoprotein (P-gp). Recently, it has been demonstrated that P-gp can be inhibited by thiolated polymers. In this study, an oral paclitaxel formulation based on thiolated polycarbophil was evaluated in vivo in wild-type rats and in mammary cancer-induced rats. The paclitaxel plasma level after a single administration of paclitaxel was observed for 12 h in healthy rats. Moreover, cancer-induced rats were treated weekly for 5 weeks with the novel formulation. It was demonstrated that (1) co-administration of thiolated polycarbophil significantly improved paclitaxel plasma levels, (2) a more constant pharmacokinetic profile could be achieved and (3) the tumor growth was reduced. These effects can most likely be attributed to P-gp inhibition. According to the achieved results, thiolated polymers are believed to be interesting tools for the delivery of P-gp substrates such as paclitaxel.
Non-invasive endotracheal delivery of paclitaxel-loaded alginate microparticles.
Alipour, Shohreh; Montaseri, Hashem; Khalili, Azadeh; Tafaghodi, Mohsen
2016-10-01
Aerosolized chemotherapeutics leads to higher, localized and continuous concentrations of active agents in lung tissue with lower side effects for other organs. The present study was performed on jugular vein cannulated rats which endothracheally received 4 mg/kg of free paclitaxel powder (Free-PTX), paclitaxel-loaded alginate microparticles (PTX-ALG-MPs) and i.v. paclitaxel (Anzatax(®)). Pharmacokinetic parameters for Free-PTX and PTX-ALG-MPs contain higher AUC, mean residence time (MRT),half-life and bioavailability, with lower elimination constant (ke). Statistical analysis showed that the amount of paclitaxel per gram of lung tissue after 0.5, 6 and 24 h after administration of Free-PTX was lower than PTX-ALG-MPs. Lung tissue AUC for Free-PTX was lower than PTX-ALG-MPs. According to the obvious advantages obtained, such as dose lowering and increasing paclitaxel residence time and half-life. It should be noted that cell cytotoxicity test on normal airway cell lines was not examined in this study but due to previous reports on safety of inhaled paclitaxel, it can be suggested that pulmonary delivery of paclitaxel can be a useful non-invasive route of administration compared with i.v administration.
Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent.
Unger, E C; McCreery, T P; Sweitzer, R H; Caldwell, V E; Wu, Y
1998-12-01
Paclitaxel-carrying lipospheres (MRX-552) were developed and evaluated as a new ultrasound contrast agent for chemotherapeutic drug delivery. Paclitaxel was suspended in soybean oil and added to an aqueous suspension of phospholipids in vials. The headspace of the vials was replaced with perfluorobutane gas; the vials were sealed, and they were agitated at 4200 rpm on a shaking device. The resulting lipospheres containing paclitaxel were studied for concentration, size, acute toxicity in mice, and acoustic activity and drug release with ultrasound. Lipospheres containing sudan black dye were produced to demonstrate the acoustically active liposphere (AAL)-ultrasound release concept. Acoustically active lipospheres containing paclitaxel had a mean particle count of approximately 1 x 10(9) particles per mL and a mean size of 2.9 microns. Acute toxicity studies in mice showed a 10-fold reduction in toxicity for paclitaxel in AALs compared with free paclitaxel. The AALs reflected ultrasound as a contrast agent. Increasing amounts of ultrasound energy selectively ruptured the AALs and released the paclitaxel. Acoustically active lipospheres represent a new class of acoustically active drug delivery vehicles. Future studies will assess efficacy of AALs for ultrasound-mediated drug delivery.
Subcutaneous administration of paclitaxel in dogs with cancer: A preliminary study
Silva, Daniella M.; Franciosi, Aline I.; Pezzini, Paula C.F.; Guérios, Simone D.
2015-01-01
Intravenous paclitaxel has been underused in dogs due to severe and acute hypersensitivity reactions. Subcutaneous (SC) administration of paclitaxel and its safety are unknown. In this preliminary study, SC administration of paclitaxel was evaluated for hypersensitivity reactions and toxicity in 21 dogs with advanced cancer. Dogs received 1 to 5 paclitaxel doses, ranging from 85 to 170 mg/m2, SC every 14 or 21 days. A total of 40 paclitaxel doses were administered and none of the 21 dogs developed systemic or acute local hypersensitivity reactions. Severe skin lesions at the injection site developed in 2 dogs after the 4th injection at the same location. Grade 4 neutropenia was observed in 50% of the dogs 5 days after the first treatment at 115 mg/m2 (n = 14). Two animals developed Grade 5 diarrhea and died likely due to hemodynamic failure or sepsis. Paclitaxel can be administered SC in dogs with no hypersensitivity reaction. PMID:26246628
... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...
Paclitaxel: a pharmacoeconomic review of its use in non-small cell lung cancer.
Plosker, G L; Hurst, M
2001-01-01
A number of first-line chemotherapy options for patients with advanced non-small cell lung cancer (NSCLC) are advocated in treatment guidelines and/or by various clinical investigators. Platinum-based chemotherapy has clearly demonstrated efficacy in patients with advanced NSCLC and is generally recommended as first-line therapy, although there is increasing interest in the use of non-platinum chemotherapy regimens. Among the platinum-based combinations currently used in clinical practice are regimens such as cisplatin or carboplatin combined with paclitaxel, vinorelbine, gemcitabine, docetaxel or irinotecan. The particular combinations employed may vary between institutions and geographical regions. Several pharmacoeconomic analyses have been conducted on paclitaxel in NSCLC and most have focused on its use in combination with cisplatin. In terms of clinical efficacy, paclitaxel-cisplatin combinations achieved significantly higher response rates than teniposide plus cisplatin or etoposide plus cisplatin (previously thought to be among the more effective regimens available) in two large randomised trials. One of these studies showed a survival advantage for paclitaxel plus cisplatin [with or without a granulocyte colony-stimulating factor (G-CSF)] compared with etoposide plus cisplatin. A Canadian cost-effectiveness analysis incorporated data from one of the large randomised comparative trials and showed that the incremental cost per life-year saved for outpatient administration of paclitaxel plus cisplatin versus etoposide plus cisplatin was $US 22181 (30619 Canadian dollars; $Can) [1997 costs]. A European analysis incorporated data from the other large randomised study and showed slightly higher costs per responder for paclitaxel plus cisplatin than for teniposide plus cisplatin in The Netherlands ($US 30769 vs $US 29592) and Spain ($US 19 923 vs $US 19724) but lower costs per responder in Belgium ($US 22852 vs $US 25000) and France ($US28 080 vs $US 34747) [1995/96 costs]. In other cost-effectiveness analyses, paclitaxel plus cisplatin was associated with a cost per life-year saved relative to best supportive care of approximately $US 10000 in a US study (year of costing not reported) or $US 11200 in a Canadian analysis ($Can 15400; 1995 costs). Results were less favourable when combining paclitaxel with carboplatin instead of cisplatin and particularly when G-CSF was added to paclitaxel plus cisplatin. The Canadian study incorporated the concept of extended dominance in a threshold analysis and ranked paclitaxel plus cisplatin first among several comparator regimens (including vinorelbine plus cisplatin) when the threshold level was $Can 75000 ($US 54526) per life-year saved or per quality-adjusted life-year gained (1995 values). Current treatment guidelines for advanced NSCLC recognise paclitaxel-platinum combinations as one of the first-line chemotherapy treatment options. In two large head-to-head comparative clinical trials, paclitaxel plus cisplatin was associated with significantly greater response rates than cisplatin in combination with either teniposide or etoposide, and a survival advantage was shown for paclitaxel plus cisplatin (with or without G-CSF) over etoposide plus cisplatin. There are limitations to the currently available pharmacoeconomic data and further economic analyses of paclitaxel-carboplatin regimens are warranted, as this combination is widely used in NSCLC and appears to have some clinical advantages over paclitaxel plus cisplatin in terms of ease of administration and tolerability profile. Nevertheless, results of various cost-effectiveness studies support the use of paclitaxel-platinum combinations, particularly paclitaxel plus cisplatin, as a first-line chemotherapy treatment option in patients with advanced NSCLC.
Paclitaxel: a pharmacoeconomic review of its use in the treatment of ovarian cancer.
Young, M; Plosker, G L
2001-01-01
Paclitaxel belongs to the group of antitumour agents called the taxanes. Its efficacy in advanced ovarian cancer has been established in large, randomised phase III clinical trials. When used in combination with cisplatin for first-line treatment of advanced ovarian cancer, it is superior to cyclophosphamide/cisplatin, with gains in median survival of around 1 year. Paclitaxel plus carboplatin has similar efficacy to paclitaxel plus cisplatin. There is now consensus that paclitaxel plus either carboplatin or cisplatin is the recommended first-line therapy for patients with advanced ovarian cancer. The particular combination employed may vary between institutions and geographical regions, although paclitaxel plus carboplatin is generally better tolerated (i.e. lower incidence of non-haematological adverse events) than paclitaxel plus cisplatin and is widely used in many countries. Paclitaxel is also used as monotherapy in second-line (salvage) treatment of ovarian cancer. Pharmacoeconomic analyses performed to date have primarily focused on first-line therapy comparing the combination of paclitaxel/cisplatin with cyclophosphamide/cisplatin. All studies incorporated clinical outcomes data, most commonly from the Gynecologic Oncology Group (GOG) 111 trial, showing a survival advantage for paclitaxel/cisplatin. These studies report incremental cost-effectiveness ratios (ICERs) ranging from $US 6395 per additional life-year gained (LYG) in Spain (1995/96 values) to $US 44,690 per additional progression-free LYG in France (year of costs not reported). Five studies were based in the US and Canada and these reported very similar ICERs of $US 13,135 (year of costs not reported) to $US 25,131 (1993 costs) per additional LYG. In all of these studies the incremental costs of paclitaxel/cisplatin therapy fall well within the commonly cited threshold limit of $US 50,000 for new therapies and compare well with incremental costs reported for other oncological and life-saving therapies. Patient preferences and quality of life are important issues due to the short survival of patients with advanced ovarian cancer. Two cost-utility studies reported similar incremental cost-utility ratios (ICURs). In the study based on US costs, the ICUR of paclitaxel/cisplatin treatment was US $18,200 per additional quality-adjusted life-year (QALY) [1995 drug costs]. In a Canadian study the ICUR ranged from 11,600 Canadian dollars ($Can) to $Can 24,200 (1996 costs) per additional progression-free QALY depending on the choice of second-line treatment. Paclitaxel used in combination with cisplatin offers survival and utility gains versus cyclophosphamide plus cisplatin, when used as first-line treatment in patients with stage III or IV ovarian cancer. The incremental cost for these gains is within the accepted range for healthcare interventions. However, pharmacoeconomic analyses of paclitaxel plus carboplatin--a combination widely accepted for use in women with advanced ovarian cancer and with clinical advantages over paclitaxel plus cisplatin in terms of ease of administration and tolerability profile--are currently lacking. Nevertheless, results of available pharmacoeconomic data support the clinical use of paclitaxel/platinum combinations, particularly paclitaxel plus cisplatin, as a first-line chemotherapy treatment option in patients with advanced ovarian cancer.
Paclitaxel Drug-Eluting Stents in Peripheral Arterial Disease: A Health Technology Assessment
2015-01-01
Background Peripheral arterial disease is a condition in which atherosclerotic plaques partially or completely block blood flow to the legs. Although percutaneous transluminal angioplasty and metallic stenting have high immediate success rates in treating peripheral arterial disease, long-term patency and restenosis rates in long and complex lesions remain unsatisfactory. Objective The objective of this analysis was to evaluate the clinical effectiveness, safety, cost-effectiveness and budget impact of Zilver paclitaxel self-expanding drug-eluting stents for the treatment of de novo or restenotic lesions in above-the-knee peripheral arterial disease. Data Sources Literature searches were performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews. For the economic review, a search filter was applied to limit search results to economics-related literature. Data sources for the budget impact analysis included expert opinion, published literature, and Ontario administrative data. Review Methods Systematic reviews, meta-analyses, randomized controlled trials, and observational studies were included in the clinical effectiveness review, and full economic evaluations were included in the economic literature review. Studies were included if they examined the effect of Zilver paclitaxel drug-eluting stents in de novo or restenotic lesions in above-the-knee arteries. For the budget impact analysis, 3 scenarios were constructed based on different assumptions. Results One randomized controlled trial reported a significantly higher patency rate with Zilver paclitaxel drug-eluting stents for lesions ≤ 14 cm than with angioplasty or bare metal stents. One observational study showed no difference in patency rates between Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. Zilver paclitaxel drug-eluting stents were associated with a significantly higher event-free survival rate than angioplasty, but the event-free survival rate was similar for Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. No economic evaluations compared Zilver paclitaxel drug-eluting stents with bare metal stents or angioplasty for peripheral arterial disease. A budget impact analysis showed that the cost savings associated with funding of Zilver paclitaxel drug-eluting stents would be $470,000 to $640,000 per year, assuming that the use of the Zilver paclitaxel drug-eluting stent was associated with a lower risk of subsequent revascularization. Conclusions Based on evidence of low to moderate quality, Zilver paclitaxel drug-eluting stents were associated with a higher patency rate than angioplasty or bare metal stents, and with fewer adverse events than angioplasty. The effectiveness and safety of Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons were similar. PMID:26719778
The co-solvent Cremophor EL limits absorption of orally administered paclitaxel in cancer patients
Malingré, M M; Schellens, J H M; Tellingen, O Van; Ouwehand, M; Bardelmeijer, H A; Rosing, H; Koopman, F J; Schot, M E; Huinink, W W Ten Bokkel; Beijnen, J H
2001-01-01
The purpose of this study was to investigate the effect of the co-solvents Cremophor EL and polysorbate 80 on the absorption of orally administered paclitaxel. 6 patients received in a randomized setting, one week apart oral paclitaxel 60 mg m−2 dissolved in polysorbate 80 or Cremophor EL. For 3 patients the amount of Cremophor EL was 5 ml m−2, for the other three 15 ml m−2. Prior to paclitaxel administration patients received 15 mg kg−1 oral cyclosporin A to enhance the oral absorption of the drug. Paclitaxel formulated in polysorbate 80 resulted in a significant increase in the maximal concentration (C max) and area under the concentration–time curve (AUC) of paclitaxel in comparison with the Cremophor EL formulations (P = 0.046 for both parameters). When formulated in Cremophor EL 15 ml m−2, paclitaxel C max and AUC values were 0.10 ± 0.06 μM and 1.29 ± 0.99 μM h−1, respectively, whereas these values were 0.31 ± 0.06 μM and 2.61 ± 1.54 μM h−1, respectively, when formulated in polysorbate 80. Faecal data revealed a decrease in excretion of unchanged paclitaxel for the polysorbate 80 formulation compared to the Cremophor EL formulations. The amount of paclitaxel excreted in faeces was significantly correlated with the amount of Cremophor EL excreted in faeces (P = 0.019). When formulated in Cremophor EL 15 ml m−2, paclitaxel excretion in faeces was 38.8 ± 13.0% of the administered dose, whereas this value was 18.3 ±15.5% for the polysorbate 80 formulation. The results show that the co-solvent Cremophor EL is an important factor limiting the absorption of orally administered paclitaxel from the intestinal lumen. They highlight the need for designing a better drug formulation in order to increase the usefulness of the oral route of paclitaxel © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11720431
Ray-Coquard, Isabelle; Selle, Frederic; Poveda, Andrés M.; Cibula, David; Hirte, Hal; Hilpert, Felix; Raspagliesi, Francesco; Gladieff, Laurence; Harter, Philipp; Siena, Salvatore; del Campo, Josep Maria; Tabah-Fisch, Isabelle; Pearlberg, Joseph; Moyo, Victor; Riahi, Kaveh; Nering, Rachel; Kubasek, William; Adiwijaya, Bambang; Czibere, Akos; Naumann, R. Wendel; Coleman, Robert L.; Vergote, Ignace; MacBeath, Gavin; Pujade-Lauraine, Eric
2016-01-01
Purpose Seribantumab is a fully human immunoglobulin G2 monoclonal antibody that binds to human epidermal growth factor receptor (HER) 3 (ErbB3), blocking heregulin (HRG) –mediated ErbB3 signaling and inducing ErbB3 receptor downregulation. This open-label randomized phase II study evaluated progression-free survival (PFS) with seribantumab in combination with once-per-week paclitaxel compared with paclitaxel alone in patients with platinum-resistant or -refractory ovarian cancer. A key secondary objective was to determine if any of five prespecified biomarkers predicted benefit from seribantumab. Patients and Methods Patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal cancer were randomly assigned at a ratio of two to one to receive seribantumab plus paclitaxel or paclitaxel alone. Patients underwent pretreatment core needle biopsy; archival tumor samples were also obtained to support biomarker analyses. Results A total of 223 patients were randomly assigned (seribantumab plus paclitaxel, n = 140; paclitaxel alone, n = 83). Median PFS in the unselected intent-to-treat population was 3.75 months with seribantumab plus paclitaxel compared with 3.68 months with paclitaxel alone (hazard ratio [HR], 1.027; 95% CI, 0.741 to 1.425; P = .864). Among patients whose tumors had detectable HRG mRNA and low HER2 (n = 57 [38%] of 151 with available biomarker data), increased treatment benefit was observed in those receiving seribantumab plus paclitaxel compared with paclitaxel alone (PFS HR, 0.37; 95% CI, 0.18 to 0.76; P = .007). The HR in patients not meeting these criteria was 1.80 (95% CI, 1.08 to 2.98; P = .023). Conclusion The addition of seribantumab to paclitaxel did not result in improved PFS in unselected patients. Exploratory analyses suggest that detectable HRG and low HER2, biomarkers that link directly to the mechanism of action of seribantumab, identified patients who might benefit from this combination. Future clinical trials are needed to validate this finding and should preselect for HRG expression and focus on cancers with low HER2 levels. PMID:27998236
Liu, Joyce F; Ray-Coquard, Isabelle; Selle, Frederic; Poveda, Andrés M; Cibula, David; Hirte, Hal; Hilpert, Felix; Raspagliesi, Francesco; Gladieff, Laurence; Harter, Philipp; Siena, Salvatore; Del Campo, Josep Maria; Tabah-Fisch, Isabelle; Pearlberg, Joseph; Moyo, Victor; Riahi, Kaveh; Nering, Rachel; Kubasek, William; Adiwijaya, Bambang; Czibere, Akos; Naumann, R Wendel; Coleman, Robert L; Vergote, Ignace; MacBeath, Gavin; Pujade-Lauraine, Eric
2016-12-20
Purpose Seribantumab is a fully human immunoglobulin G2 monoclonal antibody that binds to human epidermal growth factor receptor (HER) 3 (ErbB3), blocking heregulin (HRG) -mediated ErbB3 signaling and inducing ErbB3 receptor downregulation. This open-label randomized phase II study evaluated progression-free survival (PFS) with seribantumab in combination with once-per-week paclitaxel compared with paclitaxel alone in patients with platinum-resistant or -refractory ovarian cancer. A key secondary objective was to determine if any of five prespecified biomarkers predicted benefit from seribantumab. Patients and Methods Patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal cancer were randomly assigned at a ratio of two to one to receive seribantumab plus paclitaxel or paclitaxel alone. Patients underwent pretreatment core needle biopsy; archival tumor samples were also obtained to support biomarker analyses. Results A total of 223 patients were randomly assigned (seribantumab plus paclitaxel, n = 140; paclitaxel alone, n = 83). Median PFS in the unselected intent-to-treat population was 3.75 months with seribantumab plus paclitaxel compared with 3.68 months with paclitaxel alone (hazard ratio [HR], 1.027; 95% CI, 0.741 to 1.425; P = .864). Among patients whose tumors had detectable HRG mRNA and low HER2 (n = 57 [38%] of 151 with available biomarker data), increased treatment benefit was observed in those receiving seribantumab plus paclitaxel compared with paclitaxel alone (PFS HR, 0.37; 95% CI, 0.18 to 0.76; P = .007). The HR in patients not meeting these criteria was 1.80 (95% CI, 1.08 to 2.98; P = .023). Conclusion The addition of seribantumab to paclitaxel did not result in improved PFS in unselected patients. Exploratory analyses suggest that detectable HRG and low HER2, biomarkers that link directly to the mechanism of action of seribantumab, identified patients who might benefit from this combination. Future clinical trials are needed to validate this finding and should preselect for HRG expression and focus on cancers with low HER2 levels.
Creaven, P J; Raghavan, D; Pendyala, L; Loewen, G; Kindler, H L; Berghorn, E J
1997-08-01
The combination of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) given by 3-hour infusion followed by carboplatin infused over 30 minutes has been evaluated in a series of phase I studies and is currently being explored in a phase II study in patients with limited- and extensive-stage small cell lung cancer. Pharmacokinetic measurements were performed at all dose levels in the phase I studies, in which the use of granulocyte colony-stimulating factor in previously treated patients enabled more than twice the dose of paclitaxel to be given with low to moderate doses of carboplatin (dosed to a target area under the concentration-time curve of 4.0 mg x min x mL[-1]). Treatment-naive patients tolerated high paclitaxel doses (270 mg/m2) with carboplatin (dosed to a target area under the curve of 4.5 mg x min x mL[-1]) without granulocyte colony-stimulating factor support. Twenty-three patients (including previously treated and untreated) with non-small cell lung cancer were entered at a variety of paclitaxel doses in the phase I studies. At 100 to 205 mg/m2 paclitaxel, none of nine treated patients responded; at 230 to 290 mg/m2, four (29%) of 14 responded. In the phase II study of paclitaxel 250 mg/m2 in previously untreated patients with small cell lung cancer, two of five evaluable patients with extensive-stage disease have shown a partial response. In a preliminary analysis of the pharmacodynamics of paclitaxel in relation to neurotoxicity (dose limiting in two of three phase I studies), neurotoxicity correlated with the total dose of paclitaxel, the area under the curve, and the peak paclitaxel concentration, but not with the length of time plasma paclitaxel levels remained above 0.05 micromol/L. These correlations were not strong, however, and analysis of these data is ongoing.
Fukumasu, Heidge; Rochetti, Arina L.; Pires, Pedro R. L.; Silva, Edson R.; Mesquita, Ligia G.; Strefezzi, Ricardo F.; De Carvalho, Daniel D.; Dagli, Maria L.
2014-01-01
Background Lung tumors are the leading cause of cancer deaths worldwide and paclitaxel has proven to be useful for patients with lung cancer, however, acquired resistance is a major problem. To overcome this problem, one promising option is the use of Constitutive Androstane Receptor (CAR) ligands in combination with chemotherapeutics against cancer cells. Therefore, we wish to elucidate the effects of CAR ligands on the antineoplastic efficacy of paclitaxel in lung cancer cells. Methodology/Principal Findings Our results from cell viability assays exposing CAR agonist or inverse-agonist to mouse and human lung cancer cells modulated the antineoplastic effect of paclitaxel. The CAR agonists increased the effect of Paclitaxel in 6 of 7 lung cancer cell lines, whereas the inverse-agonist had no effect on paclitaxel cytotoxicity. Interestingly, the mCAR agonist TCPOBOP enhanced the expression of two tumor suppressor genes, namely WT1 and MGMT, which were additively enhanced in cells treated with CAR agonist in combination with paclitaxel. Also, in silico analysis showed that both paclitaxel and CAR agonist TCPOBOP docked into the mCAR structure but not the inverse agonist androstenol. Paclitaxel per se increases the expression of CAR in cancer cells. At last, we analyzed the expression of CAR in two public independent studies from The Cancer Genome Atlas (TCGA) of Non Small Cell Lung Cancer (NSCLC). CAR is expressed in variable levels in NSCLC samples and no association with overall survival was noted. Conclusions/Significance Taken together, our results demonstrated that CAR agonists modulate the antineoplastic efficacy of paclitaxel in mouse and human cancer cell lines. This effect was probably related by the enhanced expression of two tumor suppressor genes, viz. WT1 and MGMT. Most of NSCLC cases present CAR gene expression turning it possible to speculate the use of CAR modulation by ligands along with Paclitaxel in NSCLC therapy. PMID:24959746
Vail, D.M.; von Euler, H.; Rusk, A.W.; Barber, L.; Clifford, C.; Elmslie, R.; Fulton, L.; Hirschberger, J.; Klein, M.; London, C.; Martano, M.; McNiel, E.A.; Morris, J.S.; Northrup, N.; Phillips, B.; Polton, G.; Post, G.; Rosenberg, M.; Ruslander, D.; Sahora, A.; Siegel, S.; Thamm, D.; Westberg, S.; Winter, J.; Khanna, C.
2013-01-01
Background Effective treatments for dogs with advanced stage mast cell tumors (MCT) remain a pressing need. A micellar formulation of paclitaxel (paclitaxel [micellar]) has shown promise in early-phase studies. Hypothesis/Objectives The objective was to demonstrate greater activity for paclitaxel (micellar) compared with lomustine. The null hypothesis was μp = μL (ie, proportion of responders for the paclitaxel [micellar] and lomustine groups, respectively). Animals Two hundred and fifty-two dogs with advanced stage nonresectable grade 2 or 3 MCT. Methods Prospective multicenter randomized double-blind positive-controlled clinical trial. The primary endpoint was confirmed overall response rate (CORR) at 14 weeks. A secondary endpoint, biologic observed response rate (BORR), also was calculated. Safety was assessed by the characterization and grading of adverse events (AE). Results Overall CORR (7% versus 1%; P = .048) and BORR (23% versus 10%; P = .012) were greater for paclitaxel (micellar) compared with lomustine. Paclitaxel (micellar)-treated dogs were 6.5 times more likely to have a confirmed response and 3.1 times more likely to experience a biologic observed response. The majority of AE with paclitaxel (micellar) were transient and clinically manageable. Twenty-seven dogs (33%) receiving lomustine were discontinued because of hepatopathy compared with 3 dogs (2%) receiving paclitaxel (micellar) (P < .0001; odds ratio 26.7). Conclusions and Clinical Importance Paclitaxel (micellar)’s activity and safety profile are superior to lomustine. The addition of an active and novel taxane to the veterinary armamentarium could fill a substantial need and, as its mechanism of action and AE profile do not overlap with currently available TKI, its availability could lead to effective combination protocols. PMID:22390318
A Review of Paclitaxel and Novel Formulations Including Those Suitable for Use in Dogs.
Khanna, C; Rosenberg, M; Vail, D M
2015-01-01
Paclitaxel is a commonly used chemotherapeutic agent with a broad spectrum of activity against cancers in humans. In 1992, paclitaxel was approved by the U.S. Food and Drug Administration (FDA) as Taxol(®) for use in advanced ovarian cancer. Two years later, it was approved for the treatment of metastatic breast cancer. Paclitaxel was originally isolated from the bark of the Pacific yew tree, Taxus brevifolia in 1971. Taxanes are a family of microtubule inhibitors. As a member of this family, paclitaxel suppresses spindle microtubule dynamics. This activity results in the blockage of the metaphase-anaphase transitions, and ultimately in the inhibition of mitosis, and induction of apoptosis in a wide spectrum of cancer cells. Additional anticancer activities of paclitaxel have been defined that are independent of these effects on the microtubules and may include the suppression of cell proliferation as well as antiangiogenic effects. Based on its targeting of a fundamental feature of the cancer phenotype, the mitotic complex, it is not surprising that paclitaxel has been found to be active in a wide variety of cancers in humans. This review summarizes the evidence in support of paclitaxel's broad anticancer activity and introduces the rationale for, and the progress in development of novel formulations of paclitaxel that may preferentially target cancers and that are not associated with the risks for hypersensitivity in dogs. Of note, a novel nanoparticle formulation of paclitaxel that substantially limits hypersensitivity was recently given conditional approval by the FDA Center for Veterinary Medicine for use in dogs with resectable and nonresectable squamous cell carcinoma and nonresectable stage III, IV and V mammary carcinoma. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
A preliminary report on the effects of paclitaxel-impregnated stents on sheep nasal mucosa.
Herrmann, Brian W; Citardi, Martin J; Vogler, George; Gardner, Laura; Smith, Greg; Javer, Amin R; Burt, Helen M; Jackson, John; Kuhn, Frederick A
2004-01-01
Traditional frontal sinus stents serve only as mechanical devices. It has been proposed that stents also may serve as drug-delivery systems for the topical application of drugs that minimize postoperative scarring. Paclitaxel (Taxol), which has recognized antiscarring effects, may be incorporated via a polymeric formulation into standard rubber stents. The impact of topically applied paclitaxel on the morphology of the nasal mucosa is unknown. An adult sheep model was used for this study. A modified rubber T-tube stent (incorporating paclitaxel at varying dosages) was secured to each side of the septum in four animals (eight sides). An unmodified T-tube was placed on each side of one animal, a T-tube with the drug carrier (but no paclitaxel) was placed on each side of the second animal, and T-tubes with varying paclitaxel were placed on each side of the final two animals. After 4 weeks, animals were killed and the nasal mucosa was harvested. The nasal mucosa was sectioned and stained with hematoxylin and eosin. A pathologist then assessed the nasal mucosa for vascular congestion, glandular atrophy, chronic inflammation, mucosal metaplasia, and mucosal ulceration. No consistent histopathological differences were noted in the specimens. All specimens showed varying degrees of vascular congestion, glandular atrophy, chronic inflammation, and mucosal metaplasia; the paclitaxel-impregnated stents were not consistently associated with more severe mucosal injury. Finally, mucosal ulceration was noted to be very rare in all specimens. This preliminary report describes the impact of paclitaxel-impregnated stents on sheep nasal mucosa, which tolerated these stents very well. Because paclitaxel minimizes scarring reactions at very low concentrations, paclitaxel-impregnated stents may prove useful in clinical situations in which frontal sinus stenting is deemed necessary. Additional investigations with animal models, as well as clinical trials, may be warranted.
Taylor, Robert M; Sillerud, Laurel O
2012-01-01
Background and methods: Problems with the clinical management of prostate cancer include the lack of both specific detection and efficient therapeutic intervention. We report the encapsulation of superparamagnetic iron platinum nanoparticles (SIPPs) and paclitaxel in a mixture of polyethyleneglycolated, fluorescent, and biotin-functionalized phospholipids to create multifunctional SIPP-PTX micelles (SPMs) that were conjugated to an antibody against prostate-specific membrane antigen (PSMA) for the specific targeting, magnetic resonance imaging (MRI), and treatment of human prostate cancer xenografts in mice. Results: SPMs were 45.4 ± 24.9 nm in diameter and composed of 160.7 ± 22.9 μg/mL iron, 247.0 ± 33.4 μg/mL platinum, and 702.6 ± 206.0 μg/mL paclitaxel. Drug release measurements showed that, at 37°C, half of the paclitaxel was released in 30.2 hours in serum and two times faster in saline. Binding assays suggested that PSMA-targeted SPMs specifically bound to C4-2 human prostate cancer cells in vitro and released paclitaxel into the cells. In vitro, paclitaxel was 2.2 and 1.6 times more cytotoxic than SPMs to C4-2 cells at 24 and 48 hours of incubation, respectively. After 72 hours of incubation, paclitaxel and SPMs were equally cytotoxic. SPMs had MRI transverse relaxivities of 389 ± 15.5 Hz/mM iron, and SIPP micelles with and without drug caused MRI contrast enhancement in vivo. Conclusion: Only PSMA-targeted SPMs and paclitaxel significantly prevented growth of C4-2 prostate cancer xenografts in nude mice. Furthermore, mice injected with PSMA-targeted SPMs showed significantly more paclitaxel and platinum in tumors, compared with nontargeted SPM-injected and paclitaxel-injected mice. PMID:22915856
Muro, Kei; Oh, Sang Cheul; Shimada, Yasuhiro; Lee, Keun-Wook; Yen, Chia-Jui; Chao, Yee; Cho, Jae Yong; Cheng, Rebecca; Carlesi, Roberto; Chandrawansa, Kumari; Orlando, Mauro; Ohtsu, Atsushi
2016-03-01
East Asia has higher gastric cancer incidence and mortality rates than other regions. We present a subgroup analysis of East Asians in the positive study RAINBOW. Patients with advanced gastric or gastroesophageal junction adenocarcinoma previously treated with platinum and fluoropyrimidine received ramucirumab 8 mg/kg or placebo on days 1 and 15 plus paclitaxel 80 mg/m(2) on days 1, 8, and 15 of a 28-day cycle. Of 665 intention-to-treat patients, 223 were East Asian. Median overall survival was 12.1 months for ramucirumab plus paclitaxel and 10.5 months for placebo plus paclitaxel (hazard ratio: 0.986, 95% confidence interval: 0.727-1.337, P = 0.929). Median progression-free survival was 5.5 months for ramucirumab plus paclitaxel and 2.8 months for placebo plus paclitaxel (hazard ratio: 0.628, 95% confidence interval: 0.473-0.834, P = 0.001). Objective response rates were 34% for ramucirumab plus paclitaxel and 20% for placebo plus paclitaxel. Grade ≥ 3 neutropenia (60% vs 28%) and leukopenia (34% vs 13%) were higher for ramucirumab plus paclitaxel. The rate of febrile neutropenia was low (4% vs 4%). Special interest adverse events included any grade bleeding/hemorrhage (55% vs 25%), proteinuria (27% vs 7%), and hypertension (22% vs 2%). Ramucirumab plus paclitaxel significantly improves progression-free survival and response rate, with prolonged median overall survival and an acceptable safety profile in East Asians with advanced gastric cancer. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Lee, F Y; Borzilleri, R; Fairchild, C R; Kim, S H; Long, B H; Reventos-Suarez, C; Vite, G D; Rose, W C; Kramer, R A
2001-05-01
BMS-247550, a novel epothilone derivative, is being developed by Bristol-Myers Squibb Company (BMS) as an anticancer agent for the treatment of patients with malignant tumors. BMS-247550 is a semisynthetic analogue of the natural product epothilone B and has a mode of action analogous to that of paclitaxel (i.e., microtubule stabilization). In vitro, it is twice as potent as paclitaxel in inducing tubulin polymerization. Like paclitaxel, BMS-247550 is a highly potent cytotoxic agent capable of killing cancer cells at low nanomolar concentrations. Importantly, BMS-247550 retains its antineoplastic activity against human cancers that are naturally insensitive to paclitaxel or that have developed resistance to paclitaxel, both in vitro and in vivo. Tumors for which BMS-247550 demonstrated significant antitumor activity encompass both paclitaxel-sensitive and -refractory categories, i.e., (a) paclitaxel-resistant: HCT116/VM46 colorectal (multidrug resistant), Pat-21 breast and Pat-7 ovarian carcinoma (clinical isolates; mechanisms of resistance not fully known), and A2780Tax ovarian carcinoma (tubulin mutation); (b) paclitaxel-insensitive: Pat-26 human pancreatic carcinoma (clinical isolate) and M5076 murine fibrosarcoma; and (c) paclitaxel sensitive: A2780 ovarian, LS174T, and HCT116 human colon carcinoma. In addition, BMS-247550 is p.o. efficacious against preclinical human tumor xenografts grown in immunocompromised mice or rats. Schedule optimization studies indicate that BMS-247550 is efficacious when administered frequently (every 2 days x 5) or intermittently (every 4 days x 3 or every 8 days x 2). These efficacy data demonstrate that BMS-247550 has the potential to surpass Taxol in both clinical efficacy and ease of use (i.e., less frequent treatment schedule and/or oral administration).
Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins.
Tommasi, Stefania; Mangia, Anita; Lacalamita, Rosanna; Bellizzi, Antonia; Fedele, Vita; Chiriatti, Annalisa; Thomssen, Christopher; Kendzierski, Nancy; Latorre, Agnese; Lorusso, Vito; Schittulli, Francesco; Zito, Francesco; Kavallaris, Maria; Paradiso, Angelo
2007-05-15
The antineoplastic effect of paclitaxel is mainly related to its ability to bind the beta subunit of tubulin, thus preventing tubulin chain depolarization and inducing apoptosis. The relevance of the Class I beta-tubulin characteristics have also been confirmed in the clinical setting where mutations of paclitaxel-binding site of beta-tubulin Class I have been related to paclitaxel resistance in non small cell lung and ovarian cancers. In the present study, we verified the hypothesis of a relationship between molecular alterations of beta-tubulin Class I and paclitaxel sensitivity in a panel of breast cell lines with different drug IC(50). The Class I beta-tubulin gene cDNA has been sequenced detecting heterozygous missense mutations (exon 1 and 4) only in MCF-7 and SK-BR-3 lines. Furthermore, the expression (at both mRNA and protein level) of the different isotypes have been analyzed demonstrating an association between low cell sensitivity to paclitaxel and Class III beta-tubulin expression increasing. Antisense oligonucleotide (ODN) experiments confirmed that the inhibition of Class III beta-tubulin could at least partially increase paclitaxel-chemosensitivity. The hypothesis of a relationship between beta-tubulin tumor expression and paclitaxel clinical response has been finally verified in a series of 92 advanced breast cancer patients treated with a first line paclitaxel-based chemotherapy. Thirty-five percent (95% CI: 45-31) of patients with high Class III beta-tubulin expression showed a disease progression vs. only 7% of patients with low expression (35% vs. 7%, p < 0.002). Our study suggests that Class III beta-tubulin tumor expression could be considered a predictive biomarker of paclitaxel-clinical resistance for breast cancer patients. (c) 2007 Wiley-Liss, Inc.
Utility of Risk Stratification for Paclitaxel Hypersensitivity Reactions.
Otani, Iris M; Lax, Timothy; Long, Aidan A; Slawski, Benjamin R; Camargo, Carlos A; Banerji, Aleena
2017-10-03
Hypersensitivity reactions (HSRs) are a common impediment to paclitaxel therapy. Management strategies to guide care after a paclitaxel-induced HSR are needed. The objective was to evaluate the utility and safety of risk stratification on the basis of severity of the initial HSR. A risk stratification pathway was developed on the basis of a retrospective review of the management and outcome of 130 patients with paclitaxel-induced HSRs at Massachusetts General Hospital. This pathway was then studied prospectively in patients referred to Allergy/Immunology with paclitaxel-induced HSRs. The study population (n = 35) had a mean age of 56.1 ± 12 years and most were women (n = 33 [94%]). All 5 patients (15%) with grade 1 initial HSRs were successfully reexposed to paclitaxel, 1 patient at the standard infusion rate and 4 patients at 50% of the standard infusion rate. Thirty patients (85%) with grade 2 to 4 initial HSRs underwent initial paclitaxel desensitization based on the risk stratification pathway. No patients developed severe HSRs using the pathway. Eleven (31%) patients had HSRs that were mild to moderate in nature (grade 1, n = 4 [11%]; grade 2, n = 6 [17%]; grade 3, n = 1 [3%]) during their first desensitization. Sixteen (46%) of the 35 patients safely returned to the outpatient infusion setting for paclitaxel treatment at 50% of the standard infusion rate. Seven (20%) discontinued paclitaxel before the completion of the risk stratification pathway because of disease progression, completion of therapy, or death. A management strategy using the initial HSR severity for risk stratification allowed patients to receive paclitaxel safely. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats
Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed
2016-01-01
Objective(s): Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Materials and Methods: Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Results: Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Conclusion: Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress. PMID:27081469
Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats.
Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed
2016-02-01
Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress.
Peng, X; Gong, F; Chen, Y; Jiang, Y; Liu, J; Yu, M; Zhang, S; Wang, M; Xiao, G; Liao, H
2014-01-01
Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental HeLa cells. To determine the underlying molecular mechanism, differentially expressed proteins between HeLa and HeLa-R cells were identified by two-dimensional gel electrophoresis coupled with electrospray ionization quadrupole time-of-flight MS/MS. We found glycolysis-associated proteins were upregulated in HeLa-R cell lines. Inhibition of glycolysis by 2-deoxy-D-glucose or koningic acid could decrease autophagy and enhance sensitivity of HeLa-R cells to paclitaxel. Moreover, glycolysis could activate HIF1-α. Downregulation of HIF1-α by specific siRNA could decrease autophagy and resensitize HeLa-R cells to paclitaxel. Taken together, a possible Warburg effect activated HIF1-α-mediated signaling-induced autophagic pathway is proposed, which may provide new insight into paclitaxel chemoresistance. PMID:25118927
Nab-Paclitaxel Plus Gemcitabine for Metastatic Pancreatic Cancer
A summary of results from a phase III trial that compared the combination of albumin-bound paclitaxel (nab-paclitaxel [Abraxane®]) and gemcitabine (Gemzar®) versus gemcitabine alone in patients with metastatic pancreatic cancer.
Indocyanine green angiography findings of cystoid macular edema secondary to paclitaxel therapy.
Nomi, Nanami; Ota, Manami; Fukumura, Miho; Nuno, Yoshihisa; Hatano, Makoto; Wakuta, Makiko; Yanai, Ryoji; Kimura, Kazuhiro
2018-03-01
To report 2 cases of paclitaxel-related maculopathy manifesting as cystoid macular edema (CME) with late petaloid hyperfluorescence on indocyanine green angiography (IA). A 74-year-old man (patient 1) undergoing paclitaxel chemotherapy for gastric and metastatic liver cancer and a 69-year-old man (patient 2) receiving paclitaxel for hypopharyngeal cancer presented with anorthopia in both eyes. Spectral domain-optical coherence tomography (SD-OCT) revealed macular edema in both eyes of each patient. Fluorescein angiography showed weak petaloid pooling around the fovea in the late phase. IA revealed CME with petaloid hyperfluorescence that matched the region of macular edema detected by SD-OCT. The CME was attenuated in the right eye but not in the left eye of patient 1 at 2 weeks after discontinuation of paclitaxel treatment, whereas it was no longer apparent in either eye at 3 months. The CME was no longer detected in either eye of patient 2 at 3 months after discontinuation of paclitaxel. These cases suggest that paclitaxel-induced CME may result from intraretinal accumulation of intracellular fluid and minimal impairment of the blood retinal barrier.
Phosphorylation of caspase-9 at Thr125 directs paclitaxel resistance in ovarian cancer.
Byun, Mi Ran; Choi, Jin Woo
2018-01-02
Although paclitaxel is routinely prescribed for the treatment of epithelial ovarian cancer (EOC), paclitaxel resistance is common in EOC and correlates with short survival of patients. A previous pharmacogenomic study revealed the importance of cyclin-dependent kinase 1 (CDK1) activity in a response on paclitaxel. However, a subsequent research showed that the expression level of CDK1 failed to show significant correlation with delayed apoptosis and patient survival. Rather, the expression and phosphorylation of capase-9, the downstream target molecule of CDK1, appeared to determine drug resistance. Our results suggest that treatment with the CDK1 inhibitor alsterpaullone reduces phosphorylation of caspase-9. Its phosphorylation level was dependent on CDK1 activity and it directs paclitaxel resistance. This observation was reproducible in xenografted tumors. Thus, the regulation of caspase-9 may be a novel therapeutic strategy to reverse paclitaxel-induced resistance in ovarian cancer cells.
Nallani, Srikanth C; Goodwin, Bryan; Maglich, Jodi M; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B
2003-05-01
Paclitaxel, a taxane anti-microtubule agent, is known to induce CYP3A in rat and human hepatocytes. Recent studies suggest that a member of the nuclear receptor family, pregnane X Receptor (PXR), is a key regulator of the expression of CYP3A in different species. We investigated the role of PXR activation, in vitro and in vivo, in mediating Cyp3a induction by paclitaxel. Pregnenolone 16 alpha-carbonitrile (PCN), an antiglucocorticoid, was employed as a positive control for mouse PXR (mPXR) activation in vitro, and Cyp3a induction in vivo. In cell based reporter gene assays paclitaxel and PCN activated mPXR with an EC(50) of 5.6 and 0.27 microM, respectively. Employing PXR wild-type and transgenic mice lacking functional PXR (-/-), we evaluated the expression and activity of CYP3A following treatment with paclitaxel and PCN. Paclitaxel significantly induced CYP3A11 mRNA and immunoreactive CYP3A protein in PXR wild-type mice. Consistent with kinetics of CYP3A induction, the V(max) of testosterone 6 beta-hydroxylation in microsomal fraction increased 15- and 30-fold in paclitaxel- and PCN-treated mice, respectively. The Cyp3a induction response was completely abolished in paclitaxel- and PCN-treated PXR-null mice. This suggests that paclitaxel-mediated CYP3A induction in vivo requires an intact PXR-signaling mechanism. Our study validates the use of PXR activation assays in screening newer taxanes for potential drug interactions that may be related to PXR-target gene induction.
Evaluation of safety in clinical use of generic paclitaxel [NK] for injection.
Tsukiyama, Ikuto; Hotta, Kazuo; Takeuchi, Masayuki; Onishi, Masahumi; Toyama, Yukio; Saito, Hiroko; Sai, Yoshimichi; Miyamoto, Ken-Ichi; Hasegawa, Takaaki
2012-04-01
The introduction of generic drugs is a favored strategy in reducing medical costs, but some clinicians are often reluctant to use them because of lack of information with regard to their side effects. Generic paclitaxel [NK] differs from the proprietary version, Taxol®, in containing added citric acid and a more pure form of castor oil. However, little information exists regarding the effects of these additives on adverse events such as vascular pain, phlebitis, hypersensitivity and hepatic dysfunction. To compensate for this lack of information and to validate the safety of using generic paclitaxel, we investigated adverse events in response to generic paclitaxel [NK]. Our investigation focused on patients treated with both the proprietary formulation (Taxol® for injection) and the generic version(paclitaxel [NK] for injection)sequentially from April 2008 to March 2009. Adverse events were investigated retrospectively. Incidence of vascular pain, phlebitis and hypersensitivity was similar to that with the original product. Although the expression of some liver enzymes was slightly increased and some gastrointestinal events were reduced following generic paclitaxel [NK] treatment there was no statistically significant difference. The profiles of other adverse events were not significantly different. Increased vascular pain and phlebitis, predicted due to low pH conditions caused by citric acid, were not observed. Similarly, the pure castor oil included in generic paclitaxel [NK] did not influence hypersensitivity and hepatic function. We found no significant differences in our study of proprietary and generic paclitaxel [NK]. Thus, clinicians have no reason for prejudice against using generic paclitaxel [NK] on the basis of increased risk of side effects.
Prodrug Strategies for Paclitaxel.
Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge
2016-05-23
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Peng, L; Bu, Z; Ye, X; Zhou, Y; Zhao, Q
2017-09-01
Nab-paclitaxel, a Cremophor EL-free formulation of paclitaxel, is used to treat various malignancies. Peripheral neuropathy is one of its major toxicities, although the overall incidence remains unclear. We performed a meta-analysis to calculate the incidence of peripheral neuropathy in cancer patients treated with nab-paclitaxel and to compare the relative risk (RR) with conventional taxanes. The electronic databases were searched for relevant clinical trials. Eligible studies included phase II and III prospective clinical trials of cancer patients treated with nab-paclitaxel with toxicity profile on peripheral neuropathy. Statistical analyses were done to calculate summary incidences, RRs and 95% confidence intervals (CI), using fixed-effects or random-effects models based on the heterogeneity of the included studies. Nineteen trials were selected for the meta-analysis, yielding a total of 2878 cancer patients. The overall incidences of peripheral neuropathy (all-grade) was 51.0% (95% CI: 45.1-57.6%), and that of high-grade peripheral neuropathy was 12.4% (9.8-15.7%). The RRs of peripheral neuropathy of nab-paclitaxel compared to taxanes were not increased for all-grade and high-grade peripheral neuropathy. Nab-paclitaxel is associated with an increased risk of developing peripheral neuropathy. Future clinical studies are still needed to investigate the risk reduction and possible use of nab-paclitaxel. © 2015 John Wiley & Sons Ltd.
The Urtica dioica extract enhances sensitivity of paclitaxel drug to MDA-MB-468 breast cancer cells.
Mohammadi, Ali; Mansoori, Behzad; Aghapour, Mahyar; Shirjang, Solmaz; Nami, Sanam; Baradaran, Behzad
2016-10-01
Due to the chemo resistant nature of cancer cells and adverse effects of current therapies, researchers are looking for the most efficient therapeutic approach which has the lowest side effects and the highest toxicity on cancer cells. The aim of the present study was to investigate the synergic effect of Urtica dioica extract in combination with paclitaxel on cell death and invasion of human breast cancer MDA-MB-468 cell line. To determine the cytotoxic effects of Urtica dioica extract with paclitaxel, MTT assay was performed. The scratch test was exploited to assess the effects of Urtica dioica, Paclitaxel alone and combination on migration of cancer cells. The expression levels of snail-1, ZEB1, ZEB2, twist, Cdc2, cyclin B1 and Wee1 genes were quantified using qRT-PCR and western blot performed for snail-1expression. The effects of plant extract, Paclitaxel alone and combination on different phases of cell cycle was analyzed using flow cytometry. Results of MTT assay showed that Urtica dioica significantly destroyed cancer cells. Interestingly, Concurrent use of Urtica dioica extract with paclitaxel resulted in decreased IC50 dose of paclitaxel. Moreover, findings of scratch assay exhibited the inhibitory effects of Urtica dioica, Paclitaxel alone and combination on migration of MDA-MB-468 cell line. Our findings also demonstrated that the extract substantially decreased the Snail-1 and related gene expression. Ultimately, Cell cycle arrest occurred at G2/M phase post-treatment by deregulating Cdc2 and wee1. Our results demonstrated that the dichloromethane extract of Urtica dioica inhibit cell growth and migration. Also, Urtica dioica extract substantially increased sensitivity of breast cancer cells to paclitaxel. Therefore, it can be used as a potential candidate for treatment of breast cancer with paclitaxel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Watchueng, Jean; Kamnaing, Pierre; Gao, Jin-Ming; Kiyota, Taira; Yeboah, Faustinus; Konishi, Yasuo
2011-05-20
Paclitaxel was purified using high-performance displacement chromatography (HPDC) technique, but not by the mechanism of HPDC. On small scale, paclitaxel was extracted with methanol from dry needles of Taxus canadensis and was enriched by extracting with chloroform after removing water-soluble hydrophilic components and hexane-soluble hydrophobic components. Then, 93-99% purity of paclitaxel was obtained using the HPDC technique. On large scale, taxanes were enriched by solvent partitioning between acetic acid/MeOH/H(2)O and hexane and extracted with CH(2)Cl(2). Taxanes except paclitaxel were further removed by extracting with methanol-water-trifluoroacetic acid (1.0:98.9:0.1, v/v/v). Applying HPDC technique to water-insoluble substances is problematic as this method requires a highly aqueous solvent system. In order to overcome this incompatibility, a system was set up where paclitaxel, although in low concentration, was extracted by methanol-water-trifluoroacetic acid (10.0:89.9:0.1, v/v/v). Recycling the extracting solvent to ensure minimal volume, the extracted paclitaxel was adsorbed on a C(18) trap column. A C(18) column of 4.6mm internal diameter was then connected to the trap column. The HPDC technique was thus carried out using an isocratic acetonitrile-water-trifluoroacetic acid (30.0:69.9:0.1, v/v/v) mobile phase consisting of a displacer cetylpyridinium trifluoroacetate (3mg/mL). Paclitaxel was co-eluted with the displacer and spontaneously crystallized. The crystal (114mg) showed 99.4% purity and only 10% of paclitaxel in the starting crude extract was lost during the enrichment/purification processes. This large scale purification method was successfully applied to purify paclitaxel from Chinese yew in small scale, suggesting general applicability of the method. This is the first report of purifying a water-insoluble natural product using HPDC technique. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Hersh, E M; Del Vecchio, M; Brown, M P; Kefford, R; Loquai, C; Testori, A; Bhatia, S; Gutzmer, R; Conry, R; Haydon, A; Robert, C; Ernst, S; Homsi, J; Grob, J J; Kendra, K; Agarwala, S S; Li, M; Clawson, A; Brachmann, C; Karnoub, M; Elias, I; Renschler, M F; Hauschild, A
2015-11-01
The efficacy and safety of nab-paclitaxel versus dacarbazine in patients with metastatic melanoma was evaluated in a phase III randomized, controlled trial. Chemotherapy-naïve patients with stage IV melanoma received nab-paclitaxel 150 mg/m(2) on days 1, 8, and 15 every 4 weeks or dacarbazine 1000 mg/m(2) every 3 weeks. The primary end point was progression-free survival (PFS) by independent radiologic review; the secondary end point was overall survival (OS). A total of 529 patients were randomized to nab-paclitaxel (n = 264) or dacarbazine (n = 265). Baseline characteristics were well balanced. The majority of patients were men (66%), had an Eastern Cooperative Oncology Group status of 0 (71%), and had M1c stage disease (65%). The median PFS (primary end point) was 4.8 months with nab-paclitaxel and 2.5 months with dacarbazine [hazard ratio (HR), 0.792; 95.1% confidence interval (CI) 0.631-0.992; P = 0.044]. The median OS was 12.6 months with nab-paclitaxel and 10.5 months with dacarbazine (HR, 0.897; 95.1% CI 0.738-1.089; P = 0.271). Independently assessed overall response rate was 15% versus 11% (P = 0.239), and disease control rate (DCR) was 39% versus 27% (P = 0.004) for nab-paclitaxel versus dacarbazine, respectively. The most common grade ≥3 treatment-related adverse events were neuropathy (nab-paclitaxel, 25% versus dacarbazine, 0%; P < 0.001), and neutropenia (nab-paclitaxel, 20% versus dacarbazine, 10%; P = 0.004). There was no correlation between secreted protein acidic and rich in cysteine (SPARC) status and PFS in either treatment arm. nab-Paclitaxel significantly improved PFS and DCR compared with dacarbazine, with a manageable safety profile. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell.
Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua
2013-01-01
Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients.
Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell
Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua
2013-01-01
Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients. PMID:24294361
Ren, Xiaoli; Zhao, Bingbing; Chang, Hongjian; Xiao, Min; Wu, Yuhong; Liu, Yun
2018-06-01
Paclitaxel is a diterpenoid compound, derived from the pacific yew (Taxus brevifolia) berry, which exhibits antineoplastic effects against various types of cancer. However, the antitumor effects and the molecular mechanisms of paclitaxel on canine CHMm cells remain to be elucidated. The aim of the present study was to investigate the antitumor effects of paclitaxel on CHMm cells and identify relevant signal transduction pathways modulated by paclitaxel using multiple methods including MTT assay, flow cytometry, acridine orange/ethidium bromide staining, transmission electron microscopy, determination of cellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondiadehyde (MDA) and western blotting, the data indicated that paclitaxel decreased cell viability, induced G2/M‑phase cell cycle arrest, suppressed the expression of cyclin B1 and induced apoptosis in a dose‑dependent manner. In addition, paclitaxel upregulated the expression of Bax and cytochrome c, but reduced expression of apoptosis regulator Bcl‑2, resulting in activation of caspase‑3, chromatin condensation, karyopyknosis, intracellular vacuolization, increased production of ROS and MDA, and decreased activity of SOD. However, these effects were inhibited when CHMm cells were treated with N‑acetyl‑L‑cysteine. Furthermore, treatment with paclitaxel inhibited the level of of phospho (p)‑RAC‑α serine/threonine‑protein kinase (AKT) and p‑ribosomal protein S6 kinase proteins, and promoted phosphorylation of P38 mitogen‑activated protein kinase (MAPK) and p‑90 kDa ribosomal protein S6 kinase 1 proteins in CHMm cells. It was observed that paclitaxel in combination with pharmacological inhibitors of the P38 and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) signaling pathways (SB203580 and LY294002, respectively) exerted synergistic inhibitory effects on the proliferation of the CHMm cells. The results of the present study demonstrated that paclitaxel inhibited tumor cell proliferation by increasing intrinsic apoptosis through inhibition of the PI3K/AKT signaling pathway and activation of MAPK signaling pathway in CHMm cells.
Pazopanib Enhances Paclitaxel-Induced Mitotic Catastrophe in Anaplastic Thyroid Cancer
Isham, Crescent R.; Bossou, Ayoko R.; Negron, Vivian; Fisher, Kelly E.; Kumar, Rakesh; Marlow, Laura; Lingle, Wilma L.; Smallridge, Robert C.; Sherman, Eric J.; Suman, Vera J.; Copland, John A.; Bible, Keith C.
2014-01-01
Anaplastic thyroid cancer (ATC) has perhaps the worst prognosis of any cancer, with a median survival of only about 5 months regardless of stage. Pazopanib monotherapy has promising clinical activity in differentiated thyroid cancers (generally attributed to vascular endothelial growth factor receptor inhibition), yet has less effective single-agent activity in ATC. We now report that combining pazopanib with microtubule inhibitors such as paclitaxel produced heightened and synergistic antitumor effects in ATC cells and xenografts that were associated with potentiated mitotic catastrophe. We hypothesized that combined effects may reflect enhanced paclitaxel-induced cytotoxicity mediated by cell cycle regulatory kinase inhibition by pazopanib. Indeed, pazopanib potently inhibited aurora A, with pazopanib/paclitaxel synergy recapitulated by aurora A short hairpin RNA knockdown or by specific aurora A pharmacological inhibition. Pazopanib/paclitaxel synergy was reversed by aurora A knockdown. Moreover, aurora A (but not B or C) message and protein levels were significantly increased in patient ATCs, and durable benefit resulted from pilot clinical translation of pazopanib/paclitaxel therapy in a patient with metastatic ATC. Collectively, these results suggest that the pazopanib/paclitaxel combination is a promising candidate therapeutic approach in ATC and that aurora A may represent a potentially viable therapeutic molecular target in ATC. PMID:23283368
Li, Minghua; Peng, Li; Yang, Fuheng; Liu, Sijia; Wang, Shengqi
2015-06-01
To evaluate the effect of Radix euphorbiae pekinensis extract on the permeability and bioavailability of paclitaxel co-administered orally. Based on Ussing Chamber and in vivo experiment, the permeability and bioavailability of paclitaxel were evaluated after oral co-administration with radix euphorbiae pekinensis in rats. The contents of paclitaxel in the permeates and the blood samples were determined using HPLC and LC-MS/MS method, respectively. In Radix euphorbiae pekinensis co-administration group, the Papp of the mucosal-to-serosal (M-S) transport or serosal-to-mucosal transport (S-M) of paclitaxel in the jejunum or ileum segment differed significantly from those in verapamil co-administration group and blank control group (P<0.05), but the Papp of S-M transport in the colon showed no significant difference from that in the blank control group. In the blank group, the average absolute bioavailability (AB%) of orally administered paclitaxel was only 2.81%, compared to that of 7.63% in radix euphorbiae pekinensis group. The average AB% in verapamil group was about 1.5 times that of the blank group. Co-administration of Radix euphorbiae pekinensis extract can increase the bioavailability of orally administered paclitaxel.
Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen
2007-09-01
Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles.
Panis, C; Binato, R; Correa, S; Victorino, V J; Dias-Alves, V; Herrera, A C S A; Cecchini, R; Simão, A N C; Barbosa, D S; Pizzatti, L; Abdelhay, E
2017-09-01
Although paclitaxel-based chemotherapy is widely used for treating breast cancer, paclitaxel therapy has been associated with several adverse effects. Such adverse effects have primarily been associated with long-term regimens, but some acute effects are being increasingly reported in the literature. In this context, the present study analyzed the systemic proteomic profiles of women diagnosed with breast cancer at the first cycle of short paclitaxel infusion (n = 30). Proteomic profiles thus obtained were compared with those of breast cancer patients without chemotherapy (n = 50), as well as with those of healthy controls (n = 40). Plasma samples were evaluated by label-free LC-MS to obtain systemic proteomic profiles. Putative dysregulated pathways were identified and validated by in silico analysis of proteomic profiles. Our results identified 188 proteins that were differentially expressed in patients who received a single short paclitaxel infusion when compared to patients who did not receive the infusion. Gene ontology analysis indicated that the cholesterol pathway may be dysregulated by paclitaxel in these patients. Validation analysis showed that paclitaxel treatment significantly reduced plasma high-density lipoprotein levels and increased plasma hydroperoxide levels when compared to breast cancer patients without chemotherapy. Furthermore, augmented C-reactive protein and creatine kinase fraction MB were found to be significantly higher in paclitaxel-treated patients in comparison with healthy controls. Taken together, these data suggest that a single dose of short paclitaxel infusion is sufficient to trigger significant alterations in lipid metabolism, which puts breast cancer patients at risk for increased incidence of cardiovascular disease.
Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN.
Kyte, S Lauren; Toma, Wisam; Bagdas, Deniz; Meade, Julie A; Schurman, Lesley D; Lichtman, Aron H; Chen, Zhi-Jian; Del Fabbro, Egidio; Fang, Xianjun; Bigbee, John W; Damaj, M Imad; Gewirtz, David A
2018-01-01
Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α 7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Fransson, Martin N; Gréen, Henrik; Litton, Jan-Eric; Friberg, Lena E
2011-02-01
The formulation vehicle Cremophor EL has previously been shown to affect paclitaxel kinetics, but it is not known whether it also affects the kinetics of paclitaxel metabolites. This information may be important for understanding paclitaxel metabolism in vivo and in the investigation of the role of genetic polymorphisms in the metabolizing enzymes CYP2C8 and CYP3A4/CYP3A5 and the ABCB1 transporter. In this study we used the population pharmacokinetic approach to explore the influence of predicted Cremophor EL concentrations on paclitaxel (Taxol) metabolites. In addition, correlations between genetic polymorphisms and enzyme activity with clearance of paclitaxel, its two primary metabolites, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, and its secondary metabolite, 6α-p-3'-dihydroxypaclitaxel were investigated. Model building was based on 1156 samples from a study with 33 women undergoing paclitaxel treatment for gynecological cancer. Total concentrations of paclitaxel were fitted to a model described previously. One-compartment models characterized unbound metabolite concentrations. Total concentrations of 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel were strongly dependent on predicted Cremophor EL concentrations, but this association was not found for 6α-p-3'-dihydroxypaclitaxel. Clearance of 6α-hydroxypaclitaxel (fraction metabolized) was significantly correlated (p < 0.05) to the ABCB1 allele G2677T/A. Individuals carrying the polymorphisms G/A (n = 3) or G/G (n = 5) showed a 30% increase, whereas individuals with polymorphism T/T (n = 8) showed a 27% decrease relative to those with the polymorphism G/T (n = 17). The correlation of G2677T/A with 6α-hydroxypaclitaxel has not been described previously but supports other findings of the ABCB1 transporter playing a part in paclitaxel metabolism.
Kubo, Emi; Yamamoto, Noboru; Nokihara, Hiroshi; Fujiwara, Yutaka; Horinouchi, Hidehito; Kanda, Shintaro; Goto, Yasushi; Ohe, Yuichiro
2017-01-01
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib was initially approved in Japan in 2002 for the treatment of advanced or metastatic non-small-cell lung cancer (NSCLC); however, the optimal order of conventional cytotoxic chemotherapy (carboplatin and paclitaxel) and gefitinib administration has not been determined. We conducted a randomized phase II study of carboplatin and paclitaxel followed by gefitinib vs. gefitinib followed by carboplatin and paclitaxel to select a candidate for further development in a phase III study of chemotherapy-naïve patients with advanced or metastatic NSCLC, regardless of their EGFR mutation status. A total of 97 patients meeting this description were randomly assigned to arm A (carboplatin and paclitaxel followed by gefitinib; n=49) or B (gefitinib followed by carboplatin and paclitaxel; n=48) from June, 2003 to October, 2005. Carboplatin and paclitaxel were administered in 4 cycles every 3 weeks; gefitinib was continued until disease progression or development of unacceptable toxicity. The primary endpoint was overall survival; the secondary endpoints were response rate and adverse event prevalence. The median overall follow-up was 65.1 months (range, 28.7-75.1 months). The major toxicities were hematological (carboplatin and paclitaxel) or skin rash, diarrhea and hepatic dysfunction (gefitinib). Interstitial lung disease was observed in 1 patient from each arm. In arms A and B, the carboplatin and paclitaxel response rate, gefitinib response rate, and median survival durations were 34.8 and 26.5%, 33.3 and 35.7%, and 18.8 and 17.2 months, respectively. Arm A was selected for a subsequent phase III study.
Thornburg, Chelsea K; Walter, Tyler; Walker, Kevin D
2017-11-07
In this study, we demonstrate an enzyme cascade reaction using a benzoate CoA ligase (BadA), a modified nonribosomal peptide synthase (PheAT), a phenylpropanoyltransferase (BAPT), and a benzoyltransferase (NDTNBT) to produce an anticancer paclitaxel analogue and its precursor from the commercially available biosynthetic intermediate baccatin III. BAPT and NDTNBT are acyltransferases on the biosynthetic pathway to the antineoplastic drug paclitaxel in Taxus plants. For this study, we addressed the recalcitrant expression of BAPT by expressing it as a soluble maltose binding protein fusion (MBP-BAPT). Further, the preparative-scale in vitro biocatalysis of phenylisoserinyl CoA using PheAT enabled thorough kinetic analysis of MBP-BAPT, for the first time, with the cosubstrate baccatin III. The turnover rate of MBP-BAPT was calculated for the product N-debenzoylpaclitaxel, a key intermediate to various bioactive paclitaxel analogues. MBP-BAPT also converted, albeit more slowly, 10-deacetylbaccatin III to N-deacyldocetaxel, a precursor of the pharmaceutical docetaxel. With PheAT available to make phenylisoserinyl CoA and kinetic characterization of MBP-BAPT, we used Michaelis-Menten parameters of the four enzymes to adjust catalyst and substrate loads in a 200-μL one-pot reaction. This multienzyme network produced a paclitaxel analogue N-debenzoyl-N-(2-furoyl)paclitaxel (230 ng) that is more cytotoxic than paclitaxel against certain macrophage cell types. Also in this pilot reaction, the versatile N-debenzoylpaclitaxel intermediate was made at an amount 20-fold greater than the N-(2-furoyl) product. This reaction network has great potential for optimization to scale-up production and is attractive in its regioselective O- and N-acylation steps that remove protecting group manipulations used in paclitaxel analogue synthesis.
Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.
Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin
2012-02-01
Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be developed through targeting Nlp to increase chemotherapeutic sensitivity.
Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B
The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p < 0.001). Bath application of GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p < 0.01) but not from paclitaxel-treated rats. In this study, there was a GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.
Anticancer activity of drug conjugates in head and neck cancer cells.
Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M
2016-06-01
Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).
Wu, Y. Jeffrey; Neuwelt, Alexander J.; Muldoon, Leslie L.; Neuwelt, Edward A.
2013-01-01
Background Ovarian cancer is commonly treated with cisplatin/paclitaxel but many tumors become resistant. Acetaminophen reduced glutathione and enhanced chemotherapy efficacy in treating hepatic cancer. The objective of this study was to examine if acetaminophen enhances the cytotoxicity of cisplatin/paclitaxel in ovarian cancer. Materials and Methods SKOV3 human ovarian carcinoma cells in vitro and a subcutaneous tumor nude rat model were used and treated with cisplatin/paclitaxel with or without acetaminophen. Results In vitro, acetaminophen enhanced apoptosis induced by cisplatin and paclitaxel with similar effects on glutathione, reactive oxygen species and mitochondrial membrane potential but different effects on nuclear factor erythroid 2-related factor 2 (NRF2) translocation. In vivo, acetaminophen was uniformly distributed in tissue and significantly reduced hepatic glutathione. Acetaminophen enhanced cisplatin chemotherapeutic effect by reducing tumor recurrence Conclusion Our results suggest that acetaminophen as a chemoenhancing adjuvant could improve the efficacy of cisplatin and paclitaxel in treating patients with ovarian carcinoma and other tumor types. PMID:23749887
Rodríguez-Sinovas, Antonio; Abad, Elena; Sánchez, Jose A; Fernández-Sanz, Celia; Inserte, Javier; Ruiz-Meana, Marisol; Alburquerque-Béjar, Juan José; García-Dorado, David
2015-01-01
What is the central question of this study? The microtubule network is disrupted during myocardial ischaemia-reperfusion injury. It was suggested that prevention of microtubule disruption with paclitaxel might reduce cardiac infarct size; however, the effects on infarction have not been studied. What is the main finding and its importance? Paclitaxel caused a reduction in microtubule disruption and cardiomyocyte hypercontracture during ischaemia-reperfusion. However, it induced a greater increase in cytosolic calcium, which may explain the lack of effect against infarction that we have seen in isolated rat hearts. The large increase in perfusion pressure induced by paclitaxel in this model may have clinical implications, because detrimental effects of the drug were reported after its clinical application. Microtubules play a major role in the transmission of mechanical forces within the myocardium and in maintenance of organelle function. However, this intracellular network is disrupted during myocardial ischaemia-reperfusion. We assessed the effects of prevention of microtubule disruption with paclitaxel on ischaemia-reperfusion injury in isolated rat cardiomyocytes and hearts. Isolated rat cardiomyocytes were submitted to normoxia (1 h) or 45 min of simulated ischaemia (pH 6.4, 0% O2 , 37 °C) and reoxygenation, without or with treatment with the microtubule stabilizer, paclitaxel (10(-5) M), or the inhibitor of microtubule polymerization, colchicine (5 × 10(-6) M). Simulated ischaemia leads to microtubule disruption before the onset of ischaemic contracture. Paclitaxel attenuated both microtubule disruption and the incidence of hypercontracture, whereas treatment with colchicine mimicked the effects of simulated ischaemia and reoxygenation. In isolated normoxic rat hearts, treatment with paclitaxel induced concentration-dependent decreases in heart rate and left ventricular developed pressure and increases in perfusion pressure. Despite protection against hypercontracture, paclitaxel pretreatment did not modify infarct size (60.37 ± 2.27% in control hearts versus 58.75 ± 10.25, 55.44 ± 10.32 and 50.06 ± 10.14% after treatment with 10(-6) , 3 × 10(-6) and 10(-5) m of paclitaxel) after 60 min of global ischaemia and reperfusion in isolated rat hearts. Lack of protection was correlated with a higher increase in cytosolic calcium levels during simulated ischaemia in cardiomyocytes treated with paclitaxel (2.32 ± 0.15 versus 1.13 ± 0.16 a.u. in the presence or absence of 10(-6) m paclitaxel, respectively, P < 0.05), but not with changes in aortic reactivity. In conclusion, microtubule stabilization with paclitaxel reduces hypercontracture in isolated rat cardiomyocytes but does not protect against infarction in isolated rat hearts. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Wilke, Hansjochen; Muro, Kei; Van Cutsem, Eric; Oh, Sang-Cheul; Bodoky, György; Shimada, Yasuhiro; Hironaka, Shuichi; Sugimoto, Naotoshi; Lipatov, Oleg; Kim, Tae-You; Cunningham, David; Rougier, Philippe; Komatsu, Yoshito; Ajani, Jaffer; Emig, Michael; Carlesi, Roberto; Ferry, David; Chandrawansa, Kumari; Schwartz, Jonathan D; Ohtsu, Atsushi
2014-10-01
VEGFR-2 has a role in gastric cancer pathogenesis and progression. We assessed whether ramucirumab, a monoclonal antibody VEGFR-2 antagonist, in combination with paclitaxel would increase overall survival in patients previously treated for advanced gastric cancer compared with placebo plus paclitaxel. This randomised, placebo-controlled, double-blind, phase 3 trial was done at 170 centres in 27 countries in North and South America, Europe, Asia, and Australia. Patients aged 18 years or older with advanced gastric or gastro-oesophageal junction adenocarcinoma and disease progression on or within 4 months after first-line chemotherapy (platinum plus fluoropyrimidine with or without an anthracycline) were randomly assigned with a centralised interactive voice or web-response system in a 1:1 ratio to receive ramucirumab 8 mg/kg or placebo intravenously on days 1 and 15, plus paclitaxel 80 mg/m(2) intravenously on days 1, 8, and 15 of a 28-day cycle. A permuted block randomisation, stratified by geographic region, time to progression on first-line therapy, and disease measurability, was used. The primary endpoint was overall survival. Efficacy analysis was by intention to treat, and safety analysis included all patients who received at least one treatment with study drug. This trial is registered with ClinicalTrials.gov, number NCT01170663, and has been completed; patients who are still receiving treatment are in the extension phase. Between Dec 23, 2010, and Sept 23, 2012, 665 patients were randomly assigned to treatment-330 to ramucirumab plus paclitaxel and 335 to placebo plus paclitaxel. Overall survival was significantly longer in the ramucirumab plus paclitaxel group than in the placebo plus paclitaxel group (median 9·6 months [95% CI 8·5-10·8] vs 7·4 months [95% CI 6·3-8·4], hazard ratio 0·807 [95% CI 0·678-0·962]; p=0·017). Grade 3 or higher adverse events that occurred in more than 5% of patients in the ramucirumab plus paclitaxel group versus placebo plus paclitaxel included neutropenia (133 [41%] of 327 vs 62 [19%] of 329), leucopenia (57 [17%] vs 22 [7%]), hypertension (46 [14%] vs eight [2%]), fatigue (39 [12%] vs 18 [5%]), anaemia (30 [9%] vs 34 [10%]), and abdominal pain (20 [6%] vs 11 [3%]). The incidence of grade 3 or higher febrile neutropenia was low in both groups (ten [3%] vs eight [2%]). The combination of ramucirumab with paclitaxel significantly increases overall survival compared with placebo plus paclitaxel, and could be regarded as a new standard second-line treatment for patients with advanced gastric cancer. Eli Lilly and Company. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kang, Y-K; Ryu, M-H; Park, S H; Kim, J G; Kim, J W; Cho, S-H; Park, Y-I; Park, S R; Rha, S Y; Kang, M J; Cho, J Y; Kang, S Y; Roh, S Y; Ryoo, B-Y; Nam, B-H; Jo, Y-W; Yoon, K-E; Oh, S C
2018-05-01
Paclitaxel is currently only available as an intravenous (i.v.) formulation. DHP107 is a novel oral formulation of lipid ingredients and paclitaxel. DHP107 demonstrated comparable efficacy, safety, and pharmacokinetics to i.v. paclitaxel as a second-line therapy in patients with advanced gastric cancer (AGC). DREAM is a multicenter, open-label, prospective, randomized phase III study of patients with histologically/cytologically confirmed, unresectable/recurrent AGC after first-line therapy failure. Patients were randomized 1 : 1 to DHP107 (200 mg/m2 orally twice daily days 1, 8, 15 every 4 weeks) or i.v. paclitaxel (175 mg/m2 day 1 every 3 weeks). Patients were stratified by Eastern Cooperative Oncology Group performance status, disease status, and prior treatment; response was assessed (Response Evaluation Criteria in Solid Tumors) every 6 weeks. Primary end point: non-inferiority of progression-free survival (PFS); secondary end points: overall response rate (ORR), overall survival (OS), and safety. For the efficacy analysis, sequential tests for non-inferiority were carried out, first with a non-inferiority margin of 1.48, then with a margin of 1.25. Baseline characteristics were balanced in the 236 randomized patients (n = 118 per arm). Median PFS (per-protocol) was 3.0 (95% CI 1.7-4.0) months for DHP107 and 2.6 (95% CI 1.8-2.8) months for paclitaxel (hazard ratio [HR] = 0.85; 95% CI 0.64-1.13). A sensitivity analysis on PFS using independent central review showed similar results (HR = 0.93; 95% CI 0.70-1.24). Median OS (full analysis set) was 9.7 (95% CI 7.1 - 11.5) months for DHP107 versus 8.9 (95% CI 7.1-12.2) months for paclitaxel (HR = 1.04; 95% CI 0.76-1.41). ORR was 17.8% for DHP107 (CR 4.2%; PR 13.6%) versus 25.4% for paclitaxel (CR 3.4%; PR 22.0%). Nausea, vomiting, diarrhea, and mucositis were more common with DHP107; peripheral neuropathy was more common with paclitaxel. There were only few Grade≥3 adverse events, most commonly neutropenia (42% versus 53%); febrile neutropenia was reported infrequently (5.9% versus 2.5%). No hypersensitivity reactions occurred with DHP107 (paclitaxel 2.5%). DHP107 as a second-line treatment of AGC was non-inferior to paclitaxel for PFS; other efficacy and safety parameters were comparable. DHP107 is the first oral paclitaxel with proven efficacy/safety for the treatment of AGC. NCT01839773.
Zhang, Hui; Patel, Atish; Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J; Qiu, Long-Hui; Patel, Bhargav A; Huang, Li-Hua; Shukla, Suneet; Yang, Dong-Hua; Ambudkar, Suresh V; Fu, Li-Wu; Chen, Zhe-Sheng
2017-06-01
Paclitaxel is one of the most widely used antineoplastic drugs in the clinic. Unfortunately, the occurrence of cellular resistance has limited its efficacy and application. The ATP-binding cassette subfamily B member 1 (ABCB1/P-glycoprotein) and subfamily C member 10 (ABCC10/MRP7) are the major membrane protein transporters responsible for the efflux of paclitaxel, constituting one of the most important mechanisms of paclitaxel resistance. Here, we demonstrated that the Bruton tyrosine kinase inhibitor, ibrutinib, significantly enhanced the antitumor activity of paclitaxel by antagonizing the efflux function of ABCB1 and ABCC10 in cells overexpressing these transporters. Furthermore, we demonstrated that the ABCB1 or ABCC10 protein expression was not altered after treatment with ibrutinib for up to 72 hours using Western blot analysis. However, the ATPase activity of ABCB1 was significantly stimulated by treatment with ibrutinib. Molecular docking analysis suggested the binding conformation of ibrutinib within the large cavity of the transmembrane region of ABCB1. Importantly, ibrutinib could effectively enhance paclitaxel-induced inhibition on the growth of ABCB1- and ABCC10-overexpressing tumors in nude athymic mice. These results demonstrate that the combination of ibrutinib and paclitaxel can effectively antagonize ABCB1- or ABCC10-mediated paclitaxel resistance that could be of great clinical interest. Mol Cancer Ther; 16(6); 1021-30. ©2017 AACR . ©2017 American Association for Cancer Research.
Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization
Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.
2008-01-01
The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 μg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4°C over three months and in PBS at 37°C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol®. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929
Bishop, J F; Dewar, J; Toner, G C; Smith, J; Tattersall, M H; Olver, I N; Ackland, S; Kennedy, I; Goldstein, D; Gurney, H; Walpole, E; Levi, J; Stephenson, J; Canetta, R
1999-08-01
To determine the place of single-agent paclitaxel compared with nonanthracycline combination chemotherapy as front-line therapy in metastatic breast cancer. Patients with previously untreated metastatic breast cancer were randomized to receive either paclitaxel 200 mg/m(2) intravenously (IV) over 3 hours for eight cycles (24 weeks) or standard cyclophosphamide 100 mg/m(2)/d orally on days 1 to 14, methotrexate 40 mg/m(2) IV on days 1 and 8, fluorouracil 600 mg/m(2) IV on days 1 and 8, and prednisone 40 mg/m(2)/d orally on days 1 to 14 (CMFP) for six cycles (24 weeks) with epirubicin recommended as second-line therapy. A total of 209 eligible patients were randomized with a median survival duration of 17.3 months for paclitaxel and 13.9 months for CMFP. Multivariate analysis showed that patients who received paclitaxel survived significantly longer than those who received CMFP (P =.025). Paclitaxel produced significantly less severe leukopenia, thrombocytopenia, mucositis, documented infections (all P <.001), nausea or vomiting (P =.003), and fever without documented infection (P =.007), and less hospitalization for febrile neutropenia than did CMFP (P =.001). Alopecia, peripheral neuropathy, and myalgia or arthralgia were more severe with paclitaxel (all P <.0001). Overall, quality of life was similar for both treatments (P > = .07). Initial paclitaxel was associated with significantly less myelosuppression and fewer infections, with longer survival and similar quality of life and control of metastatic breast cancer compared with CMFP.
Paclitaxel Nano-Delivery Systems: A Comprehensive Review
Ma, Ping; Mumper, Russell J.
2013-01-01
Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786
Otsubo, Kohei; Kishimoto, Junji; Kenmotsu, Hirotsugu; Minegishi, Yuji; Ichihara, Eiki; Shiraki, Akira; Kato, Terufumi; Atagi, Shinji; Horinouchi, Hidehito; Ando, Masahiko; Kondoh, Yasuhiro; Kusumoto, Masahiko; Ichikado, Kazuya; Yamamoto, Nobuyuki; Nakanishi, Yoichi; Okamoto, Isamu
2018-01-01
We describe the treatment rationale and procedure for a randomized study (J-SONIC; University Hospital Medical Information Network Clinical Trials Registry identification no., UMIN000026799) of carboplatin plus nanoparticle albumin-bound paclitaxel (nab-paclitaxel) with or without nintedanib for patients with advanced non-small cell lung cancer (NSCLC) and idiopathic pulmonary fibrosis (IPF). The study was designed to examine the efficacy and safety of nintedanib administered with carboplatin plus nab-paclitaxel versus carboplatin plus nab-paclitaxel alone in chemotherapy-naive patients with advanced NSCLC associated with IPF. Eligible patients (enrollment target, n = 170) will be randomized at a 1:1 ratio to receive 4 cycles of carboplatin (area under the curve, 6 on day 1) plus nab-paclitaxel (100 mg/m 2 on days 1, 8, and 15) administered every 3 weeks either without (arm A) or with (arm B) nintedanib (150 mg twice daily), to be followed in arm B by single-agent administration of nintedanib (150 mg twice daily). The present trial is the first randomized controlled study for the treatment of NSCLC associated with IPF. The goal of the study is to demonstrate that nintedanib combined with carboplatin plus nab-paclitaxel prolongs the interval to acute exacerbation of IPF compared with carboplatin plus nab-paclitaxel alone. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, J; Ng, C W; Win, K Y; Shoemakers, P; Lee, T K Y; Feng, S S; Wang, C H
2003-01-01
Paclitaxel is a promising anti-cancer drug as well as a radiosensitizer for chemotherapy and radiotherapy applications. Because of the poor solubility of paclitaxel in water and most pharmaceutical reagents, it is usually formulated with an adjuvant called Cremophor EL, which causes severe side effects. This work develops new dosage forms of paclitaxel for controlled release application, which do not require the adjuvant and, thus, can avoid its associated side effects. Paclitaxel was encapsulated into the PLGA matrix with various additives such as polyethylene glycol (PEG), isopropyl myristate (IPM) and d-alpha tocopheryl polyethylene glycol (Vitamin E TPGS). These additives were used to enhance the release rate of paclitaxel from the polymer matrix. Spray-drying and an hydraulic press were used to prepare paclitaxel-PLGA microspheres and discs. The microspheres and discs were given different irradiation doses to investigate their effects on the surface morphology (characterized by SEM, AFM and XPS) and in vitro release properties. There seems to be a small effect of the ionizing radiation on various formulations. Although the irradiation did not cause observable changes on the morphology of the polymer matrix, the release rate can be enhanced by a few per cent. It was found that PEG has the highest enhancement effect for release rate among all the additives investigated in this study.
He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen
2016-06-01
In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.
Stabilized micelles as delivery vehicles for paclitaxel.
Yoncheva, Krassimira; Calleja, Patricia; Agüeros, Maite; Petrov, Petar; Miladinova, Ivanka; Tsvetanov, Christo; Irache, Juan M
2012-10-15
Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol(®)), longer mean residence time (9-times longer than i.v. Taxol(®)) and high distribution volume (2-fold higher than i.v. Taxol(®)) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol(®), in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey
2014-04-01
Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.
Delayed seizure associated with paclitaxel-Cremophor el in a patient with early-stage breast cancer.
O'Connor, Tracey L; Kossoff, Ellen
2009-08-01
Paclitaxel, a microtubule stabilizer, is an effective agent for treating cancer of the breast, ovary, head and neck, and lung. Because paclitaxel is insoluble in water, it is formulated with the micelle-forming Cremophor EL. Neurologic toxicity is well described with both the drug and this carrier, with most toxicities manifesting as peripheral neuropathy, motor neuropathy, autonomic neuropathy, and myopathy. Toxic effects on the central nervous system, such as seizures or encephalopathy, have been rarely reported; however, the seizures reported were closely related to the time of infusion. We describe a 41-year-old woman with no history of seizures who was treated with paclitaxel for breast cancer. Four days after the drug was infused, she developed a generalized tonic-clonic seizure that could not be attributed to other causes. The patient was treated with phenytoin and was able to complete her adjuvant chemotherapy with nab-paclitaxel without further events. Her condition was neurologically stable without phenytoin for the next 6 months. Use of the Naranjo adverse drug reaction probability scale indicated a possible association (score of 3) between the delayed seizure and paclitaxel or its solvent, Cremophor EL. Clinicians should be aware of the potential for seizure activity in patients who receive paclitaxel formulated with Cremophor EL.
Effect of lipoic acid combined with paclitaxel on breast cancer cells.
Li, B J; Hao, X Y; Ren, G H; Gong, Y
2015-12-22
Breast cancer is the most common gynecologic tumor globally that threatens women's health. Lipoic acid is a type of antioxidant that can alleviate oxidative stress damage. Studies showed that lipoic acid could inhibit the proliferation of tumor cells in cervical cancer and colon cancer. This paper intends to explore the combined effect of lipoic acid and paclitaxel on breast cancer cells. Breast cancer MCF-7 cells were divided into four groups: control group, lipoic acid group, paclitaxel group, and a combination group. MTT was applied to detect the drugs' influence on breast cancer cell proliferation. A colony formation test was used to determine the effects on breast cancer cell clone formation rate. Western blot was performed to detect the effects on nuclear factor (NF)-κB. Lipoic acid alone can inhibit tumor cell proliferation and clone formation with time dependence. Compared with the control, paclitaxel alone can significantly suppress tumor cell proliferation and clone formation (P < 0.05). Lipoic acid and paclitaxel in combination obviously strengthened their individual inhibitory effects on tumor cells (P < 0.05). Compared with the paclitaxel alone group, the combination group exhibited more remarkable inhibitory effect (P < 0.05). Lipoic acid alone or combined with paclitaxel can inhibit NF-κB expression and inhibit breast cancer cell proliferation.
Hojo, Kanji; Maki, Hideo; Sawada, Takuko Yamada; Maekawa, Ryuji; Yoshioka, Takayuki
2002-01-01
MMI-166 is a selective matrix metalloproteinase (MMP) inhibitor. The purpose of this study was to evaluate the antitumor efficacy of the combined treatment of MMI-166 with paclitaxel or carboplatin. Mice bearing B16-BL6 melanoma were treated p.o. with MMI-166 from 1 day after tumor inoculation. The mice were administered i.v. with either paclitaxel or carboplatin at the maximum tolerated dose (MTD). MMI-166 monotherapy inhibited in vivo growth of the B16-BL6 tumor to an extent similar to that of paclitaxel or carboplatin monotherapy. When MMI-166 was combined with paclitaxel or carboplatin, the antitumor efficacy was significantly (p < 0.01) augmented in comparison with either MMI-166 or each cytotoxic agent alone. The hematotoxicity study demonstrated that daily treatment with MMI-166 did not affect the blood cell number in the mice and more importantly the combination of MMI-166 with paclitaxel did not augment the hematotoxicity caused by paclitaxel. An in vitro cytotoxicity study showed that MMI-166 itself has neither direct cytotoxicity against B16-BL6 tumor cells nor does it augment the cytotoxicity of paclitaxel or carboplatin. These results indicate that augmented antitumor activity of the combination treatment was not simply due to the augmentation of direct cytotoxic activity, but was rather an additive effect of the antitumor activities of different mechanisms. They suggest the effectiveness of a combination therapy of MMI-166 with paclitaxel or carboplatin in clinical therapy.
Lee, Seung-Ju; Kim, Sae Woong; Chung, Hesson; Park, Yeong Taek; Choi, Young Wook; Cho, Yong-Hyun; Yoon, Moon Soo
2005-10-01
Many reports have shown that the efficacy of intravesical therapy for bladder cancer is in part limited by the poor penetration of drugs into the urothelium. The present study evaluated the effect of glyceryl monooleate (GMO) on the absorption of intravesically administered paclitaxel in a rabbit model of bladder cancer. Urine, plasma, and tissue pharmacokinetics were determined in rabbits treated for 120 min with paclitaxel (500 microg/20 ml) by intravesical instillation. Two formulations of GMO/paclitaxel were evaluated using different proportions of water, 15 and 30%, and Taxol was used as a control. Animals were observed for clinical signs of toxicity and necropsy was performed. 120 min after instillation, the bladder was emptied and excised. In the urine, paclitaxel concentration was decreased by 39.6 and 41.2% in the two experimental groups and by 25.2% in the control group. The paclitaxel concentrations in the urothelium were 53 and 56% of the urine concentration in both experimental groups, but 11% in the control group. The concentration then declined exponentially in the underlying capillary-perfused tissues, reaching equilibrium at a depth of 1,400-1,700 microm. The plasma concentrations were extremely low compared with concentrations in urine and bladder tissues and were not associated with clinical toxicity. We conclude that GMO has a significantly increased bioadhesiveness to bladder mucosa. Therefore, intravesical administration of GMO/paclitaxel/water provides a significant advantage for drugs targeting the bladder tissue, and paclitaxel represents a viable option for intravesical bladder cancer therapy. Copyright 2005 S. Karger AG, Basel.
Paek, In Bok; Ji, Hye Young; Kim, Maeng Seop; Lee, Gwan Sun; Lee, Hye Suk
2006-03-01
An LC-MS/MS method for the simultaneous determination of a new P-glycoprotein inhibitor 4-oxo-4H-chromene-2-carboxylic acid [2-(2-(4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl)-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide (HM-30181) and a P-glycoprotein substrate paclitaxel in rat plasma was developed to simultaneously evaluate the pharmacokinetics of paclitaxel and HM-30181 in the rats. HM-30181, paclitaxel, HM-30059 (internal standard (I.S.) for HM-30181), and docetaxel (I.S. for paclitaxel) were extracted from rat plasma with methyl-tert-butyl ether and analyzed on an Atlantis C18 column (5 microm, 2.1 x 100 mm) with the mobile phase of ACN/10 mM ammonium formate (75:25 v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring (MRM) mode. The standard curves for HM-30181 and paclitaxel in plasma were linear (r > 0.999) over the concentration range of 2.0-500 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2 ng/mL using 50 microL plasma), precision (CV: < or = 6.6%), accuracy (relative error: -6.3 to 2.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of HM-30181 and paclitaxel in rat plasma after oral-coadministration of paclitaxel and HM-30181 to male Sprague- Dawley rats.
Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505).
Pachman, Deirdre R; Qin, Rui; Seisler, Drew; Smith, Ellen M Lavoie; Kaggal, Suneetha; Novotny, Paul; Ruddy, Kathryn J; Lafky, Jacqueline M; Ta, Lauren E; Beutler, Andreas S; Wagner-Johnston, Nina D; Staff, Nathan P; Grothey, Axel; Dougherty, Patrick M; Cavaletti, Guido; Loprinzi, Charles L
2016-12-01
Oxaliplatin and paclitaxel are commonly used chemotherapies associated with acute and chronic neuropathies. There is a need to better understand the similarities and differences of these clinical syndromes. Neuropathy data were pooled from patients receiving adjuvant oxaliplatin and weekly paclitaxel or every 3 weeks of paclitaxel. Patients completed daily questionnaires after each chemotherapy dose and the European Organization for Research and Treatment of Cancer quality-of-life questionnaire for patients with chemotherapy-induced peripheral neuropathy before each chemotherapy cycle and for 12 months post-treatment. Acute neuropathy symptoms from both drugs peaked around day 3. Acute symptoms experienced in cycle 1 predicted occurrence in subsequent cycles. Paclitaxel-induced acute symptoms were similar in intensity in each cycle and largely resolved between cycles. Oxaliplatin-induced acute symptoms were about half as severe in the first cycle as in later cycles and did not resolve completely between cycles. Both drugs caused a predominantly sensory chronic neuropathy (with numbness and tingling being more common than pain). Oxaliplatin-induced neuropathy worsened after the completion of treatment and began to improve 3 months post-treatment. In contrast, paclitaxel-induced neuropathy began improving immediately after chemotherapy cessation. During treatment, the incidence of paclitaxel sensory symptoms was similar in the hands and feet; with oxaliplatin, the hands were affected more than the feet. Both paclitaxel- and oxaliplatin-induced acute neurotoxicity appeared to predict the severity of chronic neuropathy, more prominently with oxaliplatin. Knowledge of the similarities and differences between neuropathy syndromes may provide insight into their underlying pathophysiology and inform future research to identify preventative treatment approaches.
Huang, Changjiang; Yi, Xiulin; Kong, Dexin; Chen, Ligong; Min, Gong
2016-01-01
Peptide drug conjugates offer a novel strategy to achieve controlled drug release. This approach avoids the clinical obstacles of non-specific toxicity and overall drug resistance of conventional cytotoxic agents, such as paclitaxel. MMP2 plays important functions in tumour proliferation and metastasis. Herein, we conjugated the paclitaxel with a hexapeptide which is specific recognized by MMP2 protein. The conjugate is dissociated upon the MMP2 specific proteolysis at COOH terminal of hexapeptide, PVGLIG. The results clearly indicated that the PVGLIG-paclitaxel conjugate significantly enhanced the tumor specificity against HT-1080 and U87-MG tumour cells. Our finding suggested that the hexapeptide PVGLIG is capable to act as a controlled and sustained drug carrier of paclitaxel for the treatment against tumour proliferation and metastasis with high MMP2 expression. PMID:27447567
Predicting paclitaxel-induced neutropenia using the DMET platform.
Nieuweboer, Annemieke J M; Smid, Marcel; de Graan, Anne-Joy M; Elbouazzaoui, Samira; de Bruijn, Peter; Martens, John W; Mathijssen, Ron H J; van Schaik, Ron H N
2015-01-01
The use of paclitaxel in cancer treatment is limited by paclitaxel-induced neutropenia. We investigated the ability of genetic variation in drug-metabolizing enzymes and transporters to predict hematological toxicity. Using a discovery and validation approach, we identified a pharmacogenetic predictive model for neutropenia. For this, a drug-metabolizing enzymes and transporters plus DNA chip was used, which contains 1936 SNPs in 225 metabolic enzyme and drug-transporter genes. Our 10-SNP model in 279 paclitaxel-dosed patients reached 43% sensitivity in the validation cohort. Analysis in 3-weekly treated patients only resulted in improved sensitivity of 79%, with a specificity of 33%. None of our models reached statistical significance. Our drug-metabolizing enzymes and transporters-based SNP-models are currently of limited value for predicting paclitaxel-induced neutropenia in clinical practice. Original submitted 9 March 2015; Revision submitted 20 May 2015.
Lee, Ho Jeong; Hanibuchi, Masaki; Kim, Sun-Jin; Yu, Hyunkyung; Kim, Mark Seungwook; He, Junqin; Langley, Robert R; Lehembre, François; Regenass, Urs; Fidler, Isaiah J
2016-04-01
We recently demonstrated that brain endothelial cells and astrocytes protect cancer cells from chemotherapy through an endothelin-dependent signaling mechanism. Here, we evaluated the efficacy of macitentan, a dual endothelin receptor (ETAR and ETBR) antagonist, in the treatment of experimental breast and lung cancer brain metastases. The effect of macitentan on astrocyte- and brain endothelial cell-mediated chemoprotective properties was measured in cytotoxic assays. We compared survival of mice bearing established MDA-MB-231 breast cancer or PC-14 non-small cell lung cancer (NSCLC) brain metastases that were treated with vehicle, macitentan, paclitaxel, or macitentan plus paclitaxel. Cell division, apoptosis, tumor vasculature, and expression of survival-related proteins were assessed by immunofluorescent microscopy. Cancer cells and tumor-associated endothelial cells expressed activated forms of AKT and MAPK in vehicle- and paclitaxel-treated groups in both metastasis models, but these proteins were downregulated in metastases of mice that received macitentan. The survival-related proteins Bcl2L1, Gsta5, and Twist1 that localized to cancer cells and tumor-associated endothelial cells in vehicle- and paclitaxel-treated tumors were suppressed by macitentan. Macitentan or paclitaxel alone had no effect on survival. However, when macitentan was combined with paclitaxel, we noted a significant reduction in cancer cell division and marked apoptosis of both cancer cells and tumor-associated endothelial cells. Moreover, macitentan plus paclitaxel therapy significantly increased overall survival by producing complete responses in 35 of 35 mice harboring brain metastases. Dual antagonism of ETAR and ETBR signaling sensitizes experimental brain metastases to paclitaxel and may represent a new therapeutic option for patients with brain metastases. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells
Diao, Ying; Lu, Changyan; Fu, Jin; Luo, Lan; Yin, Zhimin
2011-01-01
Background It was well known that the clinical use of chemotherapeutic drugs is restricted by severe adverse reactions and drug resistances. Thus it is necessary to figure out a strategy to increase the specific anti-tumor efficiency of chemotherapeutic drugs. Apigenin, a kind of flavonoids, has been reported to possess anticancer activities with very low cytotoxicity to normal tissue. Methodology/Principal Findings Our results from cell viability assay, western-blots and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated the synergistic pro-apoptotic effects of a low dose of apigenin and paclitaxel in human cancer cell lines. To analyze the underlying mechanism, we examined reactive oxygen species (ROS) staining after cells were treated with a combination of apigenin and paclitaxel, or each of them alone. Data from flow-cytometry showed that superoxides but not reduction of peroxides accumulated in HeLa cells treated with apigenin or a combination of apigenin and paclitaxel. Apigenin and paclitaxel-induced HeLa cell apoptosis was related to the level of ROS in cells. We further evaluated activity and protein level of superoxide dismutase (SOD). Apigenin significantly inhibited SOD activity but did not alter the SOD protein level suggesting that apigenin promoted ROS accumulation through suppressing enzyme activity of SOD. Addition of Zn2+, Cu2+ and Mn2+ to cell lysates inhibited apigenin's effects on SOD activity. At the same time, data from caspase-2 over-expression and knocked-down experiments demonstrated that caspase-2 participated in apigenin and paclitaxel-induced HeLa cell apoptosis. Conclusions/Significance Taken together, our study demonstrated that apigenin can sensitize cancer cells to paclitaxel induced apoptosis through suppressing SOD activity, which then led to accumulation of ROS and cleavage of caspase-2, suggesting that the combined use of apigenin and paclitaxel was an effective way to decrease the dose of paclitaxel taken. PMID:22216199
Sun, Guiling; Yang, Yanfang; Xie, Fuliang; Wen, Jian-Fan; Wu, Jianqiang; Wilson, Iain W; Tang, Qi; Liu, Hongwei; Qiu, Deyou
2013-01-01
Plant cell culture represents an alternative source for producing high-value secondary metabolites including paclitaxel (Taxol®), which is mainly produced in Taxus and has been widely used in cancer chemotherapy. The phytohormone methyl jasmonate (MeJA) can significantly increase the production of paclitaxel, which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. In cell culture, MeJA also elicits the accumulation of paclitaxel; however, the mechanism is still largely unknown. To obtain insight into the global regulation mechanism of MeJA in the steady state of paclitaxel production (7 days after MeJA addition), especially on paclitaxel biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated Taxus × media cells and obtained ∼ 32.5 M high quality reads, from which 40,348 unique sequences were obtained by de novo assembly. Expression level analysis indicated that a large number of genes were associated with transcriptional regulation, DNA and histone modification, and MeJA signaling network. All the 29 known genes involved in the biosynthesis of terpenoid backbone and paclitaxel were found with 18 genes showing increased transcript abundance following elicitation of MeJA. The significantly up-regulated changes of 9 genes in paclitaxel biosynthesis were validated by qRT-PCR assays. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in paclitaxel biosynthesis were identified. We also found some genes putatively involved in the transport and degradation of paclitaxel. Potential target prediction of miRNAs indicated that miRNAs may play an important role in the gene expression regulation following the elicitation of MeJA. Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of Taxus cells and is helpful to understand how MeJA elicits other plant species besides Taxus.
van Zuylen, L; Gianni, L; Verweij, J; Mross, K; Brouwer, E; Loos, W J; Sparreboom, A
2000-06-01
Cremophor EL (CrEL) is a castor oil surfactant used as a vehicle for formulation of a variety of poorly water-soluble agents, including paclitaxel. Recently, we found that CrEL can influence the in vitro blood distribution of paclitaxel by reducing the free drug fraction, thereby altering drug accumulation in erythrocytes. The purpose of this study was to investigate the clinical pharmacokinetics of CrEL, and to examine inter-relationships of paclitaxel disposition, infusion duration and CrEL kinetics. The CrEL plasma clearance, studied in 17 patients for a total of 28 courses, was time dependent and increased significantly with prolongation of the infusion duration from 1 to 3 to 24 h (p<0.03). An indirect response model, applied based on use of a Hill function for CrEL concentration-dependent alteration of in vivo blood distribution of paclitaxel, was used to fit experimental data of the 3 h infusion (r2=0.733; p=0.00001). Simulations for 1 and 24 h infusions using predicted parameters and CrEL kinetic data revealed that both short and prolonged administration schedules induce a low relative net change in paclitaxel blood distribution. Our pharmacokinetic/pharmacodynamic model demonstrates that CrEL causes disproportional accumulation of paclitaxel in plasma in a 3 h schedule, but is unlikely to affect drug pharmacokinetics in this manner with alternative infusion durations.
Development of a Mouse Model for Assessing Fatigue during Chemotherapy
Ray, Maria A; Trammell, Rita A; Verhulst, Steve; Ran, Sophia; Toth, Linda A
2011-01-01
Fatigue and disturbed sleep are common problems for cancer patients and affect both quality of life and compliance with treatment. Fatigue may be associated with cancer itself and with the treatment, particularly for therapies with neurotoxic side effects. To develop a model system for evaluation of chemotherapy-related fatigue, we studied mice treated with either a commonly used formulation of the chemotherapeutic agent paclitaxel (paclitaxel; Taxol), which is known to have neurotoxic properties, or a nanoparticle formulation of paclitaxel (nab-paclitaxel; Abraxane) that is reported to have greater potency and efficacy yet fewer side effects than does paclitaxel. Mice were treated with 1 of these 2 agents (10 mg/kg IV daily for 5 consecutive days) and were monitored from 1 wk before through 4 wk after treatment. Dependent measures included running wheel activity, locomotor activity on the cage floor, core temperature, sleep patterns, CBC count, serum cytokine and chemokine concentrations, and neurologic assessment. For both drugs, mice showed the most severe perturbations of activity during the first recovery week after drug administration. Mice treated with paclitaxel showed greater neutropenia and motor deficits than did mice treated with nab-paclitaxel. However, deficits had largely resolved by 4 wk after administration of either drug. We conclude that these measures provide an assessment of chemotherapy-related fatigue that potentially can distinguish toxicity associated with different formulations of the same agent. PMID:21535922
NASA Astrophysics Data System (ADS)
Vichansavakul, Kittaya
Breast cancer is the second leading cause of death among women in the US. Although early detection and treatment help to increase survival rates, some unfortunate patients develop metastatic breast cancer that has no cure. Palliative treatment is the main objective in this group of patients in order to prolong life and reduce toxicities from interventions. In the advancement of treatment for metastatic breast cancer, solvent-based paclitaxel has been widely used. However, solvent-based paclitaxel often causes adverse reactions. Therefore, researchers have developed a new chemotherapy based on nanotechnology. One of these drugs is the Nanoparticle albumin-bound Paclitaxel. This nanodrug aims to increase therapeutic index by reducing adverse reactions from solvents and to improve efficacy of conventional cytotoxic chemotherapy. Breast cancer is a disease with high epidemiological and economic burden. The treatment of metastatic breast cancer has not only high direct costs but also high indirect costs. Breast cancer affects mass populations, especially women younger than 50 years of age. It relates to high indirect costs due to lost productivity and premature death because the majority of these patients are in the workforce. Because of the high cost of breast cancer therapies and short survival rates, the question is raised whether the costs and benefits are worth paying or not. Due to the rising costs in healthcare and new financing policies that have been developed to address this issue, economic evaluation is an important aspect of the development and use of any new interventions. To guide policy makers on how to allocate limited healthcare resources in the most efficient and effective manner, many economic evaluation methods can be used to measure the costs, benefits, and impacts of healthcare innovations. Currently, economic evaluation and health outcomes studies have focused greatly on cost-effectiveness and cost-utility analysis. However, the previous studies had some limitations because they were conducted from a narrow perspective such as payer and provider point of views. The studies also considered only direct costs in their analysis. In fact, conducting economic evaluations from a narrow perspective and leaving out indirect costs might undermine the true benefit of the interventions for society. A cost-benefit analysis measures all costs and benefits in monetary units. It incorporates both health outcomes gained from individuals and the value gained to society in order to maximize the usage of resources effectively. This thesis conducted a cost-benefit analysis to compare nab-paclitaxel and generic paclitaxel in treating metastatic breast cancer from a societal perspective in the United States. The results showed that nab-paclitaxel is a cost-benefit strategy regardless of the different costs and benefits due to the extra 3 years of living it provides. In all models, when nab-paclitaxel was compared to generic paclitaxel, nab-paclitaxel showed cost-benefit to society. However, the results of generic paclitaxel were dependent on the total medical costs. Performing a cost-benefit analysis of nab-paclitaxel from a societal perspective is important to understand the true benefit of interventions. Furthermore, considering both direct and indirect costs, as well as benefits, of this drug is vital because the economic profile of nab-paclitaxel would be improved.
Connective tissue changes in a mouse model of vein graft disease.
Schachner, T; Heiss, S; Mayr, T; Steger, C; Zipponi, D; Reisinger, P; Bonaros, N; Laufer, G; Bonatti, J
2008-04-01
The extracellular matrix plays an important physiological role in the architecture of the vascular wall. In arterialized vein grafts severe early changes, such as thrombosis and neointimal hyperplasia occur. Paclitaxel is in clinical use as antiproliferative coating of coronary stents. We aimed to investigate the early connective tissue changes in arterialized vein grafts and the influence of perivascular paclitaxel treatment in an in vivo model. C57 black mice underwent interposition of the vena cava into the carotid artery. Neointimal hyperplasia, thrombosis, acid mucopolysaccharides (Alcian), collagen fibers (trichrome Masson), elastic fibers, and apoptosis rate (TUNEL) were quantified in paclitaxel treated veins and controls. In both, controls and paclitaxel treated vein grafts acid mucopolysaccharides and elastic fibers were found predominantly in the neointima, whereas collagen fibers were found mainly in the media and adventitia. At 4 weeks postoperatively the neointimal thickness in controls was 52 (13-130) microm, whereas in 0.6 mg/mL l paclitaxel treated veins it was 103 (43-318) microm (P=0.094). At 8 weeks postoperatively paclitaxel treated veins showed a significantly increased neointimal thickness of 136 (87-199) microm compared with 79 (62-146) microm in controls (P=0.032). There was no difference in apoptosis rate between the two groups (P=NS). Even with the lowest concentration of 0.008 mg/mL paclitaxel veins showed a neointimal thickness of 67 (46-205) microm at 4 weeks postoperatively (P=NS vs controls). Early vein graft disease is characterised by an accumulation of acid mucopolysaccharides and elastic fibers in the thickened neointima. Paclitaxel treatment increases the neointimal hyperplasia in mouse vein grafts in vivo.
Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson
2017-01-01
Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo. PMID:27867185
Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson
2017-01-01
Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo.
Moongkarndi, Primchanien; Kaslungka, Sineenart; Kosem, Nuttavut; Junnu, Sarawut; Jongsomboonkusol, Suna; Theptaranon, Yodsaward; Neungton, Neelobol
2003-03-01
OVS1 monoclonal antibody (MAb) produced against ovarian cancer is currently used to identify mucinous cystadenocarcinoma antigen as a tumor marker secreted in serum. The potential of OVS1 MAb in ovarian cancer treatment was studied by evaluating the induction of cytotoxicity and apoptosis of SKOV3 ovarian cancer and BT549 breast cancer cell lines induced by OVS1. Paclitaxel, an antitumor drug, was used as positive control and applied as a combined drug together with OVS1 MAb. OVS1 MAb and paclitaxel were found by MTT assay to induce cytotoxicity against both cell lines. The ED50 of OVS1 MAb were 26.25 and 25.00 microg/ml and of paclitaxel were 21.88 and 9.20 nM against SKOV3 and BT549 cell lines, respectively. The quantitative amount of cells determined by fluorimetric assay was correlated to the results of the MTT assay. The combined application of OVS1 MAb and paclitaxel on these two cell lines resulted in a greater cytotoxicity than observed by either agent alone. OVS1 MAb and paclitaxel applied against both cell lines induced the morphological changes of apoptotic cell death at 24 hours visualized by two color fluorescence dyes, Ho33342 and propidium iodide. Combination of the two substances enhanced the rate of apoptosis compared to either OVS1 MAb or paclitaxel given alone. DNA fragmentation was detected in an agarose gel electrophoresis after treating cells with OVS1 MAb and paclitaxel at 24 hours. These findings on the induction of cytotoxicity and apoptosis by OVS1 MAb on cancer cell lines have implications on the potential application of OVS1 MAb for clinical therapy.
Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C
2016-05-01
Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Riccardi, A; Pugliese, P; Danova, M; Brugnatelli, S; Grasso, D; Giordano, M; Bernardo, G; Giardina, G; Fava, S; Montanari, G; Pedrotti, C; Trotti, G; Rinaldi, E; Poli, M A; Tinelli, C
2001-01-01
Sequential administration of the association of 5-fluorouracil, epirubicin and cyclophosphamide (FEC) and paclitaxel could be better tolerated than the association of an anthracycline and paclitaxel while having a similar antitumour effect. 69 patients with advanced breast cancer previously untreated with anthracyclines or paclitaxel entered a phase II multicentre study in which FEC was followed by paclitaxel. Both regimens were administered 4 times every 21 days. The median follow-up is 20 months and 38/69 patients have died. Grade III–IV toxicity was acceptable. Leukopenia occurred in 26% of patients, thrombocytopenia in 2% and anaemia in 4%. One patient had reversible heart failure during FEC therapy. Peripheral neuropathy and arthralgia-myalgia occurred in 9% and 4% of patients, respectively and one patient had respiratory hypersensitivity during paclitaxel treatment. 9 patients did not complete therapy because of: treatment refusal (n= 1), cardiac toxicity (n= 1), early death during FEC chemotherapy (n= 1), major protocol violations (n= 4), hypersensitivity reaction (n= 1) and early death during paclitaxel chemotherapy (n= 1). The overall response rate was 65% (95% CI = 53–76), and 7% of patients had stable disease. Therapy was defined as having failed in 28% of patients because they were not evaluable (13%) or had progressive disease (15%). The median time to progression and survival are 13.2 and 23.5 months, respectively. Sequential FEC-paclitaxel is a suitable strategy for patients with metastatic breast cancer who have not been previously treated with anthracyclines and/or taxanes. In fact, it avoids major haematologic toxicity and has a good antitumour effect. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461067
Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar
2014-01-02
Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang
2014-12-01
The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.
Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung
2016-07-01
Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu
2015-01-01
The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.
Synthesis and anti-cancer efficacy of rapid hydrolysed water-soluble paclitaxel pro-drugs.
Ryu, Beom-Young; Sohn, Jeong-Sun; Hess, Michael; Choi, Soo-Kyung; Choi, Jae-Kon; Jo, Byung-Wook
2008-01-01
A new series of poly(ethylene glycol)(PEG)-paclitaxel conjugates that increases water solubility of paclitaxel was synthesized. We developed well-designed self-immolating linkers between a drug and a water-soluble polymer moiety which gave an extremely rapid hydrolysis rate to convert a pro-drug into a parent drug without any reduction in drug efficacy. The self-immolating spacer groups were introduced between the solubilizing PEG and C7-OH of paclitaxel in order to control the rate of enzymatic hydrolysis. All these pro-drugs had a water-solubility of 400 mg/ml or more compared with a solubility of about 0.01 mg/ml. The rate of hydrolysis for the pro-drugs in rat plasma showed considerable variation of t((1/2)) ranging from 0.94 min to 42.7 min. To evaluate the anti-tumor efficacy of the pro-drug which had the fastest enzymatic hydrolysis rate, the growth inhibitory effect (IC(50)), the anti-tumor activity and the anti-metastatic potential of the pro-drug were examined. The pro-drug was potent to inhibit the growth of various cancer cell lines, such as human lung, ovarian, colon and melanoma cancer cells. On the development of melanoma lung colonies in C57B/6 mice following intravenous administration of metastatic murine B16/F10 melanoma cells, the pro-drug seems to be more efficacious than paclitaxel. The reduction of the number of melanoma lung colonies was 46.9% (dose: 5 mg/kg) with pure paclitaxel, and 24.5%, and 40.0% with the pro-drug in the dose of 0.71 mg paclitaxel equivalent/kg and 1.42 mg paclitaxel equivalent/kg, respectively.
Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado
2016-05-01
Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. Copyright © 2016 Elsevier B.V. All rights reserved.
Guo, Xiao-Fang; Li, Sai-Sai; Zhu, Xiao-Fei; Dou, Qiao-Hua; Liu, Duan
2018-06-16
Paclitaxel-based chemoradiotherapy was proven to be efficacious in treating patients with advanced esophageal cancer. However, the toxicity and the development of resistance limited its anticancer efficiency. The present study was to evaluate the antitumor effects of lapatinib, a dual tyrosine inhibitor of both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), combined with paclitaxel on the esophageal squamous cancer. MTT assays were used to evaluate the effects of the combination of lapatinib and paclitaxel on the growth of esophageal squamous cancer cell lines (KYSE150, KYSE450, KYSE510 and TE-7). The activity of the combination of two agents on cell invasion, migration and apoptosis was measured by wound healing assay, transwell assay and Annexin V-FITC/PI stain assay. Western blot assay was used to analyze the effects of the two agents on the EGFR/HER2 signaling. The in vivo efficacy was evaluated in KYSE450 xenograft nude mouse model. The combination of lapatinib and paclitaxel was highly synergistic in inhibiting cell growth with a combination index of < 1, and suppressed significantly the invasion and migration capability of esophageal squamous cancer cells. Esophageal squamous cancer cells displayed increased rates of apoptosis after treatment with lapatinib plus paclitaxel. The phosphorylated EGFR and HER2 as well as the activation of downstream molecules MAPKs and AKT significantly decreased when exposed to lapatinib and paclitaxel. In vivo studies showed that the combination of two agents had greater antitumor efficacy than either agent alone. The combination of lapatinib with paclitaxel showed synergistic antitumor activity, suggesting their potential in treating patients with esophageal squamous cancer.
van Haaften, Caroline; Boot, Arnoud; Corver, Willem E; van Eendenburg, Jaap D H; Trimbos, Baptist J M Z; van Wezel, Tom
2015-04-25
Ovarian cancer remains still the leading cause of death of gynecological malignancy, in spite of first-line chemotherapy with cisplatin and paclitaxel. Although initial response is favorably, relapses are common and prognosis for women with advanced disease stays poor. Therefore efficacious approaches are needed. Previously, an anti-cancer agent, EPD exhibited potent cytotoxic effects towards ovarian cancer and not towards normal cells. Cell viability and cell cycle analysis studies were performed with EPD, in combination with cisplatin and/or paclitaxel, using the ovarian carcinoma cell lines: SK-OV-3, OVCAR-3, JC, JC-pl and normal fibroblasts. Cell viability was measured using Presto Blue and cell cycle analysis using a flow cytometer. Apoptosis was measured in JC and JC-pl , using the caspase 3 assay kit. In JC-pl, SK-OV-3 and JC, synergistic interactions between either EPD and cisplatin or EPD and paclitaxel were observed. For the first time the effects of EPD on the cell cycle of ovarian cancer cells and normal cells was studied. EPD and combinations of EPD with cisplatin and/ or paclitaxel showed cell cycle arrest in the G2/M phase. The combination of EPD and cisplatin showed a significant synergistic effect in cell line JC-pl, while EPD with paclitaxel showed synergistic interaction in JC. Additionally, synergistic drug combinations showed increased apoptosis. Our results showed a synergistic effect of EPD and cisplatin in an ovarian drug resistant cell line as well as a synergistic effect of EPD and paclitaxel in two other ovarian cell lines. These results might enhance clinical efficacy, compared to the existing regimen of paclitaxel and cisplatin.
Risk factors for the development of paclitaxel-induced neuropathy in breast cancer patients.
Robertson, Jetter; Raizer, Jeffrey; Hodges, James S; Gradishar, William; Allen, Jeffrey A
2018-06-01
Peripheral neuropathy is a common side effect of many chemotherapeutic agents including paclitaxel. We prospectively evaluated demographic and laboratory data in a cohort of 61 woman with breast cancer prior to paclitaxel exposure to explore factors that predispose to neuropathy development. Neuropathy was graded based on the total neuropathy score reduced version (rTNS) at baseline and at 4 months after initiation of chemotherapy. A multivariate analysis identified predictors with the strongest association with a change in rTNS. Serum albumin (P = .002), paclitaxel dose (P = .001), and body surface area (P = .006) were statistically significantly associated with a positive rTNS change (worsening neuropathy). These results suggest that poor nutritional status and obesity increase the risk of paclitaxel induced neuropathy, and that screening for these factors prior to chemotherapy exposure may improve early neuropathy detection or decrease risk with dietary modifications. © 2018 Peripheral Nerve Society.
Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration
El-Gendy, Nashwa; Berkland, Cory
2014-01-01
Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471
Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D
2017-03-01
Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna
2014-05-09
ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.
MENA confers resistance to paclitaxel in triple-negative breast cancer
Oudin, Madeleine J.; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A.; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A.; Gertler, Frank B.
2017-01-01
Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA, particularly its invasive isoform, MENAINV, are established drivers of metastasis. MENAINV expression is significantly correlated with metastasis and poor outcome in human breast cancer patients. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENAINV confer resistance to the taxane paclitaxel, but not to the widely used DNA damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENAINV-driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. PMID:27811011
Yang, Danbo; Van, Sang; Liu, Jian; Wang, Jing; Jiang, Xinguo; Wang, Yiting; Yu, Lei
2011-01-01
Poly(L-γ-glutamylglutamine) paclitaxel (PGG-PTX) conjugate is a non-diblock polymeric drug nanoparticle intended to improve the therapeutic index of paclitaxel. The purpose of the present study was to elucidate further the physicochemical properties of PGG-PTX in order to proceed with its clinical development. PGG-PTX was designed by integration of a hydrophobic paclitaxel conjugate through an added hydrophilic glutamic acid onto poly(L-glutamic acid). The addition of a flexible glutamic linker between PGA and paclitaxel resulted in spontaneous self-assembly of a PGG-PTX conjugate into nanoparticles. The PGG-PTX conjugate was stable as a lyophilized solid form. An in vitro viability experiment showed that PGG-PTX was effective after a longer incubation period, the same trend as Taxol. In vitro studies using NCI-H460 and B16F0 cancer cells demonstrated significantly high cellular uptake after 30 minutes of incubation. The in vivo biocompatibility of PGG-PTX conjugate was evaluated in the NCI-H460 tumor model, the assessment of tissue seemed to be normal after 21 days of treatment. These results are encouraging for further development of non-block polymeric paclitaxel nanoparticles for treatment of cancer.
Nallani, Srikanth C; Goodwin, Bryan; Buckley, Arthur R; Buckley, Donna J; Desai, Pankaj B
2004-09-01
The induction of cytochrome P450 (CYP) 3A4 by drugs and other xenobiotics is a common cause of serious drug interactions. The aim of this study was to comparatively examine the effects of paclitaxel and docetaxel, two structurally related taxane anticancer agents, on the activity and expression of hepatic CYP3A4. Employing primary cultures of human hepatocytes from multiple donors, we investigated the differences in the magnitude of CYP3A4 induction and relative accumulation of paclitaxel and docetaxel. The CYP3A4 activity of intact hepatocytes was measured as the rate of testosterone 6beta-hydroxylation. The CYP3A4-specific immunoreactive protein and mRNA levels were measured employing Western blot and Northern blot analysis, respectively. Furthermore, employing cell-based reporter gene assay in CV-1 cells, we evaluated the capacity of paclitaxel and docetaxel to activate human pregnane X receptor (hPXR), an orphan nuclear receptor that plays a key role in the transcriptional regulation of CYP3A4. In concurrence with previous reports, we observed that paclitaxel potently induced CYP3A4 activity and expression in hepatocytes treated for 48-96 h. However, docetaxel did not increase the activity or the CYP3A4 immunoreactive protein levels for treatment periods up to 96 h. A marginal increase in the CYP3A4 mRNA levels was observed in cells treated with higher levels (5 and 10 microM) of docetaxel. Furthermore, while paclitaxel effectively activated hPXR (the half-maximal effective concentration, EC50, being about 5.2 microM), docetaxel weakly activated hPXR, and moreover the activation occurred only at high concentrations relative to paclitaxel. A comparison of the cellular concentrations of paclitaxel and docetaxel, in the cell culture models employed for evaluating CYP3A4 induction and hPXR activation, revealed that the intracellular paclitaxel levels were three-fold higher than that of docetaxel. Thus, it appears that both pharmacokinetic (drug concentration) and pharmacodynamic differences (hPXR activation) may account for the observed differences in CYP3A induction by paclitaxel and docetaxel. Our studies suggest that docetaxel has markedly reduced propensity to cause drug interactions that may entail hepatic CYP3A4 induction.
Yang, Ning; Zhu, Lepan; Tan, Tan; Hou, Chunyan
2015-02-01
This study aimed to explore the relationship among expression of Survivin and MRP and drug resistance in NPC. Expression of Survivin were detected by immunohistochemistry method in 45 cases of NPC and 24 cases of normal mucous membrane of nasopharynx (NMMN). The relationship between expression of Survivin and pathological factors in NPC were analysized. Expression of Survivin and MRP were detected in 31 patients of NPC with paclitaxel resistance and 20 patients of NPC without paclitaxel resistance. The relation- ship among the expression of Survivin or MRP and paclitaxel resistance in NPC were analysized. The paclitaxel resistance cell line, 5-8F-PTX(+); was established by a step-increased method. The expression of Survivin and MRP were detected by western blot in 5-8F-PTX(+) and 5-8F. The positive were 71. 1% (32/45) in NPC and 8.33% (2/24) in NMMN. And there were significantly differences between them (P < .05). There were relationship among expression of Survivin and differentiation degree, lymph node metastasis, distant metastasis, and clinic stages of NPC. The positive were 75.9% (31/39) in moderately differentiated NPC and 16.7% (1/6) in lowly differentiated NPC, respectively. There were significantly differences between them (P < 0.05). The positive of Survivin were 83.9% (26/31) in NPC patients with paclitaxel resistance and 45.0% (9/20) in NPC patients without Paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). The positive of MRP were 87.1% (27/31) in NPC patients with paclitaxel resistance and 40.0% (8/20) in NPC patients without paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). There were positive correlation between the expression of Survivin and MRP in NPC patients with Paclitaxel resistance. The expression of Survivin and MRP were higher in 5-8F-PTX(+) than in 5-8F. The IC50 of paclitaxel, cDDP, 5-FU and Vincristine were significantly higher in 5-8F-PTX(+) than in 5-8F. There were relationship among the expression of Survivin and difference, metastasis and TNM stages of NPC. Survivin may serves as a molecular marker for development and progress in NPC. There were relationship among the high expression of Survivin and MRP and increasing of drug resistance in NPC.
He, Xuezhong; Ma, Junyu; Mercado, Angel E; Xu, Weijie; Jabbari, Esmaiel
2008-07-01
Biodegradable core-shell polymeric nanoparticles (NPs), with a hydrophobic core and hydrophilic shell, are developed for surfactant-free encapsulation and delivery of Paclitaxel to tumor cells. Poly (lactide-co-glycolide fumarate) (PLGF) and Poly (lactide-fumarate) (PLAF) were synthesized by condensation polymerization of ultra-low molecular weight poly(L: -lactide-co-glycolide) (ULMW PLGA) with fumaryl chloride (FuCl). Similarly, poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromer was synthesized by reacting ultra-low molecular weight poly(L: -lactide) (ULMW PLA) and PEG with FuCl. The blend PLGF/PLEOF and PLAF/PLEOF macromers were self-assembled into NPs by dialysis. The NPs were characterized with respect to particle size distribution, morphology, and loading efficiency. The physical state and miscibility of Paclitaxel in NPs were characterized by differential scanning calorimetry. Tumor cell uptake and cytotoxicity of Paclitaxel loaded NPs were measured by incubation with HCT116 human colon carcinoma cells. The distribution of NPs in vivo was assessed with Apc(Min/+)mouse using infrared imaging. PLEOF macromer, due to its amphiphilic nature, acted as a surface active agent in the process of self-assembly which produced core-shell NPs with PLGF/PLAF and PLEOF macromers as the core and shell, respectively. The encapsulation efficiency ranged from 70 to 56% and it was independent of the macromer but decreased with increasing concentration of Paclitaxel. Most of the PLGF and PLAF NPs degraded in 15 and 28 days, respectively, which demonstrated that the release was dominated by hydrolytic degradation and erosion of the matrix. As the concentration of Paclitaxel was increased from 0 to 10, and 40 mug/ml, the viability of HCT116 cells incubated with free Paclitaxel decreased from 100 to 65 and 40%, respectively, while those encapsulated in PLGF/PLEOF NPs decreased from 93 to 54 and 28%. Groups with Paclitaxel loaded NPs had higher cytotoxicity compared to Paclitaxel directly added to the media at the same concentration. NPs acted as reservoirs to protect the drug from epimerization and hydrolysis while providing a sustained dose of Paclitaxel with time. Infrared image of the Apc(Min/+) mouse injected with NPs showed significantly higher concentration of NPs in the intestinal tissue.
Liu, Ying; Xu, Shu Ning; Chen, Yong Shun; Wu, Xiao Yuan; Qiao, Lei; Li, Ke; Yuan, Long
2016-07-12
Paclitaxel plays a major role in the treatment of advanced esophageal squamous cell carcinoma. However, there is no biomarker that could be used to predict the clinical response of paclitaxel. This work was conducted to investigate the association of genetic polymorphisms in FBW7 and its substrate genes and the clinical response of paclitaxel. Patients with advanced esophageal squamous cell carcinoma were treated with paclitaxel 175 mg/m2 over 3 hours day 1 and cisplatin 75 mg/m2 day 1, every 3 weeks. The genotypes of 11 FBW7 and its substrate gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Statistical analysis revealed that patients with mTOR rs1057079 AG (ORadjusted: 4.59; 95% CI: 1.78-11.86) genotype had significant correlation with the clinical response of paclitaxel when compared with AA genotype after adjustment for sex, age, and chemotherapy cycle. The median progression-free survival (PFS) of patients with advanced ESCC who received paclitaxel plus cisplatin (TP) as first-line treatment is 14.3 months (95% CI: 9.0-19.60 months). The median PFS (mPFS) of AG genotypes and AA genotypes in mTOR rs1057079 were 17.31 months (95% CI: 15.9-18.67 months) and 9.8 months (95% CI: 8.58-11.02 months) (p=0.019), respectively.
TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models.
Boehmerle, Wolfgang; Huehnchen, Petra; Lee, Sabrina Lin Lin; Harms, Christoph; Endres, Matthias
2018-04-30
Paclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca 2+ ) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca 2+ release channels in the endoplasmic reticulum (ER) and Ca 2+ permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity. We observed that in small to medium size dorsal root ganglia neurons (DRGN) the inositol-trisphosphate receptor (InsP 3 R) type 1 was often concentrated in the periphery of cells, which is in contrast to homogenous ER distribution. G protein-coupled designer receptors were used to further elucidate phosphoinositide mediated Ca 2+ signaling: This approach showed strong InsP 3 mediated Ca 2+ signals close to the plasma membrane, which can be amplified by Ca 2+ entry through TRPV4 channels. In addition, our results support a physical interaction and partial colocalization of InsP 3 R1 and TRPV4 channels. In the context of paclitaxel-induced neurotoxicity, blocking Ca 2+ influx through TRPV4 channels reduced cell death in cultured DRGN. Pretreatment of mice with the pharmacological TRPV4 inhibitor HC067047 prior to paclitaxel injections prevented electrophysiological and behavioral changes associated with paclitaxel-induced neuropathy. In summary, these results underline the relevance of TRPV4 signaling for the pathogenesis of paclitaxel-induced neuropathy and suggest novel preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of paclitaxel on mechanical sensitivity and morphine reward in male and female C57Bl6 mice
Neelakantan, Harshini; Ward, Sara Jane; Walker, Ellen Ann
2016-01-01
This study evaluated the hypothesis that a paclitaxel treatment regimen sufficient to produce mechanical allodynia would alter sensitivities of male and female mice to the conditioned rewarding and reinforcing effects of morphine. Saline or paclitaxel were administered on days 1, 3, 5, and 7 in male and female C57Bl/6 mice to induce morphine-reversible mechanical allodynia as measured by the Von Frey filament test. Paclitaxel treatment did not change sensitivity to morphine conditioned place preference (CPP) relative to saline treatment in either male or female mice. Morphine produced peak self-administration under a fixed ratio-1 schedule of reinforcement for 0.03 mg/kg morphine per infusion in female mice and 0.1 mg/kg morphine per infusion in male mice. During the progressive ratio experiments, saline treatment in male mice decreased the number of morphine infusions for 12 days whereas the paclitaxel-treated male mice maintained responding for morphine similar to baseline levels during the same time period. However, paclitaxel did not have an overall effect on the reinforcing efficacy of morphine assessed over a limited dose range during the course of the repeated self-administration. These results suggest that the reward-related behavioral effects of morphine are overall not robustly altered by the presence of paclitaxel treatment under the current dosing regimen, with the exception of maintaining a small yet significant higher baseline than saline treatment during the development of allodynia in male mice. PMID:27929349
[Mucopenetrating nanoparticles: vehicles for the oral administration of paclitaxel].
Zabaleta, V; Calleja, P; Espuelas, S; Corrales, L; Pío, R; Agüeros, M; Irache, J M
2013-03-01
Paclitaxel is an anticancer drug used as solution for perfusion for the treatment of certain types of cancers. In the last years, a number of strategies have been proposed for the development of an oral formulation of this drug. However, this task is quite complicated due to the poor aqueous solubility of paclitaxel as well as the fact that this compound is substrate of the intestinal P-glycoprotein and the cytochrome P450 enzymatic complex. In this work, we have developed pegylated nanoparticles with mucopenetrating properties in order to conduct paclitaxel onto the surface of the enterocyte. These nanoparticles displayed a size of about 180 nm and a drug loading close to 15% by weight. The pharmacokinetic study in mice has shown that these nanoparticles were capable to offer therapeutic plasma levels of paclitaxel up to 72 hours. In addition, the oral relative bioavailability of paclitaxel when loaded in nanoparticles pegylated with poly(ethylene glycol) 2000 (PEG) was found to be 85%. In a subcutaneous model of tumour in mice, these pegylated nanoparticles administered orally every 3 days have demonstrated a similar efficacy than Taxol® administered intravenously every day during 9 days. All of these results suggested that these pegylated nanoparticles were capable to cross the mucus layer of the gut and, then, reach the surface of the enterocytes. The PEG molecules would facilitate the adhesion of nanoparticles to this epithelial surface, minimise the pre-systemic metabolism of paclitaxel and, thus, promote its absorption. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Huang, Yan; Liang, Wenhua; Yang, Yunpeng; Zhao, Liping; Zhao, Hongyun; Wu, Xuan; Zhao, Yuanyuan; Zhang, Yang; Zhang, Li
2016-07-13
This phase I/II study aimed to determine the maximum tolerated dose (MTD) of nanoparticle albumin-bound paclitaxel (nab (®)-paclitaxel) plus cisplatin as treatment for metastatic nasopharyngeal carcinoma (NPC). Patients were enrolled into 1 of 3 dose cohorts, each with 21-day treatment cycles: 1) intravenous (IV) nab-paclitaxel 260 mg/m(2) on day 1; 2) IV nab-paclitaxel 140 mg/m(2) on days 1 and 8; 3) IV nab-paclitaxel 100 mg/m(2) on days 1, 8, and 15. All patients received IV cisplatin 75 mg/m(2) on day 1. Treatment continued for 4-6 cycles, or until progression or unacceptable toxicity. If more than one-third of the patients in a cohort experienced a dose-limiting toxicity (DLT), the dose used in the previous cohort would be designated the MTD. Secreted protein acidic and rich in cysteine (SPARC) expression was detected by immunohistochemistry staining. Sixty-nine patients were enrolled, of whom 64 and 67 were eligible for efficacy and safety analysis, respectively. Two DLTs occurred in cohort 1 (grade 4 febrile neutropenia, grade 3 myalgia), none occurred in cohort 2, and 2 occurred in cohort 3 (both grade 3 fatigue). The MTD was not reached. Partial responses were achieved by 42 patients, 15 had stable disease, and 7 had progressive disease, giving an overall response rate of 66 %. Median progression-free survival was 9 months (95 % CI, 6-12 months). Grade ≥ 3 adverse events were mainly hematologic. There was no significant difference between the 3 cohorts with respect to efficacy or safety. Biomarker analyses indicated that stromal, rather than tumoral, SPARC may predict the response to nab-paclitaxel in NPC. Our findings suggest that nab-paclitaxel plus cisplatin is a highly active regimen with moderate toxicity for the treatment of metastatic NPC, which warrants further investigation in a phase III study. ClinicalTrials.gov ID: NCT01735409 . The trial was registered on November 20th, 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dehua; Chen, Hujie; Tang, Jing
Upregulation of eIF4E is associated with poor clinical outcome in many human cancers and represents a potential therapeutic target. However, the function of eIF4E remains unknown in oral tongue squamous cell carcinoma (OTSCC). In this work, we show that ribavirin, an anti-viral drug, effectively augments sensitivity of OTSCC cells to paclitaxel via inhibiting mTOR/eIF4E signaling pathway. Ribavirin dose-dependently inhibits proliferation and induces apoptosis in SCC-9 and CAL27 cells. Combination of ribavirin and paclitaxel are more effective in inhibiting proliferation and inducing apoptosis in OTSCC cells. Importantly, the in vivo efficacy of ribavirin and its synergism with paclitaxel is confirmed by two independentmore » OTSCC xenograft mouse models. Mechanistically, ribavirin significantly decreases mTOR/eIF4E signaling pathway in OTSCC cells via suppressing phosphorylation of Akt, mTOR, 4EBP1 and eIF4E. Overexpression of the phosphor-mimetic form of eIF4E (eIF4E S209D) but not the nonphosphorylatable form (eIF4E S209A) reverses the effects of ribavirin, confirming that eIF4E inhibition is the mechanism of action of ribavirin in OTSCC cells. In addition, eIF4E depletion significantly enhances the anti-proliferative and pro-apoptotic effects of paclitaxel, demonstrating the critical role of eIF4E in OTSCC cell response to paclitaxel. Our work is the first to demonstrate the efficacy of ribavirin as a single agent and synergism as combination with paclitaxel in OTSCC in vitro and in vivo. Our findings also demonstrate the therapeutic value of inhibiting eIF4E in OTSCC treatment. - Highlights: • Ribavirin effectively targets OTSCC in vitro and in vivo. • Ribavirin acts synergistically with paclitaxel in OTSCC cells. • Ribavirin inhibits Akt/mTOR/eIF4E signaling in OTSCC. • eIF4E inhibition sensitizes OTSCC cell response to paclitaxel.« less
Takeda, Yutaka; Katsura, Yoshiteru; Ohmura, Yoshiaki; Sakamoto, Takuya; Akiyama, Yasuki; Kuwahara, Ryuichi; Morimoto, Yoshihiro; Ishida, Tomo; Oneda, Yasuo; Murakami, Kouhei; Naito, Atsushi; Kagawa, Yoshinori; Takeno, Atsushi; Kato, Takeshi; Tamura, Shigeyuki
2016-11-01
Pancreatic adenocarcinoma is one of the leading causes of cancer deaths in Japan.Albumin -bound paclitaxel (nab-paclitaxel)plus gemcitabine hydrochloride(GEM)combination chemotherapy provided significant improvements in the overall and progression-free survival in a phase III trial in Europe and America and a phase II trial in Japan.As a result, this combination therapy was approved for use in Japan. We evaluated the efficacy of nab-paclitaxel plus GEM with metastatic or recurrent pancreatic cancer.Between December 2014 and March 2016, 11 patients received nab-paclitaxel plus GEM as follows: nab-paclitaxel(125mg/m2 of body-surface area)followed by GEM(1,000mg/m2)on days 1, 8, and 15 every 4 weeks.The treatment was continued until disease progression, unacceptable adverse events, discontinuation as decided by the investigators, or patient refusal. The mean age was 65.6 years(range, 48-75 years), and 8 out of 11 patients were men.Ten patients had an Eastern Cooperative Oncology Group(ECOG)performance status(PS)of 0.Ten patients had metastatic disease.Only 4 patients had no prior therapy.The mean duration of treatment was 10.2 weeks(range, 2-41 weeks).The relative dose intensities of nab-paclitaxel and GEM were 90.6%(66.7-100%)and 87.5%(62.9-100%), respectively.The major Grade 3 or 4 hematological toxicities were leucopenia(54.5%), neutropenia(36.4%), anemia (27.3%), and thrombocytopenia(18.2%).The major grade 2 or 3 non-hematological toxicities were fatigue(45.6%), skin rash(27.3%), peripheral sensory neuropathy(9.1%), anorexia(9.1%), and stomatitis(9.1%).There were no treatmentrelated deaths.Interstitial lung disease was not observed.The 6 month progression-free and overall survival rate were 25.7% and 66.7%, respectively. The disease control rate was 90.9%(complete response, n=0; partial response, n=1; stable disease, n=9; progressive disease, n=1). Nab-paclitaxel plus GEM is well tolerated and associated with efficacy and improved survival outcomes.Nab -paclitaxel plus GEM can be the standard treatment for patients with metastatic pancreatic adenocarcinoma.
Juul, Nicolai; Szallasi, Zoltan; Eklund, Aron C; Li, Qiyuan; Burrell, Rebecca A; Gerlinger, Marco; Valero, Vicente; Andreopoulou, Eleni; Esteva, Francisco J; Symmans, W Fraser; Desmedt, Christine; Haibe-Kains, Benjamin; Sotiriou, Christos; Pusztai, Lajos; Swanton, Charles
2010-04-01
Addition of taxanes to preoperative chemotherapy in breast cancer increases the proportion of patients who have a pathological complete response (pCR). However, a substantial proportion of patients do not respond, and the prognosis is particularly poor for patients with oestrogen-receptor (ER)/progesterone-receptor (PR)/human epidermal growth factor receptor 2 (HER2; ERBB2)-negative (triple-negative) disease who do not achieve a pCR. Reliable identification of such patients is the first step in determining who might benefit from alternative treatment regimens in clinical trials. We previously identified genes involved in mitosis or ceramide metabolism that influenced sensitivity to paclitaxel, with an RNA interference (RNAi) screen in three cancer cell lines, including a triple-negative breast-cancer cell line. Here, we assess these genes as a predictor of pCR to paclitaxel combination chemotherapy in triple-negative breast cancer. We derived a paclitaxel response metagene based on mitotic and ceramide genes identified by functional genomics studies. We used area under the curve (AUC) analysis and multivariate logistic regression to retrospectively assess the metagene in six cohorts of patients with triple-negative breast cancer treated with neoadjuvant chemotherapy; two cohorts treated with paclitaxel (n=27, 30) and four treated without paclitaxel (n=88, 28, 48, 39). The metagene was associated with pCR in paclitaxel-treated cohorts (AUC 0.79 [95% CI 0.53-0.93], 0.72 [0.48-0.90]) but not in non-paclitaxel treated cohorts (0.53 [0.31-0.77], 0.59 [0.22-0.82], 0.53 [0.36-0.71], 0.64 [0.43-0.81]). In multivariate logistic regression, the metagene was associated with pCR (OR 19.92, 2.62-151.57; p=0.0039) with paclitaxel-containing chemotherapy. The paclitaxel response metagene shows promise as a paclitaxel-specific predictor of pCR in patients with triple-negative breast cancer. The metagene is suitable for development into a reverse transcription-PCR assay, for which clinically relevant thresholds could be established in randomised clinical trials. These results highlight the potential for functional genomics to accelerate development of drug-specific predictive biomarkers without the need for training clinical trial cohorts. UK Medical Research Council; Cancer Research UK; the National Institute for Health Research (UK); the Danish Council for Independent Research-Medical Sciences (FSS); Breast Cancer Research Foundation (New York); Fondation Luxembourgeoise contre le Cancer; the Fonds National de la Recherche Scientifique; Brussels Region (IRSIB-IP, Life Sciences 2007) and Walloon Region (Biowin-Keymarker); Sally Pearson Breast Cancer Fund; and the European Commission. 2010 Elsevier Ltd. All rights reserved.
Zheng, Yiyan; Sethi, Ritika; Mangala, Lingegowda S; Taylor, Charlotte; Goldsmith, Juliet; Wang, Ming; Masuda, Kenta; Karaminejadranjbar, Mohammad; Mannion, David; Miranda, Fabrizio; Herrero-Gonzalez, Sandra; Hellner, Karin; Chen, Fiona; Alsaadi, Abdulkhaliq; Albukhari, Ashwag; Fotso, Donatien Chedom; Yau, Christopher; Jiang, Dahai; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Knapp, Stefan; Gray, Nathanael S; Campo, Leticia; Myers, Kevin A; Dhar, Sunanda; Ferguson, David; Bast, Robert C; Sood, Anil K; von Delft, Frank; Ahmed, Ahmed Ashour
2018-02-02
Though used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy.
Cook, Natalie; Bapiro, Tashinga E.; Lolkema, Martijn P.; Jodrell, Duncan I.; Tuveson, David A.
2016-01-01
nab-paclitaxel, an albumin-stabilized paclitaxel formulation, demonstrates clinical activity when administered in combination with gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma (PDA). The limited availability of patient tissue and exquisite sensitivity of xenografts to chemotherapeutics have limited our ability to address the mechanistic basis of this treatment regimen. Here, we used a mouse model of PDA to show that the co-administration of nab-paclitaxel and gemcitabine uniquely demonstrates evidence of tumor regression. Combination treatment increases intratumoral gemcitabine levels due to a marked decrease in the primary gemcitabine metabolizing enzyme, cytidine deaminase (Cda). Correspondingly, paclitaxel reduced Cda protein levels in cultured cells through reactive oxygen species-mediated degradation, resulting in the increased stabilization of gemcitabine. Our findings support the concept that suboptimal intratumoral concentrations of gemcitabine represent a crucial mechanism of therapeutic resistance in PDA and highlight the advantages of genetically engineered mouse models in preclinical therapeutic trials. PMID:22585996
Guarneri, Valentina; Dieci, Maria Vittoria; Conte, Pierfranco
2012-02-01
Docetaxel and paclitaxel are among the most active agents for the treatment of breast cancer. These first-generation taxanes are extremely hydrophobic; therefore, solvents are needed for its parenteral administration. Albumin nanoparticle technology allows for the transportation of such hydrophobic drugs without the need of potentially toxic solvents. Nab-paclitaxel can be administered without premedication, in a shorter infusion time and without the need for a special infusion set. Moreover, this technology allows the selective delivery of larger amounts of anticancer drug to tumors, by exploiting endogenous albumin pathways. An overview of the albumin nanoparticle technology, from a clinical perspective, is reported in this paper. The preclinical and clinical development of nab-paclitaxel is reviewed, in the context of available therapies for advanced breast cancer, with a focus on safety data. Preclinical and clinical data on the prognostic and predictive role of SPARC (secreted protein, acidic and rich in cysteine) are also reported. Nab-paclitaxel is approved at present for the treatment of metastatic breast cancer, after the failure of first-line standard therapy, when anthracyclines are not indicated. Efficacy and safety data, along with a more convenient administration, confirm the potential for nab-paclitaxel to become a reference taxane in breast cancer treatment.
Yari Khosroushahi, Ahmad; Naderi-Manesh, Hossein; Toft Simonsen, Henrik
2011-01-01
Introduction To control the tissue browning phenomenon, callus growth, total phenolics and paclitaxel production, in the current investigation, we evaluated the effects of citric acid and ascorbic acid (as antioxidants) and glucose, fructose and sucrose in callus cultures of Taxus brevifolia. Methods To obtain healthy callus/cell lines of Taxus brevifolia, the effects of two antioxidants ascorbic acid (100-1000 mg/L) and citric acid (50-500 mg/L), and three carbohydrates (glucose, fructose and sucrose (5-10 g/L)) were studied evaluating activities of polyphenol oxidase (PPO) and peroxidase (PO) enzymes, callus growth/browning, total phenolics and paclitaxel production. Results These antioxidants (ascorbic acid and citric acid) failed to show significant effects on callus growth, browning intensity or paclitaxel production. However, the carbohydrates imposed significant effects on the parameters studied. High concentrations of both glucose and sucrose increased the browning intensity, thus decreased callus growth. Glucose increased paclitaxel production, but sucrose decreased it. Conclusion These results revealed that the browning phenomenon can be controlled through supplementation of the growth media with glucose, sucrose (5 g/L) and fructose (10 g/L), while increased paclitaxel production can be obtain by the optimized media supplemented with glucose (10 g/L), sucrose and fructose (5 g/L). PMID:23678406
Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena
2011-05-01
Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.
MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer.
Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A; Gertler, Frank B
2017-01-01
Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENA INV , are established drivers of metastasis. MENA INV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENA INV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENA INV -driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR. ©2016 American Association for Cancer Research.
Taxane recovery from cells of Taxus in micro- and hypergravity
NASA Technical Reports Server (NTRS)
Durzan, D. J.; Ventimiglia, F.; Havel, L.
1998-01-01
Cell suspension cultures of Taxus cuspidata produce taxanes that are released from the outer surface of cells into the culture medium as free and bound alkaloids. Paclitaxel (Taxol (TM)), is an anti-cancer drug in short supply. It has a taxane ring derived from baccatin III and a C-13 phenylisoserine side-chain. This drug is produced over a wide range of gravitational forces. Monoclonal and polyclonal antibodies to paclitaxel, baccatin III, and the C-13 phenylisoserine side chain were combined in multiple-labeling studies to localize taxanes and paclitaxel on cell surfaces or on particles released into the culture medium. Bioreactor vessel design altered the composition of taxanes recovered from cells in simulated microgravity. At 10(-2) and 2x10(-4)g, taxane recovery was reduced but biomass growth and percent paclitaxel was significantly increased. At 1 to 24g, growth was reduced with a significant recovery of total taxanes with low percent paclitaxel. Bound paclitaxel was also localized in endonuclease-rich fragmenting nuclei of individual apoptotic cells. A model is presented comprising TCH (touch) genes encoding enzymes that modify taxane-bearing xylan residues in cell walls, the calcium-sensing of gravitational forces by the cytoplasm, and the predisposition of nuclei to apoptosis. This integrates the adaptive physiological and biochemical responses of drug-producing genomes with gravitational forces.
The effect of paclitaxel on conjunctival wound healing: a pilot study.
Koz, Ozlem Gurbuz; Ozhuy, Serife; Tezel, Gaye Guler; Karaman, Nazmiye; Unlu, Nursen; Yarangumeli, Alper; Kural, Gulcan
2007-01-01
To compare the effects of mitomycin C (MMC) and paclitaxel entrapped within Carbopol 980 hydrogel (CH) on conjunctival wound healing. Twenty rabbits were randomized into 2 groups. In group 1, limbal-based conjunctival flaps were created in both eyes. In this stage, eyes were randomized for 4 different processes. In process 1, a dry cellulose sponge soaked with 0.2 mg/mL of MMC was applied to the scleral surface. A cellulose sponge soaked with balanced saline solution was applied in the same manner in process 2. In process 3, paclitaxel 1 mg/mL entrapped within CH was placed between the conjunctiva and sclera. In process 4, CH without paclitaxel was applied in the same manner. The conjunctiva was then sutured. All procedures were applied in the same manner in both eyes of animals in group 2. Eyes from group 1 were sampled at the seventh day, and the sampling was also carried out in group 2 on day 14. The inflammatory response and fibrosis were evaluated with light microscopy. Among 4 different processes, lower cell counts and fibrosis scores were found in eyes treated with MMC and paclitaxel compared with balanced saline solution and CH groups (P<0.05). There was no difference between eyes treated with MMC and paclitaxel in terms of these histopathologic parameters (P>0.05). Paclitaxel was shown to provide MMC-like antifibrotic effects during conjunctival wound healing, particularly when delivered with CH and might be a promising alternative as an adjunctive antimetabolite in glaucoma filtration surgery.
Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET.
Hsueh, Wei-Ann; Kesner, Amanda L; Gangloff, Anne; Pegram, Mark D; Beryt, Malgorzata; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S
2006-12-01
Paclitaxel is used as a chemotherapy drug for the treatment of various malignancies, including breast, ovarian, and lung cancers. To evaluate the potential of a noninvasive prognostic tool for specifically predicting the resistance of tumors to paclitaxel therapy, we examined the tumoral uptake of (18)F-fluoropaclitaxel ((18)F-FPAC) in mice bearing human breast cancer xenografts by using small-animal-dedicated PET and compared (18)F-FPAC uptake with the tumor response to paclitaxel treatment. PET data were acquired after tail vein injection of approximately 9 MBq of (18)F-FPAC in anesthetized nude mice bearing breast cancer xenografts. Tracer uptake in reconstructed images was quantified by region-of-interest analyses and compared with the tumor response, as measured by changes in tumor volume, after treatment with paclitaxel. Mice with tumors that progressed demonstrated lower tumoral uptake of (18)F-FPAC than mice with tumors that did not progress or that regressed (r = 0.55, P < 0.02; n = 19), indicating that low (18)F-FPAC uptake was a significant predictor of chemoresistance. Conversely, high (18)F-FPAC uptake predicted tumor regression. This relationship was found for mice bearing xenografts from cell lines selected to be either sensitive or intrinsically resistant to paclitaxel in vitro. PET data acquired with (18)F-FPAC suggest that this tracer holds promise for the noninvasive quantification of its distribution in vivo in a straightforward manner. In combination with approaches for examining other aspects of resistance, such quantification could prove useful in helping to predict subsequent resistance to paclitaxel chemotherapy of breast cancer.
Benbow, Sarah J; Wozniak, Krystyna M; Kulesh, Bridget; Savage, April; Slusher, Barbara S; Littlefield, Bruce A; Jordan, Mary Ann; Wilson, Leslie; Feinstein, Stuart C
2017-07-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.
Paclitaxel Drug-eluting Tracheal Stent Could Reduce Granulation Tissue Formation in a Canine Model
Wang, Ting; Zhang, Jie; Wang, Juan; Pei, Ying-Hua; Qiu, Xiao-Jian; Wang, Yu-Ling
2016-01-01
Background: Currently available silicone and metallic stents for tracheal stenosis are associated with many problems. Granulation proliferation is one of the main complications. The present study aimed to evaluate the efficacy of paclitaxel drug-eluting tracheal stent in reducing granulation tissue formation in a canine model, as well as the pharmacokinetic features and safety profiles of the coated drug. Methods: Eight beagles were randomly divided into a control group (bare-metal stent group, n = 4) and an experimental group (paclitaxel-eluting stent group, n = 4). The observation period was 5 months. One beagle in both groups was sacrificed at the end of the 1st and 3rd months, respectively. The last two beagles in both groups were sacrificed at the end of 5th month. The proliferation of granulation tissue and changes in tracheal mucosa were compared between the two groups. Blood routine and liver and kidney function were monitored to evaluate the safety of the paclitaxel-eluting stent. The elution method and high-performance liquid chromatography were used to characterize the rate of in vivo release of paclitaxel from the stent. Results: Compared with the control group, the proliferation of granulation tissue in the experimental group was significantly reduced. The drug release of paclitaxel-eluting stent was the fastest in the 1st month after implantation (up to 70.9%). Then, the release slowed down gradually. By the 5th month, the release reached up to 98.5%. During the observation period, a high concentration of the drug in the trachea (in the stented and adjacent unstented areas) and lung tissue was not noted, and the blood test showed no side effect. Conclusions: The paclitaxel-eluting stent could safely reduce the granulation tissue formation after stent implantation in vivo, suggesting that the paclitaxel-eluting tracheal stent might be considered for potential use in humans in the future. PMID:27824004
Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An
2015-01-01
Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878
Moses, Jeffrey W; Mehran, Roxana; Nikolsky, Eugenia; Lasala, John M; Corey, Woodrow; Albin, Glenn; Hirsch, Cary; Leon, Martin B; Russell, Mary E; Ellis, Stephen G; Stone, Gregg W
2005-04-19
We sought to investigate the outcomes of paclitaxel-eluting stent implantation in patients with unstable angina or non-ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention (PCI). Whether the paclitaxel-eluting stent is safe and effective in patients with acute coronary syndromes (ACS) is unknown. In the TAXUS-IV trial, 1,314 patients with stable or unstable ischemic syndromes undergoing PCI were randomized to treatment with either the slow-release, polymer-based, paclitaxel-eluting TAXUS stent or a bare-metal EXPRESS stent (Boston Scientific Corp., Natick, Massachusetts). The results were stratified by the acuity of the presenting clinical syndrome. Acute coronary syndromes were present in 450 patients (34.2%), 237 of whom were assigned to paclitaxel-eluting stents and 213 to bare-metal stents. The baseline and procedural characteristics were well matched between the groups. Clinical outcomes at 30 days were similar with both stents. At one-year follow-up, patients with ACS assigned to the paclitaxel-eluting stent compared to the control stent had strikingly lower rates of target lesion revascularization (TLR) (3.9% vs. 16.0%, p < 0.0001) and major adverse cardiac events (11.1 vs. 21.7%, p = 0.002). By multivariate analysis, ACS was an independent predictor of in-stent restenosis in the cohort treated with bare-metal stents (hazard ratio [HR] = 2.03 [95% confidence interval (CI) 1.05 to 3.92], p = 0.035), while among patients randomized to the paclitaxel-eluting stents, ACS was an independent predictor of freedom from restenosis (HR = 0.27 [95% CI 0.08 to 0.97], p = 0.04). The use of the paclitaxel-eluting TAXUS stent was safe in patients with unstable ischemic syndromes, and was associated with marked reduction of ischemia-driven TLR and adverse cardiac events at one year.
Fidias, Panos; Pennell, Nathan A; Boral, Anthony L; Shapiro, Geoffrey I; Skarin, Arthur T; Eder, Joseph P; Kwoh, T Jesse; Geary, Richard S; Johnson, Bruce E; Lynch, Thomas J; Supko, Jeffrey G
2009-09-01
A phase I trial was performed to evaluate the administration of carboplatin/paclitaxel in combination with ISIS-5132, a phosphorothioate antisense oligodeoxynucleotide inhibitor of c-raf-1 kinase expression, in patients with advanced non-small cell lung cancer (NSCLC). Previously untreated patients with stage IIIB/IV NSCLC received ISIS 5132 by continuous intravenous infusion at 2.0 mg/kg/d for 14 days. Starting doses were paclitaxel 175 mg/m(2) and carboplatin targeting an area under the free platinum plasma concentration-time curve (AUC(fp)) of 5 mg . min/ml (dose level 1). The carboplatin dose was then increased to AUC(fp) 6 mg . min/ml (dose level 2) after which the paclitaxel dose was increased to 200 mg/m(2) (dose level 3). The maximum tolerated dose was established by toxicity during the first two 21-day cycles of therapy. The pharmacokinetics of all three agents was determined before and during the ISIS 5132 infusion. Thirteen patients were treated with the carboplatin/paclitaxel/ISIS 5132 combination. Dose-limiting neutropenia occurred in two patients at dose level 3. Grade 3 and 4 nonhematologic toxicities were infrequent and limited to nausea and constipation. The maximum tolerated doses were carboplatin AUC(fp) 6 mg . min/ml, paclitaxel 175 mg/m(2), and ISIS 5132 2.0 mg/kg/d for 14 days. There were no objective responses and the concurrent infusion of ISIS 5132 did not alter the plasma pharmacokinetics of paclitaxel or total platinum. ISIS 5132 can be safely combined with standard doses of carboplatin and paclitaxel. Combining cytotoxic chemotherapeutic agents with inhibitors of aberrant signal transduction mediated by Raf proteins produced no objective responses in the dose and schedule administered in this study.
Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo
2015-12-28
Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajun, E, E-mail: eyj7681@yahoo.com.cn; He Nengshu, E-mail: eyajun@hotmail.com; Fan Hailun, E-mail: mydream510@yahoo.com.cn
2013-08-01
PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15more » and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.« less
Ismaiel, Ahmed A; Ahmed, Ashraf S; Hassan, Ismail A; El-Sayed, El-Sayed R; Karam El-Din, Al-Zahraa A
2017-07-01
Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L -1 , respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L -1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L -1 . Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL -1 . Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.
Sarosy, Gisele A.; Hussain, Mahrukh M.; Seiden, Michael V.; Fuller, A.F.; Nikrui, N.; Goodman, Annekathryn; Minasian, Lori; Reed, Eddie; Steinberg, Seth M.; Kohn, Elise C.
2009-01-01
SUMMARY Background To assess activity and toxicity in newly diagnosed advanced stage epithelial ovarian cancer (EOC) patients receiving dose-intense paclitaxel, cyclophosphamide, cisplatin, and filgrastim delivered with a flexible dosing schedule. Methods Patients with Stage III/IV EOC received cyclophosphamide 750 mg/m2, followed by 24 hr infusion of paclitaxel 250 mg/m2, and cisplatin 75 mg/m2 on day 2. Filgrastim began on day 3 at 10 μg/kg/d × 9d. Patients received six cycles of all drugs. Those with pathologic complete response or microscopic residual disease at the conclusion of six cycles of therapy received an additional cycles two to four cycles of paclitaxel with cyclophosphamide. Patients with objective response continued cyclophosphamide and paclitaxel. Results 62 patients were enrolled. Thirty-two of these 62 patients had stage IIIC disease, and 26 of 62 had stage IV disease. Using an intent to treat analysis, 55 (89%) experienced clinical complete remission (CCR). With a median potential follow-up of 11.4 years, the median progression free survival is 18.9 months and median survival is 5.4 years. The most serious toxicity was grade 3/4 neutropenic fever (35%). Although all participants developed peripheral neuropathy, improvement in neuropathic symptoms began with decrease or cessation of paclitaxel. Conclusions This regimen yielded a high response rate and encouraging overall survival. These data and those of the Japanese Gynecologic Oncology Group suggest that further study of dose dense or intense paclitaxel regimens in women with newly diagnosed advanced stage EOC is warranted. PMID:20091841
Granada, Juan F; Stenoien, Mark; Buszman, Piotr P; Tellez, Armando; Langanki, Dan; Kaluza, Greg L; Leon, Martin B; Gray, William; Jaff, Michael R; Schwartz, Robert S
2014-01-01
The efficacy of paclitaxel-coated balloons (PCB) for restenosis prevention has been demonstrated in humans. However, the mechanism of action for sustained drug retention and biological efficacy following single-time drug delivery is still unknown. The pharmacokinetic profile and differences in drug concentration (vessel surface vs arterial wall) of two different paclitaxel coating formulations (3 µg/mm(2)) displaying opposite solubility characteristics (CC=crystalline vs AC=amorphous) were tested in vivo and compared with paclitaxel-eluting stents (PES). Also, the biological effect of both PCB formulations on vascular healing was tested in the porcine coronary injury model. One hour following balloon inflation, both formulations achieved similar arterial paclitaxel levels (CC=310 vs AC=245 ng/mg; p=NS). At 24 h, the CC maintained similar tissue concentrations, whereas the AC tissue levels declined by 99% (p<0.01). At this time point, arterial levels were 20-fold (CC) and 5-fold (AC) times higher compared to the PES group (p<0.05). At 28 days, arterial levels retained were 9.2% (CC) and 0.04% (AC, p<0.01) of the baseline levels. Paclitaxel concentration on the vessel surface was higher in the CC at 1 (CC=36.7% vs AC=13.1%, p<0.05) and 7 days (CC=38.4% vs AC=11%, p<0.05). In addition, the CC induced higher levels of neointimal inhibition, fibrin deposition and delayed healing compared with the AC group. The presence of paclitaxel deposits on the vessel surface driving diffusion into the arterial tissue in a time-dependent fashion supports the mechanism of action of PCB. This specific pharmacokinetic behaviour influences the patterns of neointimal formation and healing.
Granada, Juan F; Stenoien, Mark; Buszman, Piotr P; Tellez, Armando; Langanki, Dan; Kaluza, Greg L; Leon, Martin B; Gray, William; Jaff, Michael R; Schwartz, Robert S
2014-01-01
Background The efficacy of paclitaxel-coated balloons (PCB) for restenosis prevention has been demonstrated in humans. However, the mechanism of action for sustained drug retention and biological efficacy following single-time drug delivery is still unknown. Methods and results The pharmacokinetic profile and differences in drug concentration (vessel surface vs arterial wall) of two different paclitaxel coating formulations (3 µg/mm2) displaying opposite solubility characteristics (CC=crystalline vs AC=amorphous) were tested in vivo and compared with paclitaxel-eluting stents (PES). Also, the biological effect of both PCB formulations on vascular healing was tested in the porcine coronary injury model. One hour following balloon inflation, both formulations achieved similar arterial paclitaxel levels (CC=310 vs AC=245 ng/mg; p=NS). At 24 h, the CC maintained similar tissue concentrations, whereas the AC tissue levels declined by 99% (p<0.01). At this time point, arterial levels were 20-fold (CC) and 5-fold (AC) times higher compared to the PES group (p<0.05). At 28 days, arterial levels retained were 9.2% (CC) and 0.04% (AC, p<0.01) of the baseline levels. Paclitaxel concentration on the vessel surface was higher in the CC at 1 (CC=36.7% vs AC=13.1%, p<0.05) and 7 days (CC=38.4% vs AC=11%, p<0.05). In addition, the CC induced higher levels of neointimal inhibition, fibrin deposition and delayed healing compared with the AC group. Conclusions The presence of paclitaxel deposits on the vessel surface driving diffusion into the arterial tissue in a time-dependent fashion supports the mechanism of action of PCB. This specific pharmacokinetic behaviour influences the patterns of neointimal formation and healing. PMID:25332821
Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy
Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka
2015-01-01
Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449
Suder, A; Ang, J E; Kyle, F; Harris, D; Rudman, S; Kristeleit, R; Solca, F; Uttenreuther-Fischer, M; Pemberton, K; Pelling, K; Schnell, D; de Bono, J; Spicer, J
2015-11-01
This phase I study evaluated afatinib, an irreversible ErbB family blocker, plus paclitaxel in patients with advanced solid tumours likely to express human epidermal growth factor receptor (HER1/EGFR) or HER2. Oral afatinib was combined with intravenous paclitaxel (80mg/m(2); days 1, 8 and 15 every four weeks) starting at 20mg once daily and escalated to 40 and 50mg in successive cohorts of ⩾3 patients. The primary objective was to determine the maximum tolerated dose (MTD) of afatinib combined with paclitaxel. Secondary objectives included safety, pharmacokinetics and antitumour activity. Sixteen patients were treated. Dose-limiting toxicities with afatinib 50mg were fatigue and mucositis. The MTD was determined as afatinib 40mg with paclitaxel 80mg/m(2), which proved tolerable with repeated dosing. Frequent adverse events (AEs) included diarrhoea (94%), fatigue (81%), rash/acne (81%), decreased appetite (69%) and inflammation of mucosal membranes (69%); no grade 4 treatment-related AEs were observed. Five (31%) confirmed partial responses were observed in patients with non-small cell lung cancer (n=3), oesophageal cancer and cholangiocarcinoma; eight (50%) patients remained on study for ⩾6months. Pharmacokinetic parameters of afatinib and paclitaxel were similar for single administration or in combination. The MTD and recommended phase II dose of once-daily afatinib combined with paclitaxel 80mg/m(2) (days 1, 8 and 15 every four weeks) was 40mg. AEs at or below this dose were generally manageable with repeated dosing. No pharmacokinetic interactions were observed. This combination demonstrated promising antitumour activity. ClinicalTrials.gov, NCT00809133. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hamity, Marta V; White, Stephanie R; Walder, Roxanne Y; Schmidt, Mark S; Brenner, Charles; Hammond, Donna L
2017-05-01
Injury to sensory afferents may contribute to the peripheral neuropathies that develop after administration of chemotherapeutic agents. Manipulations that increase levels of nicotinamide adenine dinucleotide (NAD) can protect against neuronal injury. This study examined whether nicotinamide riboside (NR), a third form of vitamin B3 and precursor of NAD, diminishes tactile hypersensitivity and place escape-avoidance behaviors in a rodent model of paclitaxel-induced peripheral neuropathy. Female Sprague-Dawley rats received 3 intravenous injections of 6.6 mg/kg paclitaxel over 5 days. Daily oral administration of 200 mg/kg NR beginning 7 days before paclitaxel treatment and continuing for another 24 days prevented the development of tactile hypersensitivity and blunted place escape-avoidance behaviors. These effects were sustained after a 2-week washout period. This dose of NR increased blood levels of NAD by 50%, did not interfere with the myelosuppressive effects of paclitaxel, and did not produce adverse locomotor effects. Treatment with 200 mg/kg NR for 3 weeks after paclitaxel reversed the well-established tactile hypersensitivity in a subset of rats and blunted escape-avoidance behaviors. Pretreatment with 100 mg/kg oral acetyl-L-carnitine (ALCAR) did not prevent paclitaxel-induced tactile hypersensitivity or blunt escape-avoidance behaviors. ALCAR by itself produced tactile hypersensitivity. These findings suggest that agents that increase NAD, a critical cofactor for mitochondrial oxidative phosphorylation systems and cellular redox systems involved with fuel utilization and energy metabolism, represent a novel therapeutic approach for relief of chemotherapy-induced peripheral neuropathies. Because NR is a vitamin B3 precursor of NAD and a nutritional supplement, clinical tests of this hypothesis may be accelerated.
Jeerakornpassawat, Dhammapoj; Suprasert, Prapaporn
2017-10-01
The aim of this study was to assess intravenous hydrocortisone (HCT) added to standard dexamethasone (DXM) prophylaxis for paclitaxel-associated hypersensitivity reactions (HSRs). Paclitaxel naives scheduled for 6 cycles of paclitaxel (plus platinum) were randomized to DXM alone (20 mg intravenously [IV]) versus DXM plus HCT (100 mg IV) as premedication including chlorpheniramine (10 mg IV), diphenhydramine (25 mg orally), and ranitidine (50 mg IV) 30 minutes before infusion. Clinic nurses observed for HSRs. Groups were well balanced for cancer type, stage, drug allergy, chemotherapy naivete, mean age, body mass index, and paclitaxel dose. The 44 DXM controls underwent 213 cycles and the 42 investigational DXM plus HCT group 192 per protocol cycles. Hypersensitivity reactions were observed among 9 (4.2%) DXM only cycles compared with 1 (0.5%) among DXM plus HCT cycles (P = 0.022). Hypersensitivity reactions occurred in 8 (18%) DXM only patients and in 1 (2.4%) among those correctly receiving DXM plus HCT (P = 0.030). All HSRs occurred in cycles 1 to 3, within 10 to 40 minutes after infusion initiation, and peaked in cycle 2 (5/39) for DXM recipients and in cycle 3 (1/30) for DXM plus HCT. Hypersensitivity reaction severity was grade 1 in 3 DXM only recipients and grade 2 in 6 DXM and 1 DXM plus HCT. A sole grade 3 HSR was in an intention-to-treat DXM-HCT patient, who erroneously received no HCT. Hypersensitivity reaction symptoms were facial flushing (8 episodes), dyspnea (7), palmar rash (1), and transient hypotension (1). Paclitaxel infusion was suspended for treatment of HSRs; in all cases, symptoms mitigated and infusion successfully restarted for the remaining dose. Adding HCT to routine DXM prophylaxis significantly decreased paclitaxel HSR frequency.
Structural Basis for Induction of Peripheral Neuropathy by Microtubule-Targeting Cancer Drugs.
Smith, Jennifer A; Slusher, Barbara S; Wozniak, Krystyna M; Farah, Mohamed H; Smiyun, Gregoriy; Wilson, Leslie; Feinstein, Stuart; Jordan, Mary Ann
2016-09-01
Peripheral neuropathy is a serious, dose-limiting side effect of cancer treatment with microtubule-targeting drugs. Symptoms present in a "stocking-glove" distribution, with longest nerves affected most acutely, suggesting a length-dependent component to the toxicity. Axonal transport of ATP-producing mitochondria along neuronal microtubules from cell body to synapse is crucial to neuronal function. We compared the effects of the drugs paclitaxel and ixabepilone that bind along the lengths of microtubules and the drugs eribulin and vincristine that bind at microtubule ends, on mitochondrial trafficking in cultured human neuronal SK-N-SH cells and on axonal transport in mouse sciatic nerves. Antiproliferative concentrations of paclitaxel and ixabepilone significantly inhibited the anterograde transport velocity of mitochondria in neuronal cells, whereas eribulin and vincristine inhibited transport only at significantly higher concentrations. Confirming these observations, anterogradely transported amyloid precursor protein accumulated in ligated sciatic nerves of control and eribulin-treated mice, but not in paclitaxel-treated mice, indicating that paclitaxel inhibited anterograde axonal transport, whereas eribulin did not. Electron microscopy of sciatic nerves of paclitaxel-treated mice showed reduced organelle accumulation proximal to the ligation consistent with inhibition of anterograde (kinesin based) transport by paclitaxel. In contrast, none of the drugs significantly affected retrograde (dynein based) transport in neuronal cells or mouse nerves. Collectively, these results suggest that paclitaxel and ixabepilone, which bind along the lengths and stabilize microtubules, inhibit kinesin-based axonal transport, but not dynein-based transport, whereas the microtubule-destabilizing drugs, eribulin and vincristine, which bind preferentially to microtubule ends, have significantly less effect on all microtubule-based axonal transport. Cancer Res; 76(17); 5115-23. ©2016 AACR. ©2016 American Association for Cancer Research.
Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi's sarcoma.
Gill, P S; Tulpule, A; Espina, B M; Cabriales, S; Bresnahan, J; Ilaw, M; Louie, S; Gustafson, N F; Brown, M A; Orcutt, C; Winograd, B; Scadden, D T
1999-06-01
Liposomal anthracyclines are the present standard treatment for advanced AIDS-related Kaposi's sarcoma (KS). No effective therapies have been defined for use after treatment failure of these agents. A phase II trial was thus conducted with paclitaxel in patients with advanced KS to assess safety and antitumor activity. A regimen of paclitaxel at a dose of 100 mg/m(2) was given every 2 weeks to patients with advanced AIDS-related KS. Patients were treated until complete remission, disease progression, or unacceptable toxicity occurred. Fifty-six patients with advanced AIDS-related KS were accrued. Tumor-associated edema was present in 70% of patients and visceral involvement in 45%. Forty patients (71%) had received prior systemic therapy; 31 of these were resistant to an anthracycline. The median entry CD4(+) lymphocyte count was 20 cells/mm(3) (range, 0 to 358). A median of 10 cycles (range, 1 to 54+) of paclitaxel was administered. Fifty-nine percent of patients showed complete (n = 1) or partial response (n = 32) to paclitaxel. The median duration of response was 10.4 months (range, 2.8 to 26.7+ months) and the median survival was 15.4 months. The main side effects of therapy were grade 3 or 4 neutropenia in 61% of patients and mild-to-moderate alopecia in 87%. Paclitaxel at 100 mg/m(2) given every 2 weeks is active and well tolerated in the treatment of advanced and previously treated AIDS-related KS. The median duration of response is among the longest observed for any regimen or single agent reported for AIDS-related KS. Paclitaxel at this dosage and schedule is a treatment option for patients with advanced AIDS-related KS, including those who have experienced treatment failure of prior systemic therapy.
Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier.
Teow, Huey Minn; Zhou, Zhengyuan; Najlah, Mohammad; Yusof, Siti R; Abbott, N Joan; D'Emanuele, Antony
2013-01-30
The aim of this study was to investigate the ability of a third-generation (G3) polyamidoamine (PAMAM) dendrimer-based carrier to enhance the permeability of paclitaxel (pac) and to overcome cellular barriers. G3 dendrimers were surface modified with lauryl chains (L) and conjugated with paclitaxel (pac) via a glutaric anhydride (glu) linker, followed by labeling with FITC. Biological evaluation of the dendrimer and conjugates was conducted using the human colon adenocarcinoma cell line (Caco-2) and primary cultured porcine brain endothelial cells (PBECs). LDH assay was used to evaluate the cytotoxicity of the dendrimer and conjugates. Cytotoxicity studies showed that the conjugation of lauryl chains and paclitaxel on G3 dendrimer significantly (p<0.05) increased the cytotoxicity against both cell types. Permeability studies of dendrimer-drug conjugates demonstrated an increase in the apparent permeability coefficient (P(app)) in both apical to basolateral A→B and basolateral to apical B→A directions across both cell monolayers compared to unmodified G3 and free drug. The B→A P(app) of paclitaxel was significantly (p<0.05) higher than the A→B P(app), indicating active function of P-gp efflux transporter system in both cell models. L6-G3-glu-pac conjugate had approximately 12-fold greater permeability across both cell monolayers than that of paclitaxel alone. Copyright © 2012 Elsevier B.V. All rights reserved.
Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.
Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra
2016-09-05
Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of paclitaxel as adjuvant treatment for benign cicatricial airway stenosis.
Qiu, Xiao-Jian; Zhang, Jie; Wang, Juan; Wang, Yu-Ling; Xu, Min
2016-12-01
Benign cicatricial airway stenosis (BCAS) is a potentially life-threatening disease. Recurrence occurs frequently after endoscopic treatment. Paclitaxel is known to prevent restenosis, but its clinical efficacy and safety is undetermined. Therefore, in this study, we investigated the efficacy and associated complications of paclitaxel as adjuvant treatment for BCAS of different etiologies. The study cohort included 28 patients with BCAS resulting from tuberculosis, intubation, tracheotomy, and other etiologies. All patients were treated at the Department of Respiratory Diseases, Beijing Tian Tan Hospital, Capital Medical University, China, between January 2010 and August 2014. After primary treatment by balloon dilation, cryotherapy, and/or high-frequency needle-knife treatment, paclitaxel was applied to the airway mucosa at the site of stenosis using a newly developed local instillation catheter. The primary outcome measures were the therapeutic efficacy of paclitaxel as adjuvant treatment, and the incidence of complications was observed as well. According to our criteria for evaluating the clinical effects on BCAS, 24 of the 28 cases achieved durable remission, three cases had remission, and one case showed no remission. Thus, the durable remission rate was 85.7%, and the combined effective rate was 96.4%. No differences in outcomes were observed among the different BCAS etiologies (P=0.144), and few complications were observed. Our results indicated that paclitaxel as an adjuvant treatment has greater efficacy than previously reported BCAS treatment methods.
Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy.
Xu, Jijun; Zhang, Lingjun; Xie, Mian; Li, Yan; Huang, Ping; Saunders, Thomas L; Fox, David A; Rosenquist, Richard; Lin, Feng
2018-06-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease. Copyright © 2018 by The American Association of Immunologists, Inc.
Wein, Alexander N; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T; Leppla, Stephen H
2013-02-01
PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.
2015-01-01
Nano-encapsulation of poorly soluble anticancer drug was developed with sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using very thin polycation / polyanion coating on low soluble nanoparticles to provide their good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt %. In the top-down approach, nanocolloids were prepared by rupturing powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by gradual worsening the solution with the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and are in the range of 10-20 hours. PMID:21442095
Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery.
Yendluri, Raghuvara; Lvov, Yuri; de Villiers, Melgardt M; Vinokurov, Vladimir; Naumenko, Ekaterina; Tarasova, Evgenya; Fakhrullin, Rawil
2017-10-01
Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Paclitaxel Albumin-stabilized Nanoparticle Formulation
This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.
Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity
Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...
2015-11-06
This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10 8 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10 8 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid reportmore » provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less
[The advance in synthetic biology: towards a microbe-derived paclitaxel intermediates].
Wang, Wei; Yang, Yan; Zheng, Xiao-Dong; Huang, Shu-Qiong; Guo, Lei; Kong, Jian-Qiang; Cheng, Ke-Di
2013-02-01
The synthetic biology matures to promote the heterologous biosynthesis of the well-known drug paclitaxel that is one of the most important and active chemotherapeutic agents for the first-line clinical treatment of cancer. This review focuses on the construction and regulation of the biosynthetic pathway of paclitaxel intermediates in both Escherichia coli and Saccharomyces cerevisiae. In particular, the review also features the early efforts to design and overproduce taxadiene and the bottleneck of scale fermentation for producing the intermediates.
Tsai, Max; Lu, Ze; Wientjes, M. Guillaume; Au, Jessie L.-S.
2013-01-01
Intraperitoneal therapy (IP) has demonstrated survival advantages in patients with peritoneal cancers, but has not become a widely practiced standard-of-care in part due to local toxicity and sub-optimal drug delivery. Paclitaxel-loaded, polymeric microparticles were developed to overcome these limitations. The present study evaluated the effects of microparticle properties on paclitaxel release (extent and rate) and in vivo pharmacodynamics. In vitro paclitaxel release from microparticles with varying physical characteristics (i.e., particle size, copolymer viscosity and composition) was evaluated. A method was developed to simulate the dosing rate and cumulative dose released in the peritoneal cavity based on the in vitro release data. The relationship between the simulated drug delivery and treatment outcomes of seven microparticle compositions was studied in mice bearing IP human pancreatic tumors, and compared to that of the intravenous Cremophor micellar paclitaxel solution used off-label in previous IP studies. Paclitaxel release from polymeric microparticles in vitro was multi-phasic; release was greater and more rapid from microparticles with lower polymer viscosities and smaller diameters (e.g., viscosity of 0.17 vs. 0.67 dl/g and diameter of 5–6 vs. 50–60 μm). The simulated drug release in the peritoneal cavity linearly correlated with treatment efficacy in mice (r2>0.8, p<0.001). The smaller microparticles, which distribute more evenly in the peritoneal cavity compared to the large microparticles, showed greater dose efficiency. For single treatment, the microparticles demonstrated up to 2-times longer survival extension and 4-times higher dose efficiency, relative to the paclitaxel/Cremophor micellar solution. Upon repeated dosing, the paclitaxel/Cremophor micellar solution showed cumulative toxicity whereas the microparticle that yielded 2-times longer survival did not display cumulative toxicity. The efficacy of IP therapy depended on both temporal and spatial factors that were determined by the characteristics of the drug delivery system. A combination of fast- and slow-releasing microparticles with 5–6 μm diameter provided favorable spatial distribution and optimal drug release for IP therapy. PMID:24056144
Saito, Shota; Muneoka, Yusuke; Ishikawa, Takashi; Akazawa, Kouhei
2017-12-01
The combination of paclitaxel + ramucirumab is a standard second-line treatment in patients with advanced gastric cancer. This therapy has been associated with increased median overall survival and progression-free survival compared with those with paclitaxel monotherapy. We evaluated the cost-effectiveness of paclitaxel + ramucirumab combination therapy in patients with advanced gastric cancer, from the perspective of health care payers in Japan. We constructed a Markov model to compare, over a time horizon of 3 years, the costs and effectiveness of the combination of paclitaxel + ramucirumab and paclitaxel alone as second-line therapies for advanced gastric cancer in Japan. Health outcomes were measured in life-years (LYs) and quality-adjusted (QA) LYs gained. Costs were calculated using year-2016 Japanese yen (¥1 = US $17.79) according to the social insurance reimbursement schedule and drug tariff of the fee-for-service system in Japan. Model robustness was addressed through 1-way and probabilistic sensitivity analyses. The costs and QALYs were discounted at a rate of 2% per year. The willingness-to-pay threshold was set at the World Health Organization's criterion of ¥12 million, because no consensus exists regarding the threshold for acceptable cost per QALY ratios in Japan's health policy. Paclitaxel + ramucirumab combination therapy was estimated to provide an additional 0.09 QALYs (0.10 LYs) at a cost of ¥3,870,077, resulting in an incremental cost-effectiveness ratio of ¥43,010,248/QALY. The incremental cost-effectiveness ratio for the combination therapy was >¥12 million/QALY in all of the 1-way and probabilistic sensitivity analyses. Adding ramucirumab to a regimen of paclitaxel in the second-line treatment of advanced gastric cancer is expected to provide a minimal incremental benefit at a high incremental cost per QALY. Based on our findings, adjustments in the price of ramucirumab, as well as improves in other clinical parameters such as survival time and adverse event in advanced gastric cancer therapy, are needed. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer
NASA Astrophysics Data System (ADS)
Zubris, Kimberly Ann Veronica
Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to migrate up to 40 cm through lymphatic channels to local lymph nodes was demonstrated using near infrared imaging in a large animal model. Continued investigation of functional nanoparticles, like the system described here for lung and breast cancer, will facilitate the development of new materials that meet the varied and demanding needs in chemotherapy, and may afford new treatment options for the local and metastatic control of many forms of cancer.
New developments in chemotherapy of advanced breast cancer.
Lebwohl, D E; Canetta, R
1999-01-01
Anthracyclines and taxanes are the two most active classes of chemotherapy for the treatment of advanced breast cancer. Recent studies have investigated combination therapy including doxorubicin (Dox) and paclitaxel. The efficacy of this combination has been established in a phase III study conducted by ECOG, comparing Dox/paclitaxel versus Dox versus paclitaxel. The combination is superior to Dox or paclitaxel with respect to response rate and time to disease progression, indicating that the combination provides a new standard for the first line treatment of metastatic breast cancer [1]. Phase II studies using higher doses of Dox and using shorter infusions of paclitaxel have suggested the combination can be further optimized; Gianni reported a 94% objective response rate using Dox 60 mg/m2 followed by paclitaxel 175 mg/m2 given over three hours [2]. The more active regimens are associated with enhanced cardiotoxicity; this toxicity can be avoided, however, by limiting the exposure to doxorubicin. The newer regimens have now been moved into phase III studies. Future progress for this disease will depend on the introduction of new agents. Two novel drugs are currently being investigated in randomised phase III trials as potentiators of Dox and/or paclitaxel. One is a monoclonal antibody from Genentech (Herceptin, trastuzumab) directed at the HER-2/neu oncogene, which is overexpressed in > 25% of breast cancers [3]. Recent results indicate that Herceptin in combination with paclitaxel (or with a Dox plus cyclophosphamide regimen) induces a higher response rate (RR) and prolongs the time to disease progression when compared to chemotherapy alone. The second agent N,N-diethyl-2[4-(phenylmethyl)-phenoxy] ethanamine.HCl (DPPE, BMS-217380-01), when combined with Dox, was associated with a higher RR than previously observed with Dox alone [4]. A randomized trial of Dox versus Dox plus DPPE is ongoing. The possible mechanisms underlying chemo-potentiation by these agents are discussed. As new anthracycline/taxane combinations establish themselves in earlier stages of the disease, the need for effective, non-cross resistant salvage regimens will emerge.
Hertz, Daniel L; Kidwell, Kelley M; Vangipuram, Kiran; Li, Feng; Pai, Manjunath P; Burness, Monika; Griggs, Jennifer J; Schott, Anne F; Van Poznak, Catherine; Hayes, Daniel F; Lavoie Smith, Ellen M; Henry, N Lynn
2018-04-27
Purpose: Paclitaxel exposure, specifically the maximum concentration ( C max ) and amount of time the concentration remains above 0.05 μmol/L ( T c >0.05 ), has been associated with the occurrence of paclitaxel-induced peripheral neuropathy. The objective of this study was to validate the relationship between paclitaxel exposure and peripheral neuropathy. Experimental Design: Patients with breast cancer receiving paclitaxel 80 mg/m 2 × 12 weekly doses were enrolled in an observational clinical study (NCT02338115). Paclitaxel plasma concentration was measured at the end of and 16-26 hours after the first infusion to estimate C max and T c >0.05 Patient-reported peripheral neuropathy was collected via CIPN20 at each dose, and an 8-item sensory subscale (CIPN8) was used in the primary analysis to test for an association with T c >0.05 Secondary analyses were conducted using C max as an alternative exposure parameter and testing each parameter with a secondary endpoint of the occurrence of peripheral neuropathy-induced treatment disruption. Results: In 60 subjects included in the analysis, the increase in CIPN8 during treatment was associated with baseline CIPN8, cumulative dose, and relative dose intensity ( P < 0.05), but neither T c >0.05 ( P = 0.27) nor C max ( P = 0.99). In analyses of the secondary endpoint, cumulative dose (OR = 1.46; 95% confidence interval (CI), 1.18-1.80; P = 0.0008) and T c >0.05 (OR = 1.79; 95% CI, 1.06-3.01; P = 0.029) or C max (OR = 2.74; 95% CI, 1.45-5.20; P = 0.002) were associated with peripheral neuropathy-induced treatment disruption. Conclusions: Paclitaxel exposure is predictive of the occurrence of treatment-limiting peripheral neuropathy in patients receiving weekly paclitaxel for breast cancer. Studies are warranted to determine whether exposure-guided dosing enhances treatment effectiveness and/or prevents peripheral neuropathy in these patients. Clin Cancer Res; 1-9. ©2018 AACR. ©2018 American Association for Cancer Research.
Shitara, Kohei; Muro, Kei; Shimada, Yasuhiro; Hironaka, Shuichi; Sugimoto, Naotoshi; Komatsu, Yoshito; Nishina, Tomohiro; Yamaguchi, Kensei; Segawa, Yoshihiko; Omuro, Yasushi; Tamura, Takao; Doi, Toshihiko; Yukisawa, Seigo; Yasui, Hirofumi; Nagashima, Fumio; Gotoh, Masahiro; Esaki, Taito; Emig, Michael; Chandrawansa, Kumari; Liepa, Astra M; Wilke, Hansjochen; Ichimiya, Yukako; Ohtsu, Atsushi
2016-07-01
We evaluated the safety and efficacy of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients previously treated for advanced gastric or gastroesophageal junction adenocarcinoma in Japanese and Western subgroups from the RAINBOW trial. Patients received ramucirumab at 8 mg/kg or placebo (days 1 and 15) plus paclitaxel at 80 mg/m(2) (days 1, 8, and 15 of a 28-day cycle). End points were compared between treatment arms within Japanese (N = 140) and Western (N = 398) populations. The incidence of adverse events of grade 3 or higher was higher for ramucirumab plus paclitaxel in both populations (Japanese population, 83.8 % vs 52.1 %; Western population, 79.1 % vs 61.9 %). Neutropenia was the commonest adverse event of grade 3 or higher, with a higher incidence for ramucirumab plus paclitaxel (Japanese population, 66.2 % vs 25.4 %; Western population, 32.1 % vs 14.7 %). The incidence of febrile neutropenia was low and was similar between treatment arms in both populations. The overall survival hazard ratio was 0.88 (95 % confidence interval, 0.60-1.28) in the Japanese population and 0.73 (95 % confidence interval, 0.58-0.91) in the Western population. The progression-free survival hazard ratio was 0.50 (95 % confidence interval, 0.35-0.73) in the Japanese population and 0.63 (95 % confidence interval, 0.51-0.79) in the Western population. The objective response rate was higher for ramucirumab plus paclitaxel in both populations (Japanese population, 41.2 % vs 19.4 %; Western population, 26.8 % vs 13.0 %), as was the 6-month survival rate (Japanese population, 94.1 % vs 71.4 %; Western population, 66.0 % vs 49.0 %). Safety profiles of the ramucirumab plus paclitaxel arm were similar between populations, though there was a higher incidence of neutropenia in Japanese patients. Progression-free survival and objective response rate improvements were observed for ramucirumab plus paclitaxel in both populations. CLINICALTRIALS. NCT01170663.
Rahn, Elizabeth J.; Zvonok, Alexander M.; Thakur, Ganesh A.; Khanolkar, Atmaram D.; Makriyannis, Alexandros; Hohmann, Andrea G.
2009-01-01
Activation of cannabinoid CB2 receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB2 receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the anti-tumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p. per day) on four alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the cremophor: ethanol: saline vehicle at the same times. Two structurally distinct cannabinoid CB2 agonists—the aminoalkylindole (R,S)-AM1241 ((R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone) and the cannabilactone AM1714 (1,9-dihydroxy-3-(1′,1′-dimethylheptyl)-6H-benzo[c]chromene-6-one)—produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia following systemic administration. Pretreatment with the CB2 antagonist SR144528 (5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide), but not the CB1 antagonist SR141716 (5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), blocked the anti-allodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or pre-injection thresholds, consistent with mediation by CB2. Administration of either the CB1 or CB2 antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the cremophor vehicle in lieu of paclitaxel whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB2 receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy. PMID:18664590
Rahn, Elizabeth J; Zvonok, Alexander M; Thakur, Ganesh A; Khanolkar, Atmaram D; Makriyannis, Alexandros; Hohmann, Andrea G
2008-11-01
Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p./day) on 4 alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the Cremophor EL/ethanol/saline vehicle at the same times. Two structurally distinct cannabinoid CB(2) agonists, the aminoalkylindole (R,S)-AM1241 [(R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone] and the cannabilactone AM1714 (1,9-dihydroxy-3-(1',1'-dimethylheptyl)-6H-benzo[c]chromene-6-one), produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia after systemic administration. Pretreatment with the CB(2) antagonist SR144528 [5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide], but not the CB(1) antagonist SR141716 [5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide], blocked the antiallodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or preinjection thresholds, consistent with mediation by CB(2). Administration of either the CB(1) or CB(2) antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the Cremophor EL vehicle in lieu of paclitaxel, whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.
Albert, Jeffrey M; Buzdar, Aman U; Guzman, Reina; Allen, Pamela K; Strom, Eric A; Perkins, George H; Woodward, Wendy A; Hoffman, Karen E; Tereffe, Welela; Hunt, Kelly K; Buchholz, Thomas A; Oh, Julia L
2011-07-01
A previous randomized trial (CALGB 9344/Intergroup 0148) compared four cycles of adjuvant doxorubicin/cyclophosphamide (AC) to four cycles of AC plus four cycles of paclitaxel (AC + T) and demonstrated that the addition of paclitaxel improved locoregional control (LRC) in patients with node-positive breast cancer. However, it could not be determined whether it was the paclitaxel or the increased duration of chemotherapy that led to this improvement. The present study aimed to analyze whether the addition of paclitaxel to a doxorubicin-based regimen improves LRC in a cohort of patients who all received eight total cycles of chemotherapy. Five hundred eleven women with operable breast cancer were randomized on a single-institution prospective trial to receive 5-fluorouracil, doxorubicin, cyclophosphamide (FAC) × 8 cycles (n = 252) or FAC × 4 cycles plus paclitaxel × 4 cycles (TFAC) (n = 259). Rates of LRC and overall survival (OS) were analyzed. Median follow-up was 124 months (range 5-167 months). The 10-year LRC rate was 92.6 versus 93.1% in the FAC versus TFAC arms, respectively (P = 0.26). The LRC between treatment arms did not differ when analyzed by locoregional treatment group: breast conservation therapy (BCT), mastectomy alone (M), and mastectomy + radiation (M + RT). The 10-year LRC rates were 95.1% (FAC) versus 91.2% (TFAC) after BCT (P = 0.98), 89.5% (FAC) versus 93.4% (TFAC) after M (P = 0.24), and 94.7% (FAC) versus 96.5% (TFAC) after M + RT (P = 0.59). Additionally, there was no difference in OS between the treatment arms, with 10-year OS rates of 78.4% (FAC) versus 81.7% (TFAC) (P = 0.93). The addition of paclitaxel to a doxorubicin-based regimen had no impact on LRC, regardless of the type of local therapy received. Historically inferior LRC with AC chemotherapy alone versus AC + T may have been due to an inadequate duration of systemic therapy and not due to the absence of paclitaxel.
Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy.
Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka
2015-11-01
Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy. © FASEB.
Roychowdhury, D F; Desai, P; Zhu, Y W
1997-08-01
This phase II study was performed to investigate the efficacy of a 3-hour 225 mg/m2 paclitaxel infusion (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) followed 24 hours later by a 30-minute infusion of carboplatin (dosed to an area under the concentration-time curve of 6) in patients with stage IIIA, IIIB, or IV non-small cell lung cancer. Patients received chemotherapy and were monitored for toxicity, response, quality of life, and survival. Paclitaxel and carboplatin pharmacokinetics were also determined with the first cycle of chemotherapy. Eleven men have been treated to date. Eight were white and three black, with a median age of 65 years. All patients had a performance status of 0 or 1. The regimen was well tolerated, with no deaths or grade 4 toxicities noted. The most common grade 3 toxicity was neutropenia, thrombocytopenia, and parasthesias (observed in <10% of cycles). The overall response rate was 57% (14% complete and 43% partial responses). Quality of life improved in most patients. Physical and emotional well-being improved in 57%, functional well-being in 43%, and social/family well-being in 14% of patients. Pharmacokinetic data are being analyzed by limited sampling technique to predict the paclitaxel area under the concentration-time curve. This unique schedule of paclitaxel and carboplatin is well tolerated and active, and is associated with improvements in various aspects of quality of life.
Park, Andrea M; Bhatt, Neel K; Paniello, Randal C
2017-03-01
To investigate the efficacy of paclitaxel, a potent microtubule inhibitor with a more favorable therapeutic index as compared with vincristine, in preventing post-traumatic nerve regeneration of the recurrent laryngeal nerve into the posterior cricoarytenoid muscle in a canine laryngeal model. Experimental animal study. Forty-nine canine hemilaryngeal specimens were divided into five experimental groups. Under general anesthesia, a tracheostomy, recurrent laryngeal nerve (RLN) transection and repair, and laryngeal adductory pressures (LAP) were measured pre-RLN injury. The approach to the posterior cricoarytenoid (PCA) muscle for neurotoxin injection was transoral or open transcervical, at 0 or 3 months. At 6 months, postinjury LAPs were measured and the animals were sacrificed at 6 months to allow for laryngeal harvesting and analysis. Paclitaxel demonstrated increased mean laryngeal adductory pressures (70.6%) as compared with saline control (55.5%). The effect of paclitaxel was the same as observed with vincristine at 0 months and with a delayed injection at 3 months. There was no difference between transoral or open injection groups. PCA muscle injection with paclitaxel resulted in improved strength of laryngeal adduction. This effect was similar to that of vincristine at both 0 and 3 months following nerve injury. A single intramuscular injection of paclitaxel was well tolerated. Additional human studies are needed to determine the degree of clinical benefit of this intervention. NA Laryngoscope, 127:651-655, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Yadav, Deepak; Anwar, Mohammad Faiyaz; Garg, Veena; Kardam, Hemant; Beg, Mohd Nadeem; Suri, Suruchi; Gaur, Sikha; Asif, Mohd
2014-01-01
Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/ vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physico- chemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmed polymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/ VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at 38° over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.
Wein, Alexander N.; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T.; Leppla, Stephen H.
2013-01-01
PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wild-type lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an anti-mitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an anti-angiogenesis therapy such as sunitinib or sorafinib. PMID:22843210
Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella
2016-01-01
To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.
Campone, M; Levy, V; Bourbouloux, E; Berton Rigaud, D; Bootle, D; Dutreix, C; Zoellner, U; Shand, N; Calvo, F; Raymond, E
2009-01-01
Everolimus displays antiproliferative effects on cancer cells, yields antiangiogenic activity in established tumours, and shows synergistic activity with paclitaxel in preclinical models. This study assessed the safety and the pharmacokinetic interactions of everolimus and paclitaxel in patients with advanced malignancies. Everolimus was dose escalated from 15 to 30 mg and administered with paclitaxel 80 mg m−2 on days 1, 8, and 15 every 28 days. Safety was assessed weekly, and dose-limiting toxicity (DLT) was evaluated in cycle 1. A total of 16 patients (median age 54.5 years, range 33–69) were entered; 11 had prior taxane therapy for breast (n=5), ovarian (n=3), and vaginal cancer (n=1) or angiosarcoma (n=2). Grade 3 neutropenia in six patients met the criteria for DLT in two patients receiving everolimus 30 mg weekly. Other drug-related grade 3 toxicities were leucopenia, anaemia, thrombocytopenia, stomatitis, asthenia, and increased liver enzymes. Tumour stabilisation reported in 11 patients exceeded 6 months in 2 patients with breast cancer. Everolimus showed an acceptable safety profile at the dose of 30 mg when combined with weekly paclitaxel 80 mg m−2, warranting further clinical investigation. PMID:19127256
Tezuka, Kenji; Takashima, Tsutomu; Kashiwagi, Shinichiro; Kawajiri, Hidemi; Tokunaga, Shinya; Tei, Seika; Nishimura, Shigehiko; Yamagata, Shigehito; Noda, Satoru; Nishimori, Takeo; Mizuyama, Yoko; Sunami, Takeshi; Ikeda, Katsumi; Ogawa, Yoshinari; Onoda, Naoyoshi; Ishikawa, Tetsuro; Kudoh, Shinzoh; Takada, Minoru; Hirakawa, Kosei
2017-01-01
Although the concurrent use of anthracycline-containing chemotherapy and taxane with trastuzumab are considered the treatment of choice for the primary systemic therapy of human epidermal growth factor receptor 2 (HER2)-overexpressing early breast cancer, non-anthracycline regimens, such as concurrent administration of docetaxel and carboplatin with trastuzumab, exhibited similar efficacies in a previous study. In addition, tri-weekly treatment with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resulted in significantly higher response rates and a favorable safety profile compared with standard paclitaxel for metastatic breast cancer patients in another phase III study. Based on these results, a phase I study of combination therapy with nab-paclitaxel, carboplatin and trastuzumab was planned, in order to estimate its efficacy and safety for HER2-overexpressing locally advanced breast cancer. The present study was designed to determine the dose-limiting toxicity (DLT), maximum tolerated dose and recommended dose of this combination treatment in women with HER2-overexpressing locally advanced breast cancer. The starting dose of nab-paclitaxel was 220 mg/m2 (level 1), and the dose was escalated to 260 mg/m2 (level 2). Nab-paclitaxel was administered with carboplatin (area under the curve, 6 mg/ml/min) and trastuzumab tri-weekly. A total of 6 patients were enrolled. Although no DLT was observed during the first cycle, 4 patients developed grade 4 thrombocytopenia, 2 had grade 4 neutropenia and 3 exhibited a grade 4 decrease in hemoglobin levels. In the present phase I study, although no patients experienced DLTs, this regimen was associated with severe hematological toxicities and it was not well tolerated. However, considering the high efficacy and lower risk of cardiotoxicity and secondary carcinogenesis with taxane, platinum and trastuzumab combination therapy, further evaluation of another regimen including weekly administration or a more accurate dose setting should be conducted. PMID:28413662
Nanoformulated water-soluble paclitaxel to enhance drug efficacy and reduce hemolysis side effect.
Gu, Weiting; Chen, Jie; Patra, Prabir; Yang, Xiaoyan; Gu, Quanrong; Wei, Lingxuan; Acker, Jason P; Kong, Beihua
2017-07-01
Surgery, chemotherapy, and radiotherapy are the three top cancer treatment modalities. Paclitaxel (PTX) is one of the most widely used chemotherapy drugs. However, its clinical applications have been significantly limited due to: (i) serious hemolysis effect of currently available commercial paclitaxel formulations and (ii) its water insolubility. An easy way to deliver paclitaxel by a new nanocarrier system using pluronic copolymers of P123/F68 and Sorbitan monopalmitate (Span 40) was reported in our previous research article. The characterization of the formulation and analysis of drug release and cellular uptake were also presented. In this article, we reported discoveries of our follow-up in vivo antitumor and in vitro hemolytic study discoveries. The experimental results showed that the nanoformulated PTX achieved much better tumor suppression performance while reducing hemolysis side effects. This newly formulated drug can significantly improve patient outcomes in cancer chemotherapy.
Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment
Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing
2016-01-01
Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354
Monteiro, Liziane O F; Lopes, Sávia C A; Barros, André Luís B; Magalhães-Paniago, Rogério; Malachias, Ângelo; Oliveira, Mônica C; Leite, Elaine A
2016-08-01
Paclitaxel is a potent antimicrotubule chemotherapeutic agent widely used for clinical treatment of a variety of solid tumors. However, the low solubility of the drug in aqueous medium and the toxic effects of the commercially available formulation, Taxol(®), has hindered its clinical application. To overcome these paclitaxel-related disadvantages, several drug delivery approaches have been thoroughly investigated. In this context, our research group has developed long-circulating and pHsensitive liposomes containing paclitaxel composed of dioleylphosphatidylethanolamine, cholesterylhemisuccinate and distearoylphosphatidylethanolamine-polyethylene glycol2000, which have shown to be very promising carriers for this taxane. For the destabilization of pH-sensitive liposomal systems and the release of the encapsulated drug in the cytoplasm of tumor cells, the occurrence of a phase transition from a lamellar to a non-lamellar phase of dioleylphosphatidylethanolamine molecules is essential. Two techniques, differential scanning calorimetry and small angle X-ray scattering, were used to investigate the influence of the liposomal components and paclitaxel in the phase transition process of dioleylphosphatidylethanolamine molecules and to evaluate the pH-sensitivity of the formulation under low hydration conditions. The findings clearly evidence the phase transition of dioleylphosphatidylethanolamine molecules in the presence and absence of PTX indicating that the introduction of the drug in the system does not bring damage to the pH-sensitivity of the system, which resulting in liposome destabilization at low pH regions and encapsulated paclitaxel release preferentially in a desired target tissue. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Tingting; Ma, Wenxiao; Sun, Yantong; Yang, Yan; Zhang, Weiping; Fawcett, J Paul; Du, Hongwei; Gu, Jingkai
2013-01-01
A high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of paclitaxel in intracellular compartments using docetaxel as internal standard (IS) has been developed and validated. A549 cancer cells (10(6)) were incubated with paclitaxel (2ng/mL) for up to 4h and then subjected to sequential extraction of cytosolic, membrane/organelle, nuclear and cytoskeleton soluble protein. Fractions were ultrasonicated to release protein bound paclitaxel after which drug was extracted using liquid-liquid extraction with diethyl ether:dichloromethane (2:1, v/v). Chromatographic separation was then carried out on an Ascentis Express C18 column (50mm×4.6mm, 2.7μm) with a mobile phase of acetonitrile:0.1% formic acid in water (50:50, v/v). Detection involved electrospray positive ionization followed by multiple reactions monitoring of the precursor-to-product ion transitions of paclitaxel at m/z 854.4→286.3 and docetaxel at m/z 808.6→226.1. Assay validation based on samples of total cell extract in the same buffer as protein fractions showed the assay was linear over the range 2-600pg/mL with intra- and inter-day precision (as relative standard deviation) and accuracy (as relative error) of <7% and <±12%, respectively. Recovery was approximately 70% and matrix effects were minimal. The distribution of paclitaxel in subcellular components of A549 cancer cells was mainly into the cytoskeletal compartment. Copyright © 2012 Elsevier B.V. All rights reserved.
Assessment of genetic and epigenetic variation during long-term Taxus cell culture.
Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang
2012-07-01
Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.
Zhang, Yangqing; Tang, Lina; Sun, Leilei; Bao, Junbo; Song, Cunxian; Huang, Laiqiang; Liu, Kexin; Tian, Yan; Tian, Ge; Li, Zhen; Sun, Hongfan; Mei, Lin
2010-06-01
Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Khan, Ismail; Iqbal, Zafar; Khan, Abad; Hassan, Muhammad; Nasir, Fazle; Raza, Abida; Ahmad, Lateef; Khan, Amjad; Akhlaq Mughal, Muhammad
2016-10-15
A simple, economical, fast, and sensitive RP-HPLC-UV method has been developed for the simultaneous quantification of Sorafenib and paclitaxel in biological samples and formulations using piroxicam as an internal standard. The experimental conditions were optimized and method was validated according to the standard guidelines. The separation of both the analytes and internal standard was achieved on Discovery HS C18 column (250mm×4.6mm, 5μm) using Acetonitrile and TFA (0.025%) in the ratio of (65:35V/V) as the mobile phase in isocratic mode at a flow rate of 1ml/min, with a wavelength of 245nm and at a column oven temperature of 25°Cin a short run time of 12min. The limits of detection (LLOD) were 5 and 10ng/ml while the limits of quantification (LLOQ) were 10 and 15ng/ml for sorafenib and paclitaxel, respectively. Sorafenib, paclitaxel and piroxicam (IS) were extracted from biological samples by applying acetonitrile as a precipitating and extraction solvent. The method is linear in the range of 15-20,000ng/ml for paclitaxel and 10-5000ng/ml for sorafenib, respectively. The method is sensitive and reliable by considering both of its intra-day and inter-day co-efficient of variance. The method was successfully applied for the quantification of the above mentioned drugs in plasma. The developed method will be applied towards sorafenib and paclitaxel pharmacokinetics studies in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.
Ravar, Fatemeh; Saadat, Ebrahim; Gholami, Mehdi; Dehghankelishadi, Pouya; Mahdavi, Mehdi; Azami, Samira; Dorkoosh, Farid A
2016-05-10
Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions
Giordano, Guido; Pancione, Massimo; Olivieri, Nunzio; Parcesepe, Pietro; Velocci, Marianna; Di Raimo, Tania; Coppola, Luigi; Toffoli, Giuseppe; D’Andrea, Mario Rosario
2017-01-01
Pancreatic cancer (PDAC) is an aggressive and chemoresistant disease, representing the fourth cause of cancer related deaths in western countries. Majority of patients have unresectable, locally advanced or metastatic disease at time of diagnosis and the 5-year survival rate in these conditions is extremely low. For more than a decade gemcitabine has been the cornerstone of metastatic PDAC treatment, although survival benefit was very poor. PDAC cells are surrounded by an intense desmoplastic reaction that may create a barrier to the drugs penetration within the tumor. Recently PDAC stroma has been addressed as a potential therapeutic target. Nano albumin bound (Nab)-paclitaxel is an innovative molecule depleting tumor stroma, through interaction between albumin and secreted protein acidic and rich in cysteine. Addition of nab-paclitaxel to gemcitabine has showed activity and efficacy in metastatic PDAC first-line treatment improving survival and overall response rate vs gemcitabine alone in the MPACT phase III study. This combination represents one of the standards of care in advanced PDAC therapy and is suitable to a broader spectrum of patients compared to other schedules. Nab-paclitaxel is under investigation as a backbone of chemotherapy in novel combinations with target agents or immunotherapy in locally advanced or metastatic PDAC. In this article, we provide an updated and critical overview about the role of nab-paclitaxel in PDAC treatment based on the latest advances in preclinical and clinical research. Furthermore, we focus on the use of nab-paclitaxel within the context of metastatic PDAC treatment landscape and we discuss about future implications in the light of current clinical ongoing trials. PMID:28932079
Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors
2005-04-01
chemotherapeutic agents including cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids (28). To determine whether the...cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids (28). Sasaki et al reported that the level of Bcl-2 in cancer cells
Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.
Mok, Tony S; Wu, Yi-Long; Thongprasert, Sumitra; Yang, Chih-Hsin; Chu, Da-Tong; Saijo, Nagahiro; Sunpaweravong, Patrapim; Han, Baohui; Margono, Benjamin; Ichinose, Yukito; Nishiwaki, Yutaka; Ohe, Yuichiro; Yang, Jin-Ji; Chewaskulyong, Busyamas; Jiang, Haiyi; Duffield, Emma L; Watkins, Claire L; Armour, Alison A; Fukuoka, Masahiro
2009-09-03
Previous, uncontrolled studies have suggested that first-line treatment with gefitinib would be efficacious in selected patients with non-small-cell lung cancer. In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin-paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin-paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin-paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin-paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin-paclitaxel group. Gefitinib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.) 2009 Massachusetts Medical Society
2018-03-23
Recurrent Uterine Corpus Carcinoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer
Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella
2016-01-01
To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459
Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy
Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru
2017-01-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969
Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles
England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.
2015-01-01
Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197
Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.
Kawata, Daisuke; Wu, Zetang
2017-09-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.
NASA Astrophysics Data System (ADS)
Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei
2013-10-01
A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.
Müller, Fabian; Stookey, Stephanie; Cunningham, Tyler; Pastan, Ira
2017-05-09
CD22-targeted recombinant immunotoxins (rIT) are active in hairy cell leukemia or acute lymphoblastic leukemia (ALL), but not in mantle cell lymphoma (MCL) patients. The goal was to enhance rIT efficacy in vivo and to define a strong combination treatment. Activity of Moxetumomab pasudotox (Moxe) and LR combined with paclitaxel was tested against MCL cell lines in vitro and as bolus doses or continuous infusion in xenograft models. In the KOPN-8 ALL xenograft, Moxe or paclitaxel alone was active, but all mice died from leukemia; when combined, 60% of the mice achieved a sustained complete remission. Against MCL cells in vitro, LR was more active than Moxe and the cells had to be exposed to rIT for more than 24 hours for them to die. To maintain high blood levels in vivo, LR was administered continuously by 7-day pumps achieving a well-tolerated steady plasma concentration of 45 ng/ml. In JeKo-1 xenografts, continuously administered LR was 14-fold more active than bolus doses and the combination with paclitaxel additionally improved responses by 135-fold. Maintaining high rIT-plasma levels greatly improves responses in the JeKo-1 model and paclitaxel substantially enhances bolus and continuously infused rIT, supporting a clinical evaluation against B-cell malignancies.
Matsuo, Mitsuhiro; Ito, Hisakatsu; Takemura, Yoshinori; Hattori, Mizuki; Kawakami, Masaaki; Takahashi, Norimasa; Yamazaki, Mitsuaki
2017-08-01
Paclitaxel-induced peripheral neuropathy (PIPN) is one of the serious adverse events associated with paclitaxel-based cancer treatments. A recent case study showed that the antiplatelet agent clopidogrel inhibits paclitaxel metabolism via cytochrome P450 (CYP) 2C8, resulting in severe PIPN. The aim of this study was to determine the impact of clopidogrel as a risk factor for the development of PIPN, using a retrospective cohort study. Data from paclitaxel-treated patients with or without clopidogrel and low-dose aspirin treatment were retrieved from medical charts. A total of 161 adult patients were included in this study: 135 were controls, 9 were clopidogrel-treated and 17 were aspirin-treated. The clopidogrel group had a greater proportion of males and a higher rate of comorbidities, such as diabetes mellitus and dyslipidemia, than the control group. However, patient characteristics were similar between the clopidogrel and aspirin groups. Severe PIPN was diagnosed in 3 (2.2%) and 2 (22.2%) patients in the control and clopidogrel groups, respectively (odds ratio: 12.0; p = 0.031). No patients in the aspirin group presented with severe neuropathy. These pilot data suggest that concomitant treatment with clopidogrel leads to a greater risk of PIPN. The avoidance of concomitant clopidogrel use may be effective in reducing clopidogrel-associated PIPN.
Jeong, Ju-Yeon; Kang, Haeyoun; Kim, Tae Hoen; Kim, Gwangil; Heo, Jin-Hyung; Kwon, Ah-Young; Kim, Sewha; Jung, Sang-Geun; An, Hee-Jung
2017-02-01
To identify microRNAs (miRNAs) regulating Notch3 expression in association with paclitaxel resistance, candidate miRNAs targeting Notch3 were predicted using TargetScan. We found that miR-136 directly targets Notch3, and miR-136 was significantly downregulated in OSC tissues relative to normal control tissues, and low expression of miR-136 correlated with poor overall in ovarian cancer patients. Artificial miR-136 overexpression significantly reduced cell viability, proliferation, Cancer stem cell (CSC) spheroid formation, and angiogenesis, and increased apoptosis in paclitaxel-resistant SKpac cells compared with the effects of paclitaxel alone. miR-136 overexpression downregulated cell survival- (survivin, DNA-PK, pS6, S6) and cell cycle- (Cyclin D1, NF-κB) related proteins, and anti-apoptotic proteins (BCL2, and BCL-XL), and upregulated pro-apoptotic proteins (Bim, Bid, and Bax). Taken together, miR-136 targets the Notch3 oncogene and functions as a tumor suppressor. miR-136 overexpression resensitized paclitaxel-resistant ovarian cancer cells and reduced CSC activities, suggesting a promising new target for the treatment of chemoresistant ovarian cancers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Feliu, J; Martin, G; Lizón, J; Chacón, J I; Dorta, J; de Castro, J; Rodríguez, A; Sánchez Heras, B; Torrego, J C; Espinosa, E; González Barón, M
2001-10-01
New effective therapies are needed to improve the outcome of patients with advanced non-small-cell lung cancer (NSCLC). The aim of this study was to assess the response rate and survival obtained with a sequential regimen of chemotherapy. Patients with newly diagnosed stage IIIb-IV NSCLC were included. They all had measurable disease and a good performance status (0-2 in the Eastern Cooperative Oncology Group scale). Chemotherapy consisted of weekly paclitaxel 150 mg/m2 x 6, followed two weeks later by cisplatin 100 mg/m2 on day 1, gemcitabine 1,000 mg/m2 on days 1 and 14, and vinorelbine 25 mg/m2 on days 1 and 14 (CGV). CGV was administered every 28 days for a maximum of six courses. Fifty-two patients were included, 19 (37%) with stage IIIb and 33 (63%) with stage IV disease. After therapy with weekly paclitaxel. 29 partial responses were obtained (56%, 95% confidence interval (95% CI): 38%-67%), whereas 15 patients had stable disease (29%) and eight had a progression (15%). After CGV, there were four complete remissions (8%) and 24 partial responses (46%), for an overall response rate of 54% (95% CI: 37%-65%). Eight patients had stable disease (15%) and 16 had a progression (31%). No patient progressing after paclitaxel responded to CGV, whereas 5 out of 15 patients with stable disease reached a partial response with CGV (33%). On the contrary, 5 out of 29 patients with a partial response to paclitaxel progressed after CGV (17%). Median survival has not been reached after a median follow-up of 14 months. Median time to progression was nine months. Fifty-six percent of patients remain alive at one year. Two hundred eighty-nine courses of paclitaxel and 170 of CGV were given, with a median of 5.5 and 3.4 per patient, respectively (ranges 2-6 and 0-6. respectively). WHO grade 3-4 toxicities for paclitaxel were: neutropenia in two patients (4/) and peripheral neuropathy in five (10%). Two patients had allergic reactions requiring paclitaxel withdrawal, whereas four (8%) had hyperglycemia >250 mg/ml. Grade 3-4 toxicities for CGV were: neutropenia in ten patients (20%), peripheral neuropathy in six (12%), anemia in four (8%), nausea/vomiting in five (10%). thrombocytopenia in two (4%), and fatigue in four (8%). Our results suggest that sequential chemotherapy with weekly paclitaxel followed by CGV is highly active in patients with advanced NSCLC and has an acceptable toxicity. This schedule deserves further evaluation in a phase III study.
Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors
2006-04-01
chemotherapeutic agents including cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids [29]. To determine whether the...anthracycline, cytarabine , paclitaxel, and corticosteroids [29]. Sasaki et al reported that the level of Bcl-2 in cancer cells was an indicator of 5-FU
Tan, A R; Johannes, H; Rastogi, P; Jacobs, S A; Robidoux, A; Flynn, P J; Thirlwell, M P; Fehrenbacher, L; Stella, P J; Goel, R; Julian, T B; Provencher, L; Bury, M J; Bhatt, K; Geyer, C E; Swain, S M; Mamounas, E P; Wolmark, N
2015-01-01
This multicenter single-arm phase II study evaluated the addition of pazopanib to concurrent weekly paclitaxel following doxorubicin and cyclophosphamide as neoadjuvant therapy in human epidermal growth factor receptor (HER2)-negative locally advanced breast cancer (LABC). Patients with HER2-negative stage III breast cancer were treated with doxorubicin 60 mg/m(2) and cyclophosphamide 600 mg/m(2) for four cycles every 3 weeks followed by weekly paclitaxel 80 mg/m(2) on days 1, 8, and 15 every 28 days for four cycles concurrently with pazopanib 800 mg orally daily prior to surgery. Post-operatively, pazopanib was given daily for 6 months. The primary endpoint was pathologic complete response (pCR) in the breast and lymph nodes. Between July 2009 and March 2011, 101 patients with stage IIIA-C HER2-negative breast cancer were enrolled. The pCR rate in evaluable patients who initiated paclitaxel and pazopanib was 17 % (16/93). The pCR rate was 9 % (6/67) in hormone receptor-positive tumors and 38 % (10/26) in triple-negative tumors. Pre-operative pazopanib was completed in only 39 % of patients. The most frequent grade 3 and 4 adverse events during paclitaxel and pazopanib were neutropenia (27 %), diarrhea (5 %), ALT and AST elevations (each 5 %), and hypertension (5 %). Although the pCR rate of paclitaxel and pazopanib following AC chemotherapy given as neoadjuvant therapy in women with LABC met the pre-specified criteria for activity, there was substantial toxicity, which led to a high discontinuation rate of pazopanib. The combination does not appear to warrant further evaluation in the neoadjuvant setting for breast cancer.
Meng, Xianze; Zhang, Yu; Li, Aihui; Xin, Jiajia; Lao, Lixing; Ren, Ke; Berman, Brian M; Tan, Ming; Zhang, Rui-Xin
2011-09-26
Research supports the effectiveness of acupuncture for conditions such as chronic low back and knee pain. In a five-patient pilot study the modality also improved the symptoms of chemotherapy-induced neuropathic pain. Using an established rat model of paclitaxel-induced peripheral neuropathy, we evaluated the effect of electroacupuncture (EA) on paclitaxel-induced hyperalgesia and allodynia that has not been studied in an animal model. We hypothesize that EA would relieve the paclitaxel-induced mechanical allodynia and hyperalgesia, which was assessed 30 min after EA using von Frey filaments. Beginning on day 13, the response frequency to von Frey filaments (4-15 g) was significantly increased in paclitaxel-injected rats compared to those injected with vehicle. EA at 10 Hz significantly (P<0.05) decreased response frequency at 4-15 g compared to sham EA; EA at 100 Hz only decreased response frequency at 15 g stimulation. Compared to sham EA plus vehicle, EA at 10 Hz plus either a μ, δ, or κ opioid receptor antagonist did not significantly decrease mechanical response frequency, indicating that all three antagonists blocked EA inhibition of allodynia and hyperalgesia. Since we previously demonstrated that μ and δ but not κ opioid receptors affect EA anti-hyperalgesia in an inflammatory pain model, these data show that EA inhibits pain through different opioid receptors under varying conditions. Our data indicate that EA at 10 Hz inhibits mechanical allodynia/hyperalgesia more potently than does EA at 100 Hz. Thus, EA significantly inhibits paclitaxel-induced allodynia/hyperalgesia through spinal opioid receptors, and EA may be a useful complementary treatment for neuropathic pain patients. Copyright © 2011 Elsevier B.V. All rights reserved.
Singhmar, Pooja; Huo, XiaoJiao; Li, Yan; Dougherty, Patrick M; Mei, Fang; Cheng, Xiaodong; Heijnen, Cobi J; Kavelaars, Annemieke
2018-05-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Giorgi, Ugo; Giannini, Massimo; Department of Radiotherapy, Pierantoni Hospital, Forli
Purpose: To verify the feasibility of, and quantify the risk of, pneumonitis from locoregional radiotherapy (RT) after high-dose dense chemotherapy with epirubicin and paclitaxel with peripheral blood progenitor cell support in patients with high-risk Stage II-III breast cancer. Methods and Materials: Treatment consisted of a mobilizing course of epirubicin 150 mg/m{sup 2}, preceded by dexrazoxane (Day 1), paclitaxel 175 mg/m{sup 2} (Day 2), and filgrastim; followed by three courses of epirubicin 150 mg/m{sup 2}, preceded by dexrazoxane (Day 1), paclitaxel 400 mg/m{sup 2} (Day 2), and peripheral blood progenitor cell support and filgrastim, every 16-19 days. After chemotherapy, patients weremore » treated with locoregional RT, which included the whole breast or the chest wall, axilla, and supraclavicular area. Results: Overall, 64 of 69 patients were evaluable. The interval between the end of chemotherapy and the initiation of RT was at least 1.5-2 months (mean 2). No treatment-related death was reported. After a median follow-up of 27 months from RT (range 5-77 months), neither clinically relevant radiation pneumonitis nor congestive heart failure had been reported. Minor and transitory lung and cardiac toxicities were observed. Conclusion: Sequential high doses of epirubicin, preceded by dexrazoxane, and paclitaxel did not adversely affect the tolerability of locoregional RT in breast cancer patients. The risk of pneumonitis was not affected by the use of sequential paclitaxel with an interval of at least 1.5-2 months between the end of chemotherapy and the initiation of RT. Long-term follow-up is needed to define the risk of cardiotoxicity in these patients.« less
Wang, Wei-Jan; Li, Chien-Feng; Chu, Yu-Yi; Wang, Yu-Hui; Hour, Tzyh-Chyuan; Yen, Chia-Jui; Chang, Wen-Chang; Wang, Ju-Ming
2017-01-15
Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201. Clin Cancer Res; 23(2); 503-13. ©2016 AACR. ©2016 American Association for Cancer Research.
Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J.
2013-01-01
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the US and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B ‘normal’ lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0–16 mM), camptothecin (0–25 nM) and paclitaxel (0–0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn®3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn’t cytotoxic towards BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI=1); synergistic (CI<1); antagonistic (CI>1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI=~0.17–1.5; DRI=~2.2–22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI=~0.8–9.9; DRI=~0.10–5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects. PMID:24063429
Dy, Grace K; Bruzek, Laura M; Croghan, Gary A; Mandrekar, Sumithra; Erlichman, Charles; Peethambaram, Prema; Pitot, Henry C; Hanson, Lorelei J; Reid, Joel M; Furth, Alfred; Cheng, Shinta; Martell, Robert E; Kaufmann, Scott H; Adjei, Alex A
2005-03-01
This phase I study was conducted to determine the toxicities, pharmacokinetics, and pharmacodynamics of BMS-214662, a farnesyl transferase inhibitor, in combination with paclitaxel and carboplatin, in patients with advanced solid tumors. Patients with solid tumors received one of six escalating dose levels of BMS-214662 infused over 1 hour given following paclitaxel and carboplatin on the first day of a 21-day cycle. Toxicities were graded by the National Cancer Institute common toxicity criteria and recorded as maximum grade per patient for each treatment cycle. Inhibition of farnesyl transferase activity in peripheral blood mononuclear cells (PBMCs) was evaluated. Accumulation of unfarnesylated HDJ-2 in PBMCs of patients was evaluated as a marker of farnesyl transferase inhibition by BMS-214662. Thirty patients received 141 cycles of treatment through six dose levels. Dose-limiting toxicities were neutropenia, thrombocytopenia, nausea, and vomiting. There was no pharmacokinetic interaction between BMS-214662 and paclitaxel. The maximum tolerated dose was established as BMS-214662 (160 mg/m(2)), paclitaxel (225 mg/m(2)) and carboplatin (area under the curve = 6 on day 1), every 21 days. Inhibition of HDJ-2 farnesylation in PBMCs of patients was shown. One measurable partial response was observed in a patient with taxane-resistant esophageal cancer. There was partial regression of evaluable disease in two other patients (endometrial and ovarian cancer). Stable disease (> 4 cycles) occurred in eight other patients. The combination of BMS-214662 with paclitaxel and carboplatin was well tolerated, with broad activity in solid tumors. There was no correlation between dose level and accumulation of unfarnesylated HDJ-2 in PBMCs nor tumor response.
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy
2017-06-01
Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.
Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti
2014-05-01
The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.
Thomas, A L; Cox, G; Sharma, R A; Steward, W P; Shields, F; Jeyapalan, K; Muller, S; O'Byrne, K J
2000-12-01
The aim of this phase I/II dose escalating study was to establish the maximum tolerated dose (MTD) of gemcitabine and paclitaxel given in combination in non-small cell lung cancer (NSCLC). 12 patients with stage IIIB and IV NSCLC received paclitaxel administered intravenously over 1 h followed by gemcitabine given over 30 min on days 1, 8 and 15 every 28 days. Pneumonitis was the principal side-effect observed with 4 patients affected. Of these, 1 experienced grade 3 toxicity after one cycle of treatment and the others had grade 2 toxicity. All 4 cases responded to prednisolone. No other significant toxicities were observed. Of the 8 evaluable patients, 3 had a partial response and 2 had minor responses. The study was discontinued due to this dose-limiting toxicity. The combination of paclitaxel and gemcitabine shows promising antitumour activity in NSCLC, however, this treatment schedule may predispose to pneumonitis.
Ishigami, Hironori; Fujiwara, Yoshiyuki; Fukushima, Ryoji; Nashimoto, Atsushi; Yabusaki, Hiroshi; Imano, Motohiro; Imamoto, Haruhiko; Kodera, Yasuhiro; Uenosono, Yoshikazu; Amagai, Kenji; Kadowaki, Shigenori; Miwa, Hiroto; Yamaguchi, Hironori; Yamaguchi, Takuhiro; Miyaji, Tempei; Kitayama, Joji
2018-05-10
Purpose Intraperitoneal paclitaxel plus systemic chemotherapy demonstrated promising clinical effects in patients with gastric cancer with peritoneal metastasis. We aimed to verify its superiority over standard systemic chemotherapy in overall survival. Patients and Methods This randomized phase III trial enrolled patients with gastric cancer with peritoneal metastasis who had received no or short-term (< 2 months) chemotherapy. Patients were randomly assigned at a two-to-one ratio to receive intraperitoneal and intravenous paclitaxel plus S-1 (IP; intraperitoneal paclitaxel 20 mg/m 2 and intravenous paclitaxel 50 mg/m 2 on days 1 and 8 plus S-1 80 mg/m 2 per day on days 1 to 14 for a 3-week cycle) or S-1 plus cisplatin (SP; S-1 80 mg/m 2 per day on days 1 to 21 plus cisplatin 60 mg/m 2 on day 8 for a 5-week cycle), stratified by center, previous chemotherapy, and extent of peritoneal metastasis. The primary end point was overall survival. Secondary end points were response rate, 3-year overall survival rate, and safety. Results We enrolled 183 patients and performed efficacy analyses in 164 eligible patients. Baseline characteristics were balanced between the arms, except that patients in the IP arm had significantly more ascites. The median survival times for the IP and SP arms were 17.7 and 15.2 months, respectively (hazard ratio, 0.72; 95% CI, 0.49 to 1.04; stratified log-rank P = .080). In the sensitivity analysis adjusted for baseline ascites, the hazard ratio was 0.59 (95% CI, 0.39 to 0.87; P = .008). The 3-year overall survival rate was 21.9% (95% CI, 14.9% to 29.9%) in the IP arm and 6.0% (95% CI, 1.6% to 14.9%) in the SP arm. Both regimens were well tolerated. Conclusion This trial failed to show statistical superiority of intraperitoneal paclitaxel plus systemic chemotherapy. However, the exploratory analyses suggested possible clinical benefits of intraperitoneal paclitaxel for gastric cancer.
Bachet, Jean-Baptiste; Chibaudel, Benoist; Bonnetain, Franck; Validire, Pierre; Hammel, Pascal; André, Thierry; Louvet, Christophe
2015-10-06
Metastatic pancreatic adenocarcinoma (PAC) prognosis remains dismal and gemcitabine monotherapy has been the standard treatment over the last decade. Currently, two first-line regimens are used in this setting: FOLFIRINOX and nab-paclitaxel plus gemcitabine. Increasing translational data on the predictive value of hENT1 for determining gemcitabine efficacy suggest that a non-gemcitabine-based regimen is favored in about 60 % of patients with PAC due to high resistance of PAC to this cytotoxic drug. This study aims to evaluate the efficacy of weekly nab-paclitaxel combined with gemcitabine or a simplified (s) LV5FU2 regimen in patients with previously untreated metastatic PAC. AFUGEM is a two-stage, open-label, randomized, multicenter, phase II trial. Patients with PAC who meet the inclusion criteria and provide written informed consent will be randomized in a 1:2 ratio to either nab-paclitaxel (125 mg/m(2)) plus gemcitabine (1000 mg/m(2)) given on days 1, 8, and 15 every 28 days or nab-paclitaxel (125 mg/m(2)) plus sLV5FU2 (leucovorin 400 mg/m(2) followed by bolus 400 mg/m(2) 5-fluorouracil and by 5-fluorouracil 2400 mg/m(2) as an 46-h intravenous infusion) given on days 1 and 15 every 28 days. A total of 114 patients will be randomized to one of the treatment arms. The primary endpoint is progression-free survival at 4 months. Secondary outcomes are rate and duration of response, disease control, overall survival, safety, and quality of life. Potential biomarkers of gemcitabine (hENT1, dCK) and 5-fluorouracil (TS) efficacy will be assessed. The AFUGEM trial is designed to provide valuable information regarding efficacy and tolerability of nab-paclitaxel plus gemcitabine and nab-paclitaxel plus sLV5FU2 regimens. Identification of potential predictive biomarkers of gemcitabine and 5-fluorouracil is likely to drive therapeutic decisions in patients with metastatic PAC. AFUGEM is registered at Clinicaltrials.gov: NCT01964534 , October 15, 2013.
Miles, David; Cameron, David; Bondarenko, Igor; Manzyuk, Lyudmila; Alcedo, Juan Carlos; Lopez, Roberto Ivan; Im, Seock-Ah; Canon, Jean-Luc; Shparyk, Yaroslav; Yardley, Denise A; Masuda, Norikazu; Ro, Jungsil; Denduluri, Neelima; Hubeaux, Stanislas; Quah, Cheng; Bais, Carlos; O'Shaughnessy, Joyce
2017-01-01
MERiDiAN evaluated plasma vascular endothelial growth factor-A (pVEGF-A) prospectively as a predictive biomarker for bevacizumab efficacy in metastatic breast cancer (mBC). In this double-blind placebo-controlled randomised phase III trial, eligible patients had HER2-negative mBC previously untreated with chemotherapy. pVEGF-A was measured before randomisation to paclitaxel 90 mg/m 2 on days 1, 8 and 15 with either placebo or bevacizumab 10 mg/kg on days 1 and 15, repeated every 4 weeks until disease progression, unacceptable toxicity or consent withdrawal. Stratification factors were baseline pVEGF-A, prior adjuvant chemotherapy, hormone receptor status and geographic region. Co-primary end-points were investigator-assessed progression-free survival (PFS) in the intent-to-treat and pVEGF-A high populations. Of 481 patients randomised (242 placebo-paclitaxel; 239 bevacizumab-paclitaxel), 471 received study treatment. The stratified PFS hazard ratio was 0.68 (99% confidence interval, 0.51-0.91; log-rank p = 0.0007) in the intent-to-treat population (median 8.8 months with placebo-paclitaxel versus 11.0 months with bevacizumab-paclitaxel) and 0.64 (96% confidence interval, 0.47-0.88; log-rank p = 0.0038) in the pVEGF-A high subgroup. The PFS treatment-by-VEGF-A interaction p value (secondary end-point) was 0.4619. Bevacizumab was associated with increased incidences of bleeding (all grades: 45% versus 27% with placebo), neutropenia (all grades: 39% versus 29%; grade ≥3: 25% versus 13%) and hypertension (all grades: 31% versus 13%; grade ≥3: 11% versus 4%). The significant PFS improvement with bevacizumab is consistent with previous placebo-controlled first-line trials in mBC. Results do not support using baseline pVEGF-A to identify patients benefitting most from bevacizumab. ClinicalTrials.gov NCT01663727. Copyright © 2016. Published by Elsevier Ltd.
2016-10-11
Tubular Breast Cancer Stage II; Mucinous Breast Cancer Stage II; Breast Cancer Female NOS; Invasive Ductal Breast Cancer; Tubular Breast Cancer Stage III; HER-2 Positive Breast Cancer; Inflammatory Breast Cancer Stage IV; Inflammatory Breast Cancer
Cost-Effectiveness Analysis of Second-Line Chemotherapy Agents for Advanced Gastric Cancer.
Lam, Simon W; Wai, Maya; Lau, Jessica E; McNamara, Michael; Earl, Marc; Udeh, Belinda
2017-01-01
Gastric cancer is the fifth most common malignancy and second leading cause of cancer-related mortality. Chemotherapy options for patients who fail first-line treatment are limited. Thus the objective of this study was to assess the cost-effectiveness of second-line treatment options for patients with advanced or metastatic gastric cancer. Cost-effectiveness analysis using a Markov model to compare the cost-effectiveness of six possible second-line treatment options for patients with advanced gastric cancer who have failed previous chemotherapy: irinotecan, docetaxel, paclitaxel, ramucirumab, paclitaxel plus ramucirumab, and palliative care. The model was performed from a third-party payer's perspective to compare lifetime costs and health benefits associated with studied second-line therapies. Costs included only relevant direct medical costs. The model assumed chemotherapy cycle lengths of 30 days and a maximum number of 24 cycles. Systematic review of literature was performed to identify clinical data sources and utility and cost data. Quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) were calculated. The primary outcome measure for this analysis was the ICER between different therapies, where the incremental cost was divided by the number of QALYs saved. The ICER was compared with a willingness-to-pay (WTP) threshold that was set at $50,000/QALY gained, and an exploratory analysis using $160,000/QALY gained was also used. The model's robustness was tested by using 1-way sensitivity analyses and a 10,000 Monte Carlo simulation probabilistic sensitivity analysis (PSA). Irinotecan had the lowest lifetime cost and was associated with a QALY gain of 0.35 year. Docetaxel, ramucirumab alone, and palliative care were dominated strategies. Paclitaxel and the combination of paclitaxel plus ramucirumab led to higher QALYs gained, at an incremental cost of $86,815 and $1,056,125 per QALY gained, respectively. Based on our prespecified WTP threshold, our base case analysis demonstrated that irinotecan alone is the most cost-effective regimen, and both paclitaxel alone and the combination of paclitaxel and ramucirumab were not cost-effective (ICER more than $50,000). Both 1-way sensitivity analyses and PSA demonstrated the model's robustness. PSA illustrated that paclitaxel plus ramucirumab was extremely unlikely to be cost-effective at a WTP threshold less than $400,000/QALY gained. Irinotecan alone appears to be the most cost-effective second-line regimen for patients with gastric cancer. Paclitaxel may be cost-effective if the WTP threshold was set at $160,000/QALY gained. © 2016 Pharmacotherapy Publications, Inc.
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K
2015-06-01
To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel-loaded composites exhibited cytotoxicity against A549 cancer cells which increased with incubation time, in conjunction with the increasing with time uptake of composites by the cancer cells. Graphene oxide aqueous dispersions were effectively stabilized by water-dispersible, biocompatible and biodegradable PLA-PEG copolymers. The graphene oxide/PLA-PEG composites exhibited satisfactory paclitaxel loading capacity and sustained in vitro drug release. The paclitaxel-loaded composites could enter the A549 cancer cells and exert cytotoxicity. The results justify further investigation of the suitability of PLA-PEG stabilized graphene oxide for the controlled delivery of paclitaxel. Copyright © 2015 Elsevier B.V. All rights reserved.
Choi, Jiho; Jeon, Changhoon; Jang, Jo Ung; Quan, Fu Shi; Lee, Kyungjin; Kim, Woojin
2017-01-01
Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor. PMID:29088102
Cold therapy to prevent paclitaxel-induced peripheral neuropathy.
Griffiths, Claire; Kwon, Nancy; Beaumont, Jennifer L; Paice, Judith A
2018-04-21
This case-control study was designed to assess the efficacy of cryotherapy to prevent paclitaxel-induced painful peripheral neuropathy in women with breast cancer. Participants served as their own paired control, with randomization of the cooled glove/sock to either the dominant or the non-dominant hand/foot, worn for 15 min prior to, during, and 15 min after completion of the paclitaxel infusion. Outcome measures included the Neuropathic Pain Symptom Inventory, the Brief Pain Inventory, and quantitative sensory testing. Data were measured at each of six time points-baseline, post-treatment (approximately 2 weeks after the last paclitaxel infusion), and at the first, fifth, ninth, and final weekly paclitaxel treatments. Of 29 randomized participants, 20 (69%) received at least one cryotherapy treatment, and 11 (38%) received all four cryotherapy treatments. Ten (34%) participants could not tolerate the cryotherapy, and six (21%) declined further participation at some point during the trial. Only seven participants (24%) were available for the final post-chemotherapy QST and questionnaires. There were no significant differences in measures of neuropathy or pain between treated and untreated hands or feet. Strategies to prevent painful peripheral neuropathy are urgently needed. In this current trial, dropout due to discomfort precluded adequate power to fully understand the potential benefits of cryotherapy. Much more research is needed to discover safe and effective preventive strategies that can be easily implemented within busy infusion centers.
Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J
2016-09-02
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.
Low-dose cisplatin protects human neuroblastoma SH-SY5Y cells from paclitaxel-induced apoptosis.
Villa, Daniela; Miloso, Mariarosaria; Nicolini, Gabriella; Rigolio, Roberta; Villa, Antonello; Cavaletti, Guido; Tredici, Giovanni
2005-09-01
Combined anticancer therapy using platinum compounds and antitubulins has increased the risk of neurotoxicity. However, the combination of low-dose cisplatin (CDDP) with toxic doses of paclitaxel significantly reduces cellular death in a human neuroblastoma SH-SY5Y cell line. To analyze the mechanisms of this protection, we evaluated various signaling molecules possibly involved in apoptosis and some relevant cell cycle regulatory proteins. CDDP does not interfere with the tubulin-stabilizing action of paclitaxel. The evaluation of molecular pathways involved in apoptosis indicates that the Bcl-2 but not the caspases may be involved in the CDDP protection of paclitaxel-induced apoptosis. The increase in p53 protein and its nuclear accumulation suggests a possible involvement of p53 in CDDP protection. The use of the chemical inhibitor of p53, pifithrin alpha, excluded this possibility. The study of cyclins and the flow cytometric analysis (fluorescence-activated cell sorting) suggest that CDDP exerts a protective action by blocking cells early in the cell cycle. The determination of the mitotic index indicates that CDDP prevents cells from reaching the mitosis. We concluded that low doses of CDDP are protective against toxic doses of paclitaxel and that the possible mechanism of this protection is that the CDDP prevents human neuroblastoma SH-SY5Y cells from achieving mitosis.
Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.
Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki
2015-11-01
Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.
2014-01-01
Background Chemotherapeutic treatment results in chronic pain in an estimated 30-40 percent of patients. Limited and often ineffective treatments make the need for new therapeutics an urgent one. We compared the effects of prophylactic cannabinoids as a preventative strategy for suppressing development of paclitaxel-induced nociception. The mixed CB1/CB2 agonist WIN55,212-2 was compared with the cannabilactone CB2-selective agonist AM1710, administered subcutaneously (s.c.), via osmotic mini pumps before, during, and after paclitaxel treatment. Pharmacological specificity was assessed using CB1 (AM251) and CB2 (AM630) antagonists. The impact of chronic drug infusion on transcriptional regulation of mRNA markers of astrocytes (GFAP), microglia (CD11b) and cannabinoid receptors (CB1, CB2) was assessed in lumbar spinal cords of paclitaxel and vehicle-treated rats. Results Both WIN55,212-2 and AM1710 blocked the development of paclitaxel-induced mechanical and cold allodynia; anti-allodynic efficacy persisted for approximately two to three weeks following cessation of drug delivery. WIN55,212-2 (0.1 and 0.5 mg/kg/day s.c.) suppressed the development of both paclitaxel-induced mechanical and cold allodynia. WIN55,212-2-mediated suppression of mechanical hypersensitivity was dominated by CB1 activation whereas suppression of cold allodynia was relatively insensitive to blockade by either CB1 (AM251; 3 mg/kg/day s.c.) or CB2 (AM630; 3 mg/kg/day s.c.) antagonists. AM1710 (0.032 and 3.2 mg/kg /day) suppressed development of mechanical allodynia whereas only the highest dose (3.2 mg/kg/day s.c.) suppressed cold allodynia. Anti-allodynic effects of AM1710 (3.2 mg/kg/day s.c.) were mediated by CB2. Anti-allodynic efficacy of AM1710 outlasted that produced by chronic WIN55,212-2 infusion. mRNA expression levels of the astrocytic marker GFAP was marginally increased by paclitaxel treatment whereas expression of the microglial marker CD11b was unchanged. Both WIN55,212-2 (0.5 mg/kg/day s.c.) and AM1710 (3.2 mg/kg/day s.c.) increased CB1 and CB2 mRNA expression in lumbar spinal cord of paclitaxel-treated rats in a manner blocked by AM630. Conclusions and implications Cannabinoids block development of paclitaxel-induced neuropathy and protect against neuropathic allodynia following cessation of drug delivery. Chronic treatment with both mixed CB1/CB2 and CB2 selective cannabinoids increased mRNA expression of cannabinoid receptors (CB1, CB2) in a CB2-dependent fashion. Our results support the therapeutic potential of cannabinoids for suppressing chemotherapy-induced neuropathy in humans. PMID:24742127
2016-11-14
Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; HER2/Neu Positive; Male Breast Carcinoma; Progesterone Receptor Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIC Breast Cancer AJCC v6; Stage IV Breast Cancer
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Ting; Wang, Yu-ling; Pei, Ying-hua
2013-09-01
To observe the inhibitory effect and potential mechanism of mitomycin C and paclitaxel on the proliferation of Human Pulmonary Fibroblast in vitro. So as to providing an experimental reference for the design of drug eluting airway stents. Cell viability was measured by MTT assay after different concentrations of mitomycin C or paclitaxel varying from 10(-1)1 mol/L to 10(-4) mol/L had been applied to the fibroblasts for 24, 48 or 72 h, respectively. Cell apoptosis was assessed by flow cytometry using dual staining with annexin V-FITC and propidium iodide 48 h after administering mitomycin C or paclitaxel at a concentration of 5×10(-6), 10(-5), 5×10(-5), 10(-4), 2×10(-4) mol/L, respectively. And the morphological character of cell apoptosis was observed by Hoechst 33342 fluorescent staining. The results of MTT revealed that cell proliferation were inhibited by mitomycin C and paclitaxel at all concentrations and exposure times. Among them, the inhibitory effect of mitomycin C were weak when the concentrations were between 10(-1)1 mol/L to 10(-8) mol/L. And within this context, the inhibitory ratio didn't correspond to the elevation of the concentration or the prolongation of the exposure times.However, when the concentration were between 10(-7) mol/L to 10(-4) mol/L, the inhibitory ratio rise progressively as the elevation of the concentration at all exposure times. The inhibitory ratio were 53.52%, 60.23%, 89.81% and 96.47% respectively when cells were treated by 10(-7), 10(-6), 10(-5) mol/L and 10(-4) mol/L mitomycin C for 72 h. An apparent "threshold dose effect" was observed in the paclitaxel treated groups.It's worth noting that the inhibitory ratio was only 48.22% when the cells had already been treated by 10(-5) mol/L paclitaxel for 72 h.However, when the concentration had reached 10(-4) mol/L, the inhibitory ratio sharply climbed to 93.38% even the cells had only been treated for 24 h. And the inhibitory ratio continued to rise as time prolonged. The results of cell apoptosis were consistent with MTT.When a significant inhibitory effect were detected by MTT, remarkable cell apoptosis could be observed by flow cytometry, and typical apoptotic cell could be identified by Hoechst 33342 fluorescent staining. A certain concentration of mitomycin C or paclitaxel can inhibit Human Pulmonary Fibroblast proliferation in vitro. Both of these two drugs have potential value for the preparation of drug eluting airway stents. In order to ensure the inhibitory effect, the eluting concentration of mitomycin C and paclitaxel should not be less than 10(-7) mol/L and 10(-5) mol/L. But the eluting concentration of these two drugs should not exceed 10(-4) mol/L when both of the inhibitory ratio of these two drugs were higher than 95%.On this basis, elevating the drug concentration has little significance for improving the inhibitory effect, but increase the risk of systemic toxicity. Inducing cell apoptosis is one of the potential mechanisms of mitomycin C and paclitaxel in inhibiting cell proliferation.
Paclitaxel from primary taxanes: a perspective on creative invention in organozirconium chemistry.
Ganem, Bruce; Franke, Roland R
2007-05-25
In this Perspective, which describes the achievements recognized by the 2007 ACS Award for Creative Invention, we discuss the discovery of a new synthetic reaction and its translation into a substantially improved method for manufacturing a major pharmaceutical product--the blockbuster anticancer drug, paclitaxel. The role of creativity in the discovery and invention processes is also discussed. As is often the case, chance discovery and serendipitous findings played a role in the evolution of this work. Translation of the basic research into a commercially viable paclitaxel semisynthesis is also described. The final manufacturing process illustrates the enormous impact that the globalization of markets has had on chemical and pharmaceutical manufacturing.
2005-05-01
H O R1 7 10 13 3’ O O OH NH O O OH AcO HO O BzO H O Ph 7 10 13 3’ O 1 (R1=Ph...R2= Ac, paclitaxel) 2 (TX-67) 1a (R1=t-BuO R2= H , docetaxel) Figure 1. Paclitaxel, Docetaxel and TX-67 4 1.1 Seelig model vs. Active Transport...BzO H O O Type I Type I Type II Type I Type I Type II 3` 13 2 4 7 10 1` OH O Pgp repulsion motif Figure 2. TX-67 recognition elements
Malhi, Sarandeep; Stesco, Nicholas; Alrushaid, Samaa; Lakowski, Ted M; Davies, Neal M; Gu, Xiaochen
2017-03-01
A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) assay was developed and validated to simultaneously quantify anticancer drugs reparixin and paclitaxel in this study. The compounds were extracted from plasma and urine samples by protein precipitation with acetone (supplemented with 0.1% formic acid). Chromatographic separation was achieved using a C18 column, and drug molecules were ionized using dual ion source electrospray and atmospheric pressure chemical ionization (DUIS: ESI-APCI). Reparixin and paclitaxel were quantified using negative and positive multiple reaction monitoring (MRM) mode, respectively. Stable isotope palcitaxel-D5 was used as the internal standard (IS). The assay was validated for specificity, recovery, carryover and sample stability under various storage conditions; it was also successfully applied to measure drug concentrations collected from a pharmacokinetic study in rats. The results confirmed that the assay was accurate and simple in quantifying both reparixin and paclitaxel in plasma and urine with minimal sample pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Kono, Koji; Yong, Wei-Peng; Okayama, Hirokazu; Shabbir, Asim; Momma, Tomoyuki; Ohki, Shinji; Takenoshita, Seiichi; So, Jimmy
2017-03-01
Among advanced gastric cancer cases, peritoneal dissemination is a life-threatening mode of metastasis, and any strategy to control peritoneal metastasis will significantly improve treatment outcomes. Since intraperitoneal administration of anticancer drugs can induce an extremely high concentration of drugs in the peritoneal cavity, intraperitoneal chemotherapy would appear to be a reasonable and promising strategy to control the peritoneal dissemination. However, it has been reported in the past that intraperitoneal administration of mitomycin C or cisplatin resulted in no significant clinical effects against peritoneal metastasis of gastric cancer. In contrast, intraperitoneal paclitaxel is expected to remain inside the peritoneal cavity due to its large molecular weight and fat solubility, leading to a high concentration of the drug in the peritoneal cavity. In fact, promising results in several phase II clinical trials using intraperitoneal paclitaxel have been reported, including a median survival time of 16.2-24.6 months and a 1-year overall survival rate of 69-78 %. Thereafter, a phase III randomized control study (PHOENIX-GC trial) with intraperitoneal paclitaxel plus systemic S-1 and intravenous paclitaxel in comparison to systemic S-1 plus cisplatin was conducted in Japan. Moreover, a phase II clinical trial of combination chemotherapy of intraperitoneal paclitaxel with systemic capecitabine plus oxaliplatin is currently ongoing in Singapore. In this review, based on clinical experience from Singapore and Japan, the clinical significance of intraperitoneal chemotherapy for gastric cancer with peritoneal disease is discussed.
Markman, Maurie; Liu, PY; Moon, James; Monk, Bradley J.; Copeland, Larry; Wilczynski, Sharon; Alberts, David
2009-01-01
Objectives A SWOG/GOG phase 3 trial exploring the impact of 12-monthly cycles of paclitaxel given to patients with advanced ovarian cancer who achieved a complete response to primary chemotherapy was discontinued by the Data Safety and Monitoring Committee when a prospectively-defined interim analysis revealed a highly statistically significant improvement in progression-free survival (PFS). At study closure, it was too early to assess the impact on overall survival. Methods Patients (n = 296) received either 3 or 12 monthly cycles of paclitaxel (175 mg/m2 over 3-hours). Results Of the 146 patients on the 3-cycle arm, 9 (6%) received > 3-cycles. Median (12 versus 3 cycle; intention-to-treat analysis) updated PFS (all pts) 22 versus 14 months, p=0.006; overall survival (all pts) 53 versus 48 months, p=0.34. Conclusion Twelve cycles of single agent maintenance paclitaxel significantly improves PFS. Explanations for the lack of a favorable influence on overall survival include: (a) treatment at relapse equalized outcome; (b) the sample size was insufficient to reveal a difference; (c) “crossover” of patients from 3 cycles to longer treatment masked a potential difference. An ongoing phase 3 trial will hopefully provide a definitive answer to the question of the impact of this maintenance strategy on overall survival. PMID:19447479
Dunphy, F R; Boyd, J H; Kim, H J; Dunphy, C H; Harrison, B R; Dunleavy, T L; Rodriguez, J J; McDonough, E M; Minster, J R; Hilton, J G
1997-05-15
Standard therapy for advanced head and neck carcinoma is surgery and radiation, and the subsequent 5-year survival with this treatment has been less than 50%. New combined modality treatment strategies are being tested to improve survival. New chemotherapy combinations are being developed and administered simultaneously with, or sequenced with, radiation and surgery. This article reports the Phase I results of administering paclitaxel and carboplatin preoperatively. The authors' objective was to develop an outpatient chemotherapy that would downstage tumors and allow organ preservation with equal or improved survival as compared with standard therapy. Thirty-six patients with untreated Stage III/IV head and neck carcinoma were treated and were evaluable for toxicity. All patients had lesions that were measurable in perpendicular planes. A nonrandomized, Phase I design was used, according to which cohorts of patients were treated every 21 days with escalating doses of paclitaxel (150-265 mg/m2) given as a 3-hour infusion immediately preceding carboplatin. Premedication was used to avoid acute hypersensitivity reactions. Carboplatin was administered intravenously over 1 hour at a constant dose calculated with the Calvert formula (area under the curve, 7.5). The dose-limiting toxicities were neuropathy and thrombocytopenia at a paclitaxel dose of 265 mg/m2. Neutropenic fever was observed in 30% of patients at a paclitaxel dose of 250-265 mg/m2. Other observed adverse effects included pruritus, myalgia, arthralgia, alopecia, nausea, and vomiting. Toxicity was acceptable. The maximum tolerated dose of paclitaxel was 230 mg/m2 without hematopoietic growth factor, or 250 mg/m2 with hematopoietic growth factor, the carboplatin dose held constant, calculated at area under the curve of 7.5. Phase II studies of this combination are warranted in the treatment of these carcinomas.
Li, Yan; Tellez, Armando; Rousselle, Serge D; Dillon, Krista N; Garza, Javier A; Barry, Chris; Granada, Juan F
2016-07-01
To evaluate the biological effect of a paclitaxel-coated balloon (PCB) technology on vascular drug distribution and healing in drug eluting stent restenosis (DES-ISR) swine model. The mechanism of action and healing response via PCB technology in DES-ISR is not completely understood. A total of 27 bare metal stents were implanted in coronary arteries and 30 days later the in-stent restenosis was treated with PCB. Treated segments were harvested at 1 hr, 14 days and 30 days post treatment for the pharmacokinetic analysis. In addition, 24 DES were implanted in coronary arteries for 30 days, then all DES-ISRs were treated with either PCB (n = 12) or uncoated balloon (n = 12). At day 60, vessels were harvested for histology following angiography and optical coherence tomography (OCT). The paclitaxel level in neointimal tissue was about 18 times higher (P = 0.0004) at 1 hr Cmax , and retained about five times higher (P = 0.008) at day 60 than that in vessel wall. A homogenous distribution of paclitaxel in ISR was demonstrated by using fluorescently labeled paclitaxel. Notably, in DES-ISR, both termination OCT and quantitative coronary angioplasty showed a significant neointimal reduction and less late lumen loss (P = 0.05 and P = 0.03, respectively) post PCB versus post uncoated balloon. The PES-ISR + PCB group displayed higher levels of peri-strut inflammation and fibrin scores compared to the -limus DES-ISR + PCB group. In ISR, paclitaxel is primarily deposited in neointimal tissue and effectively retained over time following PCB use. Despite the presence of metallic struts, a uniform distribution was characterized. PCB demonstrated an equivalent biological effect in DES-ISR without significantly increasing inflammation. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Masters, G A; Mauer, A M; Hoffman, P C; Wyka, D; Samuels, B L; Krauss, S A; Watson, S; Golomb, H; Vokes, E E
1998-06-01
We designed a phase I-II trial of three active agents, paclitaxel, ifosfamide, and vinorelbine, in advanced non-small-cell lung cancer (NSCLC) to: 1) define the dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of paclitaxel with filgrastim (G-CSF) support; and 2) determine the overall response rate and median survival of patients treated on this regimen. We treated cohorts of patients with stage IIIB or IV NSCLC with ifosfamide 1.2-1.6 g/m2/day x 3 and vinorelbine 20-25 mg/m2/day x 3 and escalating doses of paclitaxel at 100-175 mg/m2 on day 2 with G-CSF support on a 21-day cycle. One prior experimental single-agent chemotherapy regimen was allowed. Fifty-six patients, were enrolled on this trial: 27 on the phase I portion of the study and an additional 29 at the recommended phase II dose (RPTD). Thirteen patients had received prior chemotherapy. Paclitaxel doses of 175 mg/m2 and 150 mg/m2 produced dose-limiting myelosuppression, and the RPTD was determined to be paclitaxel 135 mg/m2 with ifosfamide 1.2 g/m2/day on days 1-3 and vinorelbine 20 mg/m2/ day on days 1-3 with G-CSF support. The overall response rate was 18%, with a median survival of 6.1 months. Six of 35 patients (17%) treated at the RPTD achieved a partial response to therapy. Grade IV neutropenia was observed in 19 of 35 patients at this dose, with eight patients suffering febrile neutropenia. This non-cisplatin-containing three-drug regimen has substantial toxicity and low activity in advanced NSCLC, and does not seem to improve on prior regimens. It is unclear whether the lack of efficacy relates to an antagonistic reaction between the specific drugs, administration schedule, or to subtherapeutic doses of the individual agents.
Jain, Subheet K; Utreja, Puneet; Tiwary, Ashok K; Mahajan, Mohit; Kumar, Nikhil; Roy, Partha
2014-01-01
The aim of the present investigation is to determine the in vivo potential of previously developed and optimized Cremophor EL free paclitaxel (CF-PTX) formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate. CF-PTX was found to have drug loading of 6 mg/ml similar to Cremophor EL based marketed paclitaxel formulation. In the present study, intracellular uptake, repeated dose 28 days sub-acute toxicity, anti-cancer activity, biodistribution and pharmacokinetic studies were conducted to determine in vivo performance of CF-PTX formulation in comparison to marketed paclitaxel formulation. Intracellular uptake of CF-PTX was studied using A549 cells by fluorescence activated cell sorting assay (FACS) and fluorescence microscopy. In vivo anti-cancer activity of CF-PTX was evaluated using Ehrlich ascites carcinoma (EAC) model in mice followed by biodistribution and pharmacokinetic studies. FACS investigation showed that fluorescence marker acridine orange (AO) solution showed only 19.8±1.1% intracellular uptake where as significantly higher uptake was observed in the case of AO loaded CF-PTX formulation (85.4±2.3%). The percentage reduction in tumor volume for CF-PTX (72.5±2.3%) in EAC bearing mice was found to be significantly (p<0.05) higher than marketed formulation (58.6±2.8%) on 14th day of treatment. Pharmacokinetic and biodistribution studies showed sustained plasma concentration of paclitaxel depicted by higher mean residence time (MRT; 18.2±1.8 h) and elimination half life (12.8±0.6 h) with CF-PTX formulation as compared to marketed formulation which showed 4.4±0.2 h MRT and 3.6±0.4 h half life. The results of the present study demonstrated better in vivo performance of CF-PTX and this formulation appears to be a promising carrier for sustained and targeted delivery of paclitaxel.
Fujita, Yasunori; Kojima, Toshio; Kawakami, Kyojiro; Mizutani, Kosuke; Kato, Taku; Deguchi, Takashi; Ito, Masafumi
2015-10-01
The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients. © 2015 Wiley Periodicals, Inc.
Spigel, David R; Patel, Jyoti D; Reynolds, Craig H; Garon, Edward B; Hermann, Robert C; Govindan, Ramaswamy; Olsen, Mark R; Winfree, Katherine B; Chen, Jian; Liu, Jingyi; Guba, Susan C; Socinski, Mark A; Bonomi, Philip
2015-02-01
Treatment impact on quality of life (QoL) informs treatment management decisions in advanced nonsquamous non-small-cell lung cancer (NS NSCLC). QoL outcomes from the phase III PointBreak trial are reported. Chemonaive patients (n = 939) with stage IIIB/IV nonsquamous non-small-cell lung cancer and Eastern Cooperative Oncology Group performance status 0 to 1 were randomized (1:1) to pemetrexed-carboplatin-bevacizumab (pemetrexed arm) or paclitaxel-carboplatin-bevacizumab (paclitaxel arm). Patients without progressive disease received maintenance pemetrexed-bevacizumab (pemetrexed arm) or bevacizumab (paclitaxel arm). QoL was assessed using Functional Assessment of Cancer Therapy (FACT)-General (FACT-G), FACT-Lung (FACT-L), and FACT/Gynecologic Oncology Group-Neurotoxicity (FACT-Ntx) instruments. Subscale scores, total scores, and trial outcome indices were analyzed using linear mixed-effects models. Post hoc analyses examined the association between baseline FACT scores and overall survival (OS). Mean score differences in change from baseline significantly favored the pemetrexed arm for the neurotoxicity subscale score, FACT-Ntx total scores, and FACT-Ntx trial outcome index. They occurred at cycle 2 (p < 0.001) and persisted through induction cycles 2 to 4 and six maintenance cycles. Investigator-assessed, qualitative, drug-related differences in grade 2 (1.6% versus 10.6%) and grade 3 (0.0% versus 4.1%) sensory neuropathy and grade 3/4 fatigue (10.9% versus 5.0%, p = 0.0012) were observed between the pemetrexed and paclitaxel arms. Baseline FACT-G, FACT-L, and FACT-Ntx scores were significant prognostic factors for OS (p < 0.001). Randomized patients reported similar changes in QoL, except for less change from baseline in neurotoxicity on the pemetrexed arm; investigators reported greater neurotoxicity on the paclitaxel arm and greater fatigue on the pemetrexed arm. Higher baseline FACT scores were favorable prognostic factors for OS.
Deng, Liting; Guindon, Josée; Cornett, Benjamin L.; Makriyannis, Alexandros; Mackie, Ken; Hohmann, Andrea G.
2014-01-01
Background Mixed cannabinoid CB1/CB2 agonists such as Δ9-tetrahydrocannabinol (Δ9-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. Methods We evaluated anti-allodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1KO, CB2KO, and WT mice. Comparisons were made with the prototypic classical cannabinoid Δ9-THC. We also explored the site and possible mechanism of action of AM1710. Results Paclitaxel-induced mechanical and cold allodynia developed equivalently in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ9-THC suppressed established paclitaxel-induced allodynia in WT mice. Unlike Δ9-THC, chronic AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Anti-allodynic efficacy of systemic AM1710 was absent in CB2KO mice or WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal AM1710 also attenuated paclitaxel-induced allodynia in WT but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 anti-allodynic efficacy. Finally, both acute and chronic treatment with AM1710 decreased mRNA levels of tumor necrosis factor alpha and monocyte chemoattractant protein-1 in lumbar spinal cord of paclitaxel-treated WT mice. Conclusions Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects. PMID:24853387
Wu, Yi-Long; Saijo, Nagahiro; Thongprasert, Sumitra; Yang, J C-H; Han, Baohui; Margono, Benjamin; Chewaskulyong, Busayamas; Sunpaweravong, Patrapim; Ohe, Yuichiro; Ichinose, Yukito; Yang, Jin-Ji; Mok, Tony S K; Young, Helen; Haddad, Vincent; Rukazenkov, Yuri; Fukuoka, Masahiro
2017-02-01
The Phase III, randomized, open-label IPASS study (NCT00322452) of first-line epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) gefitinib versus carboplatin/paclitaxel for Asian patients with advanced non-small-cell lung cancer (NSCLC) showed that investigator-assessed progression-free survival (PFS) and objective response rate (ORR) were significantly prolonged in patients with EGFR mutation-positive NSCLC who received gefitinib versus patients with EGFR mutation-negative NSCLC. We report post-hoc analyses of IPASS data by blind independent central review (BICR), performed at the request of the US FDA, in a subset of patients with EGFR mutation-positive NSCLC. Eligible patients (aged ≥18 years; histologically/cytologically confirmed Stage IIB/IV adenocarcinoma NSCLC; non- or former light-smokers; treatment-naïve) were randomly assigned 1:1 to gefitinib (250mg/day) or carboplatin (dose calculated to produce an area under the curve of 5 or 6 mg/mL/minute)/paclitaxel (200mg/m 2 ). Primary endpoint: PFS. BICR analyses included PFS, ORR, and duration of response (DoR). Scans from 186 IPASS patients (gefitinib n=88, carboplatin/paclitaxel n=98) with EGFR mutation-positive NSCLC were available for BICR. Consistent with investigator-assessed results, in patients with EGFR mutation-positive NSCLC: PFS (hazard ratio 0.54; 95% confidence interval [CI] 0.38, 0.79; p=0.0012) and ORR (odds ratio 3.00; 95% CI 1.63, 5.54; p=0.0004) were significantly longer with gefitinib versus carboplatin/paclitaxel. The median DoR by BICR was 9.6 months with gefitinib and 5.5 months with carboplatin/paclitaxel. BICR analysis of IPASS data support the original, investigator-assessed results. EGFR mutation-positive status remains a significant predictor of response to first-line TKI therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Ma, Cynthia; Mandrekar, Sumithra J; Alberts, Steven R; Croghan, Gary A; Jatoi, Aminah; Reid, Joel M; Hanson, Lorelei J; Bruzek, Laura; Tan, Angelina D; Pitot, Henry C; Erlichman, Charles; Wright, John J; Adjei, Alex A
2007-02-01
Bortezomib, a selective inhibitor of the 20S proteasome with activity in a variety of cancers, exhibits sequence-dependent synergistic cytotoxicity with taxanes and platinum agents. Two different treatment schedules of bortezomib in combination with paclitaxel and carboplatin were tested in this phase I study to evaluate the effects of scheduling on toxicities, pharmacodynamics and clinical activity. Patients with advanced malignancies were alternately assigned to receive (schedule A) paclitaxel and carboplatin (IV d1) followed by bortezomib (IV d2, d5, d8) or (schedule B) bortezomib (IV d1, d4, d8) followed by paclitaxel and carboplatin (IV d2) on a 21-day cycle. Fifty-three patients (A 25, B 28) were treated with a median of 3 cycles (range 1-8) for schedule A and 3.5 cycles (range 1-10) for schedule B. Grade 3 or higher treatment related hematologic adverse events in all cycles of treatment included neutropenia (A 52%, B 50%), anemia (A 12%, B 7.1%) and thrombocytopenia (A 16%, B 17.9%). Non-hematologic treatment related adverse events were fairly mild (primarily grades 1 and 2). The maximum tolerated dose and the recommended doses for future phase II trials are bortezomib 1.2 mg/m2, paclitaxel 135 mg/m2 and carboplatin AUC = 6 for schedule A and bortezomib 1.2 mg/m2, paclitaxel 175 mg/m2 and carboplatin AUC = 6 for schedule B. Six (21.4%) partial responses (PR) were seen with schedule B. In contrast, only 1 (4%) PR was achieved with schedule A. Similar proteasome inhibition was achieved at MTD for both schedules. Administration of sequential bortezomib followed by chemotherapy (schedule B) was well tolerated and associated with an encouraging number of objective responses in this small group of patients. Further studies with this administration schedule are warranted.
Abu-Khalaf, Maysa M; Baumgart, Megan A; Gettinger, Scott N; Doddamane, Indukala; Tuck, David P; Hou, Shihe; Chen, Nianhang; Sullivan, Catherine; Lezon-Geyda, Kimberly; Zelterman, Daniel; Hatzis, Christos; Deshpande, Hari; Digiovanna, Michael P; Azodi, Masoud; Schwartz, Peter E; Harris, Lyndsay N
2015-06-01
The optimal weekly oral dose of sirolimus and intravenous nanoparticle albumin-bound paclitaxel (nab-paclitaxel) were evaluated. A phase 1b study was performed to evaluate escalating doses of oral sirolimus (5-60 mg) on days 2, 9, and 16 with intravenous nab-paclitaxel (100 mg/m(2) ) on days 1, 8, and 15 in a 28-day cycle. A run-in treatment of nab-paclitaxel (day -14) and sirolimus (day -7) was administered for pharmacokinetic and pharmacodynamic assessments. Clinical trial endpoints included dose-limiting toxicities (DLTs), maximum tolerated doses, and response rates. Pharmacodynamics included immunohistochemistry for phosphatase and tensin homolog, mammalian target of rapamycin (mTOR), AKT, phosphorylated AKT, S6K1, and phosphorylated S6K1; exploratory gene expression analysis; and [(18) F]fludeoxyglucose (FDG) positron emission tomography. Twenty-three patients with advanced solid tumors were treated. Fifteen patients had prior taxane therapy. Twenty-two patients were evaluable for responses. One patient had a complete response, and 5 patients had a partial response (3 confirmed). DLTs were seen in 1 patient each at 10 (grade 3 dyspnea/hypoxia) and 40 mg (grade 4 leukopenia/neutropenia) and in 2 patients at 60 mg (grade 3 fatigue and grade 4 pericardial effusion). Patients with higher expression of posttreatment AKT and a greater decline in FDG activity were more likely to have a treatment response or stable disease. Sirolimus showed an acceptable safety profile at a weekly dose of 40 mg with weekly intravenous nab-paclitaxel at 100 mg/m(2) on days 1, 8, and 15 every 28 days. The posttreatment AKT score and changes in FDG activity may have roles as early predictors of responses to mTOR inhibitors. © 2015 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuhchyau; Pandya, Kishan J.; Feins, Richard
Purpose: We report the toxicity profile and pharmacokinetic data of a schedule-dependent chemoradiation regimen using pulsed low-dose paclitaxel for radiosensitization in a Phase I study for inoperable non-small-cell lung cancer. Methods and Materials: Paclitaxel at escalating doses of 15 mg/m{sup 2}, 20 mg/m{sup 2}, and 25 mg/m{sup 2} were infused on Monday, Wednesday, and Friday with daily chest radiation in cohorts of 6 patients. Daily radiation was delayed for maximal G2/M arrest and apoptotic effect, an observation from preclinical investigations. Plasma paclitaxel concentration was determined by high-performance liquid chromatography. Results: Dose-limiting toxicities included 3 of 18 patients with Grade 3more » pneumonitis and 3 of 18 patients with Grade 3 esophagitis. There was no Grade 4 or 5 pneumonitis or esophagitis. There was also no Grade 3 or 4 neutropenia, thrombocytopenia, anemia or neuropathy. For Dose Levels I (15 mg/m{sup 2}), II (20 mg/m{sup 2}), and III (25 mg/m{sup 2}), the mean peak plasma level was 0.23 {+-} 0.06 {mu}mol/l, 0.32 {+-} 0.05 {mu}mol/l, and 0.52 {+-} 0.14 {mu}mol/l, respectively; AUC was 0.44 {+-} 0.09 {mu}mol/l, 0.61 {+-} 0.1 {mu}mol/l, and 0.96 {+-} 0.23 {mu}mol/l, respectively; and duration of drug concentration >0.05 {mu}mol/l (t > 0.05 {mu}mol/l) was 1.6 {+-} 0.3 h, 1.9 {+-} 0.2 h, and 3.0 {+-} 0.9 h, respectively. Conclusion: Pulsed low-dose paclitaxel chemoradiation is associated with low toxicity. Pharmacokinetic data showed that plasma paclitaxel concentration >0.05 {mu}mol/l for a minimum of 1.6 h was sufficient for effective radiosensitization.« less
Villena-Heinsen, C; Friedrich, M; Ertan, A K; Farnhammer, C; Schmidt, W
1998-07-01
The new cytostatics titanocene dichloride and vinorelbine were compared to cisplatin and paclitaxel using a human ovarian cancer xenografts model. Biopsy material from a native human ovarian carcinoma was expanded and transplanted into 96 nude mice. The animals were divided into six treatment groups: cisplatin 3 x 4 mg/kg, paclitaxel 5 x 26 mg/kg, vinorelbine 1 x 20 mg/kg, titanocene dichloride 3 x 30 mg/kg, titanocene dichloride 3 x 40 mg/kg and a control group treated with 0.9% saline. Each experiment was repeated with eight mice in each treatment group. Treatment groups were evaluated in terms of average daily increase in tumor volume and average daily body weight increase of nude mice based on slopes of least-square regressions performed on individual animals. The slope factors alpha and beta of the body weight (alpha) and tumor volume changes (beta) within each group during the course of an experiment were calculated. Both a statistically significant decrease (p<0.05) in the body weight of the experimental animals (cisplatin: alpha = -0.5163, vinorelbine: alpha = -0.6598, paclitaxel: alpha = -0.6746, titanocene dichloride 3 x 30 mg/kg: alpha = -0.6259, titanocene dichloride 3 x 40 mg/kg: alpha = -0.7758) and a significant reduction (p<0.05) of the increase in tumor volume (cisplatin: beta = 12.049, vinorelbine: beta = 0.504, paclitaxel: beta = -1.636, titanocene dichloride 3 x 30 mg/kg: beta = 6.212, titanocene dichloride 3 x 40 mg/kg: beta= -0.685) was shown in all treated groups compared to the control group (alpha = -0.1398; beta = 23.056). No significant weight changes were observed between the individually treated groups. A statistically significant reduction of the tumor growth occured under paclitaxel (beta = -1.636), vinorelbine (beta = 0.504) and titanocene dichloride medication 3 x 40 mg/kg (beta = -0.685), as compared to the group treated with cisplatin (beta = 12.049). We found titanocene dichloride to be as effective as paclitaxel and more effective than cisplatin. Vinorelbine seems to be a very effective antineoplastic agent exhibiting a significant higher cytostatic effect than cisplatin. Both titanocene dichloride and vinorelbine provide new therapeutic options in women with ovarian carcinoma not responding to standard chemotherapy.
Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina
2016-01-01
The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for further testing of fisetin in the combination with paclitaxel or arsenic trioxide to obtain detailed insights into the mechanism of their synergistic action as well as to evaluate their toxicity towards normal cells in an animal model in vivo. We conclude that this study is potentially interesting for the development of novel chemotherapeutic approach to non-small cell lung cancer.
Hoskins, P; Vergote, I; Cervantes, A; Tu, D; Stuart, G; Zola, P; Poveda, A; Provencher, D; Katsaros, D; Ojeda, B; Ghatage, P; Grimshaw, R; Casado, A; Elit, L; Mendiola, C; Sugimoto, A; D'Hondt, V; Oza, A; Germa, J R; Roy, M; Brotto, L; Chen, D; Eisenhauer, E A
2010-10-20
Topotecan has single-agent activity in recurrent ovarian cancer. It was evaluated in a novel combination compared with standard frontline therapy. Women aged 75 years or younger with newly diagnosed stage IIB or greater ovarian cancer, Eastern Cooperative Oncology Group Performance Status of 1 or less, were stratified by type of primary surgery and residual disease, treatment center, and age; then randomly assigned to one of the two 21-day intravenous regimens. Patients in arm 1 (n = 409) were administered four cycles of cisplatin 50 mg/m(2) on day 1 and topotecan 0.75 mg/m(2) on days 1-5, then four cycles of paclitaxel 175 mg/m(2) over 3 hours on day 1 followed by carboplatin (area under the curve = 5) on day 1. Patients in arm 2 (n = 410) were given paclitaxel plus carboplatin as in arm 1 for eight cycles. We compared progression-free survival (PFS), overall survival, and cancer antigen-125 normalization rates in the two treatment arms. A stratified log-rank test was used to assess the primary endpoint, PFS. All statistical tests were two-sided. A total of 819 patients were randomly assigned. At baseline, the median age of the patients was 57 years (range = 28-78); 81% had received debulking surgery, and of these, 55% had less than 1 cm residual disease; 66% of patients were stage III and 388 (47.4%) patients had measurable disease. After a median follow-up of 43 months, 650 patients had disease progression or died without documented progression and 406 had died. Patients in arm 1 had more hematological toxicity and hospitalizations than patients in arm 2; PFS was 14.6 months in arm 1 vs 16.2 months in arm 2 (hazard ratio = 1.10, 95% confidence interval = 0.94 to 1.28, P = .25). Among patients with elevated baseline cancer antigen-125, fewer in arm 1 than in arm 2 had levels return to normal by 3 months after random assignment (51.6% vs 63.3%, P = .007) Topotecan and cisplatin, followed by carboplatin and paclitaxel, were more toxic than carboplatin and paclitaxel alone, but without improved efficacy. Carboplatin plus paclitaxel remains the standard of care for advanced epithelial ovarian cancer.
Al-Batran, S.-E.; Van Cutsem, E.; Oh, S. C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O. N.; Kim, T.-Y.; Cunningham, D.; Rougier, P.; Muro, K.; Liepa, A. M.; Chandrawansa, K.; Emig, M.; Ohtsu, A.; Wilke, H.
2016-01-01
Background The phase III RAINBOW trial demonstrated that the addition of ramucirumab to paclitaxel improved overall survival, progression-free survival, and tumor response rate in fluoropyrimidine–platinum previously treated patients with advanced gastric/gastroesophageal junction (GEJ) adenocarcinoma. Here, we present results from quality-of-life (QoL) and performance status (PS) analyses. Patients and methods Patients with Eastern Cooperative Oncology Group PS of 0/1 were randomized to receive ramucirumab (8 mg/kg i.v.) or placebo on days 1 and 15 of a 4-week cycle, with both arms receiving paclitaxel (80 mg/m2) on days 1, 8, and 15. Patient-reported outcomes were assessed with the QoL/health status questionnaires EORTC QLQ-C30 and EQ-5D at baseline and 6-week intervals. PS was assessed at baseline and day 1 of every cycle. Time to deterioration (TtD) in each QLQ-C30 scale was defined as randomization to first worsening of ≥10 points (on 100-point scale) and TtD in PS was defined as first worsening to ≥2. Hazard ratios (HRs) for treatment effect were estimated using stratified Cox proportional hazards models. Results Of the 665 patients randomized, 650 (98%) provided baseline QLQ-C30 and EQ-5D data, and 560 (84%) also provided data from ≥1 postbaseline time point. Baseline scores for both instruments were similar between arms. Of the 15 QLQ-C30 scales, 14 had HR < 1, indicating similar or longer TtD in QoL for ramucirumab + paclitaxel. Treatment with ramucirumab + paclitaxel was also associated with a delay in TtD in PS to ≥2 (HR = 0.798, P = 0.0941). Alternate definitions of PS deterioration yielded similar results: PS ≥ 3 (HR = 0.656, P = 0.0508), deterioration by ≥1 PS level (HR = 0.802, P = 0.0444), and deterioration by ≥2 PS levels (HR = 0.608, P = 0.0063). EQ-5D scores were comparable between treatment arms, stable during treatment, and worsened at discontinuation. Conclusion In patients with previously treated advanced gastric/GEJ adenocarcinoma, addition of ramucirumab to paclitaxel prolonged overall survival while maintaining patient QoL with delayed symptom worsening and functional status deterioration. ClinicalTrials.gov NCT01170663. PMID:26747859
Martín, M; Chan, A; Dirix, L; O'Shaughnessy, J; Hegg, R; Manikhas, A; Shtivelband, M; Krivorotko, P; Batista López, N; Campone, M; Ruiz Borrego, M; Khan, Q J; Beck, J T; Ramos Vázquez, M; Urban, P; Goteti, S; Di Tomaso, E; Massacesi, C; Delaloge, S
2017-02-01
Phosphatidylinositol 3-kinase (PI3K) pathway activation in preclinical models of breast cancer is associated with tumor growth and resistance to anticancer therapies, including paclitaxel. Effects of the pan-Class I PI3K inhibitor buparlisib (BKM120) appear synergistic with paclitaxel in preclinical and clinical models. BELLE-4 was a 1:1 randomized, double-blind, placebo-controlled, adaptive phase II/III study investigating the combination of buparlisib or placebo with paclitaxel in women with human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer with no prior chemotherapy for advanced disease. Patients were stratified by PI3K pathway activation and hormone receptor status. The primary endpoint was progression-free survival (PFS) in the full and PI3K pathway-activated populations. An adaptive interim analysis was planned following the phase II part of the study, after ≥125 PFS events had occurred in the full population, to decide whether the study would enter phase III (in the full or PI3K pathway-activated population) or be stopped for futility. As of August 2014, 416 patients were randomized to receive buparlisib (207) or placebo (209) with paclitaxel. At adaptive interim analysis, there was no improvement in PFS with buparlisib versus placebo in the full (median PFS 8.0 versus 9.2 months, hazard ratio [HR] 1.18), or PI3K pathway-activated population (median PFS 9.1 versus 9.2 months, HR 1.17). The study met protocol-specified criteria for futility in both populations, and phase III was not initiated. Median duration of study treatment exposure was 3.5 months in the buparlisib arm versus 4.6 months in the placebo arm. The most frequent adverse events with buparlisib plus paclitaxel (≥40% of patients) were diarrhea, alopecia, rash, nausea, and hyperglycemia. Addition of buparlisib to paclitaxel did not improve PFS in the full or PI3K pathway-activated study population. Consequently, the trial was stopped for futility at the end of phase II. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Su, Wen-Pin; Cheng, Fong-Yu; Shieh, Dar-Bin; Yeh, Chen-Sheng; Su, Wu-Chou
2012-01-01
Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3) activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA) to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated. Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX), enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI). The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel-resistant A549/T12 cell lines with α-tubulin mutation. Results: A549 and A549/T12 cells contain constitutively activated Stat3, and silencing Stat3 by siRNA made both cancer cells more sensitive to paclitaxel. Therefore, PLGA-PEI-TAX-S3SI was synthesized to test its therapeutic role in A549 and A549/T12 cells. Transmission electron microscopy showed the size of PLGA-PEI-TAX-S3SI to be around 250 nm. PLGA-PEI nanoparticles were nontoxic. PLGA-PEI-TAX was taken up by A549 and A549/T12 cells more than free paclitaxel, and they induced more condensed microtubule bundles and had higher cytotoxicity in these cancer cells. Moreover, the yellowish fluorescence observed in the cytoplasm of the cancer cells indicates that the PLGA-PEI nanoparticles were still simultaneously delivering Oregon Green paclitaxel and cyanine-5-labeled Stat3 siRNA 3 hours after treatment. Furthermore, after the cancer cells were incubated with the synthesized PLGA nanocomplexes, PLGA-PEI-TAX-S3SI suppressed Stat3 expression and induced more cellular apoptosis in A549 and A549/T12 cells compared with PLGA-PEI-TAX. Conclusion: The PLGA-PEI-TAX-S3SI complex provides a new therapeutic strategy to control cancer cell growth. PMID:22904633
2018-01-29
Endometrial Adenocarcinoma; Endometrial Adenosquamous Carcinoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Serous Adenocarcinoma; Recurrent Uterine Corpus Carcinoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer
Super p53 for Treatment of Ovarian Cancer
2016-07-01
WSLP ( polymer ) has been successfully synthesized, and a subset of adenoviral constructs have been cloned (p53, p53-CC, EGFP control). Major results...therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer -adenovirus hybrid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer
Ma, Ping; Benhabbour, S. Rahima; Feng, Lan; Mumper, Russell J
2012-01-01
The aim of these studies was to develop a novel 2’-behenoyl-paclitaxel (C22-PX) conjugate nanoparticle (NP) formulation for the treatment of metastatic breast cancer. A lipophilic paclitaxel derivative C22-PX was synthesized and incorporated into lipid-based NPs. Free C22-PX and its NP formulation were evaluated in a series of in-vitro and in-vivo studies. The results demonstrated that C22-PX NPs were much better tolerated and had significantly higher plasma and tumor AUCs compared to Taxol at the maximum tolerated dose (MTD) in a subcutaneous 4T1 mouse mammary carcinoma model. These benefits resulted in significantly improved antitumor efficacy with the NP-based formulation. PMID:22902506
NASA Astrophysics Data System (ADS)
Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van
2016-03-01
Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.
Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur
2017-01-01
We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137
Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur
2017-04-01
We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.
Le Moulec, Sylvestre; Hadoux, Julien; Gontier, Eric; Chargari, Cyrus; Helissey, Carole; Lamand, Virginie; Tanz, Rachid; Farace, Françoise; Vedrine, Lionel; Bonardel, Gérald; Soria, Jean-Charles; Besse, Benjamin
2013-12-01
The combination of paclitaxel and bevacizumab was EMA-approved as first-line therapy in metastatic breast cancer. Moreover, in vitro studies showed a potential antiangiogenic synergistic effect of paclitaxel and bevacizumab. Between November 2008 and March 2010, this case series study included 15 patients with metastatic non squamous-cell lung carcinoma (NSCLC). Those were bevacizumab eligible and received the same regimen used in metastatic breast cancer with weekly paclitaxel (80 mg/m(2), days 1, 8 and 15) and bevacizumab (10 mg/kg at days 1 and 15) after at least one prior line of chemotherapy. Efficacy was evaluated by CT-scan and PET-FDG every two months. Circulating endothelial progenitor cells (CEP) and circulating endothelial cells (CEC) levels were explored in a subset of patients. Median age 56 (36-75), female: 47%, never smokers: 27%, adenocarcinoma: 100%, PS 0-1: 87% and PS 3: 13%. All patients were treated with a first-line platinum-based doublet with or without bevacizumab and 70% of them with erlotinib in the second-line. No major toxicity was observed. Partial response (PR) rate was 44% (31-63%) using RECIST criteria on CT-scan, and 65% (29-88%) with PET FDG. PS improved in 33% of the cases. Median progression free survival was 4.6 months. An increase of CEC and CEP was observed in patients with NSCLC treated with paclitaxel and bevacizumab. In this retrospective series, our results suggest efficacy signal in pre-treated metastatic NSCLC and warrant further assessment in a randomized clinical trial.
Paclitaxel-induced sickle cell crisis.
Wilson, Nicole M; Espirito, Janet L; Valero, Vicente; Pusztai, Lajos
2008-07-15
A case of paclitaxel-induced painful crisis in a patient with breast cancer and hemoglobin sickle cell disease (SCD) is reported. A 55-year-old postmenopausal African-American woman had stage IIB invasive ductal carcinoma of the left breast. She was not taking any medications and did not report a history of cancer or other diseases. She had mild microcytic anemia, but the rest of her blood counts and liver function test values were normal. Bone scans and computed tomography scans of her chest and abdomen did not reveal any metastatic disease. She underwent a routine left segmental mastectomy and axillary lymph node dissection that revealed a 4-cm invasive cancer with 1 of 10 axillary lymph nodes positive for metastatic disease. Her treatment plan included chemotherapy with weekly paclitaxel, followed by fluorouracil, epirubicin, and cyclophosphamide and radiation. The first cycle of paclitaxel was well tolerated until one week after initiation when the patient woke up in the middle of the night with a sudden onset of excruciating back pain and muscle spasms. Other symptoms that developed included fatigue, left-sided rib pain, and shortness of breath. The patient recalled being told that she had sickle cell trait but said that she never had a sickle cell crisis. Laboratory tests during her 13-day hospitalization revealed hemolysis. The patient was diagnosed with hemoglobin SCD and later discharged with as-needed, low-dose oxycodone and baclofen, antibiotics, and folic acid. A patient with breast cancer and SCD had a painful crisis after receiving paclitaxel as part of her chemotherapy regimen.
Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Pal, Tapan Kumar
2014-01-01
A simple, reproducible, feasible and innovative reversed-phase high-performance liquid chromatographic method was developed and validated for the quantitative determination of paclitaxel dissolved in various oils. The method was validated after extraction of the analyte from capryol 90, triacetin and olive oil. The method was conducted on a Hypersil BDS C18 column, 250 × 4.6 mm, 5 µm particle size, with a mobile phase composed of acetonitrile: 10 mM KH2PO4 buffer (pH 3.5) (55:45, v/v) and detection at 227 nm. The linearity, in the range of 5 to 50 µg/mL, presented determination coefficients of 0.9983, 0.9997 and 0.9990 in capryol 90, triacetin and olive oil, respectively, calculated by the least-squares regression method. Intra-day precision values for percentages recovered were 0.68 to 0.80, 0.83 to 1.13 and 0.97 to 1.88, and inter day precision values were 1.52 to 1.92, 1.43 to 1.83 and 1.26 to 2.06 for capryol 90, triacetin and olive oil, respectively. The recovery of paclitaxel from the capryol 90, triacetin and olive oil ranged from 97.94 to 103.55, 96.85 to 103.27 and 97.14 to 103.64%, respectively. This developed and validated method was successfully applied to quantitatively assess paclitaxel dissolved in various oils. The solubility of paclitaxel was found to be higher in triacetin than in other tested oils.
Markman, M; Kennedy, A; Webster, K; Kulp, B; Peterson, G; Belinson, J
1997-10-01
To examine the toxicity profile and antineoplastic activity of carboplatin (area under the concentration-time curve of 4 to 7.5) plus 3-hour infusional paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) (135 or 175 mg/m2) in women with advanced gynecologic malignancies, we retrospectively reviewed the experience of the Gynecologic Cancer Program at The Cleveland Clinic with this combination chemotherapy regimen. To date, 92 patients (median age, 67 years) have received a total of 460 courses (median number per patient, six) of this two-drug combination. The initial paclitaxel dose was 175 mg/m2 and the carboplatin area under the concentration-time curve was > or = 5 in 72% and 73% of patients, respectively. The major toxicity was neutropenia (grade 4 in 9% of patients), resulting in two febrile episodes and a single septic death. Grade 4 thrombocytopenia and grade 3 peripheral neuropathy were noted in one and two patients, respectively. Twelve patients (13%) experienced at least one episode of paclitaxel-associated hypersensitivity, but all were able to continue with the treatment program. Of the 62 patients with ovarian cancer or primary peritoneal carcinoma with carbohydrate antigen-125 levels > or = 60 U/mL before the initiation of chemotherapy, 74% exhibited a > or = 90% decline in the tumor marker following treatment. We conclude that the combination of carboplatin and 3-hour infusional paclitaxel can be administered in the outpatient setting with a highly acceptable toxicity profile and with major activity in patients with ovarian cancer and primary carcinoma of the peritoneum.
Winterhoff, Boris; Freyer, Luisa; Hammond, Edward; Giri, Shailendra; Mondal, Susmita; Roy, Debarshi; Teoman, Attila; Mullany, Sally A; Hoffmann, Robert; von Bismarck, Antonia; Chien, Jeremy; Block, Matthew S; Millward, Michael; Bampton, Darryn; Dredge, Keith; Shridhar, Viji
2015-05-01
Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taek Sang; Kang, Soon Beom, E-mail: tslee70@gmail.com; Kim, Young Tak
Purpose: To evaluate the efficacy and toxicity of concurrent chemoradiation with paclitaxel and carboplatin in patients with high-risk cervical cancer. Methods and Materials: Patients after radical hysterectomy for cervical cancer, with at least 1 high-risk characteristic, were administered paclitaxel 135 mg/m{sup 2}, carboplatin area under the curve = 5 every 3 weeks for 3 cycles concomitant with radiation therapy as adjuvant treatment. Results: This prospective study enrolled 71 consecutive patients. Sixty-six patients (93%) completed the planned treatment. The majority of grade 3/4 neutropenia or nonhematologic toxicities were usually self-limited. Diarrhea grades 3/4 were observed in 4 patients (5.6%). One patientmore » developed anaphylactic shock after infusion of paclitaxel. With a median follow-up of 57 months, recurrences occurred in 16 patients. Multivariable analysis indicated that common iliac lymph node involvement is an independent risk factor for disease recurrence (odds ratio 13.48; 95% confidence interval 2.93-62.03). In the intent-to-treat population (n=71), the estimated 5-year disease-free survival and overall survival rates were 77.3% and 80.3% respectively. In the per-protocol population (n=62), disease-free survival was 78.9% and overall survival was 83.9%. Conclusions: Concurrent chemoradiation with paclitaxel/carboplatin is well tolerated and seems to be effective for patients who undergo radical hysterectomy. Therefore, a prospective, randomized controlled study should be designed to evaluate efficacy of this approach for patients with high-risk cervical cancer.« less
Li, J; Yi, W; Jiang, P; Sun, R; Li, T
2016-11-30
Our previous preliminary study revealed a synergistic effect of ambroxol hydrochloride with chemotherapeutic agents such as paclitaxel and carboplatin in lung cancer. However, the optimal conditions such as administration time and drug concentration of ambroxol hydrochloride to achieve the maximum synergistic effect remained unclear. Therefore, concentration changes of the chemotherapy drugs paclitaxel and carboplatin in the sputum were observed after ambroxol hydrochloride administration at different times in order to determine the most effective time frame of ambroxol hydrochloride administration. In this study, 470 cases of non-small cell lung cancer (NSCLC) were divided into different groups with ambroxol hydrochloride administered at different time points prior to chemotherapy, while another 171 cases received no ambroxol hydrochloride prior to chemotherapy. The results showed the concentrations of paclitaxel and carboplatin in sputum of patients treated with ambroxol hydrochloride were significantly higher than those of the control group, suggesting that ambroxol hydrochloride significantly increased the local concentrations of chemotherapeutic agents in lung tissues of NSCLC. Furthermore, the intravenous administration of ambroxol hydrochloride more than 48 hours before chemotherapy showed an optimized schedule and much greater efficacy in increasing drug concentrations than that of the control group. No statistical differences were found in the rates of grade 2 or above myelosuppression between the ambroxol intervention and control groups. Taken together, these results demonstrate that ambroxol hydrochloride administered intravenously more than 48 hours prior to chemotherapy optimally increased the concentrations of paclitaxel and carboplatin in lung tissue without significantly increasing hematologic toxicity.
Bakrania, Anita K; Variya, Bhavesh C; Rathod, Lalaji V; Patel, Snehal S
2018-01-01
Triple negative breast cancer revolution has identified a plethora of therapeutic targets making it apparent that a single target for its treatment could be rare hence creating an urge to develop robust technologies for combination drug therapy. Paclitaxel, hailed as the most significant advancement in chemotherapy faces several underpinnings due to its low solubility and permeability. Advancing research has demonstrated the role of interferons in cancer. DEAE-Dextran, an emerging molecule with evidence of interferon induction was utilized in the present study to develop a nanoformulation in conjugation with paclitaxel to target multiple therapeutic pathways, with diminution of paclitaxel adverse effects and develop a specific targeted nano system. Evidently, it was demonstrated that DEAE-Dextran coated nanoformulation portrays significant synergistic cytotoxicity in the various cell lines. Moreover, overcoming the activation of ROS by paclitaxel, the combination drug therapy more effectively inhibited ROS through β-interferon induction. The nanoformulation was further conjugated to FITC for internalization studies which subsequently indicated maximum cellular uptake at 60min post treatment demonstrated by green fluorescence from FITC lighting up the nuclear membrane. Precisely, the mechanistic approach of nuclear-targeted nanoformulation was evaluated by in vivo xenograft studies which showed a synergistic release of β-interferon at the target organ. Moreover, the combination nanoformulation inculcated multiple mechanistic approaches through VEGF and NOTCH1 inhibition along with dual β and γ-interferon overexpression. Overall, the combination therapy may be a promising multifunctional nanomaterial for intranuclear drug delivery in TNBC. Copyright © 2017 Elsevier B.V. All rights reserved.
UMENE, KIYOKO; YANOKURA, MEGUMI; BANNO, KOUJI; IRIE, HARUKO; ADACHI, MASATAKA; IIDA, MIHO; NAKAMURA, KANAKO; NOGAMI, YUYA; MASUDA, KENTA; KOBAYASHI, YUSUKE; TOMINAGA, EIICHIRO; AOKI, DAISUKE
2015-01-01
Aurora kinase A (AURKA) regulates the cell cycle checkpoint and maintains genomic integrity. AURKA is overexpressed in various malignant tumors and its upregulation induces chromosomal instability, which leads to aneuploidy and cell transformation. To investigate the role of AURKA in endometrial cancer, we evaluated the association of immunohistochemical expression of AURKA with clinicopathological factors. Furthermore, we examined the effects of AURKA inhibition by transfected siRNA in HEC-1B cells on colony-forming ability, invasion and migration capacity, and chemosensitivity. Immunohistochemical staining showed that overexpression of AURKA was significantly associated with tumor grade (P<0.05) and poor histologic differentiation (P<0.05). The recurrence rate also tended to be high in cases with overexpression of AURKA (P<0.1) and these cases also had a tendency for shorter disease-free survival (DFS) (P<0.1). AURKA inhibition in endometrial cancer cell lines significantly decreased cell growth, invasion and migration (P<0.05), and increased chemosensitivity to paclitaxel. We also evaluated the efficacy of a combination of AURKA siRNA and paclitaxel against subcutaneous tumors formed in a nude mouse. After treatment, the tumor volume shrank significantly compared to treatment with paclitaxel only (P<0.05). To our knowledge, this is the first study in endometrial carcinoma to show a correlation between overexpression of AURKA and tumor grade, histological type and sensitivity to paclitaxel. AURKA is a promising therapeutic target in endometrial cancer and the combination therapy with AURKA inhibitors and paclitaxel could be effective for endometrial cancer that is resistant to conventional treatment and has a poor prognosis. PMID:25625960
Teng, Pang-Ning; Bateman, Nicholas W; Wang, Guisong; Litzi, Tracy; Blanton, Brian E; Hood, Brian L; Conrads, Kelly A; Ao, Wei; Oliver, Kate E; Darcy, Kathleen M; McGuire, William P; Paz, Keren; Sidransky, David; Hamilton, Chad A; Maxwell, G Larry; Conrads, Thomas P
2017-07-01
High grade serous ovarian cancer (HGSOC) patients have a high recurrence rate after surgery and adjuvant chemotherapy due to inherent or acquired drug resistance. Cell lines derived from HGSOC tumors that are resistant to chemotherapeutic agents represent useful pre-clinical models for drug discovery. Here, we describe establishment of a human ovarian carcinoma cell line, which we term WHIRC01, from a patient-derived mouse xenograft established from a chemorefractory HGSOC patient who did not respond to carboplatin and paclitaxel therapy. This newly derived cell line is platinum- and paclitaxel-resistant with cisplatin, carboplatin, and paclitaxel half-maximal lethal doses of 15, 130, and 20 µM, respectively. Molecular characterization of this cell line was performed using targeted DNA exome sequencing, transcriptomics (RNA-seq), and mass spectrometry-based proteomic analyses. Results from exomic sequencing revealed mutations in TP53 consistent with HGSOC. Transcriptomic and proteomic analyses of WHIRC01 showed high level of alpha-enolase and vimentin, which are associated with cell migration and epithelial-mesenchymal transition. WHIRC01 represents a chemorefractory human HGSOC cell line model with a comprehensive molecular profile to aid future investigations of drug resistance mechanisms and screening of chemotherapeutic agents.
Nakano, Kenji; Sato, Yukiko; Sasaki, Tohru; Shimbashi, Wataru; Fukushima, Hirofumi; Yonekawa, Hiroyuki; Mitani, Hiroki; Kawabata, Kazuyoshi; Takahashi, Shunji
2016-09-01
A standard chemotherapy for recurrent/metastatic salivary gland cancers has not been established. Combination chemotherapy of carboplatin and paclitaxel should be evaluated as a treatment option. This study retrospectively reviewed salivary gland cancer patients who received combination chemotherapy of carboplatin and paclitaxel. The differences in objective responses and in the prognoses according to the different pathological diagnoses were evaluated. A total of 38 patients were enrolled in the study; of them, 18 had salivary duct carcinomas (SDCs), nine had adenoid cystic carcinomas (ACCs), and 11 had other pathological diagnoses. Objective responses were observed in 15 (39%) patients. The median progression-free survival (PFS) was 6.5 months, and the median overall survival (OS) was 26.5 months. ACC patients had relatively low response rates (9%), but there were no significant differences in PFS or OS compared to other sub-types. The treatment was well tolerated, with few adverse events. Salivary gland cancer patients showed a moderate clinical response to the combination chemotherapy of carboplatin and paclitaxel. The objective response rates differed according to the pathological diagnoses, but there were no significant differences in prognoses.
Timmer-Bonte, J N H; Punt, C J A; vd Heijden, H F M; van Die, C E; Bussink, J; Beijnen, J H; Huitema, A D R; Tjan-Heijnen, V C G
2008-05-01
In advanced non-small cell lung cancer (NSCLC) the clinical benefit of a platinum-based doublet is only modest, therefore, attenuated dosed three-drug combinations are investigated. We hypothesized that with adequate support a full dosed chemotherapy triplet is feasible. The study was designed as a dose finding study of paclitaxel in chemotherapy-naive patients. Paclitaxel was given as a 3-h infusion on day 1, followed by fixed doses of teniposide (or etoposide) 100mg/m(2) days 1, 3, 5 and cisplatin 80 mg/m(2) day 1 every 3 weeks. As myelotoxicity was expected to be the dose-limiting toxicity, prophylactic G-CSF and antibiotic support was evaluated. Indeed, paclitaxel 120 mg/m(2) resulted in dose-limiting neutropenia, despite G-CSF support. Teniposide/etoposide day 1, 3, 5 was less myelotoxic compared to day 1, 2, 3. G-CSF support allowed paclitaxel dose-escalation to 250 mg/m(2). The addition of prophylactic antibiotics enabled dose-escalation to 275 mg/m(2) without reaching MTD. In conclusion, G-CSF and antibiotics prophylaxis enables the delivery of a full dosed chemotherapy triplet in previously untreated NSCLC patients.
Epirubicin plus paclitaxel regimen as second-line treatment of patients with small-cell lung cancer.
Pasello, Giulia; Carli, Paolo; Canova, Fabio; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Urso, Loredana; Conte, Pierfranco; Favaretto, Adolfo
2015-04-01
Most patients with small cell lung cancer (SCLC) experience relapse within one year after first-line treatment. The aim of this study was to describe activity and safety of second-line with epirubicin at 70 mg/m(2) followed by paclitaxel at 135 mg/m(2) on day 1 every three weeks for a maximum of six cycles. This is a retrospective review of all patients with SCLC evaluated for second-line treatment between 2003 and 2013 at our Institution. Sixty-eight patients received the study regimen of epirubicin with paclitaxel. We observed partial response in 19 (30%), stable disease in 22 (34%) and total early failure rate in 23 (36%) patients. Median progression free and overall survival were 21.8 and 26.5 weeks, respectively. Haematological toxicities were as follows: grade 3-4 leukopenia and neutropenia in 18 (31%) and 30 (22%) of patients, respectively; grade 3 anaemia and grade 4 thrombocytopenia were reported in 2 (3%) and 5 (9%) of patients, respectively. Epirubicin with paclitaxel is an active and tolerable second-line regimen in patients with SCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Panoz-Brown, Danielle; Carey, Lawrence M; Smith, Alexandra E; Gentry, Meredith; Sluka, Christina M; Corbin, Hannah E; Wu, Jie-En; Hohmann, Andrea G; Crystal, Jonathon D
2017-10-01
Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.
Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor
2011-01-01
The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050
MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy.
Ran, Xiaomin; Yang, Juan; Liu, Chaoxia; Zhou, Ping; Xiao, Linzhi; Zhang, Keqiang
2015-01-01
Endometrial carcinoma is the most common gynecological malignancy among women worldwide. Although treatment for EC has improved with the introduction of Paclitaxel (Tax) chemotherapy, the majority of patients will develop resistance to the treatment, leading to poor prognosis. One of the causes of chemoresistance is the increased ability to undergo autophagy. In this study, we identified that miR-218 was significantly down-regulated in Tax-resistant EC cells compared to the non-drug resistant cell lines, and overexpression of miR-218 sensitized paclitaxel resistant EC cells to paclitaxel. Moreover, we demonstrated that miR-218 directly binds to the 3'-UTR of HMGB1 gene. HMGB1 was upregulated in paclitaxel resistant EC cells, it mediated autophagy and contributed to chemotherapy resistance in endometrial carcinoma in vitro. HMGB1-mediated autophagy could be suppressed by miR-218 overexpression in Tax resistant EC cells. In summary, we determined the targeting role of miR-218 to HMGB1 and the regulation of miR-218 on the HMGB1-mediated cell autophagy during chemotherapy resistance in endometrial carcinoma cells. These results reveal novel potential role of miR-218 against chemotherapy resistance during the treatment of endometrial carcinoma.
Rades, Dirk; Bartscht, Tobias; Idel, Christian; Schild, Steven E; Hakim, Samer G
2018-06-01
Patients with secondary/ recurrent squamous cell head and neck cancer (SCCHN) have poor prognoses. Outcomes of re-irradiation with ≥42 Gy plus paclitaxel for secondary/recurrent SCCHN are herein presented. Two patients re-irradiated for secondary/recurrent SCCHN were evaluated. Patients received 44.4 Gy (2×1.2 Gy/day) or 42.0 Gy (2×1.5 Gy/day), respectively, plus concurrent paclitaxel (35 mg/m 2 weekly or 20 mg/m 2 twice per week). One patient developed a locoregional recurrence and additional metastases at 12 months after re-irradiation and died at 13 months. The other patient developed multiple bone metastases at 103 months and died at 104 months. Acute toxicities included grade 2 anemia and mucositis in both patients. Radiation dermatitis was grade 2 in one patient and grade 3 in the other. Re-irradiation with 42.0-44.4 Gy given twice daily plus paclitaxel was well tolerated and achieved a favorable response. The results need to be confirmed in a prospective trial. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xingcai
In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs. In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for the preparation of the nanoparticles of paclitaxel. For this approach, a 200 nm diameter was a kind of "magic" barrier for colloidal particles prepared. This diameter barrier may be related to the nucleation size of the solvent vapor microbubbles. Consequently, agents enhancing bubbling formation (such as NH4HCO3) were applied to decrease paclitaxel colloid particles to 100-120 nm. Those paclitaxel nanoparticles were Layer-by-Layer coated with a 10-20 nm polycation/polyanion shell to provide aqueous colloidal stability and slower particle dissolution. However, a large obstacle of these powerful ultrasonication methods was a necessity of long ca 45 minutes high power ultrasonication which resulted in TiO2 contamination from titanium electrode. The small amount of TiO2 contamination from ultrasonication did negatively affect the in vivo testing of this system in mice, and had to be removed before low toxicity of the Layer-by-Layer coated paclitaxel nanoparticles were observed. In the second part of the dissertation, the second approach for sonication, the bottom-up approach (sonicating drug in a water-miscible organic solvent followed by slow water add-in) was successfully applied for the preparation of the nanoparticles of lapatinib and paclitaxel with less powerful sonication. By using polymeric excipients combined with non-ionic and anionic surfactants along with regular sonication, the prepared particle sizes was uniform at around 140-150 nm. Less sonication time (ca 15 minutes) and lower sonication power avoided TiO2 contamination. The amphiphiles attached to the hydrophobic nanoparticles and served as anchors for LbL shell. The inner LbL layers and surfactants minimized the surface free energy, thereby preventing crystal form changes and nanoparticles coalescence, while the outermost layers enhanced colloidal stability. In the third part of the dissertation, LbL shells with PEGylation (using a block copolymer of poly-L-lysine (PLL) and PEG) for lapatinib were developed for enhanced colloidal stability in high molarity PBS buffer. In the above proposed paclitaxel and lapatinib formulation, we obtained 150-200 nm with high drug content of 80-90% due to very thin capsule walls (ca 10 nm). The drug release time from the LbL capsules was found to be between 10 and 20 hours depending on the shell thickness. Washless Layer-by-Layer assembly was used: 1) addition of polycation in the amount that is enough to reverse surface charge of the dispersion to a high positive (+30 mV) value; 2) addition of polyanion in the amount that is enough to reverse surface charge of the dispersion to a high negative (-30 mV) value. No intermediate washing of nanoparticles was done until the shell was complete. The washless method had the advantage of time and energy saving, preservation of the sample structure and no losses of sample. In the last part of the dissertation, we elaborated nanoformulation of two drugs in one nanocapsule locating paclitaxel in the core and lapatinib on the shell periphery. With this formulation, combining in one nanoparticle dual drugs, we reached the drugs' efficiency synergy. In a multidrug-resistant (MDR) ovarian cancer cell line, OVCAR-3, LbL lapatinib/paclitaxel nanocolloids mediated an enhanced cell growth inhibition in comparison with the LbL paclitaxel-only and LbL lapatinib-only treatment, not to say the free one drug treatment.
Edwards, Steven J; Barton, Samantha; Thurgar, Elizabeth; Trevor, Nicola
2015-01-01
Ovarian cancer is the fifth most common cancer in the UK, and the fourth most common cause of cancer death. Of those people successfully treated with first-line chemotherapy, 55-75% will relapse within 2 years. At this time, it is uncertain which chemotherapy regimen is more clinically effective and cost-effective for the treatment of recurrent, advanced ovarian cancer. To determine the comparative clinical effectiveness and cost-effectiveness of topotecan (Hycamtin(®), GlaxoSmithKline), pegylated liposomal doxorubicin hydrochloride (PLDH; Caelyx(®), Schering-Plough), paclitaxel (Taxol(®), Bristol-Myers Squibb), trabectedin (Yondelis(®), PharmaMar) and gemcitabine (Gemzar(®), Eli Lilly and Company) for the treatment of advanced, recurrent ovarian cancer. Electronic databases (MEDLINE(®), EMBASE, Cochrane Central Register of Controlled Trials, Health Technology Assessment database, NHS Economic Evaluations Database) and trial registries were searched, and company submissions were reviewed. Databases were searched from inception to May 2013. A systematic review of the clinical and economic literature was carried out following standard methodological principles. Double-blind, randomised, placebo-controlled trials, evaluating topotecan, PLDH, paclitaxel, trabectedin and gemcitabine, and economic evaluations were included. A network meta-analysis (NMA) was carried out. A de novo economic model was developed. For most outcomes measuring clinical response, two networks were constructed: one evaluating platinum-based regimens and one evaluating non-platinum-based regimens. In people with platinum-sensitive disease, NMA found statistically significant benefits for PLDH plus platinum, and paclitaxel plus platinum for overall survival (OS) compared with platinum monotherapy. PLDH plus platinum significantly prolonged progression-free survival (PFS) compared with paclitaxel plus platinum. Of the non-platinum-based treatments, PLDH monotherapy and trabectedin plus PLDH were found to significantly increase OS, but not PFS, compared with topotecan monotherapy. In people with platinum-resistant/-refractory (PRR) disease, NMA found no statistically significant differences for any treatment compared with alternative regimens in OS and PFS. Economic modelling indicated that, for people with platinum-sensitive disease and receiving platinum-based therapy, the estimated probabilistic incremental cost-effectiveness ratio [ICER; incremental cost per additional quality-adjusted life-year (QALY)] for paclitaxel plus platinum compared with platinum was £24,539. Gemcitabine plus carboplatin was extendedly dominated, and PLDH plus platinum was strictly dominated. For people with platinum-sensitive disease and receiving non-platinum-based therapy, the probabilistic ICERs associated with PLDH compared with paclitaxel, and trabectedin plus PLDH compared with PLDH, were estimated to be £25,931 and £81,353, respectively. Topotecan was strictly dominated. For people with PRR disease, the probabilistic ICER associated with topotecan compared with PLDH was estimated to be £324,188. Paclitaxel was strictly dominated. As platinum- and non-platinum-based treatments were evaluated separately, the comparative clinical effectiveness and cost-effectiveness of these regimens is uncertain in patients with platinum-sensitive disease. For platinum-sensitive disease, it was not possible to compare the clinical effectiveness and cost-effectiveness of platinum-based therapies with non-platinum-based therapies. For people with platinum-sensitive disease and treated with platinum-based therapies, paclitaxel plus platinum could be considered cost-effective compared with platinum at a threshold of £30,000 per additional QALY. For people with platinum-sensitive disease and treated with non-platinum-based therapies, it is unclear whether PLDH would be considered cost-effective compared with paclitaxel at a threshold of £30,000 per additional QALY; trabectedin plus PLDH is unlikely to be considered cost-effective compared with PLDH. For patients with PRR disease, it is unlikely that topotecan would be considered cost-effective compared with PLDH. Randomised controlled trials comparing platinum with non-platinum-based treatments might help to verify the comparative effectiveness of these regimens. This study is registered as PROSPERO CRD42013003555. The National Institute for Health Research Health Technology Assessment programme.
The role of taxanes in triple-negative breast cancer: literature review
Mustacchi, Giorgio; De Laurentiis, Michelino
2015-01-01
Breast cancer (BC) is the most frequent tumor worldwide. Triple-negative BCs are characterized by the negative estrogen and progesterone receptors and negative HER2, and represent 15% of all BCs. In this review, data on the use of taxanes in triple-negative BCs are analyzed, concluding they are effective in any clinical setting (neoadjuvant, adjuvant, and metastatic). Further, the role of nab-paclitaxel (formulation of albumin-bound paclitaxel) in these tumors is also evaluated. The available data show the clinical potential of nab-paclitaxel based combinations in terms of long-duration response, increased survival, and better quality of life of patients with triple-negative metastatic BC. The ongoing trials will give further information on the better management of this type of tumor. PMID:26273192
Studies on paclitaxel-loaded glyceryl monostearate nanoparticles.
Shenoy, Vikram Subraya; Rajyaguru, Tushar Himmatlal; Gude, Rajiv Phondu; Murthy, Rayasa S Ramchandra
2009-09-01
Solid lipid nanoparticles (SLNs) of Paclitaxel were prepared by modified Hot homogenization method using Glyceryl monostearate (GMS). The SLNs were characterized for its physicochemical characteristics such as mean particle size, percentage entrapment efficiency and zeta potential, which were found to be 226 nm, 92.43% and -29.4 mV, respectively. The Transmission Electron Microscopy (TEM) studies showed that prepared SLNs were of spherical shape. The drug retarding efficiency of the lipid (GMS) was better in pH 7.4 compared to pH 3.5. The release profile showed a tendency to follow Higuchi diffusion pattern at pH 7.4 and Peppas-Korsenmeyer model at pH 3.5. Chemosensitivity assay carried out using B16F10 cell lines showed that anti-proliferative activity of Paclitaxel was not hindered due to encapsulation.
Hu, Luo; Liang, Gong; Yuliang, Wang; Bingjing, Zhu; Xiangdong, Zhou; Rufu, Xu
2013-02-15
Lung cancer is still the leading cause of cancer-related mortality worldwide. Around 80 to 85% of lung cancers are non-small cell lung cancer (NSCLC). Regional lymphatic metastasis is a frequent occurrence in NSCLC, and the extent of lymphatic dissemination significantly determines the prognosis of patients with NSCLC. Hence, identification of alternative treatments for these patients should be considered a priority. Liposomal paclitaxel is a new formulation composed of paclitaxel and liposomes, with favorable pharmacokinetic properties. In particular, it produces dramatically higher drug concentrations in the lymph nodes than occurs with the current formulations of paclitaxel, thus we believe that patients with NSCLC with regional lymphatic metastasis may benefit from this new drug. Cisplatin-based doublet chemotherapy is recommended as the first-line treatment for patients with advanced NSCLC. We have designed a trial to assess whether first-line chemotherapy using liposomal paclitaxel combined with cisplatin (LP regimen) is superior to gemcitabine combined with cisplatin (GP regimen) in efficacy (both short-term and long-term efficacy) and safety (adverse events; AEs). This is a prospective, open-label, controlled randomized clinical trial (RCT) to assess the therapeutic effects and safety of liposomal paclitaxel. The study aims to enroll 126 patients, who will be randomly allocated to one of the two treatment groups (LP and GP), with 63 patients in each group. Patients will receive four to six cycles of the assigned chemotherapy, and primary outcome will be assessed every two cycles. Patients will be recommended for surgery if the tumor becomes resectable. All participants will be followed up for at least 12 months. The objective response rate (ORR), changes in regional lymphatic metastasis (including number and size) and TNM (tumor, node, metastasis) staging will be the primary outcome measures. Progression-free survival, objective survival, median survival time, 1-year survival rate, toxicity, and time to disease progression will be the secondary outcome measures. A systematic search has indicated that this proposed study will be the first RCT to evaluate whether liposomal paclitaxel plus cisplatin will have beneficial effects, compared with gemcitabine plus cisplatin, on enhancing ORR, changing TNM staging, improving long-term survival, and reducing the frequency of AEs for patients with NSCLC with regional lymphatic metastasis. http://www.chictr.org Identifier: ChiCTR-TRC-12602105.
Pledgie-Tracy, Allison; Billam, Madhavi; Hacker, Amy; Sobolewski, Michele D; Woster, Patrick M.; Zhang, Zhe; Casero, Robert A.; Davidson, Nancy E
2009-01-01
Polyamine analogues have demonstrated significant activity against human breast cancer cell lines as single agents as well as in combination with other cytotoxic drugs. This study evaluates the ability of a polyamine analogue N1, N11-bis(ethyl)norspermine (BENSpm) to synergize with six standard chemotherapeutic agents, 5-fluorouracil (FU), fluorodeoxyuridine, cis- diaminechloroplatinum(II) (DDP), paclitaxel, docetaxel, and vinorelbine, in four human breast cancer cell lines and one immortalized, non-tumorigenic mammary epithelial cell line. BENSpm exhibited synergistic inhibitory effect on cell proliferation in combination with 5-FU or paclitaxel in human breast cancer cell lines (MDA-MB-231 and MCF-7) and either antagonistic or less effective in the non-tumorigenic MCF-10A cell line. Synergism was highest with 120 hour concomitant treatment or pre-treatment with BENSpm for 24 hours followed by concomitant treatment for 96 additional hours. Since the cytotoxic effects of many polyamine analogues and cytotoxic agents are believed to act, in part, through induction of the polyamine catabolic enzymes SSAT and SMO, the role of these enzymes on synergistic response was evaluated in MDA-MB-231- and MCF-7-treated with BENSpm and 5-FU or paclitaxel. Combination treatments of BENSpm with 5-FU or paclitaxel resulted in induction of SSAT mRNA and activity in both cell lines compared to either drug alone, while SMO mRNA and activity were increased only in MDA-MB-231 cells. Induction was greater with BENSpm/paclitaxel combination than BENSpm/5-FU. Further, RNAi studies demonstrated that both SSAT and SMO play a significant role in the response of MDA-MB-231 cells to treatment with BENSpm and 5-FU or paclitaxel. In MCF-7 cells, only SSAT appears to be involved in the response to these treatments. In an effort to translate combination studies from in vitro to in vivo, and to form a basis for clinical setting, the in vivo therapeutic efficacy of BENSpm alone and in combination with paclitaxel on tumor regression was evaluated in xenograft mice models generated with MDA-MB-231 cells. Intraperitoneal exposure to BENSpm or taxol singly and in combination for 4 weeks resulted in significant inhibition in tumor growth These findings help elucidate the mechanisms involved in synergistic drug response and support combinations of polyamine analogues with chemotherapeutic agents which could potentially be used in the treatment of breast cancer. PMID:19727732
Al-Batran, S-E; Van Cutsem, E; Oh, S C; Bodoky, G; Shimada, Y; Hironaka, S; Sugimoto, N; Lipatov, O N; Kim, T-Y; Cunningham, D; Rougier, P; Muro, K; Liepa, A M; Chandrawansa, K; Emig, M; Ohtsu, A; Wilke, H
2016-04-01
The phase III RAINBOW trial demonstrated that the addition of ramucirumab to paclitaxel improved overall survival, progression-free survival, and tumor response rate in fluoropyrimidine-platinum previously treated patients with advanced gastric/gastroesophageal junction (GEJ) adenocarcinoma. Here, we present results from quality-of-life (QoL) and performance status (PS) analyses. Patients with Eastern Cooperative Oncology Group PS of 0/1 were randomized to receive ramucirumab (8 mg/kg i.v.) or placebo on days 1 and 15 of a 4-week cycle, with both arms receiving paclitaxel (80 mg/m(2)) on days 1, 8, and 15. Patient-reported outcomes were assessed with the QoL/health status questionnaires EORTC QLQ-C30 and EQ-5D at baseline and 6-week intervals. PS was assessed at baseline and day 1 of every cycle. Time to deterioration (TtD) in each QLQ-C30 scale was defined as randomization to first worsening of ≥10 points (on 100-point scale) and TtD in PS was defined as first worsening to ≥2. Hazard ratios (HRs) for treatment effect were estimated using stratified Cox proportional hazards models. Of the 665 patients randomized, 650 (98%) provided baseline QLQ-C30 and EQ-5D data, and 560 (84%) also provided data from ≥1 postbaseline time point. Baseline scores for both instruments were similar between arms. Of the 15 QLQ-C30 scales, 14 had HR < 1, indicating similar or longer TtD in QoL for ramucirumab + paclitaxel. Treatment with ramucirumab + paclitaxel was also associated with a delay in TtD in PS to ≥2 (HR = 0.798, P = 0.0941). Alternate definitions of PS deterioration yielded similar results: PS ≥ 3 (HR = 0.656, P = 0.0508), deterioration by ≥1 PS level (HR = 0.802, P = 0.0444), and deterioration by ≥2 PS levels (HR = 0.608, P = 0.0063). EQ-5D scores were comparable between treatment arms, stable during treatment, and worsened at discontinuation. In patients with previously treated advanced gastric/GEJ adenocarcinoma, addition of ramucirumab to paclitaxel prolonged overall survival while maintaining patient QoL with delayed symptom worsening and functional status deterioration. NCT01170663. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Time course of Paclitaxel-induced apoptosis in an experimental model of virus-induced breast cancer.
Erba, Paola A; Manfredi, Chiara; Lazzeri, Elena; Minichilli, Fabrizio; Pauwels, Ernest K J; Sbrana, Alberto; Strauss, H William; Mariani, Giuliano
2010-05-01
Early assessment of the efficacy of treatment is important in patients with breast cancer, whose routine adjuvant regimen frequently includes chemotherapy. Irrespective of the exact mechanisms involved in induction, the common early phenotypic marker of apoptosis is the expression on the outer cell membrane surface of phosphatidylserine, which avidly binds annexin V. (99m)Tc-labeled annexin V has been proposed for in vivo scintigraphic detection of apoptosis, albeit with contradicting results. This study was performed to define the time course of apoptosis induced by the chemotherapeutic agent paclitaxel in a model of virus-induced murine breast cancer. The RIII virus induces an estrogen-dependent, slow-growing breast cancer; BALB-c/cRIII female mice with breast tumors averaging 10 mm were studied, both in baseline conditions and at various times after the intravenous administration of paclitaxel (equivalent to a human dose of 20 mg/70 kg of body weight). The biodistribution of (99m)Tc-annexin V was evaluated at baseline and then at 1, 3, 6, and 24 h after paclitaxel administration. Apoptotic and antiapoptotic markers were also evaluated in tumor samples obtained at the same time points: DNA breaks (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling [TUNEL]), active caspase-3, apoptosis-inducing factor, and Bcl-2 protein. Baseline uptake of (99m)Tc-annexin V in breast tumors was about 2-fold higher than the uptake in normal breast tissue (demonstrating some ongoing apoptosis); tracer uptake increased at 1 and 3 h after paclitaxel administration (to almost double the baseline value) and then declined to levels even lower than baseline. Although no activation of the apoptosis-inducing factor mechanism was detected, a peak in TUNEL-positive tumor cells was reached 3 h after paclitaxel administration (to more than 6-fold the baseline level). The antiapoptotic marker Bcl-2 exhibited a biphasic pattern, with a maximum drop at 3 h, followed by return toward baseline levels at 6 h. These results define the time course of various biologic events taking place in this model of murine breast cancer after a proapoptotic insult (single-dose paclitaxel). Although confirming that in vivo uptake of (99m)Tc-annexin V reflects the degree of apoptosis, the study also suggests that the apoptotic response to antitumor therapy may differ from tumor type to tumor type. Therefore, contradicting results previously reported may depend on an inadequate time window chosen for imaging with (99m)Tc-annexin V.
Nakajima, Tooru; Taniwaka, Koichi; Goto, Hideki; Kawamura, Shunji
2017-04-01
A 63-year-old postmenopausal woman was treated with combination therapy consisting of paclitaxel(PTX)and cisplatin (CDDP)for gastric metastasis of breast cancer; she achieved a complete response as revealed by pathological examination. Combination therapy with PTX and CDDP seems to be an optional treatment for gastric metastasis of breast cancer.
Das, Avizit; Ahmed, Oly; Baten, A. K. M. Abdul; Bushra, Samira; Islam, M. Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul
2017-01-01
ABSTRACT Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. PMID:28818909
2013-01-01
Background This open-label study compared docetaxel/gemcitabine vs. paclitaxel/gemcitabine and a weekly (W) vs. 3-weekly (3 W) schedule in metastatic breast cancer (MBC). Methods Patients relapsed after adjuvant/neoadjuvant anthracycline-containing chemotherapy were randomized to: A) gemcitabine 1000 mg/m2 Day 1,8 + docetaxel 75 mg/m2 Day 1 q3W; B) gemcitabine 1250 mg/m2 Day 1,8 + paclitaxel 175 mg/m2 Day 1 q3W; C) gemcitabine 800 mg/m2 Day 1,8,15 + docetaxel 30 mg/m2 Day 1,8,15 q4W; D) gemcitabine 800 mg/m2 Day 1,15 + paclitaxel 80 mg/m2 Day 1,8,15 q4W. Primary endpoint was time-to-progression (TTP). Secondary endpoints were overall survival (OS) and overall response rate (ORR). Results Interim analysis led to accrual interruption (241 patients enrolled of 360 planned). Median TTP (months) was 8.33 (95% CI: 6.19-10.16) with W and 7.51 (95% CI: 5.93-8.33) with 3 W (p=0.319). No differences were observed in median TTP between docetaxel and paclitaxel, with 85.6% and 87.0% of patients progressing, respectively. OS did not differ between regimens/schedules. ORR was comparable between regimens (HR: 0.882; 95% CI: 0.523-1.488; p=0.639), while it was significantly higher in W than in the 3 W (HR: 0.504; 95% CI: 0.299-0.850; p=0.010) schedule. Grade 3/4 toxicities occurred in 69.2% and 71.9% of patients on docetaxel and paclitaxel, and in 65.8% and 75.2% in W and 3 W. Conclusions Both treatment regimens showed similar TTP. W might be associated with a better tumour response compared with 3 W. Trial registration Clinicaltrial.gov ID NCT00236899 PMID:23537313
Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi
2015-01-01
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510
Sonpavde, Guru; Pond, Gregory R; Choueiri, Toni K; Mullane, Stephanie; Niegisch, Guenter; Albers, Peter; Necchi, Andrea; Di Lorenzo, Giuseppe; Buonerba, Carlo; Rozzi, Antonio; Matsumoto, Kazumasa; Lee, Jae-Lyun; Kitamura, Hiroshi; Kume, Haruki; Bellmunt, Joaquim
2016-04-01
Single-agent taxanes are commonly used as salvage systemic therapy for patients with advanced urothelial carcinoma (UC). To study the impact of combination chemotherapy delivering a taxane plus other chemotherapeutic agents compared with single-agent taxane as salvage therapy. Individual patient-level data from phase 2 trials of salvage systemic therapy were used. Trials evaluating either single agents (paclitaxel or docetaxel) or combination chemotherapy (taxane plus one other chemotherapeutic agent or more) following prior platinum-based therapy were used. Information regarding the known major baseline prognostic factors was required: time from prior chemotherapy, hemoglobin, performance status, albumin, and liver metastasis status. Cox proportional hazards regression was used to evaluate the association of prognostic factors and combination versus single-agent chemotherapy with overall survival (OS). Data were available from eight trials including 370 patients; two trials (n=109) evaluated single-agent chemotherapy with docetaxel (n=72) and cremophor-free paclitaxel (n=37), and six trials (n=261) evaluated combination chemotherapy with gemcitabine-paclitaxel (two trials, with n=99 and n=24), paclitaxel-cyclophosphamide (n=32), paclitaxel-ifosfamide-nedaplatin (n=45), docetaxel-ifosfamide-cisplatin (n=26), and paclitaxel-epirubicin (n=35). On multivariable analysis after adjustment for baseline prognostic factors, combination chemotherapy was independently and significantly associated with improved OS (hazard ratio: 0.60; 95% confidence interval, 0.45-0.82; p=0.001). The retrospective design of this analysis and the trial-eligible population were inherent limitations. Patients enrolled in trials of combination chemotherapy exhibited improved OS compared with patients enrolled in trials of single-agent chemotherapy as salvage therapy for advanced UC. Prospective randomized trials are required to validate a potential role for rational and tolerable combination chemotherapeutic regimens for the salvage therapy of advanced UC. This retrospective study suggests that a combination of chemotherapy agents may extend survival compared with single-agent chemotherapy in selected patients with metastatic urothelial cancer progressing after prior chemotherapy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, M. Dror, E-mail: dmichaelson1@partners.org; Hu, Chen; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
Purpose: Bladder preservation therapy is an effective treatment for muscle-invasive urothelial carcinoma (UC). In this study we treated noncystectomy candidates with daily radiation and weekly paclitaxel for 7 weeks. Patients whose tumors showed her2/neu overexpression were additionally treated with weekly trastuzumab. Methods and Materials: Sixty-eight evaluable patients were treated with radiation therapy and either paclitaxel + trastuzumab (group 1) or paclitaxel alone (group 2). Groups were assigned on the basis of her2/neu immunohistochemistry results. Patients received 1.8-Gy fractions to a total dose of 64.8 Gy. The primary endpoint of the study was treatment-related toxicity, and secondary endpoints included complete response (CR) rate, protocol completionmore » rate, and survival. Results: A total of 20 evaluable patients were treated in group 1 and 46 patients in group 2. Acute treatment-related adverse events (AEs) were observed in 7 of 20 patients in group 1 (35%) and 14 of 46 patients in group 2 (30.4%). Protocol therapy was completed by 60% (group 1) and 74% (group 2) of patients. Most incompletions were due to toxicity, and the majority of AEs were gastrointestinal, including 1 grade 5 AE (group 1). Two other deaths (both in group 2) were unrelated to protocol therapy. No unexpected cardiac, hematologic, or other toxicities were observed. The CR rate at 1 year was 72% for group 1 and 68% for group 2. Conclusions: In patients with muscle-invasive UC who are not candidates for cystectomy, daily radiation combined with paclitaxel is an effective treatment strategy with a high completion rate and moderate toxicity. In patients with her2/neu-positive tumors, a group generally considered to have worse outcomes, the addition of trastuzumab appears to result in comparable efficacy and toxicity. Further biomarker-driven trials should be undertaken in advancing treatment of this challenging disease.« less
Deng, Liting; Guindon, Josée; Cornett, Benjamin L; Makriyannis, Alexandros; Mackie, Ken; Hohmann, Andrea G
2015-03-01
Mixed cannabinoid receptor 1 and 2 (CB1 and CB2) agonists such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. We evaluated antiallodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1 knockout (CB1KO), CB2 knockout (CB2KO), and wild-type (WT) mice. Comparisons were made with the prototypic classic cannabinoid Δ(9)-THC. We also explored the site and possible mechanism of action of AM1710. Paclitaxel-induced mechanical and cold allodynia developed to an equivalent degree in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ(9)-THC suppressed established paclitaxel-induced allodynia in WT mice. In contrast to Δ(9)-THC, chronic administration of AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Antiallodynic efficacy of systemic administration of AM1710 was absent in CB2KO mice and WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal administration of AM1710 also attenuated paclitaxel-induced allodynia in WT mice, but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 antiallodynic efficacy. Finally, both acute and chronic administration of AM1710 decreased messenger RNA levels of tumor necrosis factor-α and monocyte chemoattractant protein 1 in lumbar spinal cord of paclitaxel-treated WT mice. Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Bauer, Todd M; Patel, Manish R; Forero-Torres, Andres; George, Thomas J; Assad, Albert; Du, Yining; Hurwitz, Herbert
2018-01-01
Aberrant activation of the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is associated with increased malignant cell proliferation and survival. This Phase Ib study evaluated ruxolitinib, a potent JAK1/2 inhibitor, in combination with gemcitabine with or without nab-paclitaxel in patients with advanced solid tumors. Patients received ruxolitinib + gemcitabine (regimen A) or ruxolitinib + gemcitabine + nab-paclitaxel (regimen B). The objective of the dose-finding phase was to identify the maximum tolerated doses (MTDs) of ruxolitinib plus gemcitabine with or without nab-paclitaxel. Among 42 patients enrolled, the median age was 62.5 years, 81.0% had pancreatic cancer, and almost 62% had received prior systemic therapy. Regimen A was tolerated with standard doses of gemcitabine; regimen B was tolerated with reduced doses of gemcitabine/nab-paclitaxel or concomitant granulocyte colony-stimulating factor. The sponsor decided to terminate the study early due to the interim analysis results of the Phase III JANUS 1 study. Discontinuations were mainly due to radiologic or clinical disease progression (81.0% of patients). Median treatment durations were 55.5 days (cohort A0) and 150.5 days (pooled B cohorts). Four patients (pooled B cohorts) had dose-limiting toxicities: grade 3 pneumonia (n=1), grade 4 neutropenia (n=1), and grade 4 thrombocytopenia (n=2). The most common grade 3/4 hematologic adverse events (AEs) were anemia, thrombocytopenia, and neutropenia. Serious AEs occurring in ≥2 patients in cohort A0 or pooled B cohorts were abdominal pain, sepsis (cohort A0), dehydration, anemia, and asthenia (pooled B cohorts). Overall response rates (ORRs) were 12.5% in cohort A0 and 38.5% in pooled B cohorts. Among patients with pancreatic cancer, ORR was 23.5% (14.0% cohort A0 30.0% pooled B cohorts). The study was terminated early prior to reaching MTDs per sponsor decision; although ruxolitinib plus gemcitabine with or without nab-paclitaxel was generally safe and well tolerated in patients with advanced solid tumors, this combination will not be pursued further.
Wang, Wei-Hua; Bao, Yong; Chen, Ming; Zhang, Li; Li, Kai-Xin; Xu, Guang-Chuan; Deng, Xiao-Wu; Lu, Tai-Xiang; Cui, Nian-Ji
2006-10-01
The efficacy of radiotherapy alone on locally advanced non-small cell lung cancer (NSCLC) is poor. Although the combined modality of chemoradiotherapy and dose-escalation of radiotherapy have been the main trends, the optimal modality still remains unknown. This study was to evaluate the toxicity and efficacy of induction chemotherapy (ICT) followed by three-dimensional conformal radiotherapy (3D CRT) and concurrent weekly paclitaxel on unresectable NSCLC. Stage III NSCLC patients with favorable conditions were treated with 2 to 4 cycles of carboplatin (AUC=5-6, d1) combined with paclitaxel (175 mg/m(2), d1), then followed by weekly paclitaxel (40 mg/m(2)) and concurrent 3D CRT within 3-4 weeks. The prescription dose was given as high as possible under the condition that V20 < or =31% and spinal cord dose < or =50 Gy. Thirty-one patients were enrolled. ICT was well tolerated. During the concurrent chemoradiotherapy, the treatment of 3 patients was ended ahead of the schedule because of severe pulmonary and heart toxicities; the treatment of 2 patients was delayed for 7 and 12 days because of fatigue. Myelosuppression was mild (16/31): all were grade 1-2 except 1 was grade 3. Lymphocytopenia was more obvious (29/31, grade 3 in 21). Three patients developed grade 3 radiation-induced esophagitis, and 2 developed grade 3-4 radiation-induced pneumonitis. Two developed grade 3 esophageal stricture. No grade 3-4 pulmonary fibrosis was observed. The overall response rate was 74.1%. The 1-, 2-, 3-year overall survival rates were 74.2%, 41.9%, and 34.6%, respectively, with the median survival time of 18.5 months. The 1-, 2-, 3-year local progression-freely survival rates were 64.5%, 32.3%, and 20.5%, respectively, with the median local progression-freely survival time of 14.3 months. The program of ICT followed by weekly paclitaxel and 3D CRT is accomplished in most of the favorable stage III NSCLC patients. The toxicity is tolerable, and the response rate is inspiriting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czito, Brian G.; Cohen, Darrel P.; Kelsey, Chris R.
Purpose: Concurrent chemotherapy and radiation therapy (RT) are used to treat patients with esophageal cancer. The optimal combination of chemotherapeutic agents with RT is not well established. We evaluated the safety and preliminary efficacy of a combination of UFT/leucovorin, carboplatin, and paclitaxel with RT in a Phase I study of patients with advanced esophageal cancer. Methods and Materials: Patients with squamous cell carcinoma or adenocarcinoma of the esophagus initially received UFT/leucovorin, carboplatin, and paclitaxel with RT (1.8 Gy daily to 45 Gy). After completion, the disease was restaged and patients were evaluated for surgery. Primary end points included determination ofmore » dose-limiting toxicities (DLTs) and a recommended Phase II dose. Secondary objectives included determination of non-DLTs, as well as preliminary radiographic and pathologic response rates. Results: Twelve patients were enrolled (11 men, 1 woman). All were assessable for toxicity and efficacy. One of 6 patients at Dose Level 1 (UFT/leucovorin, 200/30 mg twice daily on RT days; carboplatin, area under the curve [AUC] 5, Weeks 1 and 4; paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4) had a DLT (febrile neutropenia). Of these 6 patients, 4 underwent esophagectomy and none achieved a pathologic complete response. Six patients were then enrolled at Dose Level 2 (UFT/leucovorin, 300/30 mg in the morning and 200/30 mg in the evening on RT days; carboplatin, AUC 5, Weeks 1 and 4; paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4). Two of 6 patients at Dose Level 2 developed DLTs (febrile neutropenia in both). Esophagectomy was performed in 3 patients, with 2 achieving a pathologic complete response. Conclusions: Maximum tolerated doses in this study were UFT/leucovorin, 200/30 mg twice daily on RT days; carboplatin, AUC 5, Weeks 1 and 4; and paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4 when delivered with external RT. In this small study, this regimen appears active, but toxic.« less
Socinski, M A; Clark, J A; Halle, J; Steagall, A; Kaluzny, B; Rosenman, J G
1997-08-01
Locally advanced non-small cell lung cancer is optimally managed with chemotherapy and thoracic irradiation, although the most appropriate strategy is not yet defined. In this phase I trial, we use two 21-day cycles of induction chemotherapy with paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) (225 mg/m2 over 3 hours) and carboplatin (area under the concentration-time curve = 6) followed by concurrent weekly paclitaxel (45 mg/m2/wk x 6) and carboplatin (area under the concentration-time curve = 2/wk x 6) and thoracic irradiation. Patients undergo three-dimensional treatment planning (conformal radiotherapy) to define the cancer target volume precisely. The phase I question being addressed in this study is the maximum tolerated radiation dose given concurrently with low-dose paclitaxel and carboplatin. The initial radiation dose is 60 Gy, with dose escalations to 66 Gy, 70 Gy, and 74 Gy being planned. Ten patients have been entered thus far (eight men and two women). Their median age is 67 years (range, 59 to 78 years), and none of the patients has had greater than 5% pretreatment weight loss. Seven of 10 are evaluable for response to induction carboplatin and paclitaxel, with a response rate of 57% (three partial responses and one minor response). Three patients had stable disease and none of the patients had evidence of progressive disease during induction chemotherapy. Three patients have completed all treatment at 60 Gy and one has completed all treatment at 66 Gy. Three of the four patients have had partial responses (75%), with the remaining patient having stable disease. Toxicity in the concurrent chemoradiotherapy portion of the trial thus far has consisted of grade 3 neutropenia in one patient and grade 4 lymphocytopenia in all four patients. No grade 3 or 4 nonhematologic toxicity has been seen. The trial data are not yet mature enough to report on survival. Accrual and treatment is continuing at the 66 Gy radiation dose level.
Wang, Chunxia; Ho, Paul C; Lim, Lee Yong
2010-11-15
The purpose of this study was to investigate the potentiation of the anticancer activity and enhanced cellular retention of paclitaxel-loaded PLGA nanoparticles after surface conjugation with wheat germ agglutinin (WGA) against colon cancer cells. Glycosylation patterns of representative colon cancer cells confirmed the higher expression levels of WGA-binding glycoproteins in the Caco-2 and HT-29 cells, than in the CCD-18Co cells. Cellular uptake and in vitro cytotoxicity of WNP (final formulation) against colon cell lines was evaluated alongside control formulations. Confocal microscopy and quantitative analysis of intracellular paclitaxel were used to monitor the endocytosis and retention of nanoparticles inside the cells. WNP showed enhanced anti-proliferative activity against Caco-2 and HT-29 cells compared to corresponding nanoparticles without WGA conjugation (PNP). The greater efficacy of WNP was associated with higher cellular uptake and sustained intracellular retention of paclitaxel, which in turn was attributed to the over-expression of N-acetyl-D-glucosamine-containing glycoprotein on the colon cell membrane. WNP also demonstrated increased intracellular retention in the Caco-2 (30% of uptake) and HT-29 (40% of uptake) cells, following post-uptake incubation with fresh medium, compared to the unconjugated PNP nanoparticles (18% in Caco-2) and (27% in HT-29), respectively. Cellular trafficking study of WNP showed endocytosed WNP could successful escape from the endo-lysosome compartment and release into the cytosol with increasing incubation time. It may be concluded that WNP has the potential to be applied as a targeted delivery platform for paclitaxel in the treatment of colon cancer. Copyright © 2010 Elsevier B.V. All rights reserved.
Flores, M Luz; Castilla, Carolina; Gasca, Jessica; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Japón, Miguel A; Sáez, Carmen
2016-07-01
Prostate cancer is the leading cause of cancer-related death among men in developed countries. Although castration therapy is initially effective, prostate cancers progress to hormone-refractory disease and in this case taxane-based chemotherapy is widely used. Castration-resistant prostate cancer cells often develop resistance to chemotherapy agents and the search for new therapeutic strategies is necessary. In this article, we demonstrate that PKCδ silencing favors mitotic arrest after paclitaxel treatment in PC3 and LNCaP cells; however, this is associated with resistance to paclitaxel-induced apoptosis. In prostate cancer cells, PKCδ seems to exert a proapoptotic role, acting as a negative regulator of the canonical Wnt/β-catenin pathway. PKCδ silencing induces activation of Wnt/β-catenin pathway and the expression of its target genes, including Aurora kinase A, which is involved in activation of Akt and both factors play a key role in GSK3β inactivation and consequently in the stabilization of β-catenin and antiapoptotic protein Mcl-1. We also show that combined treatments with paclitaxel and Wnt/β-catenin or Akt inhibitors improve the apoptotic response to paclitaxel, even in the absence of PKCδ. Finally, we observe that high Gleason score prostate tumors lose PKCδ expression and this correlates with higher activation of β-catenin, inactivation of GSK3β, and higher levels of Aurora kinase A and Mcl-1 proteins. These findings suggest that targeting Wnt/β-catenin or Akt pathways may increase the efficacy of taxane chemotherapy in advanced human prostate cancers that have lost PKCδ expression. Mol Cancer Ther; 15(7); 1713-25. ©2016 AACR. ©2016 American Association for Cancer Research.
Shirshekanb, Mahsa; Rezadoost, Hassan; Javanbakht, Mehran; Ghassempour, Ali Reza
2017-01-01
There is no other naturally occurring defense agent against cancer that has a stronger effect than paclitaxel, commonly known under the brand name of Taxol ® . The major drawback for the more widespread use of paclitaxel and its precious precursor, 10-deacetylbaccatin III (10-DAB III), is that they require large-scale extraction from different parts of yew trees ( Taxus species), cell cultures, taxane-producing endophytic fungi, and Corylus species. In our previous work, a novel online two-dimensional heart-cut liquid chromatography process using hydrophilic interaction/ reversed-phase chromatography was used to introduce a semi-preparative treatment for the separation of polar (10-deacetylbaccatin III) and non-polar (paclitaxel) taxanes from Taxus baccata L. In this work, a combination of the absorbent (Diaion ® HP-20) and a silica based solid phase extraction is utilized as a new, efficient, and cost effective method for large-scale production of taxanes. This process avoids the technical problem of two-dimensional preparative liquid chromatography. The first stage of the process involves discarding co-extractive polar compounds including chlorophylls and pigments using a non-polar synthetic hydrophobic absorbent, Diaion ® HP-20. Extract was then loaded on to a silica based hydrophilic interaction solid phase extraction (silica 40-60 micron). Taxanes was eluted using a mixture of water and methanol at the optimized ratio of 70:30. Finally, the fraction containing taxanes was applied to semi-preparative reversed phase HPLC. The results revealed that using this procedure, paclitaxel and 10-DAB III could be obtained at 8 and 3 times more, respectively than by the traditional method of extraction.
Chen, Si-Ying; Hu, Sa-Sa; Dong, Qian; Cai, Jiang-Xia; Zhang, Wei-Peng; Sun, Jin-Yao; Wang, Tao-Tao; Xie, Jiao; He, Hai-Rong; Xing, Jian-Feng; Lu, Jun; Dong, Ya-Lin
2013-01-01
Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.
Gao, Hongfei; Yuan, Lijun; Han, Yimin
2016-06-24
The current study aims to evaluate and compare the efficacy of post-operative chemotherapy using paclitaxel plus carboplatin or nedaplatin in patients with ovarian cancer, as well as the effects of different combinational therapies on the survival times of patients. Ninety-four patients were recruited for the study. These ovarian cancer patients were admitted into the Cancer Hospital Affiliated with Harbin Medical University for surgery from January 2008 to October 2009. They were divided into different groups according to their post-operative chemotherapy schemes: paclitaxel plus carboplatin (CBP group, n = 48) and paclitaxel plus nedaplatin (NDP group, n = 46). Variance analysis was used to compare the effects of different chemotherapy schemes and pathological types of ovarian cancer on the level of CA125 in serum at different treatment time points. Univariate and multivariate analyses were employed to evaluate the survival times of patients in different groups and pathological types and ages. No significant differences were observed regarding the effects of various chemotherapy schemes (P = 0.561) and pathological types (P = 0.903) on the level of CA125 in serum of patients with ovarian cancer. However, the duration of chemotherapy had a profound impact on the level of CA125 in serum (P < 0.001). The survival times of patients was not affected by age (P = 0.101) and pathological type of ovarian cancer (P = 0.94) significantly. However, it was significantly affected by the chemotherapy scheme. Combined chemotherapy using carboplatin plus paclitaxel should be considered as the preferred treatment scheme for the initial treatment of ovarian cancer.
Fan, Yun; Jiang, Youhua; Zhou, Xinming; Chen, Qixun; Huang, Zhiyu; Xu, Yanjun; Gong, Lei; Yu, Haifeng; Yang, Haiyan; Liu, Jinshi; Lei, Tao; Zhao, Qiang; Mao, Weimin
2016-01-01
Background We carried out a phase II study to evaluate the efficiency and safety of the combination of nanoparticle albumin bound-paclitaxel (nab-paclitaxel) and cisplatin as preoperative chemotherapy for locally advanced esophageal squamous cell carcinoma (ESCC) Results From Oct 2011 to Dec 2012, 35 patients were enrolled and received neoadjuvant chemotherapy. Thirty patients underwent surgery and achieved a 100% R0 resection. Pathological complete response (pCR) rate was 13.3% and near pCR rate was 6.7%. Down-staging was achieved in 19 patients. With median follow-up of 37.8 months, 16 patients were still alive. One-, 2- and 3- year overall survival (OS) rate was 90.0%, 70.0% and 43.3%, respectively. This treatment resulted in a median disease-free survival (DFS) of 34.7 months and a median OS of 37.8 months. Median DFS and OS of down-staged patients were significantly longer than those of non-downstaged patients. The grade 4 toxicities during neoadjuvant chemotherapy were limited to neutropenia (2.9%) and vomiting (2.9%). Methods Patients with locally advanced ESCC (stage IIA to IIIC) and performance status 0-1 were enrolled and received two cycles of nab-paclitaxel (100 mg/m2) on day 1, 8, 22 and 29, and cisplatin (75 mg/m2) on day 1 and 22, followed by resection. Two cycles of adjuvant chemotherapy with the same regimen were given. Postoperative radiotherapy was permitted and decided by radiation therapist. Conclusion Weekly nab-paclitaxel with three-weekly cisplatin seems effective and safe as a neoadjuvant chemotherapy strategy for locally advanced ESCC. Down-staged patients have favorable outcome. ClinicalTrials.gov Identifier NCT01258192 PMID:27244882
Raspagliesi, Francesco; Zanaboni, Flavia; Martinelli, Fabio; Scasso, Santiago; Laufer, Joel; Ditto, Antonino
2014-01-01
The therapeutic outcomes of patients with advanced vulvar cancer are poor. Multi-modality treatments including concurrent chemoradiation or different regimens of neoadjuvant chemotherapy (NACT), and surgery have been explored to reduce the extent of surgery and morbidity. The present single-institution trial aimed to evaluate the efficacy and toxicity of paclitaxel and cisplatin in locally advanced vulvar cancer. From 2002 to 2009, 10 patients with stage III-IV locally advanced squamous cell carcinoma of the vulva were prospectively treated with 3 courses of paclitaxel-ifosfamide-cisplatin or paclitaxel-cisplatin. Nine of them subsequently underwent radical local excision or radical partial vulvectomy and bilateral inguino-femoral lymphadenectomy. The clinical response rate of all enrolled patients was 80%, whereas the pathological responses included 1 case with complete remission, 2 with persistent carcinoma in situ, and 6 invasive cancer cases with tumor shrinkage of more than 50%. Four patients had positive nodes. Forty percent of patients experienced grade 3-4 bone marrow toxicity, which was successfully managed with granulocyte-colony stimulating factor, even in cases of elderly patients. Median progression-free survival after surgery was 14 months (range, 5 to 44 months). Six of the 7 recurrent cases were local, and 3 of them were treated with salvage surgery while the other 3 received radiation with or without chemotherapy. After a median follow-up period of 40 months (range, 5 to 112 months), 55.5% of patients remained alive with no evidence of disease, including 2 long-term survivors after recurrence at 5 and 9 years. Based on the high response rate and manageable toxicity, NACT with paclitaxel and cisplatin with or without ifosfamide followed by surgery could be considered as a therapeutic option for locally advanced vulvar cancer.
Zanaboni, Flavia; Martinelli, Fabio; Scasso, Santiago; Laufer, Joel; Ditto, Antonino
2014-01-01
Objective The therapeutic outcomes of patients with advanced vulvar cancer are poor. Multi-modality treatments including concurrent chemoradiation or different regimens of neoadjuvant chemotherapy (NACT), and surgery have been explored to reduce the extent of surgery and morbidity. The present single-institution trial aimed to evaluate the efficacy and toxicity of paclitaxel and cisplatin in locally advanced vulvar cancer. Methods From 2002 to 2009, 10 patients with stage III-IV locally advanced squamous cell carcinoma of the vulva were prospectively treated with 3 courses of paclitaxel-ifosfamide-cisplatin or paclitaxel-cisplatin. Nine of them subsequently underwent radical local excision or radical partial vulvectomy and bilateral inguino-femoral lymphadenectomy. Results The clinical response rate of all enrolled patients was 80%, whereas the pathological responses included 1 case with complete remission, 2 with persistent carcinoma in situ, and 6 invasive cancer cases with tumor shrinkage of more than 50%. Four patients had positive nodes. Forty percent of patients experienced grade 3-4 bone marrow toxicity, which was successfully managed with granulocyte-colony stimulating factor, even in cases of elderly patients. Median progression-free survival after surgery was 14 months (range, 5 to 44 months). Six of the 7 recurrent cases were local, and 3 of them were treated with salvage surgery while the other 3 received radiation with or without chemotherapy. After a median follow-up period of 40 months (range, 5 to 112 months), 55.5% of patients remained alive with no evidence of disease, including 2 long-term survivors after recurrence at 5 and 9 years. Conclusion Based on the high response rate and manageable toxicity, NACT with paclitaxel and cisplatin with or without ifosfamide followed by surgery could be considered as a therapeutic option for locally advanced vulvar cancer. PMID:24459577
Sperm associated antigen 9 (SPAG9) a promising therapeutic target of ovarian carcinoma.
Jagadish, Nirmala; Fatima, Rukhsar; Sharma, Aditi; Devi, Sonika; Suri, Vitusha; Kumar, Vikash; Suri, Anil
2018-05-01
SPAG9 is a novel tumor associated antigen, expressed in variety of malignancies. However, its role in ovarian cancer remains unexplored. SPAG9 expression was validated in ovarian cancer cells by real time PCR and Western blot. SPAG9 involvement in cell cycle, DNA damage, apoptosis, paclitaxel sensitivity and epithelial- mesenchymal transition (EMT) was investigated employing RNA interference approach. Combinatorial effect of SPAG9 ablation and paclitaxel treatment was evaluated in in vitro. Quantitative PCR and Western blot analysis revealed SPAG9 expression in A10, SKOV-3 and Caov3 compared to normal ovarian epithelial cells. SPAG9 ablation resulted in reduced cellular proliferation, colony forming ability and enhanced cytotoxicity of chemotherapeutic agent paclitaxel. Effect of ablation of SPAG9 on cell cycle revealed S phase arrest and showed decreased expression of CDK1, CDK2, CDK4, CDK6, cyclin B1, cyclin D1, cyclin E and increased expression of tumor suppressor p21. Ablation of SPAG9 also resulted in increased apoptosis with increased expression of various pro- apoptotic molecules including BAD, BID, PUMA, caspase 3, caspase 7, caspase 8 and cytochrome C. Decreased expression of mesenchymal markers and increased expression of epithelial markers was found in SPAG9 ablated cells. Combinatorial effect of SPAG9 ablation and paclitaxel treatment was evaluated in in vitro assays which showed that ablation of SPAG9 resulted in increased paclitaxel sensitivity and caused enhanced cell death. In vivo ovarian cancer xenograft studies showed that ablation of SPAG9 resulted in significant reduction in tumor growth. Present study revealed therapeutic potential of SPAG9 in ovarian cancer.
Novel Mps1 Kinase Inhibitors with Potent Antitumor Activity.
Wengner, Antje M; Siemeister, Gerhard; Koppitz, Marcus; Schulze, Volker; Kosemund, Dirk; Klar, Ulrich; Stoeckigt, Detlef; Neuhaus, Roland; Lienau, Philip; Bader, Benjamin; Prechtl, Stefan; Raschke, Marian; Frisk, Anna-Lena; von Ahsen, Oliver; Michels, Martin; Kreft, Bertolt; von Nussbaum, Franz; Brands, Michael; Mumberg, Dominik; Ziegelbauer, Karl
2016-04-01
Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR. ©2016 American Association for Cancer Research.
RNA-based micelles: A novel platform for paclitaxel loading and delivery.
Shu, Yi; Yin, Hongran; Rajabi, Mehdi; Li, Hui; Vieweger, Mario; Guo, Sijin; Shu, Dan; Guo, Peixuan
2018-04-28
RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Campbell, Nicole E; Greenaway, James; Henkin, Jack; Moorehead, Roger A; Petrik, Jim
2010-03-01
Epithelial ovarian cancer (EOC) comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1). TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel) on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day) alone or in combination with cisplatin (2 mg/kg per 3 days) or paclitaxel (10 mg/kg per 2 days) at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer.
Dos Santos Guimarães, Isabella; Ladislau-Magescky, Taciane; Tessarollo, Nayara Gusmão; Dos Santos, Diandra Zipinotti; Gimba, Etel Rodrigues Pereira; Sternberg, Cinthya; Silva, Ian Victor; Rangel, Leticia Batista Azevedo
2017-11-21
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. Primary cytoreductive surgery with adjuvant taxane-platinum chemotherapy is the standard treatment to fight ovarian cancer, however, their side effects are severe, and chemoresistance emerges at high rates. Therefore, EOC clinic urges for novel treatment strategies to reverse chemoresistance and to improve the survival rates. Metformin has been shown to act in synergy with certain anti-cancer agents, overcoming chemoresistance in various types of tumors. This paper aims to investigate the use of metformin as a new treatment option for cisplatin- and paclitaxel-resistant ovarian cancer. The effects of metformin alone or in combination with conventional drugs on resistant EOC cell lines were investigated using the MTT assay for cell proliferation; Flow Cytometry analysis for cell cycle and the mRNA expression was analyzed using the real-time PCR technique. We found that metformin exhibited antiproliferative effects in paclitaxel-resistant A2780-PR, and in cisplatin-resistant ACRP cell lines. The combined therapy containing conventional drugs and metformin improved the effect of the treatment in cell proliferation rate, especially in the resistant cells. We found that metformin, in clinical relevant doses, could significantly reduce the mRNA expression of inflammatory cytokines and NF-κB signaling pathway. Taken together, our observations suggest that metformin inhibits the inflammatory pathway induced by paclitaxel and cisplatin treatment. Furthermore, metformin in combination with paclitaxel or cisplatin improved the sensitivity in drug-resistant ovarian cancer cells. Therefore, metformin may be beneficial treatment strategy, particularly in patients with tumors refractory to platinum and taxanes. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Campbell, Nicole E; Greenaway, James; Henkin, Jack; Moorehead, Roger A; Petrik, Jim
2010-01-01
Epithelial ovarian cancer (EOC) comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1). TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel) on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day) alone or in combination with cisplatin (2 mg/kg per 3 days) or paclitaxel (10 mg/kg per 2 days) at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer. PMID:20234821
Wong, Yu-Ning; Litwin, Samuel; Vaughn, David; Cohen, Seth; Plimack, Elizabeth R.; Lee, James; Song, Wei; Dabrow, Michael; Brody, Marion; Tuttle, Holly; Hudes, Gary
2012-01-01
Purpose The benefit of salvage chemotherapy is modest in metastatic urothelial cancer. We conducted a randomized, noncomparative phase II study to measure the efficacy of cetuximab with or without paclitaxel in patients with previously treated urothelial cancer. Patients and Methods Patients with metastatic urothelial cancer who received one line of chemotherapy in the perioperative or metastatic setting were randomly assigned to 4-week cycles of cetuximab 250 mg/m2 with or without paclitaxel 80 mg/m2 per week. We used early progression as an indicator of futility. Either arm would close if seven of the initial 15 patients in that arm progressed at the first disease evaluation at 8 weeks. Results We enrolled 39 evaluable patients. The single-agent cetuximab arm closed after nine of the first 11 patients progressed by 8 weeks. The combination arm completed the full accrual of 28 patients, of whom 22 patients (78.5%) had visceral disease. Twelve of 28 patients had progression-free survival greater than 16 weeks. The overall response rate was 25% (95% CI, 11% to 45%; three complete responses and four partial responses). The median progression-free survival was 16.4 weeks (95% CI, 12 to 25.1 weeks), and the median overall survival was 42 weeks (95% CI, 30.4 to 78 weeks). Treatment-related grade 3 and 4 adverse events that occurred in at least two patients were rash (six cases), fatigue (five cases), and low magnesium (three cases). Conclusion Although it had limited activity as a single agent, cetuximab appears to augment the antitumor activity of paclitaxel in previously treated urothelial cancers. The cetuximab and paclitaxel combination merits additional study to establish its role in the treatment of urothelial cancers. PMID:22927525
Lee, Keun-Wook; Lee, Kyung Hee; Zang, Dae Young; Park, Young Iee; Shin, Dong Bok; Kim, Jin Won; Im, Seock-Ah; Koh, Sung Ae; Cho, Joo-Youn; Jung, Jin-A
2015-01-01
Lessons Learned Oraxol, a novel oral formulation of paclitaxel, displayed modest efficacy as second-line chemotherapy for gastric cancer. Considering its favorable toxicity profiles, further studies are warranted in various solid tumors including gastric cancer. Background. Oraxol consists of paclitaxel and HM30181A, a P-glycoprotein inhibitor, to increase the oral bioavailability of paclitaxel. This phase I/II study (HM-OXL-201) was conducted to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Oraxol. In addition, we investigated the efficacy and safety of Oraxol as second-line chemotherapy for metastatic or recurrent gastric cancer (GC). Methods. In the phase I component, paclitaxel was orally administered at escalating doses (90, 120, or 150 mg/m2 per day) with a fixed dose (15 mg/day) of HM30181A. Oraxol was administrated 6 times per cycle (days 1, 2, 8, 9, 15, and 16) every 4 weeks. In the phase II component, the efficacy and safety of Oraxol were evaluated. Results. In the phase I component, the MTD could not be determined. Based on toxicity and pharmacokinetic data, the RP2D of oral paclitaxel was determined to be 150 mg/m2. In the phase II component, 4 of 43 patients (9.3%) achieved partial responses. Median progression-free survival and overall survival were 2.6 and 10.7 months, respectively. Toxicity profiles were favorable, and the most common drug-related adverse events (grade ≥3) were neutropenia and diarrhea. Conclusion. Oraxol exhibited modest efficacy and favorable toxicity profiles as second-line chemotherapy for GC. PMID:26112004
Sharma, Monika; Tuaine, Jo; McLaren, Blair; Waters, Debra L; Black, Katherine; Jones, Lynnette M; McCormick, Sally P A
2016-01-01
Cardiovascular complications have emerged as a major concern for cancer patients. Many chemotherapy agents are cardiotoxic and some appear to also alter lipid profiles, although the mechanism for this is unknown. We studied plasma lipid levels in 12 breast cancer patients throughout their chemotherapy. Patients received either four cycles of doxorubicin and cyclophosphamide followed by weekly paclitaxel or three cycles of epirubicin, cyclophosphamide and 5'-fluorouracil followed by three cycles of docetaxel. Patients demonstrated a significant reduction (0.32 mmol/L) in high density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1) levels (0.18 g/L) and an elevation in apolipoprotein B (apoB) levels (0.15 g/L) after treatment. Investigation of the individual chemotherapy agents for their effect on genes involved in lipoprotein metabolism in liver cells showed that doxorubicin decreased ATP binding cassette transporter A1 (ABCA1) via a downregulation of the peroxisomal proliferator activated receptor γ (PPARγ) and liver X receptor α (LXRα) transcription factors. In contrast, ABCA1 levels were not affected by cyclophosphamide or paclitaxel. Likewise, apoA1 levels were reduced by doxorubicin and remained unaffected by cyclophosphamide and paclitaxel. Doxorubicin and paclitaxel both increased apoB protein levels and paclitaxel also decreased low density lipoprotein receptor (LDLR) protein levels. These findings correlate with the observed reduction in HDL-C and apoA1 and increase in apoB levels seen in these patients. The unfavourable lipid profiles produced by some chemotherapy agents may be detrimental in the longer term to cancer patients, especially those already at risk of cardiovascular disease (CVD). This knowledge may be useful in tailoring effective follow-up care plans for cancer survivors.
Ducreux, Michel; Bennouna, Jaafar; Adenis, Antoine; Conroy, Thierry; Lièvre, Astrid; Portales, Fabienne; Jeanes, Julie; Li, Li; Romano, Alfredo
2017-01-01
This single-arm, phase II trial evaluated nab-paclitaxel monotherapy in pretreated patients with metastatic colorectal cancer (mCRC). Patients with mCRC (RAS wild-type and RAS mutant cohorts) received nab-paclitaxel 125 mg/m 2 days 1, 8, and 15 (28-day cycle). The primary endpoint was investigator-assessed progression-free survival (PFS) rate at week 8; secondary endpoints included overall survival, overall response rate, and safety. Stage 1 planned enrollment was 15 patients per cohort per Simon 2-stage design. Stage 2 enrollment was to continue unless ≤8 of the first 15 patients per cohort achieved PFS at 8 weeks. Stage 1 enrolled 41 patients (RAS wild type: n = 18; RAS mutant: n = 23). In both RAS cohorts, 3 of 15 patients initially enrolled were progression-free at week 8 (20%; 95% CI 4.0-48.0). Median PFS was 8.1 weeks (95% CI 7.7-8.6) and 7.9 weeks (95% CI 7.6-8.0) for RAS wild-type and RAS mutant cohorts, respectively. There were no complete or partial responses. The overall disease control rate was 16% (95% CI 6.0-32.0), and rates were similar in the RAS wild-type and RAS mutant cohorts (18 and 15%, respectively). No new safety signals were reported; the most common grade ≥3 adverse events included neutropenia, asthenia, and peripheral neuropathy. This study did not progress to stage 2 per the preplanned statistical stopping rule. In patients with heavily pretreated mCRC, nab-paclitaxel did not demonstrate promising antitumor activity; further assessment of nab-paclitaxel monotherapy in this population of patients is not supported. NCT02103062.
Inoue, Kenichi; Kuroi, Katsumasa; Shimizu, Satoru; Rai, Yoshiaki; Aogi, Kenjiro; Masuda, Norikazu; Nakayama, Takahiro; Iwata, Hiroji; Nishimura, Yuichiro; Armour, Alison; Sasaki, Yasutsuna
2015-12-01
Lapatinib is the human epidermal growth factor receptor 2 (HER2) targeting agent approved globally for HER2-positive metastatic breast cancer (MBC). The efficacy, safety and pharmacokinetics (PK) of lapatinib combined with paclitaxel (L+P) were investigated in this study, to establish clear evidence regarding the combination in Japanese patients. In this two-part, single-arm, open-label study, the tolerability of L+P as first-line treatment in Japanese patients with HER2-positive MBC was evaluated in six patients in the first part, and the safety, efficacy and PK were evaluated in a further six patients (making a total of twelve patients) in the second part. Eligible women were enrolled and received lapatinib 1500 mg once daily and paclitaxel 80 mg/m(2) weekly for at least 6 cycles. The only dose-limiting toxicity reported was Grade 3 diarrhea in one patient. The systemic exposure to maximum plasma concentration and area under the plasma concentration curve (AUC) for lapatinib, as well as the AUC of paclitaxel, were increased when combined. The most common adverse events (AEs) related to the study treatment were alopecia, diarrhea and decreased hemoglobin. The majority of drug-related AEs were Grade 1 or 2. The median overall survival was 35.6 months (95 % confidence interval 23.9, not reached). The response rate and clinical benefit rate were both 83 % (95 % confidence interval 51.6, 97.9). The L+P treatment was well tolerated in Japanese patients with HER2-positive MBC. Although the PK profiles of lapatinib and paclitaxel influenced each other, the magnitudes were not greatly different from those in non-Japanese patients.
Sequential Versus Concurrent Trastuzumab in Adjuvant Chemotherapy for Breast Cancer
Perez, Edith A.; Suman, Vera J.; Davidson, Nancy E.; Gralow, Julie R.; Kaufman, Peter A.; Visscher, Daniel W.; Chen, Beiyun; Ingle, James N.; Dakhil, Shaker R.; Zujewski, JoAnne; Moreno-Aspitia, Alvaro; Pisansky, Thomas M.; Jenkins, Robert B.
2011-01-01
Purpose NCCTG (North Central Cancer Treatment Group) N9831 is the only randomized phase III trial evaluating trastuzumab added sequentially or used concurrently with chemotherapy in resected stages I to III invasive human epidermal growth factor receptor 2–positive breast cancer. Patients and Methods Patients received doxorubicin and cyclophosphamide every 3 weeks for four cycles, followed by paclitaxel weekly for 12 weeks (arm A), paclitaxel plus sequential trastuzumab weekly for 52 weeks (arm B), or paclitaxel plus concurrent trastuzumab for 12 weeks followed by trastuzumab for 40 weeks (arm C). The primary end point was disease-free survival (DFS). Results Comparison of arm A (n = 1,087) and arm B (n = 1,097), with 6-year median follow-up and 390 events, revealed 5-year DFS rates of 71.8% and 80.1%, respectively. DFS was significantly increased with trastuzumab added sequentially to paclitaxel (log-rank P < .001; arm B/arm A hazard ratio [HR], 0.69; 95% CI, 0.57 to 0.85). Comparison of arm B (n = 954) and arm C (n = 949), with 6-year median follow-up and 313 events, revealed 5-year DFS rates of 80.1% and 84.4%, respectively. There was an increase in DFS with concurrent trastuzumab and paclitaxel relative to sequential administration (arm C/arm B HR, 0.77; 99.9% CI, 0.53 to 1.11), but the P value (.02) did not cross the prespecified O'Brien-Fleming boundary (.00116) for the interim analysis. Conclusion DFS was significantly improved with 52 weeks of trastuzumab added to adjuvant chemotherapy. On the basis of a positive risk-benefit ratio, we recommend that trastuzumab be incorporated into a concurrent regimen with taxane chemotherapy as an important standard-of-care treatment alternative to a sequential regimen. PMID:22042958
LaPointe, Nichole E; Morfini, Gerardo; Brady, Scott T; Feinstein, Stuart C; Wilson, Leslie; Jordan, Mary Ann
2013-07-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the "dying back" pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine=ixabepilone>paclitaxel=eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Chung, Christine H; Rudek, Michelle A; Kang, Hyunseok; Marur, Shanthi; John, Pritish; Tsottles, Nancy; Bonerigo, Sarah; Veasey, Andy; Kiess, Ana; Quon, Harry; Cmelak, Anthony; Murphy, Barbara A; Gilbert, Jill
2016-02-01
Afatinib is an ErbB family receptor inhibitor with efficacy in head and neck squamous cell carcinoma (HNSCC). A phase I trial was conducted to determine the maximally tolerated dose (MTD) of afatinib in combination with carboplatin and paclitaxel as induction chemotherapy (IC). Patients with newly diagnosed, locally advanced HPV-negative or HPV-positive HNSCC with a significant smoking history were enrolled. Afatinib alone was given daily for two weeks as lead-in and subsequently given with carboplatin AUC 6mg/mlmin and paclitaxel 175mg/m(2) every 21days as IC. Afatinib was started at a dose of 20mg daily and dose escalated using a modified Fibonacci design. After completion of IC, afatinib was discontinued and patients received concurrent cisplatin 40mg/m(2) weekly and standard radiation. Toxicity was assessed using CTCAE version 4.0. Seven of nine patients completed afatinib lead-in and IC. Five patients had partial response and two patients had stable disease after IC. Dose level 1 (afatinib 20mg) was well tolerated with one grade 3 (ALT elevation) and one grade 4 (neutropenia) toxicities. However, dose level 2 (afatinib 30mg) was not well tolerated with nine grade 3 (pneumonia, abdominal pain, diarrhea, pancytopenia, and UTI), two grade 4 (sepsis) and one grade 5 (death) toxicities. The MTD of afatinib given with carboplatin AUC 6mg/mlmin and paclitaxel 175mg/m(2) is 20mg daily. Combination of afatinib at doses higher than 20mg with carboplatin and paclitaxel should be administered with caution due to the toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of pregnancy on the pharmacokinetics of paclitaxel: a case report.
Lycette, Jennifer L; Dul, Carrie L; Munar, Myrna; Belle, Donna; Chui, Stephen Y; Koop, Dennis R; Nichols, Craig R
2006-10-01
Breast cancer during pregnancy is increasingly common as women delay childbearing until later in life. Safe administration of adjuvant chemotherapy during pregnancy has been reported. Physiologic and metabolic changes during pregnancy could alter the pharmacokinetics of these agents. This is a pilot study to prospectively study the pharmacokinetics of chemotherapeutic agents during pregnancy. Herein, we report the initial results with paclitaxel in the first patient.
Das, Avizit; Ahmed, Oly; Baten, A K M Abdul; Bushra, Samira; Islam, M Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena
2017-08-17
Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. Copyright © 2017 Das et al.
Westhoff, Gina L; Chen, Yi; Teng, Nelson N H
2017-10-01
Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1 and CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.
Sirolimus- versus paclitaxel-eluting stents in patients with stenosis in a native coronary artery.
Doggrell, Sheila A
2004-06-01
With stenting, restenosis occurs in approximately 25% of patients and the incidence is even higher in patients with diabetes, small coronary vessels and long lesions. The sirolimus-eluting balloon-expandable stent in the treatment of patients with de novo native coronary-artery lesions (SIRIUS) trial, enrolled patients with more challenging conditions, including a higher frequency of diabetes, more complex lesion morphology and longer lesions and showed benefits in all groups. After 240 days, the frequency of stenosis of at least 50% of the luminal diameter was 3.2 and 35.4% in the sirolimus and standard stents groups, respectively. The TAXUS-IV trial was the first large-scale trial on the safety and efficacy of paclitaxel-eluting stents in a broad population of patients and lesions, and established the safety and effectiveness of this agent. After 9 months, there was a mean stenosis of 17% in the paclitaxel group compared to 37% of patients treated with a bare stent. Thus, the local delivery of potent cell cycle inhibitors (sirolimus, paclitaxel) from stents being used for revascularisation dramatically decreases the incidence of restenosis in the populations of patients studied so far and represents a major advancement in the treatment of coronary artery disease.
Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K
2018-01-04
Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-08-10
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-01-01
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764
Hypoxia-sensitive, Multifunctional Nanoparticles for Targeted Drug Delivery to Breast Cancer
2012-09-01
of paclitaxel and lactone was dramatically increased over 36 hr as shown in Figure 3. The inclusion of sodium salicylate at a concentration of 0.8 M...maintained sink conditions during the release study. It has been known that sodium salicylate is able to increase paclitaxel solubility in aqueous...microenvironments would better evaluate the TMBQ-based polymer nanoparticles. The inclusion of sodium salicylate at a concentration of 80 mM maintained sink
Design, Synthesis and Bio-evaluation of an EphA2-based Targeted Delivery System
Barile, Elisa; Wang, Si; Das, Swadesh K.; Noberini, Roberta; Dahl, Russell; Stebbins, John L.; Pasquale, Elena B.; Fisher, Paul B.; Pellecchia, Maurizio
2014-01-01
We recently described a new targeted delivery system based on specific EphA2 receptor targeting peptides conjugated with the chemotherapeutic agent paclitaxel. In this manuscript we investigate the chemical determinants responsible for the stability and degradation of these agents in plasma. Introducing modifications in both the peptide and the linker between the peptide and paclitaxel, resulted in drug conjugates that are both long-lived in rat plasma and that markedly reduced tumor size in a prostate cancer xenograft model compared to paclitaxel alone treatment. These studies identify critical rate-limiting degradation sites on the peptide-drug conjugates, enabling the design of agents with increased stability and efficacy. These results provide support for our central hypothesis that peptide-drug conjugates targeting the EphA2 receptor represent an innovative and potentially effective strategy to selectively deliver cytotoxic drugs to cancer cells. PMID:24677792
Marutaka, Masahito; Suguri, Takayasu; Miyake, Mikio; Yoshimura, Kouichi
2005-12-01
The patient was a 72-year-old female. Under the supervision of her former doctor, this patient had an operation and adjuvant chemotherapy for progressive breast cancer. During the following period, local recurrence of breast cancer and pulmonary lymphopathia developed. Although medication with paclitaxel was attempted, the focus was resistant to this treatment, and metastasis to the brain was also observed. Due to the dyscrasia above, the patient had difficulty breathing and became bedridden. Subsequently, combination treatment of capecitabine and trastuzumab was attempted. As a result,metastasis in the brain and pulmonary lymphopathia were improved. The patient recovered enough to be discharged at one time. However, his condition took a turn for the worse after the interruption of the combination treatment by a side effect. In conclusion, the combination treatment of capecitabine and trastuzumab is thought to be effective for non-responders to paclitaxel.
Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol
NASA Astrophysics Data System (ADS)
Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu
2016-01-01
The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.
Brazill, Jennifer M; Cruz, Beverley; Zhu, Yi; Zhai, R Grace
2018-06-12
Chemotherapy-induced peripheral neuropathy (CIPN) is the major dose-limiting side effect of many commonly used chemotherapeutic agents, including paclitaxel. Currently, there are no neuroprotective or effective symptomatic treatments for CIPN. Lack of understanding of the in vivo mechanisms of CIPN has greatly impeded the identification of therapeutic targets. Here, we optimized a model of paclitaxel-induced peripheral neuropathy using Drosophila larvae that recapitulates aspects of chemotherapy-induced sensory dysfunction . We showed that nociceptive sensitivity is associated with disrupted organization of microtubule-associated MAP1B/Futsch and aberrant stabilization of peripheral sensory dendrites. These findings establish a robust and amenable model for studying peripheral mechanisms of CIPN. Using this model, we uncovered a critical role for nicotinamide mononucleotide adenylyltransferase (Nmnat) in maintaining the integrity and function of peripheral sensory neurons and uncovered Nmnat's therapeutic potential against diverse sensory symptoms of CIPN. © 2018. Published by The Company of Biologists Ltd.
Nallani, S C; Genter, M B; Desai, P B
2001-08-01
Docetaxel, a potent antimicrotubule agent widely used in the treatment of ovarian, breast and lung cancer, is extensively metabolized in various animal species, including humans. The metabolism of docetaxel to its primary metabolite, hydroxydocetaxel, is mediated by cytochrome P450 isozymes CYP3A2 and CYP3A4 in rats and humans, respectively. Several substrates of enzymes belonging to the CYP3A subfamily are known to induce different CYP isozymes, including CYP3A enzymes. Recently, paclitaxel, a compound structurally related to docetaxel, has been shown to significantly elevate the expression of CYP3A in rat and human hepatocytes. In this study we investigated the influence of docetaxel, employed at clinically relevant concentrations, on the level and the activity of cytochrome P450 3A in primary cultures of rat hepatocytes. Rat hepatocytes were treated with different concentrations of docetaxel, paclitaxel and other CYP3A inducers. Testosterone 6beta-hydroxylase activity of intact hepatocytes was used as a marker for CYP3A. The immunoreactive CYP3A levels in the S-9 fractions were determined by Western blot analysis. We observed that by day 3 of drug treatment, docetaxel at concentration in the range of 2.5-10 microM increased the CYP3A enzymatic activity and the immunoreactive CYP3A levels in a concentration-dependent manner. At the 10 microM level, docetaxel caused a twofold increase in the CYP3A activity and a threefold increase in the immunoreactive CYP3A levels. However, the docetaxel-mediated CYP3A activity and enzyme level increase were significantly lower than those mediated by paclitaxel and dexamethasone. A comparison of the testosterone 6beta-hydroxylation activity in hepatocytes treated with these agents at a concentration of 5 microM each yielded the following rank order of induction capacity: dexamethasone > paclitaxel > docetaxel (15-fold, 5-fold, 2.2-fold, respectively). Taken together, our findings raise the possibility that docetaxel at clinically relevant concentrations increases CYP3A activity. The potential for docetaxel-mediated changes in the metabolism of other coadministered drugs and its own metabolism, in relation to that due to paclitaxel, are discussed.
Palumbo, Raffaella; Sottotetti, Federico; Trifirò, Giuseppe; Piazza, Elena; Ferzi, Antonella; Gambaro, Anna; Spinapolice, Elena Giulia; Pozzi, Emma; Tagliaferri, Barbara; Teragni, Cristina; Bernardo, Antonio
2015-01-01
A prospective, multicenter trial was undertaken to assess the activity, safety, and quality of life of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as second-line chemotherapy in HER2-negative, taxane-pretreated metastatic breast cancer (MBC). Fifty-two women with HER2-negative MBC who were candidates for second-line chemotherapy for the metastatic disease were enrolled and treated at three centers in Northern Italy. All patients had previously received taxane-based chemotherapy in the adjuvant or first-line metastatic setting. Single-agent nab-paclitaxel was given at the dose of 260 mg/m(2) as a 30-minute intravenous infusion on day 1 each treatment cycle, which lasted 3 weeks, in the outpatient setting. No steroid or antihistamine premedication was provided. Treatment was stopped for documented disease progression, unacceptable toxicity, or patient refusal. All of the enrolled patients were evaluable for the study endpoints. The objective response rate was 48% (95% CI, 31.5%-61.3%) and included complete responses from 13.5%. Disease stabilization was obtained in 19 patients and lasted >6 months in 15 of them; the overall clinical benefit rate was 77%. The median time to response was 70 days (range 52-86 days). The median progression-free survival time was 8.9 months (95% CI, 8.0-11.6 months, range 5-21+ months). The median overall survival point has not yet been reached. Toxicities were expected and manageable with good patient compliance and preserved quality of life in patients given long-term treatment. Our results showed that single-agent nab-paclitaxel 260 mg/m(2) every 3 weeks is an effective and well tolerated regimen as second-line chemotherapy in HER2-negative, taxane-pretreated MBC patients, and that it produced interesting values of objective response rate and progression-free survival without the concern of significant toxicity. Specifically, the present study shows that such a regimen is a valid therapeutic option for that 'difficult to treat' patient population represented by women who at the time of disease relapse have already received the most active agents in the adjuvant and/or metastatic setting (ie, conventional taxanes).
Kinstner, Christian M; Lammer, Johannes; Willfort-Ehringer, Andrea; Matzek, Wolfgang; Gschwandtner, Michael; Javor, Domagoj; Funovics, Martin; Schoder, Maria; Koppensteiner, Renate; Loewe, Christian; Ristl, Robin; Wolf, Florian
2016-07-11
The hypothesis that paclitaxel-eluting balloon angioplasty provides higher 1-year patency rates in femoropopliteal artery in-stent restenosis compared with standard percutaneous transluminal angioplasty (PTA) was tested. Several trials have demonstrated that paclitaxel-eluting balloon angioplasty reduces late luminal loss in comparison with PTA. In a prospective, randomized, single-blind, dual-center study, 74 patients with symptomatic peripheral artery disease due to in-stent restenosis were treated with either paclitaxel-based drug-eluting balloon (DEB) angioplasty (n = 35) or standard PTA (n = 39). Clinical outcomes and patency rates were assessed at 1, 6, and 12 months. The mean lesion length was 17.3 ± 11.3 cm in the DEB group and 18.4 ± 8.8 cm in the PTA group. A single major complication (bleeding) was observed once (1.4%). The mean ankle-brachial index before endovascular treatment was 0.65 ± 0.16 in both groups and 0.79 ± 0.2 versus 0.84 ± 0.3 (p = 0.70, Student t test) in the DEB versus PTA group at 12 months. The 12-month primary patency rates were 40.7% (95% confidence interval [CI]: 0.26 to 0.64) versus 13.4% (95% CI: 0.05 to 0.36) (log-rank p = 0.02) in the DEB versus PTA group. The odds ratio for PTA over DEB angioplasty for experiencing an event was estimated at 2.8 (95% CI: 1.2 to 6.6). Freedom from clinically driven target lesion revascularization was 49.0% (95% CI: 0.32 to 0.75) versus 22.1% (95% CI: 0.10 to 0.48) (log-rank p = 0.11) in the DEB versus PTA group. Clinical improvement by ≥1 Rutherford-Becker category was 68.8% versus 54.5% (p = 0.87) in the DEB versus PTA group at 12 months. When treating peripheral artery disease in patients with in-stent restenosis in the femoropopliteal artery, paclitaxel-eluting balloon angioplasty provides significantly higher patency rates than standard PTA. (Paclitaxel Balloon Versus Standard Balloon in In-Stent Restenoses of the Superficial Femoral Artery [PACUBA I Trial] [PACUBA 1]; NCT01247402). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Gamarra-Luques, Carlos D; Hapon, Maria B; Goyeneche, Alicia A; Telleria, Carlos M
2014-01-01
Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1) and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality. Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics, cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance to both platinum and taxanes.
2014-01-01
Background Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. Methods IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21cip1 and p27kip1 and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Results Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality. Conclusions Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics, cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance to both platinum and taxanes. PMID:24795781
The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation
2014-01-01
Background Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers. Results We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides. Conclusions We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents. PMID:24576146
Zhang, Quan-Le; Xing, Xi-Zhi; Li, Feng-Yan; Xing, Ya-Juan; Li, Jing
2015-01-01
We firstly investigated the expression of Pokemon in patients with non-small cell lung cancer (NSCLC), then characterized the role of Pokemon in evaluating the response to combined cisplatin and paclitaxel chemotherapy and prognosis. In this study, 61 patients with previously untreated locally advanced or metastatic NSCLC were treated with a combination chemotherapy comprising cisplatin and paclitaxel. The correlation between serum expression of Pokemon and effectiveness of chemotherapy was assessed. The expression level of Pokemon in NSCLC patients was higher than that in healthy controls (p = 0.000), and was correlated with tumor size and TNM stage (p < 0.05). Kaplan-Meier analysis and Cox proportional hazard model demonstrated a poor response and shorter survival time in patients with pretreatment Pokemon levels in excess of 135.09 ng/ml compared to those with Pokemon levels below 135.09 ng/ml (p = 0.013). Pokemon ≥ 135.09 ng/ml was an independent risk factor for survival time in NSCLC patients undergoing combination chemotherapy (p = 0.018). The serum level of Pokemon correlated with efficacy of cisplatin and paclitaxel combination chemotherapy and survival time, which indicated that Pokemon may be a potentially useful biomarker for predicting treatment effectiveness of first-line chemotherapy and prognosis in NSCLC. © 2015 S. Karger GmbH, Freiburg.
Lazzaro, Carlo; Barone, Carlo; Caprioni, Francesco; Cascinu, Stefano; Falcone, Alfredo; Maiello, Evaristo; Milella, Michele; Pinto, Carmine; Reni, Michele; Tortora, Giampaolo
2018-04-20
the APICE study evaluates the cost-effectiveness of nanoparticle albumin-bound paclitaxel (nab-paclitaxel - Nab-P) + gemcitabine (G) vs G alone in metastatic pancreatic cancer (MPC) from the Italian National Health Service (INHS) standpoint. A 4-year, 4 health states (progression-free; progressed; end of life; death) Markov model based on the MPACT trial was developed to estimate costs (Euro [€], 2017 values), and quality-adjusted life years (QALYs). Patients were assumed to receive intravenously Nab-P 125 mg/m 2 + G 1000 mg/m 2 on days 1, 8, and 15 every 4 weeks or G alone 1000 mg/m 2 weekly for 7 out of 8 weeks (cycle 1) and then on days 1, 8, and 15 every 4 weeks (cycle 2 and subsequent cycles) until progression. One-way and probabilistic sensitivity analyses explored the uncertainty surrounding the baseline incremental cost-utility ratio (ICUR). Nab-P + G totals 0.154 incremental QALYs and €7082.68 incremental costs vs G alone. ICUR (€46,021.58) is lower than the informal threshold value of €87,330 adopted by the Italian Medicines Agency during 2010-2013 for reimbursing oncological drugs. Sensitivity analyses confirmed the robustness of the baseline findings. Nab-P + G in MPC patients can be considered cost-effective for the INHS.
Hendrikx, Jeroen J M A; Rosing, Hilde; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H
2014-02-01
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human feces and urine is described. The drugs were extracted from 200 μL urine or 50 mg feces followed by high-performance liquid chromatography analysis coupled with positive ionization electrospray tandem mass spectrometry. The validation program included calibration model, accuracy and precision, carry-over, dilution test, specificity and selectivity, matrix effect, recovery and stability. Acceptance criteria were according to US Food and Drug Administration guidelines on bioanalytical method validation. The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel, 2-2000 ng/mL for ritonavir in urine, 2-2000 ng/mg for paclitaxel and docetaxel, and 8-8000 ng/mg for ritonavir in feces. Inter-assay accuracy and precision were tested for all analytes at four concentration levels and were within 8.5% and <10.2%, respectively, in both matrices. Recovery at three concentration levels was between 77 and 94% in feces samples and between 69 and 85% in urine samples. Method development, including feces homogenization and spiking blank urine samples, are discussed. We demonstrated that each of the applied drugs could be quantified successfully in urine and feces using the described assay. The method was successfully applied for quantification of the analytes in feces and urine samples of patients. Copyright © 2013 John Wiley & Sons, Ltd.
Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B.N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita
2015-01-01
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues. PMID:26145450
Bui, Nam; Kamat, Nikhil; Ravi, Vinod; Chawla, Sant; Lohman, Marti; Ganjoo, Kristen N
2018-01-01
Paclitaxel (P) and bevacizumab (B) are agents that provide clinical benefit in advanced angiosarcoma (AS). The objective of this study was to assess the efficacy and safety of P-B in two different scheduled regimens. Patients were to receive P 200mg/m2 IV with B 15mg/kg IV every 21 days (Regimen A) or P 90mg/m2 IV weekly D1, 8, 15 with B 15mg/kg IV D1 of a 28 day cycle (Regimen B) x6 cycles. Maintenance B followed at a dose of 15 mg/kg intravenously once every 21 days. The primary end point was 4 month non-progression rate (NPR). A total of 16 patients were enrolled. 4 month NPR was 62.5% with median overall survival 16 months and median progression free survival 5.06 months. 11 patients made it to cycle 3 and were evaluable for response with 1 CR (9%), 4 PR (36%), 2 SD (18%), and 6 PD (36%). There were ten grade 3 toxicities and four grade 4 toxicities. The breakdown between the two regimens revealed comparable efficacy and safety. Paclitaxel and Bevacizumab is an active regimen in angiosarcoma. Q3 week and weekly paclitaxel appear similar in efficacy and safety.
NASA Astrophysics Data System (ADS)
Thach Nguyen, Kim; Le, Duc Vinh; Do, Dinh Ho; Huan Le, Quang
2016-06-01
HER-2/ErbB2/Neu(HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves a therapeutic target for breast cancer. In this study, we aimed to isolate DNA aptamer (Ap) that specifically bind to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. We developed a novel multifunctional composite micelle with surface modification of Ap for targeted delivery of paclitaxel. This binary mixed system consisting of Ap modified pluronic®F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Polymeric micelles had a spherical shape and were self-assemblies of block copolymers of approximately 86.22 ± 1.45 nm diameter. PTX could be loaded with high encapsulation efficiency (83.28 ± 0.13%) and loading capacity (9.12 ± 0.34%). The release profile were 29%-35% in the first 12 h and 85%-93% after 12 d at pH 7.5 of receiving media. The IC50 doses by MTT assay showed the greater activity of nanoparticles loaded paclitaxel over free paclitaxel and killed cells up to 95% after 6 h. These results demonstrated unique assembly with the capacity to function as an efficient detection and delivery vehicle in the biological living system.
NASA Astrophysics Data System (ADS)
Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita
2015-07-01
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.
Agyeman, Abena S; Jun, Wesley J; Proia, David A; Kim, Caroline R; Skor, Maxwell N; Kocherginsky, Masha; Conzen, Suzanne D
2016-04-01
Targetable molecular drivers for triple-negative breast cancer (TNBC) have been difficult to identify; therefore, standard treatment remains limited to conventional chemotherapy. Recently, new-generation small-molecule Hsp90 inhibitors (e.g., ganetespib and NVP-AUY922) have demonstrated improved safety and activity profiles over the first-generation ansamycin class. In breast cancer, clinical responses have been observed in a subset of TNBC patients following ganetespib monotherapy; however, the underlying biology of Hsp90 inhibitor treatment and tumor response is not well understood. Glucocorticoid receptor (GR) activity in TNBC is associated with chemotherapy resistance. Here, we find that treatment of TNBC cell lines with ganetespib resulted in GR degradation and decreased GR-mediated gene expression. Ganetespib-associated GR degradation also sensitized TNBC cells to paclitaxel-induced cell death both in vitro and in vivo. The beneficial effect of the Hsp90 inhibitor on paclitaxel-induced cytotoxicity was reduced when GR was depleted in TNBC cells but could be recovered with GR overexpression. These findings suggest that GR-regulated anti-apoptotic and pro-proliferative signaling networks in TNBC are disrupted by Hsp90 inhibitors, thereby sensitizing TNBC to paclitaxel-induced cell death. Thus, GR+ TNBC patients may be a subgroup of breast cancer patients who are most likely to benefit from adding an Hsp90 inhibitor to taxane therapy.
Metastatic melanoma cells with BRAF G469A mutation: nab-paclitaxel better than vemurafenib?
Porcelli, Letizia; Guida, Gabriella; Tommasi, Stefania; Guida, Michele; Azzariti, Amalia
2015-08-01
BRAF G469A is a missense mutation within exon 11 of the BRAF gene resulting in a constitutively activated enzyme frequently associated with MAP kinase cascade signaling activation. No evidence currently exists about its role in determining sensitivity/resistance to BRAF inhibitors, utilized in the treatment of patients carrying BRAF V600 mutations, and to chemotherapy. The newly established metastatic melanoma (MM) cell line MO-1 was characterized for its sensitivity to vemurafenib and nab-paclitaxel, both already utilized for the treatment of MM. All analyses were carried out by comparing results with those found in MM cells wild type for BRAF or mutated in V600. In addition, cellular effectors were investigated by ELISA kits, western blotting and flow cytometry. The exposure to vemurafenib inhibited MO-1 cell proliferation at concentrations similar to those obtained in vemurafenib-resistant melanoma models, and an explanation of this sensitivity is the strong activation of Erk1/2 and the low expression of MITF. Nab-paclitaxel strongly reduced proliferation of MO-1 cells perhaps for the very low expression level of PMEL17, transcriptionally regulated by MITF and negatively involved in determining sensitivity to taxanes. Thus, the mutation BRAF G469A in MM might be related to a weak effectiveness of therapy with BRAF inhibitors and a promising therapeutic approach may be with nab-paclitaxel.
Jatoi, Aminah; Grudem, Megan E; Dockter, Travis J; Block, Matthew S; Villasboas, Jose C; Tan, Angelina; Deering, Erin; Kasi, Pashtoon M; Mansfield, Aaron S; Botero, Juliana Perez; Okuno, Scott H; Smith, Deanne R; Fields, Alan P
2017-03-01
Paclitaxel causes the paclitaxel-induced acute pain (PIAP) syndrome. Based on preclinical data, we hypothesized that the protein kinase C (PKC) iota inhibitor, auranofin (a gold salt used for other pain conditions), palliates this pain. In a randomized, double-blinded manner, patients who had suffered this syndrome were assigned a one-time dose of auranofin 6 mg orally on day #2 of the chemotherapy cycle (post-paclitaxel) versus placebo. Patients completed the Brief Pain Inventory and a pain diary on days 2 through 8 and at the end of the cycle. The primary endpoint was pain scores, as calculated by area under the curve, in response to "Please rate your pain by circling the one number that best describes your pain at its worse in the last 24 hours." Thirty patients were enrolled. For the primary endpoint, mean area under the curve of 55 units (standard deviation 19) and 61 units (standard deviation 22) were observed in auranofin-treated and placebo-exposed patients, respectively (p = 0.44). On day 8 and at the end of the cycle, pain scores in auranofin-treated patients were more favorable, although differences were not statistically significant. In the dose schedule studied, auranofin did not palliate the PIAP syndrome, but delayed beneficial trends suggest further study for this indication.
Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach.
Yerlikaya, Firat; Ozgen, Aysegul; Vural, Imran; Guven, Olgun; Karaagaoglu, Ergun; Khan, Mansoor A; Capan, Yilmaz
2013-10-01
The aims of this study were to develop and characterize paclitaxel nanoparticles, to identify and control critical sources of variability in the process, and to understand the impact of formulation and process parameters on the critical quality attributes (CQAs) using a quality-by-design (QbD) approach. For this, a risk assessment study was performed with various formulation and process parameters to determine their impact on CQAs of nanoparticles, which were determined to be average particle size, zeta potential, and encapsulation efficiency. Potential risk factors were identified using an Ishikawa diagram and screened by Plackett-Burman design and finally nanoparticles were optimized using Box-Behnken design. The optimized formulation was further characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and gas chromatography. It was observed that paclitaxel transformed from crystalline state to amorphous state while totally encapsulating into the nanoparticles. The nanoparticles were spherical, smooth, and homogenous with no dichloromethane residue. In vitro cytotoxicity test showed that the developed nanoparticles are more efficient than free paclitaxel in terms of antitumor activity (more than 25%). In conclusion, this study demonstrated that understanding formulation and process parameters with the philosophy of QbD is useful for the optimization of complex drug delivery systems. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Calderas, Carlos; Condado, Jose Francisco; Condado, Jose Antonio; Flores, Alejandra; Mueller, Amy; Thomas, Jack; Nakatani, Daisaku; Honda, Yasuhiro; Waseda, Katsuhisa; Fitzgerald, Peter
2014-01-01
The Cobra-P drug-eluting stent (DES) system consists of cobalt chromium alloy with bio-absorbable siloxane sol-gel matrix coating that elutes low dose paclitaxel within 6 months. The aim of this first-in-man trial was to evaluate the safety and performance of 2 doses of the Cobra-P DES. A total of 60 lesions (54 patients) were sequentially assigned to 2 different paclitaxel doses: group A (3.7 μg/18mm, n=30) or group B (8 μg/18mm, n=30). The primary endpoint was MACE at 4 months defined as cardiac death, myocardial infarction, and target lesion revascularization. Patient and lesion characteristics were matched between the 2 groups except for male sex. MACE at 4 months was 3.3% and 0% respectively (P=1.000) and at 1-year follow-up remained unchanged. In-stent late loss at 4 months was similar in both groups (0.36 ± 0.30mm and 0.34 ± 0.20mm P=.773). In this FIM study, implantation of the Cobra-P low dose paclitaxel-eluting stent with a bioabsorbable sol-gel coating was proven to be feasible and safe. Moderate neointimal proliferation was observed as well as an acceptable MACE rate up to 1 year. © 2014.
Zheng, Xiaowei; Wang, Changwei; Xing, Yuanming; Chen, Siying; Meng, Ti; You, Haisheng; Ojima, Iwao; Dong, Yalin
2017-01-01
Breast cancer is the leading cause of cancer death among women. Paclitaxel, a mitotic inhibitor, is highly effective in the treatment of breast cancer. However, development of resistance to paclitaxel limits its clinical use. Identifying new compounds and new strategies that are effective against breast cancer, in particular drug-resistant cancer, is of great importance. The aim of the present study was to explore the potential of a next-generation taxoid, SB-T-121205, in modulating the proliferation, migration and invasion of paclitaxel-resistant human breast cancer cells (MCF-7/PTX) and further evaluate the underlying molecular mechanisms. The results of MTT assay showed that SB-T-121205 has much higher potency to human breast cancer cells (MCF-7/S, MCF-7/PTX and MDA-MB-453 cells) than paclitaxel, while that the non-tumorigenic human bronchial epithelial cells (BEAS-2B) were slightly less sensitive to SB-T-121205 than paclitaxel. Flow cytometry and western blot methods revealed that SB-T-121205 induced cell cycle arrest at the G2/M phase and apoptosis in MCF-7/PTX cells through accelerating mitochondrial apoptotic pathway, resulting in reduction of Bcl-2/Bax ratio, as well as elevation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) levels. Moreover, SB-T-121205 changed epithelial-mesenchymal transition (EMT) property, and suppressed migration and invasion abilities of MCF-7/PTX cells. Additionally, SB-T-121205 exerted antitumor activity by inhibiting the transgelin 2 and PI3K/Akt pathway. These findings indicate that SB-T-121205 is a potent antitumor agent that promotes apoptosis and also recedes migration/invasion abilities of MCF-7/PTX cells by restraining the activity of transgelin 2 and PI3K/Akt, as well as mitochondrial apoptotic pathway. Such results suggest a potential clinical value of SB-T-121205 in breast cancer treatment. PMID:28197640
Einstein, Mark H.; Frimer, Marina; Kuo, Dennis Y-S; Reimers, Laura L.; Mehta, Keyur; Mutyala, Subhakar; Huang, Gloria S.; Hou, June Y.; Goldberg, Gary L.
2013-01-01
Objective To evaluate the safety and survival in women treated with adjuvant pelvic radiation “sandwiched” between six cycles of paclitaxel and carboplatin chemotherapy with completely resected UPSC. Methods Surgically staged women with UPSC (FIGO stage 1-4) and no visible residual disease were enrolled. Treatment involved paclitaxel (175 mg/m2) and carboplatin (AUC=6.0-7.5) every 21 days for 3 doses, followed by radiation therapy (RT), followed by an additional 3 cycles of paclitaxel and carboplatin (AUC=5-6). Survival analysis, using Kaplan-Meier methods, was performed on patients who completed at least 3 cycles of chemotherapy and RT. Results A total of 81 patients were enrolled, of which 72 patients completed the first 3 cycles of chemotherapy followed by prescribed RT. Median age was 67 years (range: 43–82 years). 59/72 (82%) had disease confined to the uterus and 13/72 (18%) had completely resected extra-uterine disease (stage 3&4). 65 (83%) completed the protocol. Overall PFS and OS for combined stage 1&2 patients was 65.5±3.6 months and 76.5±4.3 months, respectively. PFS and OS for combined stage 3&4 patients was 25.8±3.0 and 35.9±5.3 months, respectively. Three-year % survival probability for stage 1&2 patients was 84% and for stage 3&4 patients was 50%. Of the 435 chemotherapy cycles administered, there were 11(2.5%) G3/G4 non-hematologic toxicities. 26(6.0%) cycles had dose reductions and 37(8.5%) had dose delays. Conclusions Compared to prior studies of single modality adjuvant therapy, RT “sandwiched” between paclitaxel and carboplatin chemotherapy is well-tolerated and highly efficacious in women with completely resected UPSC. PMID:22035806
Anwar, Mohammed; Akhter, Sohail; Mallick, Neha; Mohapatra, Sharmistha; Zafar, Sobiya; Rizvi, M Moshahid A; Ali, Asgar; Ahmad, Farhan J
2016-11-01
Cancer chemotherapeutic drug containing PEGylated lipidic nanocapsules (D-LNCs) were formulated by the controlled addition of organic phase (combined solution of paclitaxel and curcumin in a mixture of oleic acid and MPEG 2000 -DSPE (90:2.5 molar ratio) in acetone) to the aqueous phase (consist of Poloxamer 407 as emulsifying agents and glycerol as a co-solvent) at a temperature of 55-60°C followed by evaporation of organic solvent. The obtained pre-colloidal dispersion of D-LNCs was processed through high pressure homogenization to get more uniformly and nano-sized particles. Effect of concentration of emulsifying agent and process variables of high pressure homogenization (pressure and number of cycles) on average particle size and entrapment efficiency was further investigated by constructing Box-Behnken experimental design to achieve the optimum manufacturing process. D-LNCs were characterized by dynamic light scattering, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In vitro release studies showed a sustained release pattern of drug from the PEGylated D-LNCs, whereas in vivo pharmacokinetic studies after a single-dose intravenous (i.v.) administration of paclitaxel (15mg/kg) in Ehrlich ascites tumor (EAT)-bearing female Swiss albino mice showed a prolonged circulation time and slower elimination of paclitaxel from D-LNCs as compared with marketed formulation (Paclitec ® ). From the plasma concentration vs. time profile, i.v. bioavailability (AUC 0-∞ ) of paclitaxel from D-LNCs was found to be increased approximately 2.91-fold (P<0.001) as compared to Paclitec ® . In vitro cell viability assay against MCF-7 and MCF-7/ADR cell lines, in vivo biodistribution studies and tumor inhibition study in EAT-bearing mice, all together prove its significantly improved potency towards cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brotto, Lori; Brundage, Michael; Hoskins, Paul; Vergote, Ignace; Cervantes, Andres; Casado, Herraez A; Poveda, A; Eisenhauer, Elizabeth; Tu, Dongsheng
2016-03-01
A recent phase III trial compared the efficacy of cisplatin-topotecan (a topoisomerase I inhibitor) followed by carboplatin-paclitaxel (Arm 1) versus paclitaxel-carboplatin (Arm 2) in women with newly diagnosed stage IIB or greater ovarian cancer. There was a significantly lower response rate in the experimental arm compared to standard treatment, and less likelihood of normalized CA125 within the first 3 months. At 43 months follow-up, there were no significant group differences in progression-free survival. There were also significantly more side effects in the experimental arm. The current study examined quality of life (QoL) endpoints using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 (EORTC QLQ-C30) and the ovarian cancer module, QLQ-OV28, administered prior to randomization, at day 1 of treatment cycles 3, 5, and 7, at completion of the last cycle, and at 3 and 6 months following completion of chemotherapy. Global QoL, physical symptoms, fatigue, and role, emotional, cognitive and social function (all from the EORTC QLQ-C30) significantly improved in both treatment arms, with no significant between-arm differences. Between-group differences in pain, insomnia, and peripheral neuropathy reported while on treatment did not differ at follow-up. Nausea and vomiting improved more with standard treatment both during and after treatment. Body image significantly differed between the groups only at cycle 5 (more deterioration in Arm 2) but group differences disappeared at follow-up. A stratified analysis of global QoL by debulking surgery status found no greater effect indicating that overall improvements in QoL were unrelated to surgical recovery. There was no significant QoL advantage of cisplatin-topotecan. This finding, combined with no progression-free survival conferred by this combination, reaffirms carboplatin-paclitaxel as the standard of care for women with newly diagnosed ovarian cancer.
Park, In Hae; Sohn, Joo Hyuk; Kim, Sung Bae; Lee, Keun Seok; Chung, Joo Seop; Lee, Soo Hyeon; Kim, Tae You; Jung, Kyung Hae; Cho, Eun Kyung; Kim, Yang Soo; Song, Hong Suk; Seo, Jae Hong; Ryoo, Hun Mo; Lee, Sun Ah; Yoon, So Young; Kim, Chul Soo; Kim, Yong Tai; Kim, Si Young; Jin, Mi Ryung; Ro, Jungsil
2017-07-01
Genexol-PM is a Cremophor EL-free formulation of low-molecular-weight, non-toxic, and biodegradable polymeric micelle-bound paclitaxel. We conducted a phase III study comparing the clinical efficacy and toxicity of Genexol-PM with conventional paclitaxel (Genexol). Patients were randomly assigned (1:1) to receive Genexol-PM 260 mg/m 2 or Genexol 175 mg/m 2 intravenously every 3 weeks. The primary outcome was the objective response rate (ORR). The study enrolled 212 patients, of whom 105 were allocated to receive Genexol-PM. The mean received dose intensity of Genexol-PM was 246.8±21.3 mg/m 2 (95.0%), and that of Genexol was 168.3±10.6 mg/m 2 (96.2%). After a median follow-up of 24.5 months (range, 0.0 to 48.7 months), the ORR of Genexol-PM was 39.1% (95% confidence interval [CI], 31.2 to 46.9) and the ORR of Genexol was 24.3% (95% CI, 17.5 to 31.1) (p non-inferiority =0.021, p superiority =0.016). The two groups did not differ significantly in overall survival (28.8 months for Genexol-PM vs. 23.8 months for Genexol; p=0.52) or progression-free survival (8.0 months for Genexol-PM vs. 6.7 months for Genexol; p=0.26). In both groups, the most common toxicities were neutropenia, with 68.6% occurrence in the Genexol-PM group versus 40.2% in the Genexol group (p < 0.01). The incidences of peripheral neuropathy of greater than grade 2 did not differ significantly between study treatments. Compared with standard paclitaxel, Genexol-PM demonstrated non-inferior and even superior clinical efficacy with a manageable safety profile in patients with metastatic breast cancer.
Rajeshkumar, N V; Yabuuchi, Shinichi; Pai, Shweta G; Tong, Zeen; Hou, Shihe; Bateman, Scott; Pierce, Daniel W; Heise, Carla; Von Hoff, Daniel D; Maitra, Anirban; Hidalgo, Manuel
2016-08-09
Albumin-bound paclitaxel (nab-paclitaxel, nab-PTX) plus gemcitabine (GEM) combination has demonstrated efficient antitumour activity and statistically significant overall survival of patients with metastatic pancreatic ductal adenocarcinoma (PDAC) compared with GEM monotherapy. This regimen is currently approved as a standard of care treatment option for patients with metastatic PDAC. It is unclear whether cremophor-based PTX combined with GEM provide a similar level of therapeutic efficacy in PDAC. We comprehensively explored the antitumour efficacy, effect on metastatic dissemination, tumour stroma and survival advantage following GEM, PTX and nab-PTX as monotherapy or in combination with GEM in a locally advanced, and a highly metastatic orthotopic model of human PDAC. Nab-PTX treatment resulted in significantly higher paclitaxel tumour plasma ratio (1.98-fold), robust stromal depletion, antitumour efficacy (3.79-fold) and survival benefit compared with PTX treatment. PTX plus GEM treatment showed no survival gain over GEM monotherapy. However, nab-PTX in combination with GEM decreased primary tumour burden, metastatic dissemination and significantly increased median survival of animals compared with either agents alone. These therapeutic effects were accompanied by depletion of dense fibrotic tumour stroma and decreased proliferation of carcinoma cells. Notably, nab-PTX monotherapy was equivalent to nab-PTX plus GEM in providing survival advantage to mice in a highly aggressive metastatic PDAC model, indicating that nab-PTX could potentially stop the progression of late-stage pancreatic cancer. Our data confirmed that therapeutic efficacy of PTX and nab-PTX vary widely, and the contention that these agents elicit similar antitumour response was not supported. The addition of PTX to GEM showed no survival advantage, concluding that a clinical combination of PTX and GEM may unlikely to provide significant survival advantage over GEM monotherapy and may not be a viable alternative to the current standard-of-care nab-PTX plus GEM regimen for the treatment of PDAC patients.
Salarifar, Mojtaba; Kassaian, Seyed Ebrahim; Alidoosti, Mohammad; Haji-Zeinali, Ali Mohammad; Poorhoseini, Hamid Reza; Nematipour, Ebrahim; Amirzadegan, Alireza; Saroukhani, Sepideh
2011-01-01
For all the wealth of research comparing the efficacy of the different types of the drug-eluting stent (DES) such as sirolimus-, paclitaxel-, and zotarolimus-eluting stents, there is still a dearth of data on the different brands of each DES type. We aimed to investigate the one-year clinical outcomes, including major adverse cardiac events (MACE), of the use of the ultra long Apollo paclitaxel-eluting stent in patients with long atherosclerotic coronary artery lesions. According to a retrospective review of the Tehran Heart Center Registry of Interventional Cardiology, a single-center nonrandomized computerized data registry in which all adult patients who undergo single or multi-vessel percutaneous coronary intervention (PCI) are enrolled without any specific exclusion criteria, the mixed use of long Apollo paclitaxel-eluting stents and other types of the DES as well as myocardial infarction within forty-eight hours prior to the procedure was excluded. In total, 122 patients were enrolled in the study, and their baseline clinical, angiographic, and procedural characteristics were obtained. In addition, the patients' follow-up data and, most importantly, MACE during a one-year period after intervention were recorded. The mean follow-up duration was 14.1 ± 3.8 months. The one-year clinical follow-up data were obtained in 95.9 % of all the patients. The incidence of MACE was 5.7% during the entire study period. There was 1 death, which occurred during the initial days after PCI. The incidence of non-fatal myocardial infarction was 2.5% (3 cases), including one patient who underwent target vessel revascularization seven months later. Also, 3 patients with single-vessel disease and in-stent restenosis underwent coronary artery bypass grafting between five to ten months later. Our results showed that the Apollo paclitaxel-eluting stent might be regarded as a safe and effective treatment for long coronary lesions.
Qin, Haidong; Zhang, Ming-Rong; Xie, Lin; Hou, Yanjie; Hua, Zichun; Hu, Minjin; Wang, Zizheng; Wang, Feng
2015-01-01
Monitoring response to chemo- or radiotherapy is of great importance in clinical practice. Apoptosis imaging serves as a very useful tool for the early evaluation of tumor response. The goal of this study was PET imaging of apoptosis with 18F-labeled recombinant human annexin V linked with 10 histidine tag (18F-rh-His10-annexin V) in nude mice bearing an A549 tumor and rabbits bearing a VX2 lung cancer after paclitaxel therapy. 18F-rh-His10-annexin V was prepared by conjugation of rh-His10-annexin V with N-succinimidyl 4-[18F]fluorobenzoate. Biodistribution was determined in mice by the dissection method and small-animal PET. Single-dose paclitaxel (175 mg/m2) was used to induce apoptosis in A549 and VX2 tumor models. 18F-rh-His10-annexin V was injected into A549 mice and VX rabbits to acquire dynamic and static PET images 72 h after paclitaxel treatment. The uptake of 18F-rh-His10-annexin V in apoptotic cells 4 h after induction was 6.45±0.52 fold higher than that in non-induced cells. High focal uptake of 18F-rh-His10-annexin V was visualized in A549 (SUVmax: 0.35±0.13) and VX2 (0.41±0.23) tumor models after paclitaxel treatment, whereas lower uptake was found in the corresponding tumors before treatment (A549 SUVmax: 0.04±0.02; VX2: 0.009±0.002). The apoptotic index was 75.61±11.56% in the treated VX2 cancer, much higher than that in the untreated VX2 (8.03±2.81%). This study demonstrated the feasibility of 18F-rh-His10-annexin V for the detection of apoptosis after chemotherapy in A549 and VX2 tumor models. PMID:25625024
The α7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to taxanes.
Tu, Chao-Chiang; Huang, Chien-Yu; Cheng, Wan-Li; Hung, Chin-Sheng; Uyanga, Batzorig; Wei, Po-Li; Chang, Yu-Jia
2016-04-01
Gastric cancer is difficult to cure because most patients are diagnosed at an advanced disease stage. Systemic chemotherapy remains an important therapy for gastric cancer, but both progression-free survival and disease-free survival associated with various combination regimens are limited because of refractoriness and chemoresistance. Accumulating evidence has revealed that the homomeric α7-nicotinic acetylcholine receptor (A7-nAChR) promotes human gastric cancer by driving cancer cell proliferation, migration, and metastasis. Therefore, A7-nAChR may serve as a potential therapeutic target for gastric cancer. However, the role of A7-nAChR in taxane therapy for gastric cancer was unclear. Cells were subjected to A7-nAChR knockdown (A7-nAChR KD) using short interfering RNA (siRNA). The anti-proliferative effects of taxane were assessed via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL), and cell cycle distribution assays. A7-nAChR-KD cells exhibited low resistance to docetaxel and paclitaxel treatment, as measured by the MTT assay. Following paclitaxel treatment, the proportion of apoptotic cells was higher among A7-nAChR-KD cells than among scrambled control cells, as measured by cell cycle distribution and TUNEL assays. Further molecular analyses showed a reduction in the pAKT levels and a dramatic increase in the Bad levels in paclitaxel-treated A7-nAChR-KD cells but not in scrambled control cells. Following paclitaxel treatment, the level of Bax was slightly increased in both cell populations, whereas Poly (ADP-ribose) polymerase (PARP) cleavage was increased only in A7-nAChR-KD cells. These findings indicate that A7-nAChR-KD cells are more sensitive to paclitaxel treatment. We conclude that A7-nAChR may be a key biomarker for assessing the chemosensitivity of gastric cancer cells to taxane.
Dang, Chau; Iyengar, Neil; Datko, Farrah; D'Andrea, Gabriella; Theodoulou, Maria; Dickler, Maura; Goldfarb, Shari; Lake, Diana; Fasano, Julie; Fornier, Monica; Gilewski, Theresa; Modi, Shanu; Gajria, Devika; Moynahan, Mary Ellen; Hamilton, Nicola; Patil, Sujata; Jochelson, Maxine; Norton, Larry; Baselga, Jose; Hudis, Clifford
2015-02-10
The CLEOPATRA (Clinical Evaluation of Trastuzumab and Pertuzumab) study demonstrated superior progression-free survival (PFS) and overall survival when pertuzumab was added to trastuzumab and docetaxel. Paclitaxel given once per week is effective and less toxic than docetaxel. We performed a phase II study to evaluate the efficacy and safety of pertuzumab and trastuzumab with paclitaxel given once per week. Patients with metastatic human epidermal growth factor receptor 2-positive breast cancer with zero to one prior therapy were enrolled. Treatment consisted of paclitaxel 80 mg/m(2) once per week plus trastuzumab (8 mg/kg loading dose → 6 mg/kg) once every 3 weeks plus pertuzumab (840 mg loading dose → 420 mg) once every 3 weeks, all given intravenously. The primary end point was 6-month PFS assessed by Kaplan-Meier methods. From January 2011 to December 2013, we enrolled 69 patients: 51 (74%) and 18 (26%) treated in first- and second-line metastatic settings, respectively. At a median follow-up of 21 months (range, 3 to 38 months), 6-month PFS was 86% (95% CI, 75% to 92%). The median PFS was 19.5 months (95% CI, 14 to 26 months) overall. PFS was 24.2 months (95% CI, 14 months to not reached [NR]) and 16.4 months (95% CI, 8.5 months to NR) for those without and with prior treatment, respectively. At 1 year, Kaplan-Meier PFS was 70% (95% CI, 56% to 79%) overall, 71% (95% CI, 55% to 82%) for those without prior therapy, and 66% (95% CI, 40% to 83%) for those with prior therapy. Treatment was well-tolerated; there was no febrile neutropenia or symptomatic left ventricular systolic dysfunction. Paclitaxel given once per week with trastuzumab and pertuzumab is highly active and well tolerated and seems to be an effective alternative to docetaxel-based combination therapy. © 2014 by American Society of Clinical Oncology.
2005-08-01
Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD Peptide-Paclitaxel Conjugate as Model for Integrin Targeted...Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug...Targeted Imaging of Lung Cancer. Neoplasia 2005;7:271-279. 6. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD
1999-07-01
medium only, LPS (100 ng/ml), or paclitaxel (35 ^iM), concentrations found to induce maximal levels of mRNA in murine macrophages. Total RNA was...not detected in RNA derived from the DA-3 cells over an 8 h timecourse, even after 40 cycles of PCR amplification, without or with treatment...indicated times after stimulation with LPS or paclitaxel. Isolation of total cellular RNA . For in vitro experiments, culture supematants were removed
Turino, Ludmila N; Ruggiero, Maria R; Stefanìa, Rachele; Cutrin, Juan C; Aime, Silvio; Geninatti Crich, Simonetta
2017-04-19
Polylactic and glycolic acid nanoparticles (PLGA-NPs), coated with L-ferritin, are exploited for the simultaneous delivery of paclitaxel and an amphiphilic Gd based MRI contrast agent into breast cancer cells (MCF7). L-ferritin has been covalently conjugated to the external surface of PLGA-NPs exploiting NHS activated carboxylic groups. The results confirmed that nanoparticles decorated with L-ferritin have many advantages with respect to both albumin-decorated and nondecorated particles. Ferritin moieties endow PLGA-NPs with targeting capability, exploiting SCARA5 receptors overexpressed by these tumor cells, that results in an increased paclitaxel cytotoxicity. Moreover, protein coating increased nanoparticle stability, thus reducing the fast and aspecific drug release before reaching the target. The theranostic potential of the nanoparticles has been demonstrated by evaluating the signal intensity enhancement on T 1 -weighted MRI images of labeled MCF7 cells. The results were compared with that obtained with MDA cells used as negative control due to their lower SCARA5 expression.
Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine
Castle, Brian T.; McCubbin, Seth; Prahl, Louis S.; Bernens, Jordan N.; Sept, David; Odde, David J.
2017-01-01
Microtubule-targeting agents (MTAs), widely used as biological probes and chemotherapeutic drugs, bind directly to tubulin subunits and “kinetically stabilize” microtubules, suppressing the characteristic self-assembly process of dynamic instability. However, the molecular-level mechanisms of kinetic stabilization are unclear, and the fundamental thermodynamic and kinetic requirements for dynamic instability and its elimination by MTAs have yet to be defined. Here we integrate a computational model for microtubule assembly with nanometer-scale fluorescence microscopy measurements to identify the kinetic and thermodynamic basis of kinetic stabilization by the MTAs paclitaxel, an assembly promoter, and vinblastine, a disassembly promoter. We identify two distinct modes of kinetic stabilization in live cells, one that truly suppresses on-off kinetics, characteristic of vinblastine, and the other a “pseudo” kinetic stabilization, characteristic of paclitaxel, that nearly eliminates the energy difference between the GTP- and GDP-tubulin thermodynamic states. By either mechanism, the main effect of both MTAs is to effectively stabilize the microtubule against disassembly in the absence of a robust GTP cap. PMID:28298489
Ayoub, Ahmed Taha; Abou El-Magd, Rabab M; Xiao, Jack; Lewis, Cody Wayne; Tilli, Tatiana Martins; Arakawa, Kenji; Nindita, Yosi; Chan, Gordon; Sun, Luxin; Glover, Mark; Klobukowski, Mariusz; Tuszynski, Jack
2016-10-27
Lankacidin group antibiotics show strong antimicrobial activity against various Gram-positive bacteria. In addition, they were shown to have considerable antitumor activity against certain cell line models. For decades, the antitumor activity of lankacidin was associated with the mechanism of its antimicrobial action, which is interference with peptide bond formation during protein synthesis. This, however, was never confirmed experimentally. Due to significant similarity to paclitaxel-like hits in a previous computational virtual screening study, we suggested that the cytotoxic effect of lankacidin is due to a paclitaxel-like action. In this study, we tested this hypothesis computationally and experimentally and confirmed that lankacidin is a microtubule stabilizer that enhances tubulin assembly and displaces taxoids from their binding site. This study serves as a starting point for optimization of lankacidin derivatives for better antitumor activities. It also highlights the power of computational predictions and their aid in guiding experiments and formulating rigorous hypotheses.
Adenocarcinoma of the rete testis - a rare case of testicular malignancy.
Chovanec, M; Mego, M; Sycova-Mila, Z; Obertova, J; Rajec, J; Palacka, P; Mardiak, J
2014-01-01
Adenocarcinoma of rete testis is an extremely rare dia-gnosis described in around 70 patients worldwide. The prognosis of the disease in metastatic stage is very poor and there is no standard systemic treatment available. Herein we present a unique case report of a 47-year- old man with metastatic adenocarcinoma of rete testis who achieved substantial disease response after four cycles of paclitaxel, ifosfamide and cisplatin. The chemotherapy was administered in five -day regimen, which comprised 250 mg/ m2 of paclitaxel on day one, 20 mg/ m2 of cisplatin on day one to five and 1,2 g/ m2 of ifosfamide on day one to five, in a three-week interval. The patient received prophylactic pegfilgrastim after each cycle of TIP. The treatment was well tolerated - without any significant toxicity. Patient achieved a partial 14- month remission. On basis of this experience we suggest that paclitaxel, ifosfamide and cisplatin might be adopted as novel agents in treatment of rete testis adenocarcinoma.
Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery
Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.
2011-01-01
Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358
Subcellular analysis of interaction between breast cancer cells and drug by digital holography
NASA Astrophysics Data System (ADS)
Zhao, Jie; Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Ouyang, Liting; Guo, Sha; Yao, Qian
2017-10-01
Digital holographic microscopy is a promising quantitative phase-contrast imaging technique, which exhibits the advantages of non-destruction, full field of view, quasi-real time, and don't need dye and external marker to the living biological sample. In this paper, the inverted off-axis image-plane digital holography with pre-magnification is built up to study the living MDA-MB-231 breast cancer cells. The lateral resolution of the proposed experimental setup is 0.87μm, which is verified by the standard USAF test target. Then the system is used to visualize the interaction between living breast cancer cells and drug. The blebbing is observed after the cells are treated by paclitaxel drug, and the distribution of the paclitaxel inside the cells is detected, which is near the cytomembrane, or in other words the end of the microtubules. It will stop the mitosis and cause the death of the cells. It is helpful to reveal the anticancer mechanism of paclitaxel in the subcellular scale.
Wang, Lin; Zhu, Yue-Qi; Cheng, Ying-Sheng; Cui, Wen-Guo; Chen, Ni-Wei
2014-12-01
To investigate whether temporary placement of a paclitaxel or rapamycin eluting stent is more effective to reduce stenting induced inflammatory reaction and scaring than a bared stent in benign cardia stricture models. Eighty dog models of stricture were randomly divided into a control group (CG, n=20, no stent insertion), a bare stent group (BSG, n=20), a paclitaxel eluting (Pacl-ESG, n=20) and a rapamycin eluting stent group (Rapa-ESG, n=20), with one-week stent retention. Lower-oesophageal-sphincter pressure (LOSP), 5-minute barium height (5-mBH) and cardia diameter were assessed before, immediately after the procedure, and regularly for 6 months. Five dogs in each group were euthanized for histological examination at each follow-up assessment. Stent insertion was well tolerated, with similar migration rates in three groups. At 6 months, LOSP and 5-mBH improved in Pacl-ESG and Rapa-ESG compared to BSG (p<0.05), with no difference between Pacl-ESG and Rapa-ESG (p>0.05). Cardia kept more patency in the Pacl-ESG and Rapa-ESG than in BSG (p<0.05). Reduced peak inflammatory reactions and scarring occurred in the Pacl-ESG and Rapa-ESG compared to BSG (p<0.05), with a similar outcome in the Pacl-ESG and Rapa-ESG (p>0.05). Paclitaxel or rapamycin-eluting stents insertion led to better outcomes than bare stents in benign cardia stricture models.
Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan
NASA Astrophysics Data System (ADS)
Mansouri, Mona; Nazarpak, Masoumeh Haghbin; Solouk, Atefeh; Akbari, Somaye; Hasani-Sadrabadi, Mohammad Mahdi
2017-01-01
Concerns over cancer treatment have largely focused on chemotherapy and its consequent side effects. Utilizing nanocarriers is thought to be a panacea for mitigating the limitations of chemotherapy, and increasing its safety and efficacy. Magnetically driven Paclitaxel delivery systems are among the commonly investigated types of nanocarriers over the last two decades. In this context, we tried to highlight the application of an AC magnetic field and validate its consequential effects on drug delivery pattern and cell death in such nanodevices. So the aim of this study is to develop an appropriate matrix (Palmitoyl chitosan) co-encapsulated with superparamagnetic iron oxide nanoparticles (SPIONs) and anticancer drug, Paclitaxel (PTX) via the nanoprecipitation process. Synthesized nanoparticles were characterized by Dynamic Light Scattering (DLS) and their magnetic properties were investigated by Vibrating Sample Magnetometer (VSM). At initial loading of 10 wt% Paclitaxel, the maximum loading efficiency of nanoparticles with and without SPIONs was in the range of 69% and 72.3%, respectively. In addition, in vitro release data revealed that by the application of a magnetic field, release kinetic changed to the magnetic responsive pattern. Encapsulating anticancer drug in a synthesized nanosystem not only increased the amount of drug in cancer cells but also enhanced cell death (MCF-7) due to hyperthermic effects of SPIONs in the presence of an external magnetic field. In summary, these findings indicate that the resultant nanoparticles may serve as a biocompatible and biodegradable carrier for the precise delivery of powerful cytotoxic anticancer agents such as PTX.
Cheng, Yanping; Shibuya, Masahiko; McGregor, Jenn; Conditt, Gerard B; Yi, Geng-Hua; Kaluza, Greg L; Gray, William; Doshi, Manish; Sojitra, Prakash; Granada, Juan F
2016-10-20
The aim of this study was to evaluate the biological efficacy of a novel lower-dose (2.5 µg/mm2) encapsulated paclitaxel nanocrystal-coated balloon (Nano-PCB) in the familial hypercholesterolaemic swine (FHS) model of iliofemoral in-stent restenosis. Nano-PCB pharmacokinetics were assessed in 20 femoral arteries (domestic swine). Biological efficacy was evaluated in ten FHS: 14 days following bare metal stent implantation each stent segment was randomised to a clinically available PCB (IN.PACT, n=14), the Nano-PCB (n=14) or an uncoated balloon (n=12). Angiographic, optical coherence tomography and histological evaluation was performed at 28 days after treatment. Arterial paclitaxel concentration was 120.7 ng/mg at one hour and 7.65 ng/mg of tissue at 28 days with the Nano-PCB. Compared to the control uncoated group, both PCBs significantly reduced percent area stenosis (Nano-PCB: 36.0±14.2%, IN.PACT: 29.3±9.2% vs control: 67.9±15.1%, p<0.001). Neointimal distribution in the entire stent length was more homogenous in the Nano-PCB. Histological evaluation showed comparable degrees of neointimal proliferation in both PCBs; however, the Nano-PCB showed slightly higher levels of neointimal maturity and endothelialisation. Lower-dose encapsulated paclitaxel nanocrystals delivered via a coated balloon displayed comparable biological efficacy with superior healing features compared to a clinically validated PCB technology.
NASA Astrophysics Data System (ADS)
Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.
2017-02-01
Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.
Zhang, Lei; Wu, Chengyu; Bouvet, Michael; Yano, Shuya; Hoffman, Robert M
2015-03-10
We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G₂/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G₀/G₁ (>90%) after 72 hours. After treatment with paclitaxel (0.01 μm), for 72 hours, 95% of the cells were in S/G₂/M. In 2.5D Matrigel culture, the colonies in the untreated control group had 40% of the cells in S/G₂/M. LQ arrested the cells in G₀/G₁ after 72 hours. Paclitaxel arrested almost all the cells in S/G₂/M after 72 hours. In 3D Gelfoam culture, the untreated control culture had approximately 45% of cells in G₂/M. In contrast, the LQ-treated cells were mostly in G₀/G₁ phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G₂/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time.
Bamias, Aristotle; Papadimitriou, Christos; Efstathiou, Eleni; Rodolakis, Alexandros; Vlahos, Georgios; Voulgaris, Zannis; Bozas, Georgios; Fountzilas, Georgios; Aravantinos, Gerassimos; Razis, Evagelia; Gika, Dimitra; Dimopoulos, Meletios A
2006-01-01
Background Surgery can cure a significant percentage of ovarian carcinoma confined to the pelvis. Nevertheless, there is still a 10–50% recurrence rate. We administered paclitaxel/carboplatin as adjuvant treatment in early-stage ovarian carcinoma. Methods Patients with stages Ia or Ib, Grade 2 or 3 and Ic to IIb (any grade) were included. Patients were treated with 4 cycles of Paclitaxel 175 mg/m2 and Carboplatin [area under the curve (AUC) 6 (Calvert Formula)] every 3 weeks. Results Sixty-nine patients with no residual disease following cytoreductive surgery and minimal or modified surgical staging were included in this analysis. Grade 3 or 4 neutropenia occured in 29.9% of patients, while neutropenic fever was reported in 4.5%. Neurotoxicity (all Grade 1 or 2) was reported in 50% of cases. Median follow-up was 62 months. 5-year overall survival (OS) and relapse-free survival (RFS) were: 87% (95% confidence intervals [CI]: 78–96) and 79% (95% CI: 69–89), respectively. Significantly fewer patients with stages Ic-IIb and tumor grade 2 or 3 achieved a 5-year RFS than patients with only one of these two factors (73% vs 92%, p = 0.03). Conclusion Paclitaxel/Carboplatin chemotherapy is a safe and effective adjuvant treatment in early-stage ovarian carcinoma. Patients with stages Ic-IIb and tumor grade 2 or 3 may benefit from more extensive treatment. PMID:16999858
Chemical renal denervation in the rat.
Consigny, Paul M; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, Deanne
2014-02-01
The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose-response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography-mass spectrometry. Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10(-5) M through 10(-2) M paclitaxel. We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.
Lee, Keun-Wook; Lee, Kyung Hee; Zang, Dae Young; Park, Young Iee; Shin, Dong Bok; Kim, Jin Won; Im, Seock-Ah; Koh, Sung Ae; Yu, Kyung-Sang; Cho, Joo-Youn; Jung, Jin-A; Bang, Yung-Jue
2015-08-01
Oraxol consists of paclitaxel and HM30181A, a P-glycoprotein inhibitor, to increase the oral bioavailability of paclitaxel. This phase I/II study (HM-OXL-201) was conducted to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Oraxol. In addition, we investigated the efficacy and safety of Oraxol as second-line chemotherapy for metastatic or recurrent gastric cancer (GC). In the phase I component, paclitaxel was orally administered at escalating doses (90, 120, or 150 mg/m(2) per day) with a fixed dose (15 mg/day) of HM30181A. Oraxol was administrated 6 times per cycle (days 1, 2, 8, 9, 15, and 16) every 4 weeks. In the phase II component, the efficacy and safety of Oraxol were evaluated. In the phase I component, the MTD could not be determined. Based on toxicity and pharmacokinetic data, the RP2D of oral paclitaxel was determined to be 150 mg/m(2). In the phase II component, 4 of 43 patients (9.3%) achieved partial responses. Median progression-free survival and overall survival were 2.6 and 10.7 months, respectively. Toxicity profiles were favorable, and the most common drug-related adverse events (grade ≥3) were neutropenia and diarrhea. Oraxol exhibited modest efficacy and favorable toxicity profiles as second-line chemotherapy for GC. ©AlphaMed Press; the data published online to support this summary is the property of the authors.
Giacone, Daniela V; Carvalho, Vanessa F M; Costa, Soraia K P; Lopes, Luciana B
2018-02-01
Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hanbyoul; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul; Nam, Byung-Ho
2014-09-01
Purpose: A phase 2 study was completed by the Korean Gynecologic Oncologic Group to evaluate the efficacy and toxicity of concurrent chemoradiation with weekly paclitaxel in patients with high-risk endometrial cancer. Methods and Materials: Pathologic requirements included endometrial endometrioid adenocarcinoma stages III and IV. Radiation therapy consisted of a total dose of 4500 to 5040 cGy in 5 fractions per week for 6 weeks. Paclitaxel 60 mg/m{sup 2} was administered once weekly for 5 weeks during radiation therapy. Results: Fifty-seven patients were enrolled between January 2006 and March 2008. The median follow-up time was 60.0 months (95% confidence interval [CI], 51.0-58.2). All grade 3/4 toxicitiesmore » were hematologic and usually self-limited. There was no life-threatening toxicity. The cumulative incidence of intrapelvic recurrence sites was 1.9% (1/52), and the cumulative incidence of extrapelvic recurrence sites was 34.6% (18/52). The estimated 5-year disease-free and overall survival rates were 63.5% (95% CI, 50.4-76.5) and 82.7% (95% CI, 72.4-92.9), respectively. Conclusions: Concurrent chemoradiation with weekly paclitaxel is well tolerated and seems to be effective for high-risk endometrioid endometrial cancers. This approach appears reasonable to be tested for efficacy in a prospective, randomized controlled study.« less
Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako
2018-01-01
The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Watch out for reporter gene assays with Renilla luciferase and paclitaxel.
Theile, Dirk; Spalwisz, Adriana; Weiss, Johanna
2013-06-15
Luminescence-based reporter gene assays are widely used in biochemistry. Signals from reporter genes (e.g., firefly luminescence) are usually normalized to signals from constantly luminescing luciferases such as Renilla luciferase. This normalization step can be performed by modern luminometry devices automatically providing final results. Here we demonstrate paclitaxel to strikingly enhance Renilla luminescence, thereby potentially flawing results from reporter gene assays. In consequence, these data advocate for careful examination of raw data and militate against automatic data processing. Copyright © 2013 Elsevier Inc. All rights reserved.
Reversal of the multidrug resistance by drug combination using multifunctional liposomes
NASA Astrophysics Data System (ADS)
Patel, Niravkumar R.
One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted in increased cell association with these cancer cells. The 2C5-modified immunoliposomes, along with unmodified liposomes co-loaded with tariquidar and paclitaxel were tested for their antitumor effects in vivo. Significant tumor growth inhibition occurred with combination therapy in resistant as well as sensitive cell lines. However, immunoliposomes failed to increase antitumor effect in vivo as spontaneous accumulation of liposomes at added dose may have saturated tumor accumulation. We were also interested in evaluating physiological factors responsible for the MDR. Spheroids grown in vitro provided platform to demonstrate many characteristics of tumor tissues such as cell-cell interaction, a hypoxic core, low pH environment at core and a relevant genetic profile. In this study, spheroids were utilized to evaluate paclitaxel cytotoxity and to evaluate effects of 2C5 modification on cellular uptake. Lack of cytotoxicity was observed in spheroids treated with paclitaxel alone as well as in combination with tariquidar. Likely explanations could be the presence of cells in diverse cell cycle stages and limited penetration. Also, increased uptake was observed in spheroids when treated with 2C5-modified Rh-labeled liposomes compared to UPC10-modified Rh-labeled liposomes. Such results have clearly demonstrated the importance of using this novel research model in cancer research.
Lesnock, J L; Darcy, K M; Tian, C; Deloia, J A; Thrall, M M; Zahn, C; Armstrong, D K; Birrer, M J; Krivak, T C
2013-04-02
Breast cancer 1, early onset (BRCA1) is a tumour-suppressor gene associated with familial epithelial ovarian cancer (EOC). Reduced BRCA1 expression is associated with enhanced sensitivity to platinum-based chemotherapy. We sought to examine the prognostic relevance of BRCA1 expression in EOC patients treated with intraperitoneal platinum/taxane. The GOG-172 was a phase III, multi-institutional randomised trial of intravenous paclitaxel and cisplatin (IV therapy) vs intravenous paclitaxel, intraperitoneal cisplatin plus paclitaxel (IP therapy) in patients with optimally resected stage III EOC. The BRCA1 expression was assessed with immunohistochemistry (IHC) staining blinded to clinical outcome in archival tumour specimens. Slides with 10% staining were defined as aberrant and >10% as normal. Correlations between BRCA1 expression and progression-free survival (PFS) and overall survival (OS) were analysed using Kaplan-Meier method and Cox regression analysis. Of the 393 patients, 189 tumours had aberrant expression, and 204 had normal BRCA1 expression. There was an interaction between BRCA1 expression and route of administration on OS (P=0.014) but not PFS (P=0.054). In tumours with normal BRCA1 expression, the median OS was 58 months for IP group vs 50 months for IV group (P=0.818). In tumours with aberrant BRCA1 expression, the median OS was 84 vs 47 months in the IP vs IV group, respectively (P=0.0002). Aberrant BRCA1 expression was an independent prognostic factor for better survival in women randomised to IP therapy (hazard ratio (HR)=0.67, 95% confidence interval (CI)=0.47-0.97, P=0.032). Similar survival was observed in the IV and IP patients with normal BRCA1 expression. Multivariate but not univariate modelling demonstrated that IV patients with aberrant vs normal BRCA1 expression had worse survival. Decreased BRCA1 expression is associated with a 36-month survival improvement in patients with EOC treated with IP chemotherapy. Although these results merit validation in future studies, the results suggest that decreased BRCA1 expression predicts for improved response to cisplatin-based IP chemotherapy with cisplatin and paclitaxel.
Effects of vinorelbine and titanocene dichloride on human tumour xenografts in nude mice.
Friedrich, M; Villena-Heinsen, C; Farnhammer, C; Schmidt, W
1998-01-01
In this study, the new antineoplastic agents titanocene dichloride and vinorelbine are compared to cisplatin and paclitaxel using a human ovarian cancer xenograft model. Biopsy material from one native human ovarian carcinoma was expanded and transplanted into 48 nude mice. The animals were divided into six treatment groups: cisplatin 3x4 mg/kg, paclitaxel 5x26 mg/kg, vinorelbine 1x20 mg/kg, titanocene dichloride 3x30 mg/kg, titanocene dichloride 3x40 mg/kg and a control group treated with 0.9% saline. Treatment groups were evaluated in terms of average daily increase in tumour volume and average daily body weight increase of the nude mice based on slopes of least square regressions performed on individual animals. The slope factors alpha and beta of the body weight (alpha) and tumour volume changes (beta) within each group were calculated. A statistically significant decrease (p<0.05) in body weight of the experimental animals was shown in groups treated with paclitaxel (alpha = -0.6878) and titanocene dichloride 3x40 mg/kg (alpha = -0.7194) compared to the control group which was treated with 0.9% saline (alpha = -0.2643). Significant body weight changes were not observed in the comparison of the remaining treated groups (cisplatin: alpha = -0.4552, vinorelbine: alpha = -0.5606, titanocene dichloride 3x30 mg/kg: alpha = -0.6173 to the control group. A significant reduction (p<0.05) of the increase tumour volume (vinorelbine: beta = 5.260, paclitaxel: beta = 0.478, titanocene dichloride 3x30 mg/kg: beta = 10.283, titanocene dichloride 3x40 mg/kg: beta = 5.768) was shown in treated groups except for cisplatin (beta = 18.722) compared to the tumour bearing control group (beta = 30.136). A statistically significant reduction of the increase in tumour volume occurred under paclitaxel medication compared to the group treated with cisplatin. We found titanocene dichloride to be effective as vinorelbine and more effective than cisplatin. Vinorelbine seems to be a very effective antineoplastic agent with a significantly higher cytostatic effect than cisplatin. Both titanocene dichloride and vinorelbine provide new therapeutic options in women with ovarian carcinoma not responding to standard chemotherapies.
Moreno, Lucas; Casanova, Michela; Chisholm, Julia C; Berlanga, Pablo; Chastagner, Pascal B; Baruchel, Sylvain; Amoroso, Loredana; Melcón, Soledad Gallego; Gerber, Nicolas U; Bisogno, Gianni; Fagioli, Franca; Geoerger, Birgit; Glade Bender, Julia L; Aerts, Isabelle; Bergeron, Christophe; Hingorani, Pooja; Elias, Ileana; Simcock, Mathew; Ferrara, Stefano; Le Bruchec, Yvan; Slepetis, Ruta; Chen, Nianhang; Vassal, Gilles
2018-06-21
nab-Paclitaxel has demonstrated efficacy in adults with solid tumours and preclinical activity in paediatric solid tumour models. Results from phase I of a phase I/II study in paediatric patients with recurrent/refractory solid tumours treated with nab-paclitaxel are reported. Patients with recurrent/refractory extracranial solid tumours received nab-paclitaxel on days 1, 8 and 15 every 4 weeks at 120, 150, 180, 210, 240, or 270 mg/m 2 (rolling-6 dose-escalation) to establish the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). Sixty-four patients were treated. Dose-limiting toxicities were grade 3 dizziness at 120 mg/m 2 and grade 4 neutropenia >7 days at 270 mg/m 2 . The most frequent grade 3/4 adverse events were haematologic, including neutropenia (36%), leukopenia (36%) and lymphopenia (25%). Although the MTD was not reached, 270 mg/m 2 was declared non-tolerable due to grade 3/4 toxicities during cycles 1-2 (neutropenia, n = 5/7; skin toxicity, n = 2/7; peripheral neuropathy, n = 1/7). Of 58 efficacy-evaluable patients, complete response occurred in one patient (2%; Ewing sarcoma) and partial responses in four patients (7%; rhabdomyosarcoma, Ewing sarcoma, renal tumour with pulmonary metastases [high-grade, malignant] and sarcoma not otherwise specified); all responses occurred at ≥210 mg/m 2 . Thirteen patients (22%) had stable disease (5 lasting ≥16 weeks) per RECIST. nab-Paclitaxel 240 mg/m 2 qw3/4 (nearly double the adult recommended monotherapy dose for this schedule in metastatic breast cancer) was selected as the RP2D based on the tolerability profile, pharmacokinetics and antitumour activity. Phase II is currently enrolling patients with recurrent/refractory neuroblastoma, rhabdomyosarcoma and Ewing sarcoma. CLINICALTRIALS.GOV: NCT01962103. 2013-000144-26. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spigel, David R; Luft, Alexander; Depenbrock, Henrik; Ramlau, Rodryg; Khalil, Mazen; Kim, Joo-Hang; Mayo, Carlos; Chao, Grace Yi; Obasaju, Coleman; Natale, Ronald
2017-09-01
The combination of necitumumab with gemcitabine-cisplatin significantly improved overall survival (OS) in patients with stage IV squamous non-small-cell lung cancer (NSCLC), in the phase III SQUamous NSCLC treatment with the Inhibitor of EGF REceptor (SQUIRE) trial. Paclitaxel-carboplatin was selected as an alternative standard of care in the current phase II study. Patients were randomized (stratified according to Eastern Cooperative Oncology Group performance status and sex) 2:1 to ≤ six 3-week cycles (Q3W) of paclitaxel and carboplatin with or without necitumumab. Chemotherapy was paclitaxel 200 mg/m 2 on day 1 Q3W and carboplatin area under the curve 6 on day 1 Q3W. Necitumumab 800 mg, on days 1 and 8, was continued until disease progression or intolerable toxicity occurred. The primary end point was objective response rate (ORR) on the basis of Response Evaluation Criteria In Solid Tumors version 1.1. One hundred sixty-seven patients were randomized to the necitumumab-containing arm (n = 110) or the chemotherapy-only arm (n = 57). The combination of necitumumab with chemotherapy resulted in an ORR of 48.9% versus 40.0%. Median progression-free survival and OS were 5.4 versus 5.6 months (hazard ratio [HR], 1.0) and 13.2 versus 11.2 months (HR, 0.83; P = .379) in each treatment arm, respectively. Disease control rate was 87.2% versus 84.0%. Grade ≥ 3 adverse events typically associated with epidermal growth factor receptor (EGFR) monoclonal antibodies showing a > 2% increase were hypomagnesemia (5.7% vs. 0) and rash (2.8% vs. 0). Any Grade thromboembolic events occurred in < 4% of patients in either arm. The results of our study support previously reported results that the combination of necitumumab with chemotherapy improves survival in patients with advanced squamous NSCLC and shows a safety profile consistent with that of EGFR monoclonal antibodies. Copyright © 2017 Elsevier Inc. All rights reserved.
Fukuoka, Masahiro; Wu, Yi-Long; Thongprasert, Sumitra; Sunpaweravong, Patrapim; Leong, Swan-Swan; Sriuranpong, Virote; Chao, Tsu-Yi; Nakagawa, Kazuhiko; Chu, Da-Tong; Saijo, Nagahiro; Duffield, Emma L; Rukazenkov, Yuri; Speake, Georgina; Jiang, Haiyi; Armour, Alison A; To, Ka-Fai; Yang, James Chih-Hsin; Mok, Tony S K
2011-07-20
The results of the Iressa Pan-Asia Study (IPASS), which compared gefitinib and carboplatin/paclitaxel in previously untreated never-smokers and light ex-smokers with advanced pulmonary adenocarcinoma were published previously. This report presents overall survival (OS) and efficacy according to epidermal growth factor receptor (EGFR) biomarker status. In all, 1,217 patients were randomly assigned. Biomarkers analyzed were EGFR mutation (amplification mutation refractory system; 437 patients evaluable), EGFR gene copy number (fluorescent in situ hybridization; 406 patients evaluable), and EGFR protein expression (immunohistochemistry; 365 patients evaluable). OS analysis was performed at 78% maturity. A Cox proportional hazards model was used to assess biomarker status by randomly assigned treatment interactions for progression-free survival (PFS) and OS. OS (954 deaths) was similar for gefitinib and carboplatin/paclitaxel with no significant difference between treatments overall (hazard ratio [HR], 0.90; 95% CI, 0.79 to 1.02; P = .109) or in EGFR mutation-positive (HR, 1.00; 95% CI, 0.76 to 1.33; P = .990) or EGFR mutation-negative (HR, 1.18; 95% CI, 0.86 to 1.63; P = .309; treatment by EGFR mutation interaction P = .480) subgroups. A high proportion (64.3%) of EGFR mutation-positive patients randomly assigned to carboplatin/paclitaxel received subsequent EGFR tyrosine kinase inhibitors. PFS was significantly longer with gefitinib for patients whose tumors had both high EGFR gene copy number and EGFR mutation (HR, 0.48; 95% CI, 0.34 to 0.67) but significantly shorter when high EGFR gene copy number was not accompanied by EGFR mutation (HR, 3.85; 95% CI, 2.09 to 7.09). EGFR mutations are the strongest predictive biomarker for PFS and tumor response to first-line gefitinib versus carboplatin/paclitaxel. The predictive value of EGFR gene copy number was driven by coexisting EGFR mutation (post hoc analysis). Treatment-related differences observed for PFS in the EGFR mutation-positive subgroup were not apparent for OS. OS results were likely confounded by the high proportion of patients crossing over to the alternative treatment.
Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo
2016-06-01
The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharofa, Jordan; Choong, Nicholas; Wang, Dian
Purpose: To examine the efficacy and toxicity of continuous-course, conformal reirradiation with weekly paclitaxel and carboplatin for the treatment of locally recurrent, nonmetastatic squamous cell carcinoma of the head and neck (SCCHN) in a previously irradiated field. Methods and Materials: Patients treated with continuous course-reirradiation with concurrent carboplatin and paclitaxel at the Medical College of Wisconsin and the Clement J. Zablocki VA from 2001 through 2009 were retrospectively reviewed. Patients included in the analysis had prior radiation at the site of recurrence of at least 45 Gy. The analysis included patients who received either intensity-modulated radiotherapy (RT) or three-dimensional conformalmore » RT techniques. All patients received weekly concurrent carboplatin (AUC2) and paclitaxel (30-50 mg/m{sup 2}). Results: Thirty-eight patients with nonmetastatic SCCHN met the entry criteria for analysis. The primary sites at initial diagnosis were oropharyngeal or laryngeal in most patients (66%). Median reirradiation dose was 60 Gy (range, 54-70 Gy). Acute toxicity included Grade 2 neutropenia (5%), Grade 3 neutropenia (15%), and Grade 1/2 thrombocytopenia (8%). No deaths occurred from hematologic toxicity. Chemotherapy doses held (50%) was more prevalent than radiation treatment break (8%). Sixty-eight percent of patients required a gastrostomy tube in follow-up. Significant late toxicity was experienced in 6 patients (16%): 1 tracheoesophageal fistula, 1 pharyngocutaneous fistula, 3 with osteoradionecrosis, and 1 patient with a lingual artery bleed. Patients treated with three-dimensional conformal RT had more frequent significant late toxicites than patients treated with intensity-modulated RT (44% and 7% respectively, p < 0.05). The median time to progression was 7 months and progression-free rates at 1, 2, and 5 years was 44%, 34%, and 29% respectively. The median overall survival was 16 months. Overall survival at 1, 3, and 5 years was 54%, 31%, and 20% respectively. Conclusions: Continuous-course, conformal reirradiation with weekly paclitaxel and carboplatin has an acceptable toxicity profile and offers a potentially curative option in a subset of patients with few other options.« less
Dang, Chau; Iyengar, Neil; Datko, Farrah; D'Andrea, Gabriella; Theodoulou, Maria; Dickler, Maura; Goldfarb, Shari; Lake, Diana; Fasano, Julie; Fornier, Monica; Gilewski, Theresa; Modi, Shanu; Gajria, Devika; Moynahan, Mary Ellen; Hamilton, Nicola; Patil, Sujata; Jochelson, Maxine; Norton, Larry; Baselga, Jose; Hudis, Clifford
2015-01-01
Purpose The CLEOPATRA (Clinical Evaluation of Trastuzumab and Pertuzumab) study demonstrated superior progression-free survival (PFS) and overall survival when pertuzumab was added to trastuzumab and docetaxel. Paclitaxel given once per week is effective and less toxic than docetaxel. We performed a phase II study to evaluate the efficacy and safety of pertuzumab and trastuzumab with paclitaxel given once per week. Patients and Methods Patients with metastatic human epidermal growth factor receptor 2–positive breast cancer with zero to one prior therapy were enrolled. Treatment consisted of paclitaxel 80 mg/m2 once per week plus trastuzumab (8 mg/kg loading dose → 6 mg/kg) once every 3 weeks plus pertuzumab (840 mg loading dose → 420 mg) once every 3 weeks, all given intravenously. The primary end point was 6-month PFS assessed by Kaplan-Meier methods. Results From January 2011 to December 2013, we enrolled 69 patients: 51 (74%) and 18 (26%) treated in first- and second-line metastatic settings, respectively. At a median follow-up of 21 months (range, 3 to 38 months), 6-month PFS was 86% (95% CI, 75% to 92%). The median PFS was 19.5 months (95% CI, 14 to 26 months) overall. PFS was 24.2 months (95% CI, 14 months to not reached [NR]) and 16.4 months (95% CI, 8.5 months to NR) for those without and with prior treatment, respectively. At 1 year, Kaplan-Meier PFS was 70% (95% CI, 56% to 79%) overall, 71% (95% CI, 55% to 82%) for those without prior therapy, and 66% (95% CI, 40% to 83%) for those with prior therapy. Treatment was well-tolerated; there was no febrile neutropenia or symptomatic left ventricular systolic dysfunction. Conclusion Paclitaxel given once per week with trastuzumab and pertuzumab is highly active and well tolerated and seems to be an effective alternative to docetaxel-based combination therapy. PMID:25547504
Gao, Yangyang; Chen, Junying; Zhang, Xiqian; Xie, Huiru; Wang, Yanran; Guo, Shuquan
2017-03-01
An LC-MS/MS method for the determination of polyaspartate paclitaxel conjugate (PASP-PTX) and paclitaxel (PTX) in dog plasma with cephalomannine (Internal Standard for PASP-PTX, IS-I) and clopidogrel bisulfate (Internal Standard for PTX, IS-II) as the internal standards was developed and validated. Plasma samples of PASP-PTX were extracted by ethyl acetate following the hydrolysis reaction, while protein precipitation was used for the extraction of PTX using acetonitrile. Analytes were separated by a CAPCELL PAK C18 MG II column using a gradient elution with the mobile phase (A) 5 mM ammonium containing 0.1% formic acid, and (B) acetonitrile. Quantification was performed by monitoring the m/z transitions of 286.2/105.0 for PASP-PTX, 264.2/83.0 for IS-I, 854.4/286.0 for PTX, and 322.1/184.1 for IS-II in the ESI positive mode. This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification was 0.15 µg/mL for PASP-PTX and 0.01 µg/mL for PTX, and the calibration curves were linear over 0.15-300 µg/mL for PASP-PTX and over 0.01-10 µg/mL for PTX. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetic profiles of PASP-PTX and PTX in beagles following intravenous administration of PASP-PTX. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sun, Xueying; Zhang, Jie; Gupta, Rita; Macgibbon, Alastair K H; Kuhn-Sherlock, Barbara; Krissansen, Geoffrey W
2011-10-01
Milk fat is a natural product containing essential nutrients as well as fatty acids and other food factors with reported anti-cancer potential. Here bovine milk fat was tested for its ability to inhibit the growth of breast and colon cancers and their metastasis to the lung and liver; either alone or in combination with the chemotherapeutic agent paclitaxel. A diet containing 5% typical anhydrous milk fat (representing ~70% of the total dietary fat component) fed to Balb/c mice delayed the appearance of subcutaneous 4T1 breast and CT26 colon cancer tumours and inhibited their metastasis to the lung and liver, when compared to the control diet containing soybean oil as the only fat component. It augmented the inhibitory effects of paclitaxel on tumour growth and metastasis, and reduced the microvessel density of tumours. It displayed no apparent organ toxicity, but instead was beneficial for well-being of tumour-bearing mice by maintaining gastrocnemius muscle and epididymal adipose tissue that were otherwise depleted by cachexia. The milk fat diet ameliorated gut damage caused by paclitaxel in non-tumour-bearing mice, as evidenced by retention of jejunal morphology, villi length and intestinal γ-glutamyl transpeptidase activity, and inhibition of crypt apoptosis. It prevented loss of red and white blood cells due to both cancer-mediated immunosuppression and the cytotoxic effects of chemotherapy. The present study warrants the use of milk fat as an adjuvant to inhibit tumour metastasis during cancer chemotherapy, and to spare patients from the debilitating side-effects of cytotoxic drugs.
Schwartz, Gary K; Winter, Kathryn; Minsky, Bruce D; Crane, Christopher; Thomson, P John; Anne, Pramila; Gross, Howard; Willett, Christopher; Kelsen, David
2009-04-20
The investigational arm of INT0116, a fluorouracil (FU) and leucovorin-containing chemoradiotherapy regimen, is a standard treatment for patients with resected gastric cancer with a 2-year disease-free survival rate (DFS) of 52%. Toxicity is also significant. More beneficial and safer regimens are needed. We performed a randomized phase II study among 39 cancer centers to evaluate two paclitaxel and cisplatin-containing regimens, one with FU (PCF) and the other without (PC) in patients with resected gastric cancer. Patients received two cycles of postoperative chemotherapy followed by 45 Gy of radiation with either concurrent FU and paclitaxel or paclitaxel and cisplatin. The primary objective was to show an improvement in 2-year DFS to 67% as compared with INT 0116. From May 2001 to February 2004 (study closure), 78 patients entered this study, and 73 were evaluable. At the planned interim analysis of 22 patients on PCF, grade 3 or higher GI toxicity was 59%. This was significantly worse than INT0116, and this arm was closed. Accrual continued on PC. The median DFS was 14.6 months for PCF and has not been reached for PC. For PC the 2-year DFS is 52% (95% CI, 36% to 68%). Though PC appears to be safe and the median DFS favorable, the DFS failed to exceed the lower bound of 52.9% for the targeted 67% DFS at 2 years and can not be recommended as the adjuvant arm for future randomized trials.
Schwartz, Gary K.; Winter, Kathryn; Minsky, Bruce D.; Crane, Christopher; Thomson, P. John; Anne, Pramila; Gross, Howard; Willett, Christopher; Kelsen, David
2009-01-01
Purpose The investigational arm of INT0116, a fluorouracil (FU) and leucovorin–containing chemoradiotherapy regimen, is a standard treatment for patients with resected gastric cancer with a 2-year disease-free survival rate (DFS) of 52%. Toxicity is also significant. More beneficial and safer regimens are needed. Patients and Methods We performed a randomized phase II study among 39 cancer centers to evaluate two paclitaxel and cisplatin–containing regimens, one with FU (PCF) and the other without (PC) in patients with resected gastric cancer. Patients received two cycles of postoperative chemotherapy followed by 45 Gy of radiation with either concurrent FU and paclitaxel or paclitaxel and cisplatin. The primary objective was to show an improvement in 2-year DFS to 67% as compared with INT 0116. Results From May 2001 to February 2004 (study closure), 78 patients entered this study, and 73 were evaluable. At the planned interim analysis of 22 patients on PCF, grade 3 or higher GI toxicity was 59%. This was significantly worse than INT0116, and this arm was closed. Accrual continued on PC. The median DFS was 14.6 months for PCF and has not been reached for PC. For PC the 2-year DFS is 52% (95% CI, 36% to 68%). Conclusion Though PC appears to be safe and the median DFS favorable, the DFS failed to exceed the lower bound of 52.9% for the targeted 67% DFS at 2 years and can not be recommended as the adjuvant arm for future randomized trials. PMID:19273696
Erythropoietin reduces anemia and transfusions after chemotherapy with paclitaxel and carboplatin.
Dunphy, F R; Dunleavy, T L; Harrison, B R; Boyd, J H; Varvares, M A; Dunphy, C H; Rodriguez, J J; McDonough, E M; Minster, J R; McGrady, M D
1997-04-15
The authors report on anemia observed during preoperative paclitaxel and carboplatin chemotherapy in patients with advanced head and neck carcinoma and discuss how the use of recombinant human erythropoietin (r-HuEPO) ameliorates this anemia, reducing the need for subsequent packed red blood cell (PRBC) transfusions. Response to r-HuEPO was defined as reduced hemoglobin fall during preoperative chemotherapy and reduced transfusion requirements during surgery. Thirty-six patients with advanced head and neck carcinoma were evaluable after treatment with preoperative chemotherapy using paclitaxel and carboplatin. Group 1 was comprised of 14 patients who empirically received r-HuEPO at a dose of 150 U/kg 3 times per week for 3 weeks; in patients deemed nonresponders, the dose was increased to 300 U/kg and 450 U/kg in the subsequent courses. Group 2 was comprised of 22 patients who did not receive r-HuEPO. During preoperative chemotherapy, the mean hemoglobin fall was 0.5 g/dL in Group 1 (P = 0.40). In Group 2 there was a statistically significant mean hemoglobin fall of 3.3 g/dL (P < 0.0001). There was also a nonstatistically significant trend toward fewer PRBC transfusions: none of 14 patients (0%) in Group 1 versus 4 of 22 patients (18%) in Group 2 (P = 0.141). A significant fall in hemoglobin and an increase in the need for transfusions were observed in head and neck carcinoma patients receiving carboplatin and paclitaxel chemotherapy prior to surgery. Empiric r-HuEPO therapy appeared to prevent anemia and reduced the need for PRBC transfusions.
NASA Astrophysics Data System (ADS)
Naghavi, M. R.; Motamedi, E.; Nasiri, J.; Alizadeh, H.; Fattahi Moghadam, M. R.; Mashouf, A.
2015-01-01
In this investigation, the proficiency of a number of magnetic carbon-based nano-adsorbents is evaluated in pre-purification process of the crude paclitaxel extract obtained from fresh needles of yew tree ( Taxus baccata L.). The effectiveness and removal ability of color and impurities from crude extracts, for three novel candidate nano-adsorbents (i.e., Fe3O4 nanoparticles (Fe3O4Nps), graphite oxide (GO), and their hybrids Fe3O4Nps/GO) are compared with commercial graphite in three different solvents. In general, both HPLC and UV-Vis spectroscopy results demonstrate that in less polar solvent (i.e., dichloromethane), the adsorption is greatly affected by the electrostatic attractions, while in more polar solvents (i.e., acetone and ethanol) π-π electron interactions taking place between adsorbent and adsorbate are the most dominant factors in sorption. Considering decolorization efficiency, purity of taxol, recovery and reusability of adsorbents, Fe3O4Nps/GO (50 g/L) in dichloromethane is selected as the best medium for pre-purification of paclitaxel. Additionally, in kinetic studies the sorption equilibrium can be reached within 120 min, and the experimental data are well fitted by the pseudo-second-order model. The Langmuir sorption isotherm model correlates well with the sorption equilibrium data for the crude extract concentration (500-2,000 mg/L). Our findings display promising applications of Fe3O4Nps/GO, as a cost-effective nano-adsorbent, to provide a suitable vehicle toward improvement of paclitaxel pre-purification.
Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang
2012-01-01
Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230
Roth, B J; Dreicer, R; Einhorn, L H; Neuberg, D; Johnson, D H; Smith, J L; Hudes, G R; Schultz, S M; Loehrer, P J
1994-11-01
To assess the efficacy and toxicity of single-agent paclitaxel as first-line chemotherapy in patients with locally advanced or metastatic transitional-cell carcinoma of the urothelium. Twenty-six eligible patients were enrolled onto this cooperative group study and treated with paclitaxel at a dosage of 250 mg/m2 by 24-hour continuous infusion every 21 days until progression or patient intolerance. All patients received recombinant human granulocyte colony-stimulating factor (rhG-CSF) at 5 micrograms/kg/d for at least 10 days during each cycle. Eleven of 26 patients (42%; 95% confidence interval [CI], 23% to 63%) demonstrated an objective response, with seven achieving a complete clinical response (CR) (27%; 95% CI, 12% to 48%) and four (15%) a partial response (PR). The median duration of response in the 11 responders is 7+ months (range, 4 to 17), with five responders (four CRs, one PR) remaining progression-free at 5, 6, 10, 12, and 16 months from the start of therapy. The estimated median survival duration for all patients is 8.4 months. Hematologic toxicity consisted of anemia (12% grade 3) and granulocytopenia (4% grade 3, 19% grade 4), with two patients developing granulocytopenic fevers. Nonhematologic toxicity included grade 3 mucositis in 11%, grade 3 neuropathy in 11%, and grade 4 diarrhea in 4%. Single-agent paclitaxel at this dosage and schedule is one of the most active single agents in previously untreated patients with advanced urothelial carcinoma, and is well tolerated by this patient population when given with hematopoetic growth factor support.
Lang, I; Inbar, M J; Kahán, Z; Greil, R; Beslija, S; Stemmer, S M; Kaufman, B; Zvirbule, Z; Steger, G G; Messinger, D; Brodowicz, T; Zielinski, C
2012-11-01
We report safety data from a randomised, phase III study (CECOG/BC.1.3.005) evaluating first-line bevacizumab plus paclitaxel or capecitabine for locally recurrent or metastatic breast cancer. Patients aged ≥18 years with human epidermal growth factor receptor-2-negative breast adenocarcinoma were randomised to Arm A: bevacizumab 10 mg/kg days 1 and 15; paclitaxel 90 mg/m(2) days 1, 8, and 15, every 4 weeks; or Arm B: bevacizumab 15 mg/kg day 1; capecitabine 1000 mg/m(2) b.i.d., days 1-14, every 3 weeks, until disease progression, unacceptable toxicity or consent withdrawal. A post hoc interim safety analysis included 561 patients (Arm A: 284, Arm B: 277). The regimens demonstrated similar frequencies of all-grade and serious adverse events (SAEs), but different safety profiles. Treatment-related events occurred in 85.2% (Arm A) and 78.0% (Arm B) of patients. Fatigue was most common in Arm A (30.6% versus 23.5% Arm B), and hand-foot syndrome (HFS) most common in Arm B (49.5% versus 2.5% Arm A). Diarrhoea (Arm A: 0.4%, Arm B: 1.4%) and pulmonary embolism (Arm A: 0.7%, Arm B: 1.1%) were the most frequently reported SAEs. These findings are in-line with safety data for bevacizumab plus paclitaxel or capecitabine, reported in previous phase III trials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Garro, AG; Beltramo, DM; Alasino, RV; Leonhard, V; Heredia, V; Bianco, ID
2011-01-01
Background: We report herein a novel strategy for the preparation of protein-based nanode-livery vehicles for hydrophobic active pharmaceutical ingredients. Methods: The procedure consisted of three steps, ie, exposure of hydrophobic residues of a protein to a pH-induced partial unfolding: interaction between hydrophobic residues on the protein and the hydrophobic active pharmaceutical ingredient, and a final step where the structure of the protein was reversed to a native-like state by returning to neutral pH. As proof of concept, the interaction of paclitaxel with partially unfolded states of human serum albumin was evaluated as a potential method for the preparation of water-soluble complexes of the taxane with albumin. Results: We found that paclitaxel readily binds to pH-induced partially unfolded albumin, leading to the formation of optically clear water-soluble complexes. The complexes thus formed were more stable in solution when the albumin native state was at least partially restored by neutralization of the solution to a pH around 7. It was also observed that the hydrodynamic radius of human serum albumin was only slightly increased after the cycle of pH changes, remaining in a monomeric state with a size according to paclitaxel binding. Furthermore, paclitaxel binding did not affect the overall exposure of charged groups of human serum albumin, as evaluated by its interaction with an ionic exchange resin. Conclusion: The in vitro biological activity of the complexes formed was qualitatively equivalent to that of a Cremophor®-based formulation. PMID:21822381
Digumarti, Raghunadharao; Bapsy, P P; Suresh, Attili V; Bhattacharyya, G S; Dasappa, Lokanatha; Shan, Joseph S; Gerber, David E
2014-11-01
Bavituximab is a phosphatidylserine (PS)-targeting monoclonal antibody with immune-modulating and tumor-specific vascular targeting properties. Preclinical studies have shown activity against numerous solid tumors and at least an additive effect in combination with chemotherapy. This study evaluated bavituximab in combination with paclitaxel and carboplatin in patients with previously untreated, locally advanced or metastatic non-small-cell lung cancer (NSCLC). This phase II, open-label study (NCT00687817) was conducted in 49 patients with stage IIIB/IV NSCLC utilizing a Simon two-stage design. Patients were treated with up to six cycles of carboplatin area under the concentration-time curve (AUC) 5 plus paclitaxel 175 mg/m2 every 21 days with weekly bavituximab 3 mg/kg followed by bavituximab monotherapy until progression or unacceptable toxicity. The primary efficacy endpoint of overall response rate (ORR) was 40.8% (complete response [CR] 2.0%, partial response [PR] was 38.8%). Median progression-free survival (PFS) and overall survival (OS) were 6.0 and 12.4 months, respectively. Treatment-related adverse events (AEs) occurred in 40.8% of patients. The most common treatment-related AEs were anemia (10.2%), asthenia, vomiting, paresthesia, anorexia, and fatigue (6.1% each). One patient with a central, cavitating squamous tumor developed fatal hemoptysis and aspiration. Bavituximab in combination with paclitaxel-carboplatin as first-line therapy demonstrated a tolerable safety profile and potential efficacy in this single-arm phase II trial in patients with advanced local or metastatic NSCLC. Randomized trials with this regimen are in progress. NCT00687817. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.
2008-07-15
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consigny, Paul M., E-mail: paul.consigny@av.abbott.com; Davalian, Dariush, E-mail: dariush.davalian@av.abbott.com; Donn, Rosy, E-mail: rosy.donn@av.abbott.com
Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping ofmore » a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10{sup −5} M through 10{sup −2} M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.« less
Mukai, Hirofumi; Saeki, Toshiaki; Aogi, Kenjiro; Naito, Yoichi; Matsubara, Nobuaki; Shigekawa, Takashi; Ueda, Shigeto; Takashima, Seiki; Hara, Fumikata; Yamashita, Tomonari; Ohwada, Shoichi; Sasaki, Yasutsuna
2016-10-01
Human epidermal growth factor receptor 3 (HER3) expression in lung and breast cancers has a negative impact on survival. Patritumab, a human anti-HER3 mAb, has shown anticancer activity in preclinical models. This study examined the safety and pharmacokinetics of patritumab in combination with trastuzumab and paclitaxel in patients with HER2-overexpressing metastatic breast cancer. In this open-label, multicenter, dose-escalation, phase Ib study, patients received patritumab 9 or 18 mg/kg plus trastuzumab and paclitaxel at known tolerated doses. Safety and tolerability were assessed based on dose-limiting toxicities and other non-life threatening adverse events. The pharmacokinetic profile for patritumab was determined based on the target trough level. Clinical efficacy was evaluated based on the overall response rate and progression-free survival. Six patients received patritumab 9 mg/kg and 12 received 18 mg/kg. The most common adverse events were diarrhea, alopecia, leukopenia, neutropenia, and maculopapular rash. No dose-limiting toxicities were observed. The target trough serum concentration was achieved in all patients at a dose of 18 mg/kg. Overall response rate was 38.9% and median progression-free survival was 274 days. In conclusion, patritumab plus trastuzumab and paclitaxel was tolerable and efficacious at both doses. We recommend the dose level of 18 mg/kg for future phase II studies. (Clinical trial registration: JapicCTI-121772.). © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Thulasidasan, Arun Kumar T; Retnakumari, Archana P; Shankar, Mohan; Vijayakurup, Vinod; Anwar, Shabna; Thankachan, Sanu; Pillai, Kavya S; Pillai, Jisha J; Nandan, C Devika; Alex, Vijai V; Chirayil, Teena Jacob; Sundaram, Sankar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod; Anto, Ruby John
2017-12-08
Nanoencapsulation has emerged as a novel strategy to enhance the pharmacokinetic and therapeutic potential of conventional drugs. Recent studies from our lab have established the efficacy of curcumin in sensitizing cervical cancer cells and breast cancer cells towards paclitaxel and 5-FU chemotherapy respectively. Factors that hinder the clinical use of curcumin as a sensitizer or therapeutic agent include its poor bioavailability and retention time. Earlier reports of improvement in bioavailability and retention of drugs upon nanoencapsulation have motivated us in developing various nanoformulations of curcumin, which were found to exhibit significant enhancement in bioavailability and retention time as assessed by our previous in vitro studies. Among the various formulations tested, curcumin-entrapped in PLGA-PEG nanoparticles conjugated to folic acid (PPF-curcumin) displayed maximum cell death. In the present study, we have demonstrated the efficacy of this formulation in augmenting the bioavailability and retention time of curcumin, in vivo , in Swiss albino mice. Further, the acute and chronic toxicity studies proved that the formulation is pharmacologically safe. We have also evaluated its potential in chemosensitizing cervical cancer cells to paclitaxel and have verified the results using cervical cancer xenograft model in NOD-SCID mice. Folic acid conjugation significantly enhanced the efficacy of curcumin in down-regulating various survival signals induced by paclitaxel in cervical cancer cells and have considerably improved its potential in inhibiting the tumor growth of cervical cancer xenografts. The non-toxic nature coupled with improved chemosensitization potential makes PPF-curcumin a promising candidate formulation for clinical trials.
Shankar, Mohan; Vijayakurup, Vinod; Anwar, Shabna; Thankachan, Sanu; Pillai, Kavya S.; Pillai, Jisha J.; Nandan, C. Devika; Alex, Vijai V.; Chirayil, Teena Jacob; Sundaram, Sankar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod; Anto, Ruby John
2017-01-01
Nanoencapsulation has emerged as a novel strategy to enhance the pharmacokinetic and therapeutic potential of conventional drugs. Recent studies from our lab have established the efficacy of curcumin in sensitizing cervical cancer cells and breast cancer cells towards paclitaxel and 5-FU chemotherapy respectively. Factors that hinder the clinical use of curcumin as a sensitizer or therapeutic agent include its poor bioavailability and retention time. Earlier reports of improvement in bioavailability and retention of drugs upon nanoencapsulation have motivated us in developing various nanoformulations of curcumin, which were found to exhibit significant enhancement in bioavailability and retention time as assessed by our previous in vitro studies. Among the various formulations tested, curcumin-entrapped in PLGA-PEG nanoparticles conjugated to folic acid (PPF-curcumin) displayed maximum cell death. In the present study, we have demonstrated the efficacy of this formulation in augmenting the bioavailability and retention time of curcumin, in vivo, in Swiss albino mice. Further, the acute and chronic toxicity studies proved that the formulation is pharmacologically safe. We have also evaluated its potential in chemosensitizing cervical cancer cells to paclitaxel and have verified the results using cervical cancer xenograft model in NOD-SCID mice. Folic acid conjugation significantly enhanced the efficacy of curcumin in down-regulating various survival signals induced by paclitaxel in cervical cancer cells and have considerably improved its potential in inhibiting the tumor growth of cervical cancer xenografts. The non-toxic nature coupled with improved chemosensitization potential makes PPF-curcumin a promising candidate formulation for clinical trials. PMID:29296172
González-Martín, A J; Calvo, E; Bover, I; Rubio, M J; Arcusa, A; Casado, A; Ojeda, B; Balañá, C; Martínez, E; Herrero, A; Pardo, B; Adrover, E; Rifá, J; Godes, M J; Moyano, A; Cervantes, A
2005-05-01
The aim of this study was to determine whether the response rate for the paclitaxel-carboplatin combination is superior to carboplatin alone in the treatment of patients with platinum-sensitive recurrent ovarian carcinoma. Patients with recurrent ovarian carcinoma, 6 months after treatment with a platinum-based regimen and with no more than two previous chemotherapy lines, were randomized to receive carboplatin area under the curve (AUC) 5 (arm A) or paclitaxel 175 mg/m(2) + carboplatin AUC 5 (arm B). The primary end point was objective response, following a 'pick up the winner' design. Secondary end points included time to progression (TTP), overall survival, tolerability and quality of life (QoL). Eighty-one patients were randomized and included in the intention-to-treat analysis. The response rate in arm B was 75.6% [26.8% complete response (CR) + 48.8% partial response (PR)] [95% confidence interval (CI) 59.7% to 87.6%] and 50% in arm A (20% CR + 30% PR) (95% CI 33.8% to 66.2%). No significant differences were observed in grade 3-4 hematological toxicity. Conversely, mucositis, myalgia/arthralgia and peripheral neurophaty were more frequent in arm B. Median TTP was 49.1 weeks in arm B (95% CI 36.9-61.3) and 33.7 weeks in arm A (95% CI 25.8-41.5). No significant differences were found in the QoL analysis. Paclitaxel-carboplatin combination is a tolerable regimen with a higher response rate than carboplatin monotherapy in platinum-sensitive recurrent ovarian carcinoma.
Stathopoulos, George P; Dimitroulis, John; Toubis, Michael; Katis, Costas; Karaindros, Dimitris; Stathopoulos, John; Koutandos, John
2007-07-01
Pemetrexed, a novel multi-targeted agent established for the treatment of mesothelioma, has been under investigation for other malignancies, and in recent years particularly for non-small-cell lung cancer (NSCLC). In the present trial we investigated pemetrexed in combination with paclitaxel as front-line treatment in advanced or metastatic NSCLC. Our objectives were to determine the response rate, median and overall survival and toxicity. From April 2005 until May 2006, 51 patients with advanced or metastatic NSCLC were enrolled and 48 were considered evaluable. There were 39 males and nine females, median age 62 years (range 37-81 years), one patient stage IIIA N(2), 23 patients, IIIB and 24, stage IV. All patients had a cytologically- or histologically-confirmed diagnosis. Pemetrexed was administered at a standard dose of 500mg/m(2) and paclitaxel at an escalating dose starting at 135mg/m(2), then 150mg/m(2) and ending at a dose of 175mg/m(2); the level was increased every three patients. Both agents were administered on day 1, repeated every 3 weeks for six courses. A 39.6% partial response rate was observed with a median survival of 14 months. Toxicity was mild with 8.3% grade 3 and 4 neutropenia and other very mild hematologic and non-hematologic adverse reactions. The combination of pemetrexed and paclitaxel at doses of 500mg/m(2) and 175mg/m(2), respectively, has been shown to be an effective combination with very limited toxicity.
MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.
Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong
2016-08-01
Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.
Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy
Dai, Xin; Jiang, Ying; Tan, Chalet
2015-01-01
KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors. PMID:25946136
Li, Shuqin; Wang, Xiuming; Li, Weiwei; Yuan, Guoqi; Pan, Yuxiang; Chen, Haixia
2016-08-01
To improve the aqueous solubility of the anticancer agent paclitaxel (PTX), a newly conformed bipolymer paclitaxel-nanoparticle using tea polysaccharide (TPS) and zein was prepared and characterized. Tea polysaccharide was used as a biopolymer shell and zein was as the core and the optimal formula was subjected to the characteristic study by TEM, DSC, FTIR and in vitro release study. Results showed that the optimal particle was acquired with particle yield at 40.01%, drug loading at 0.12% and diameters around 165nm when the concentration of tea polysaccharide was set at 0.2%, and the amount of PTX:zein=1:10. The particle was a nanoparticle with spherical surface and the encapsulated PTX was in an amorphous form rather than cystalline form. PTX was interacted with zein and polysaccharide through O H and CO groups and it had a sustained release. The results suggested that the novel bipolymer might be a promising agent for PTX delivery and tea polysaccharide was demonstrated its function in drug delivery system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.
Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed
2016-01-01
The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.
Hollis, Christin P; Weiss, Heidi L; Evers, B Mark; Gemeinhart, Richard A; Li, Tonglei
2014-06-01
To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model. The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo. The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity. Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.
Li, Yan; North, Robert Y; Rhines, Laurence D; Tatsui, Claudio Esteves; Rao, Ganesh; Edwards, Denaya D; Cassidy, Ryan M; Harrison, Daniel S; Johansson, Caj A; Zhang, Hongmei; Dougherty, Patrick M
2018-01-31
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Na v 1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Na v 1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Na v 1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Na v 1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Na v 1.7 associated with spontaneous activity. Na v 1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Na v 1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain. SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Na v 1.7 are increased in a preclinical model of chemotherapy-induced peripheral neuropathy (CIPN), the most common treatment-limiting side effect of all the most common anticancer therapies. This is key as gain-of-function mutations in human Na v 1.7 recapitulate both the distribution and pain percept as shown by CIPN patients. This work also shows that Na v 1.7 is increased in human DRG neurons only in dermatomes where patients are experiencing acquired neuropathic pain symptoms. This work therefore has major translational impact, indicating an important novel therapeutic avenue for neuropathic pain as a class. Copyright © 2018 the authors 0270-6474/18/381124-13$15.00/0.
Tsimberidou, Apostolia M.; Ye, Yang; Wheler, Jennifer; Naing, Aung; Hong, David; Nwosu, Uchechi; Hess, Kenneth R.; Wolff, Robert A.
2014-01-01
PURPOSE We conducted a Phase I clinical trial for patients with advanced cancer and predominant liver disease. EXPERIMENTAL DESIGN Patients were treated with HAI nab-paclitaxel (120-210 mg/m2; day 1); intravenous bevacizumab (10 mg/kg; day 1); and intravenous gemcitabine (600-800 mg/m2; days 1 and 8). A conventional “3 + 3” study design was used. RESULTS Fifty patients with advanced cancer and predominant liver metastases were treated (median age, 58 years; 27 women, 23 men; median number of prior therapies, 3 [range, 0-12]). The most common cancers were breast (n=9) and pancreatic (n=9). Overall, 264 cycles were administered (median/patient, 4; range, 1-17). No dose-limiting toxicities were noted during the escalation phase. On dose level 4, 3 patients were unable to receive gemcitabine on day 8 because of severe thrombocytopenia. Dose level 3 was selected as the maximum tolerated dose (HAI nab-paclitaxel 180 mg/m2 and intravenous gemcitabine 800 mg/m2 and bevacizumab 10 mg/kg); Thirty-two patients were treated in the expansion phase. The most common treatment-related toxicities were thrombocytopenia (n=17), neutropenia (n=10), and fatigue (n=12). Of 46 patients evaluable for response, 9 (20%) had a partial response [1] and 9 (20%) had stable disease for {greater than or equal to} 6 months. The median overall survival duration was 7.0 months (95% CI: 4, 22 months) and the median progression-free survival duration was 4.2 months (95% CI: 2.7, 8.6 months). CONCLUSIONS HAI nab-paclitaxel in combination with gemcitabine and bevacizumab was well tolerated and had antitumor activity in selected patients with advanced cancer and liver metastases. PMID:23377373
Vinorelbine and paclitaxel for locoregional advanced or metastatic non-small-cell lung cancer.
Pérez, Juan E; Machiavelli, Mario R; Romero, Alberto O; Romero Acuña, Luis A; Domínguez, María E; Fasce, Hebe; Flores Acosta, Luis; Marrone, Nora; Romero Acuña, Juan M; Langhi, Mario J; Amato, Sonia; Bologna, Fabrina; Ortiz, Eduardo H; Leone, Bernardo A; Lacava, Juan A; Vallejo, Carlos T
2002-08-01
A phase II trial was performed to evaluate the efficacy and toxicity of the novel combination of vinorelbine and paclitaxel as first-line chemotherapy in patients with stages IIIB and IV non-small-cell lung cancer. From January 1997 to September 1999, 34 patients (9 stage IIIB and 25 stage IV) received a regimen consisting of the following: vinorelbine 30 mg/m2 20 minutes intravenous (i.v.) infusion, days 1 and 8; and paclitaxel 135 mg/m2 3-hour i.v. (starting 1 hour after vinorelbine) on day 1. Cycles were repeated every 28 days until progression of disease or unacceptable toxicity development. The median age was 57 years (range 41-70 years); median performance status was 1. Histology was as follows: squamous cell in 24 (71%), large cell in 1 (3%), and adenocarcinoma in 9 (26%). All patients are evaluable for toxicity, whereas 30 are evaluable for response (4 patients refused treatment). Objective response was recorded in 4 of 30 patients (13%, 95% CI 1-25%). No complete response was observed. Partial response was recorded in 4 patients (13%), no change in 10 patients (34%), and progressive disease in 16 patients (53%). The median time to treatment failure was 4 months and median survival was 9 months. The limiting toxicity was myelosuppression: leukopenia in 23 patients (68%), whereas neutropenia was observed in 25 patients (78%). Peripheral neurotoxicity developed in 14 patients (41%) (without G3 or G4 episodes), and constipation (G1-G2: 10 patients), myalgia (G1-G2: 11 patients), diarrhea (G1-G2: 7 patients), and stomatitis were observed in 7 patients. Vinorelbine-paclitaxel combination showed only modest activity against locoregionally advanced or metastatic NSCLC.
Sparreboom, A; Verweij, J; van der Burg, M E; Loos, W J; Brouwer, E; Viganò, L; Locatelli, A; de Vos, A I; Nooter, K; Stoter, G; Gianni, L
1998-08-01
The purpose of the present study was to characterize the distribution and elimination kinetics of the paclitaxel vehicle Cremophor EL (CrEL), a polyoxyethylated castor oil that can modulate P-glycoprotein-mediated multidrug resistance in vitro. The pharmacokinetics of CrEL were studied using noncompartmental models in 23 patients with histological proof of malignant solid tumors, receiving paclitaxel as a 3-h i.v. infusion at dose levels ranging from 100-225 mg/m2 (corresponding to CrEL doses of 8.33-18.8 ml/m2). Serial plasma samples were obtained before and up to 72 h after drug administration, and were analyzed for the presence of CrEL by a novel colorimetric dye-binding microassay. The area under the plasma concentration versus time curves and the peak plasma levels of CrEL increased from 253+/-36.8 (mean+/-SD) to 680+/- 180 microl.h/ml, and from 3.40+/-0.10 to 6.58+/-0.52 microl/ml, respectively, consistent with linear pharmacokinetics. Disappearance of CrEL from the central plasma compartment was characterized by a terminal elimination half-life of 84.1+/-20.4 h, resulting in extended persistence of substantial levels even at 1 week after paclitaxel treatment. The observed volume of distribution was extremely low and averaged 3.70+/-0.49 liters/m2, implying that the tumor delivery of CrEL is insignificant. Our results indicate that CrEL is a relatively slow clearance compound and that its distribution is limited to the central plasma compartment. Hence, CrEL is not likely to play a role in reversing P-glycoprotein-mediated multidrug resistance to paclitaxel in vivo.
Khattab, Ahmed A; Richardt, Gert; Verin, Vitali; Kelbaek, Henning; Macaya, Carlos; Berland, Jacques; Miquel-Hebert, Karine; Dorange, Cécile; Serruys, Patrick W
2008-03-01
Restenosis is higher among certain subpopulations when subjected to percutaneous coronary interventions even when using drug-eluting stents. The randomised SPIRIT II trial demonstrated the superiority of the XIENCE V Everolimus Eluting Coronary Stent System over the TAXUS Paclitaxel-Eluting Stent System in terms of in-stent late loss at six months among 300 patients treated for de novo native coronary artery lesions. In this post-hoc analysis of SPIRIT II we focused on six-month angiographic outcomes of diabetic patients (n=69), left anterior descending arteries (n=149), long lesions >20 mm (n=43), small vessels <3.0 mm (n=209) and type B2 and C lesions (n=233). In-stent late loss was consistently less among all subgroups when treated by everolimus-eluting stents compared to paclitaxel-eluting stents: diabetics 0.15+/-0.26 mm versus 0.39+/-0.34 mm, p=0.006; LAD 0.12+/-0.23 mm versus 0.44+/-0.37 mm, p<0.001; long lesions 0.13+/-0.26 mm versus 0.43+/-0.46 mm, p=0.070; small vessels 0.17+/-0.28 mm versus 0.37+/-0.39 mm, p<0.001; B2/C lesions 0.12+/-0.31 mm versus 0.36+/-0.36 mm, p<0.001. The everolimus-eluting stent remained superior in terms of in-stent late loss in a variety of higher risk populations for restenosis compared to the paclitaxel-eluting stent. These analyses were consistent with the in-stent late loss results of the overall SPIRIT II trial population.
Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Grzanka, Alina; Grzanka, Dariusz
2018-02-27
The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.
Glaze, Sarah; Teitelbaum, Lisa; Chu, Pamela; Ghatage, Prafull; Nation, Jill; Nelson, Gregg
2013-01-01
Epithelial ovarian cancer is the leading cause of death from gynaecologic cancers in the Western world. If possible, initial cytoreductive surgery is the treatment of choice, followed by adjuvant chemotherapy, usually with a platinum/taxane combination. Increased survival has been recently reported in women who were given adjuvant chemotherapy weekly rather than at three-week intervals, which has been the standard. At our centre, we have been treating patients with advanced ovarian cancer with a dose-dense protocol since March 2010. Treatment is given in an outpatient setting on days 1, 8, and 15 of a 21-day cycle for six cycles. Carboplatin for an AUC of 5 mg/mL/min and paclitaxel 80mg/m² are given on day 1, followed by paclitaxel 80mg/m² on days 8 and 15. Our objective was to determine whether this protocol is a feasible alternative treatment in our population and whether or not the toxicity profile is acceptable. We performed a chart review of 46 patients undergoing treatment with dose-dense chemotherapy for advanced ovarian cancer. Demographic information, patient characteristics, adverse events, and treatment endpoints were recorded. Sixty-one percent of women completed the six-cycle protocol as planned with minimal interruption, which is comparable to the only previously reported trial using this regimen. The most common side effects of treatment were fatigue, neuropathy, and neutropenia. Supplementation with regular magnesium and granulocyte colony-stimulating factor reduced delays. Dose-dense paclitaxel with carboplatin chemotherapy for the treatment of advanced ovarian cancer shows promise in terms of progression-free and overall survival. We have shown this protocol to be practical and feasible in our population.
NASA Astrophysics Data System (ADS)
Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun
2017-04-01
Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.
El-Husseiny, Khalid; Motawei, Helmy; Ali, Mohamad Sayed
2016-03-01
The aim of this study was to evaluate efficacy and safety of continuous, low dose of oral, metronomic chemotherapy as maintenance therapy in patients with advanced ovarian carcinoma after complete clinical response to platinum and paclitaxel chemotherapy. In this nonrandomized study, patients older than 18 years, with Eastern Cooperative Oncology Group performance status less than 2, with advanced ovarian carcinoma after complete clinical response to platinum and paclitaxel chemotherapy were enrolled in 2 arms--arm A (maintenance arm), treated with continuous low-dose oral cyclophosphamide 50 mg and methotrexate 2.5 mg, and arm B (observation arm). Both arms were followed up for progression-free survival and toxicity. Thirty patients were accrued in each arm from January 2009 to December 2010 in Ain Shams University Hospitals, where they received the treatment and followed up for disease progression and toxicity. Patients had a median age of 53 years in maintenance arm and 52.5 years in the observational arm, respectively. Over 80% had papillary serous adenocarcinoma, and over 40% of them had a stage IV disease in both arms. After median follow-up of 27 months, patients achieved median progression-free survival of 18 months in maintenance arm (A) and 15.5 months in observational arm (B), respectively. Toxicity profile was excellent with no grade 3 or 4 toxicity reported. Current study may provide an evidence of efficacy and tolerability of continuous low-dose oral cyclophosphamide and methotrexate as a maintenance therapy in patients with advanced ovarian carcinoma after complete clinical response to platinum and paclitaxel chemotherapy.
Wozniak, Krystyna M; Vornov, James J; Wu, Ying; Liu, Ying; Carozzi, Valentina A; Rodriguez-Menendez, Virginia; Ballarini, Elisa; Alberti, Paola; Pozzi, Eleonora; Semperboni, Sara; Cook, Brett M; Littlefield, Bruce A; Nomoto, Kenichi; Condon, Krista; Eckley, Sean; DesJardins, Christopher; Wilson, Leslie; Jordan, Mary A; Feinstein, Stuart C; Cavaletti, Guido; Polydefkis, Michael; Slusher, Barbara S
2018-02-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice. Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR . ©2017 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping; Wang, Li; Shen, Haibin
Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsivenessmore » of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-L-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer. - Highlights: • Niclosamide is active against cervical cancer cells in vitro and in vivo. • Niclosamide sensitizes cervical cancer cell response to paclitaxel. • Niclosamide induces mitochondrial dysfunction and oxidative damage. • Niclosamide inhibits mTOR signaling in an oxidative stress-dependent manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Michael E.; Cummings, Natalie D.; Sethi, Manish
2013-07-01
Purpose: A key research objective in radiation oncology is to identify agents that can improve chemoradiation therapy. Nanoparticle (NP) chemotherapeutics possess several properties, such as preferential accumulation in tumors, that are uniquely suited for chemoradiation therapy. To facilitate the clinical translation of NP chemotherapeutics in chemoradiation therapy, we conducted preclinical evaluation of Genexol-PM, the only clinically approved NP chemotherapeutic with a controlled drug release profile, as a radiosensitizer using non-small cell lung cancer (NSCLC) as a model disease. Methods and Materials: The physical characteristics and drug release profile of Genexol-PM were characterized. Genexol-PM's efficacy as a radiosensitizer was evaluated inmore » vitro using NSCLC cell lines and in vivo using mouse xenograft models of NSCLC. Paclitaxel dose to normal lung and liver after Genexol-PM administration were quantified and compared with that after Taxol administration. Results: Genexol-PM has a size of 23.91 ± 0.41 nm and surface charge of −8.1 ± 3.1 mV. It releases paclitaxel in a controlled release profile. In vitro evaluation of Genexol-PM as a radiosensitizer showed it is an effective radiosensitizer and is more effective than Taxol, its small molecule counterpart, at the half maximal inhibitory concentration. In vivo study of Genexol-PM as a radiosensitizer demonstrated that it is more effective as a radiosensitizer than Taxol. We also found that Genexol-PM leads to lower paclitaxel exposure to normal lung tissue than Taxol at 6 hours postadministration. Conclusions: We have demonstrated that Genexol-PM is more effective than Taxol as a radiosensitizer in the preclinical setting and holds high potential for clinical translation. Our data support the clinical evaluation of Genexol-PM in chemoradiation therapy for NSCLC.« less
Ecke, T H; Gerullis, H; Bartel, P; Koch, S; Ruttloff, J
2009-03-01
Chemotherapeutic agents are active in transitional cell cancer of the urothelium, and combinations have shown promising results. The objective of this study was to evaluate the palliative chemotherapy with gemcitabine, paclitaxel, and cisplatin for transitional cell carcinoma. Thirty-four patients with advanced transitional cell carcinoma of the urothelium were treated between 2000 and 2007. All patients received chemotherapy with intravenous gemcitabine at a dose of 1000 mg/m2 on days I and VIII, intravenous paclitaxel at a dose of 80 mg/m2 on days I and VIII, and intravenous cisplatin at a dose of 50 mg/m2 on day II. Treatment courses were repeated every 21 days. After completion of four to six courses in this regimen an application of intravenous gemcitabine at a dose of 1000 mg/m2 followed repeating every 28 days. Twelve patients (35.3%) had 1 visceral sites of metastases. Twenty two patients (64.7%) had achieved objective responses to treatment (29.4% complete responses). The median actuarial survival was 18.5 months, and the actuarial one-year and two-year survival rates were 56% and 26% respectively. After a median follow-up of 16.3 months, 18 patients remained alive. The median progression-free survival was 7 months. Median survival time for patients with ECOG status 0, 1, and 2 was 45, 12, and 10.5 months respectively. Grade 3-4 neutropenia occurred in 41.2% of patients. The combination of gemcitabine, paclitaxel, and cisplatin is a highly effective and tolerable regimen for patients with advanced transitional cell carcinoma of the urothelium. This treatment should be considered as a suitable option that deserves further prospective evaluation. ECOG performance status and visceral metastases are important predictive factors for survival.
Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Binbin; Zhao, Li; Zhu, Litao
Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells.more » The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.« less
Sayeli, Vijaykumar; Nadipelly, Jagan; Kadhirvelu, Parimala; Cheriyan, Binoy Varghese; Shanmugasundaram, Jaikumar; Subramanian, Viswanathan
2018-04-13
Peripheral neuropathy is the dose limiting side effect of many anticancer drugs. Flavonoids exhibit good antinociceptive effect in animal models. Their efficacy against different types of nociception has been documented. The present study investigated the effect of flavonol (3-hydroxy flavone), 3',4'-dimethoxy flavonol, 6,3'-dimethoxy flavonol, 7,2'-dimethoxy flavonol and 7,3'-dimethoxy flavonol against paclitaxel-induced peripheral neuropathy in mice. A single dose of paclitaxel (10 mg/kg, i.p.) was administered to induce peripheral neuropathy in mice and the manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing Von Frey hair aesthesiometer test, acetone bubble test and hot water tail immersion test, respectively. The test compounds were prepared as a suspension in 0.5% carboxymethyl cellulose and were administered s.c. in various doses (25, 50, 100 and 200 mg/kg). The above behavioral responses were assessed prior to and 30 min after drug treatment. In addition, the effect of test compounds on proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and free radicals was investigated by using suitable in vitro assays. A dose-dependent attenuation of tactile allodynia, cold allodynia and thermal hyperalgesia was evidenced in mice treated with flavonol derivatives. The test compounds inhibited TNF-α, IL-1β and free radicals in a concentration-dependent manner. These results revealed that flavonol and its dimethoxy derivatives ameliorated the manifestations of paclitaxel-induced peripheral neuropathy in mice. The inhibition of proinflammatory cytokines and free radicals could contribute to this beneficial effect.
Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.
2012-01-01
Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687
Koike, Yoshikazu; Ohta, Yusuke; Saitoh, Wataru; Yamashita, Tetsumasa; Kanomata, Naoki; Moriya, Takuya; Kurebayashi, Junichi
2017-09-01
Triple-negative breast cancer (TNBC) exhibits biologically aggressive behavior and has a poor prognosis. Novel molecular targeting agents are needed to control TNBC. Recent studies revealed that the non-canonical hedgehog (Hh) signaling pathway plays important roles in the regulation of cancer stem cells (CSCs) in breast cancer. Therefore, the anti-cell growth and anti-CSC effects of the non-canonical Hh inhibitor GANT61 were investigated in TNBC cells. The effects of GANT61 on cell growth, cell cycle progression, apoptosis, and the proportion of CSCs were investigated in three TNBC cell lines. Four ER-positive breast cancer cell lines were also used for comparisons. The expression levels of effector molecules in the Hh pathway: glioma-associated oncogene (GLI) 1 and GLI2, were measured. The combined effects of GANT61 and paclitaxel on anti-cell growth and anti-CSC activities were also investigated. Basal expression levels of GLI1 and GLI2 were significantly higher in TNBC cells than in ER-positive breast cancer cells. GANT61 dose-dependently decreased cell growth in association with G1-S cell cycle retardation and increased apoptosis. GANT61 significantly decreased the CSC proportion in all TNBC cell lines. Paclitaxel decreased cell growth, but not the CSC proportion. Combined treatments of GANT61 and paclitaxel more than additively enhanced anti-cell growth and/or anti-CSC activities. The non-canonical Hh inhibitor GANT61 decreased not only cell growth, but also the CSC population in TNBC cells. GANT61 enhanced the anti-cell growth activity of paclitaxel in these cells. These results suggest for the first time that GANT61 has potential as a therapeutic agent in the treatment of patients with TNBC.
Sugio, Asuka; Iwasaki, Masahiro; Habata, Shutaro; Mariya, Tasuku; Suzuki, Miwa; Osogami, Hiroyuki; Tamate, Masato; Tanaka, Ryoichi; Saito, Tsuyoshi
2014-09-01
Ovarian cancer is the leading cause of death from gynecologic cancer, reflecting its often late diagnosis and its chemoresistance. We identified a set of microRNAs whose expression is altered upon BAG3 knockdown. Our primary objective was to examine the relationships between BAG3, miR-29b and Mcl-1, an antiapoptotic Bcl-2 family protein, in ovarian cancer cells. Ovarian cancer cells were cultured and their responsiveness to paclitaxel was tested. Microarray analysis was performed to identify microRNAs differentially expressed in ES2 BAG3 knockdown ovarian cancer cells and their control cells. Primary ovarian cancer tissues were obtained from 56 patients operated on for ovarian cancer. The patients' clinical and pathological data were obtained from their medical records. BAG3 knockdown increased the chemosensitivity to paclitaxel of ES2 ovarian clear cell carcinoma cells to a greater degree than AMOC2 serous adenocarcinoma cells. qRT-PCR analysis showed that miR-29b expression was significantly upregulated in primary cancer tissue expressing low levels of BAG3, as compared to tissue expressing high levels. Moreover, levels of miR-29b correlated significantly with progression-free survival. Upregulation of miR-29b also reduced levels of Mcl-1 and sensitized ES2 cells to low-dose paclitaxel. BAG3 knockdown appears to downregulate expression of Mcl-1 through upregulation of miR-29b, thereby increasing the chemosensitivity of ovarian clear cell carcinoma cells. This suggests that BAG3 is a key determinant of the responsiveness of ovarian cancer cells, especially clear cell carcinoma, to paclitaxel and that BAG3 may be a useful therapeutic target for the treatment of ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
McArthur, Heather L.; Rugo, Hope; Nulsen, Benjamin; Hawks, Laura; Grothusen, Jill; Melisko, Michelle; Moasser, Mark; Paulson, Matthew; Traina, Tiffany; Patil, Sujata; Zhou, Qin; Steingart, Richard; Dang, Chau; Morrow, Monica; Cordeiro, Peter; Fornier, Monica; Park, John; Seidman, Andrew; Lake, Diana; Gilewski, Theresa; Theodoulou, Maria; Modi, Shanu; D’Andrea, Gabriella; Sklarin, Nancy; Robson, Mark; Moynahan, Mary Ellen; Sugarman, Steven; Sealey, Jane E.; Laragh, John H.; Merali, Carmen; Norton, Larry; Hudis, Clifford A.; Dickler, Maura N.
2016-01-01
Purpose Bevacizumab confers benefits in metastatic breast cancer but may be more effective as adjuvant therapy. We evaluated the cardiac safety of bevacizumab plus dose-dense doxorubicin–cyclophosphamide (ddAC)→nanoparticle albumin−bound (nab)-paclitaxel in human epidermal growth factor receptor 2 normal early-stage breast cancer. Experimental Design Eighty patients with normal left ventricular ejection fraction (LVEF) were enrolled. Bevacizumab was administered for 1 year, concurrently with ddAC→nab-paclitaxel then as a single agent. LVEF was evaluated at months 0, 2, 6, 9, and 18. This regimen was considered safe if fewer than three cardiac events or fewer than two deaths from left ventricular dysfunction occurred. Correlative studies of cardiac troponin (cTn) and plasma renin activity (PRA) were conducted. Results The median age was 48 years (range, 27−75 years), and baseline LVEF was 68% (53%−82%). After 39 months’ median follow-up (5−45 months): median LVEF was 68% (53%−80%) at 2 months (n=78), 64% (51%−77%) at 6 months (n=66), 63% (48%−77%) at 9 months (n=61), and 66% (42%−76%) at 18 months (n=54). One patient developed symptomatic LV dysfunction at month 15. Common toxicities necessitating treatment discontinuation were hypertension (HTN, 4%), wound-healing complications (4%), and asymptomatic LVEF declines (4%). Neither cTn nor PRA predicted CHF or HTN, respectively. Conclusions Bevacizumab with ddAC→nab-paclitaxel had a low rate of cardiac events; cTn and PRA levels are not predictive of CHF or HTN, respectively. The efficacy of bevacizumab as adjuvant treatment will be established in several ongoing phase III trials. PMID:21350003
Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya
2014-12-30
Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.
Engin, Kaya N; Erdem-Kuruca, Serap; Akgün-Dar, Kadriye; Çetin, Beyza; Karadenizli, Sabriye; Gürel, Ebru; Yemisci, Bülent; Bilgiç, Sema; Arslan, Mehmet
2015-01-01
We aimed to evaluate the influence of current antifibrotic agents as well as the possible results obtained by combining these agents. This study included α-tocopherol, a strong antifibrotic and an efficient neuromediator of pathways used by other agents. Mitochondrial Bcl-2, Bax, cytochrome c and cytoplasmic caspase-3 expression, as well as toxic effect patterns, mitosis and cellular reactions due to α-tocopherol alone or combined with paclitaxel, mitomycin C and 5-flurouracil (5-FU), was studied in series obtained from human endothelial and primary Tenon's fibroblast cell cultures. The strongest apoptotic effect in both cell groups belonged to paclitaxel, followed by mitomycin C, and despite the overall suppressive effect of the α-tocopherol combination, mitomycin C increased its efficiency on the endothelial cells. The apoptosis/necrosis ratio was highest in α-tocopherol and lowest in paclitaxel, with α-tocopherol generally decreasing necrosis. Bax was observed at a high level with mitomycin C. Cytotoxicity was the highest with paclitaxel, and the caspase-3 reaction was markedly higher with mitomycin C in both cell types. In the α-tocopherol and 5-FU slides, mitosis and a layered formation were observed. The addition of α-tocopherol reduced the cytotoxicity of all antifibrotic agents in both cell series by decreasing the cell numbers, leading to necrosis. Alone or in combination, the use of α-tocopherol and 5-FU is safer than other agents. By suppressing the cytotoxic effects of other antifibrotic agents, α-tocopherol is a promising drug for improving the effects of antifibrotics in many aspects of medicine. In addition, it has the potential to play a role beyond its antioxidant and antifibrotic activity in ocular surgery.
Eshita, Yuki; Ji, Rui-Cheng; Onishi, Masayasu; Kobayashi, Takashi; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji; Onishi, Yasuhiko
2015-02-01
The resistance of cancer cells to chemotherapeutic drugs (MDR) is a major problem to be solved. A supramolecular DEAE-dextran-MMA copolymer (DDMC)/paclitaxel (PTX) complex was obtained by using PTX as the guest and DDMC as the host having 50-300 nm in diameter. The drug resistance of B16F10 melanoma cells to paclitaxel was observed, but there is no drug resistance of melanoma cells to the DDMC/PTX complex in vitro. The cell death rate was determined using Michaelis-Menten kinetics, as the DDMC/PTX complex promoted allosteric supramolecular reaction to tubulin. The DDMC/PTX complex showed a very superior anti-cancer activity to paclitaxel alone in vivo. The median survival time (MST) of the saline, PTX, DDMC/PTX4 (particle size, 50 nm), and DDMC/PTX5 (particle size, 290 nm) groups were 120 h (T/C, 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed the twofold effectiveness of PTX alone (p < 0.036). Histochemical analysis indicated that the administration of DDMC/PTX complex decreased distant metastasis and increased the survival of mice. A mouse of DDMC/PTX4 group in vivo was almost curing after small dermatorrhagia owing to its anti-angiogenesis, and it will be the hemorrhagic necrotic symptom of tumor by the release of "tumor necrosis factor alpha (TNF-α)" cytokine. As the result, the medicinal action of the DDMC/PTX complex will suppress the tumor-associated action of M2 macrophages and will control the metastasis of cancer cells.
Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui
2016-09-01
Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Pachman, Deirdre R; Dockter, Travis; Zekan, Patricia J; Fruth, Briant; Ruddy, Kathryn J; Ta, Lauren E; Lafky, Jacqueline M; Dentchev, Todor; Le-Lindqwister, Nguyet Anh; Sikov, William M; Staff, Nathan; Beutler, Andreas S; Loprinzi, Charles L
2017-11-01
Paclitaxel is associated with both an acute pain syndrome (P-APS) and chronic chemotherapy-induced peripheral neuropathy (CIPN). Given that extensive animal data suggest that minocycline may prevent chemotherapy-induced neurotoxicity, the purpose of this pilot study was to investigate the efficacy of minocycline for the prevention of CIPN and the P-APS. Patients with breast cancer were enrolled prior to initiating neoadjuvant or adjuvant weekly paclitaxel for 12 weeks and were randomized to receive minocycline 200 mg on day 1 followed by 100 mg twice daily or a matching placebo. Patients completed (1) an acute pain syndrome questionnaire daily during chemotherapy to measure P-APS and (2) the EORTC QLQ-CIPN20 questionnaire at baseline, prior to each dose of paclitaxel, and monthly for 6 months post treatment, to measure CIPN. Forty-seven patients were randomized. There were no remarkable differences noted between the minocycline and placebo groups for the overall sensory neuropathy score of the EORTC QLQ-CIPN20 or its individual components, which evaluate tingling, numbness and shooting/burning pain in hands and feet. However, patients taking minocycline had a significant reduction in the daily average pain score attributed to P-APS (p = 0.02). Not only were no increased toxicities reported with minocycline, but there was a significant reduction in fatigue (p = 0.02). Results of this pilot study do not support the use of minocycline to prevent CIPN, but suggest that it may reduce P-APS and decrease fatigue; further study of the impact of this agent on those endpoints may be warranted.
Henrich, Andrea; Joerger, Markus; Kraff, Stefanie; Jaehde, Ulrich; Huisinga, Wilhelm; Kloft, Charlotte; Parra-Guillen, Zinnia Patricia
2017-08-01
Paclitaxel is a commonly used cytotoxic anticancer drug with potentially life-threatening toxicity at therapeutic doses and high interindividual pharmacokinetic variability. Thus, drug and effect monitoring is indicated to control dose-limiting neutropenia. Joerger et al. (2016) developed a dose individualization algorithm based on a pharmacokinetic (PK)/pharmacodynamic (PD) model describing paclitaxel and neutrophil concentrations. Furthermore, the algorithm was prospectively compared in a clinical trial against standard dosing (Central European Society for Anticancer Drug Research Study of Paclitaxel Therapeutic Drug Monitoring; 365 patients, 720 cycles) but did not substantially improve neutropenia. This might be caused by misspecifications in the PK/PD model underlying the algorithm, especially without consideration of the observed cumulative pattern of neutropenia or the platinum-based combination therapy, both impacting neutropenia. This work aimed to externally evaluate the original PK/PD model for potential misspecifications and to refine the PK/PD model while considering the cumulative neutropenia pattern and the combination therapy. An underprediction was observed for the PK (658 samples), the PK parameters, and these parameters were re-estimated using the original estimates as prior information. Neutrophil concentrations (3274 samples) were overpredicted by the PK/PD model, especially for later treatment cycles when the cumulative pattern aggravated neutropenia. Three different modeling approaches (two from the literature and one newly developed) were investigated. The newly developed model, which implemented the bone marrow hypothesis semiphysiologically, was superior. This model further included an additive effect for toxicity of carboplatin combination therapy. Overall, a physiologically plausible PK/PD model was developed that can be used for dose adaptation simulations and prospective studies to further improve paclitaxel/carboplatin combination therapy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Meiqin, E-mail: pianozmq@hotmail.co; Liu Suping; Wang, Xiang-E.
Purpose: To evaluate the efficacy and toxicities of concurrent chemoradiotherapy (CCRT) and consolidation chemotherapy in patients with locally advanced squamous cell cervical carcinoma. Methods and Materials: Patients with LASCC (FIGO Stage IIB-IIIB) were treated with pelvic external beam radiotherapy (45 Gy for Stage IIB and 50 Gy for Stage III) and high-dose-rate intracavitary brachytherapy (50 Gy for Stage IIB and 35 Gy for Stage III). The cumulative dose at point A was 50 Gy for Stage IIB and 65 Gy for Stage III. Concurrent chemotherapy with paclitaxel (35 mg/m{sup 2}) and nedaplatin (20 mg/m{sup 2}) was given every week formore » 6 weeks. Consolidation chemotherapy with paclitaxel (135 mg/m{sup 2}) and nedaplatin (60 mg/m{sup 2}) was administered every 3 weeks for 4 cycles. Results: All patients completed CCRT, and 28 of 34 patients completed consolidation chemotherapy. The complete response rate was 88% (95% CI, 73-96%). The most common Grade 3 or higher toxicities were leukopenia/neutropenia (10.9% of the cycles). During a median follow up of 23 months (range, 14-30 months), 5 patients had locoregional failure and 1 patient had distant metastasis. The estimated 2-year progression-free survival and overall survival were 82% (95% CI, 68-95%) and 93% (95% CI, 83-100%), respectively. Grade 3 late complications occurred in 3 patients (9%). Conclusions: CCRT with paclitaxel and nedaplatin followed by consolidation chemotherapy is well tolerated and effective in patients with locally advanced squamous cell cervical carcinoma. Further randomized trials of comparing this regimen with the standard treatment are worth while.« less
Messager, Mathieu; Mirabel, Xavier; Tresch, Emmanuelle; Paumier, Amaury; Vendrely, Véronique; Dahan, Laetitia; Glehen, Olivier; Vasseur, Frederique; Lacornerie, Thomas; Piessen, Guillaume; El Hajbi, Farid; Robb, William B; Clisant, Stéphanie; Kramar, Andrew; Mariette, Christophe; Adenis, Antoine
2016-05-18
Often curative treatment for locally advanced resectable esophageal or gastro-esophageal junctional cancer consists of concurrent neoadjuvant radiotherapy and chemotherapy followed by surgery. Currently, one of the most commonly used chemotherapy regimens in this setting is a combination of a fluoropyrimidin and of a platinum analogue. Due to the promising results of the recent CROSS trial, another regimen combining paclitaxel and carboplatin is also widely used by European and American centers. No clinical study has shown the superiority of one treatment over the other. The objective of this Phase II study is to clarify clinical practice by comparing these two chemotherapy treatments. Our aim is to evaluate, in operable esophageal and gastro-esophageal junctional cancer, the complete resection rate and severe postoperative morbidity rate associated with these two neoadjuvant chemotherapeutic regimens (carboplatin-paclitaxel or fluorouracil-oxaliplatin-folinic acid) when each is combined with the radiation regime utilized in the CROSS trial. PROTECT is a prospective, randomized, multicenter, open arms, phase II trial. Eligible patients will have a histologically confirmed adenocarcinoma or squamous cell carcinoma and be treated with neoadjuvant radiochemotherapy followed by surgery for stage IIB or stage III resectable esophageal cancer. A total of 106 patients will be randomized to receive either 3 cycles of FOLFOX combined to concurrent radiotherapy (41.4 Grays) or carboplatin and paclitaxel with the same radiation regimen, using a 1:1 allocation ratio. This ongoing trial offers the unique opportunity to compare two standards of chemotherapy delivered with a common regimen of preoperative radiation, in the setting of operable locally advanced esophageal or gastro-esophageal junctional tumors. NCT02359968 (ClinicalTrials.gov) (registration date: 9 FEB 2015), EudraCT: 2014-000649-62 (registration date: 10 FEB 2014).
Safran, Howard; DiPetrillo, Thomas; Nadeem, Ahmed; Steinhoff, Margaret; Tantravahi, Umadevi; Rathore, Ritesh; Wanebo, Harold; Hughes, Marilyn; Maia, Chris; Tsai, James Y; Pasquariello, Terry; Pepperell, John R; Cioffi, William; Kennedy, Teresa; Reeder, Laurie; Ng, Thomas; Adrian, Alyn; Goldstein, Lisa; Chak, Bapsi; Choy, Hak
2004-01-01
To conduct a phase I study incorporating trastuzumab with paclitaxel, cisplatin, and radiation for adenocarcinoma of the esophagus. Patients with adenocarcinoma of the esophagus without distant organ metastases were eligible. All patients received cisplatin 25 mg/m2 and paclitaxel 50 mg/m2 weekly for 6 weeks with radiation 50.4 Gy. HER-2/neu-positive patients (2+/3+ by immunohistochemistry) received weekly trastuzumab at dose levels of 1, 1.5, or 2 mg/kg weekly for 5 weeks after an initial bolus of 2, 3, or 4 mg/kg, respectively. HER-2/neu-negative patients received the same chemoradiation without trastuzumab as a control for toxicity. Dose-limiting toxicities were defined as grade 3 esophageal, cardiac, or pulmonary toxicity. Twelve of 36 screened patients (33%) overexpressed HER-2/neu by immunohistochemistry (seven 3+ and five 2+). Eight of 12 patients with HER-2/neu overexpression by IHC had an increase in the number of HER-2/neu genes, six from amplification of the HER-2/ neu gene and two were hypderdiploid for chromosome 17. Thirty patients were enrolled (12 HER-2/neu-positive and 18 HER-2/neu-negative controls). No increase in toxicity was seen with the addition of trastuzumab. One of 12 patients in the trastuzumab arm and 8 of 17 in the control arm had grade 3 esophagitis (p < or = .026). Mean left ventricular ejection fraction for the trastuzumab group was 57% before treatment and 56% after treatment. HER-2/neu is overexpressed in approximately one-third of esophageal adenocarcinomas. Trastuzumab can be added at full dose to cisplatin, paclitaxel, and radiation. Future studies of trastuzumab in esophageal adenocarcinoma are indicated.
Thongprasert, Sumitra; Permsuwan, Unchalee; Ruengorn, Chidchanok; Charoentum, Chaiyut; Chewaskulyong, Busyamas
2011-12-01
Carboplatin plus paclitaxel is a more costly chemotherapy regimen than cisplatin plus etoposide; however there have been reports of higher efficacy and less toxicity of this regimen. Thus, this study aimed to assess the cost-effectiveness of these two chemotherapy regimens in advanced non-small cell lung cancer (NSCLC). Using the perspective of Maharaj Nakorn Chiang Mai Hospital, Thailand, direct medical costs, including chemotherapy, drugs, medical service charges, costs of adverse events, concomitant medication and survival time were directly gathered from 65 patients enrolled from August 2005 to November 2008. A one-way sensitivity analysis was performed. An incremental cost-effectiveness ratio (ICER) was also calculated. Of these 65 patients, 30 received cisplatin plus etoposide (Arm I) and 35 received carboplatin plus paclitaxel (Arm II). The median survival time was not statistically significant (8.23 months vs 8.80 months in Arm I and II, respectively; P = 0.99). The total cost per patient in Arm II was about three times that in Arm I (95,548 Baht vs 29,692 Baht) while quality-adjusted life-years (QALY) in Arm II were slightly above those in Arm I (0.587 vs 0.412). The ICER was equal to 375,958 Baht per QALY. With a cost-effectiveness threshold of 100,000 Baht in Thailand, carboplatin plus paclitaxel was still not cost-effective. While the selection of a suitable regimen for individual patients should not rely on drug and hospital costs alone, the overall cost, including the burden on patients, should be taken into consideration. © 2011 Blackwell Publishing Asia Pty Ltd.
Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi
2016-01-01
Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199
Microwave-assisted efficient conjugation of nanodiamond and paclitaxel.
Hsieh, Yi-Han; Liu, Kuang-Kai; Sulake, Rohidas S; Chao, Jui-I; Chen, Chinpiao
2015-01-01
Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond. Copyright © 2015 Elsevier Ltd. All rights reserved.
FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel.
Saari, H; Lisitsyna, E; Rautaniemi, K; Rojalin, T; Niemi, L; Nivaro, O; Laaksonen, T; Yliperttula, M; Vuorimaa-Laukkanen, E
2018-06-15
In response to physiological and artificial stimuli, cells generate nano-scale extracellular vesicles (EVs) by encapsulating biomolecules in plasma membrane-derived phospholipid envelopes. These vesicles are released to bodily fluids, hence acting as powerful endogenous mediators in intercellular signaling. EVs provide a compelling alternative for biomarker discovery and targeted drug delivery, but their kinetics and dynamics while interacting with living cells are poorly understood. Here we introduce a novel method, fluorescence lifetime imaging microscopy (FLIM) to investigate these interaction attributes. By FLIM, we show distinct cellular uptake mechanisms of different EV subtypes, exosomes and microvesicles, loaded with anti-cancer agent, paclitaxel. We demonstrate differences in intracellular behavior and drug release profiles of paclitaxel-containing EVs. Exosomes seem to deliver the drug mostly by endocytosis while microvesicles enter the cells by both endocytosis and fusion with cell membrane. This research offers a new real-time method to investigate EV kinetics with living cells, and it is a potential advancement to complement the existing techniques. The findings of this study improve the current knowledge in exploiting EVs as next-generation targeted drug delivery systems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Movahedi, Fatemeh; Ebrahimi Shahmabadi, Hasan; Alavi, Seyed Ebrahim; Koohi Moftakhari Esfahani, Maedeh
2014-09-01
Breast cancer is the most prevalent cancer among women. Recently, delivering by nanocarriers has resulted in a remarkable evolution in treatment of numerous cancers. Lipid nanocarriers are important ones while liposomes and archaeosomes are common lipid nanocarriers. In this work, paclitaxel was used and characterized in nanoliposomal and nanoarchaeosomal form to improve efficiency. To increase stability, efficiency and solubility, polyethylene glycol 2000 (PEG 2000) was added to some samples. MTT assay confirmed effectiveness of nanocarriers on MCF-7 cell line and size measuring validated nano-scale of particles. Nanoarchaeosomal carriers demonstrated highest encapsulation efficiency and lowest release rate. On the other hand, pegylated nanoliposomal carrier showed higher loading efficiency and less release compared with nanoliposomal carrier which verifies effect of PEG on improvement of stability and efficiency. Additionally, release pattern was modeled using artificial neural network (ANN) and genetic algorithm (GA). Using ANN modeling for release prediction, resulted in R values of 0.976, 0.989 and 0.999 for nanoliposomal, pegylated nanoliposomal and nanoarchaeosomal paclitaxel and GA modeling led to values of 0.954, 0.951 and 0.976, respectively. ANN modeling was more successful in predicting release compared with the GA strategy.
Paclitaxel-carboplatin induced radiation recall colitis.
Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet
2004-01-01
Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy.
NASA Astrophysics Data System (ADS)
Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li
2017-02-01
Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.
The battle of "nano" paclitaxel.
Sofias, Alexandros Marios; Dunne, Michael; Storm, Gert; Allen, Christine
2017-12-01
Paclitaxel (PTX) is one of the three most widely used chemotherapeutic agents, together with doxorubicin and cisplatin, and is first or second line treatment for several types of cancers. In 2000, Taxol, the conventional formulation of PTX, became the best-selling cancer drug of all time with annual sales of 1.6 billion. In 2005, the introduction of the albumin-based formulation of PTX, known as Abraxane, ended Taxol's monopoly of the PTX market. Abraxane's ability to push the Taxol innovator and generic formulations aside attracted fierce competition amongst competitors worldwide to develop their own unique, new and improved formulation of PTX. At this time there are at least 18 companies focused on pre-clinical and/or clinical development of nano-formulations of PTX. These pharmaceutical companies are investing substantial capital to capture a share of the lucrative global PTX market. It is hoped that any formulation that dominates the market will result in tangible benefits to patients in terms of both survival and quality of life. Given all of this activity, here we address the question: Who is going to win the battle of "nano" paclitaxel? Copyright © 2017 Elsevier B.V. All rights reserved.
Cabazitaxel overcomes cisplatin resistance in germ cell tumour cells.
Gerwing, Mirjam; Jacobsen, Christine; Dyshlovoy, Sergey; Hauschild, Jessica; Rohlfing, Tina; Oing, Christoph; Venz, Simone; Oldenburg, Jan; Oechsle, Karin; Bokemeyer, Carsten; von Amsberg, Gunhild; Honecker, Friedemann
2016-09-01
Cisplatin-based chemotherapy is highly effective in metastasized germ cell tumours (GCT). However, 10-30 % of patients develop resistance to cisplatin, requiring salvage therapy. We investigated the in vitro activity of paclitaxel and the novel taxane cabazitaxel in cisplatin-sensitive and -resistant GCT cell lines. In vitro activity of paclitaxel and cabazitaxel was determined by proliferation assays, and mode of action of cabazitaxel was assessed by western blotting and two screening approaches, i.e. whole proteome analysis and a human apoptosis array. Activity of paclitaxel and cabazitaxel was not affected by cisplatin resistance, suggesting that there is no cross-resistance between these agents in vitro. Cabazitaxel treatment showed a strong inhibitory effect on colony formation capacity. Cabazitaxel induced classical apoptosis in all cell lines, reflected by cleavage of PARP and caspase 3, without inducing specific changes in the cell cycle distribution. Using the proteomic and human apoptosis array screening approaches, differential regulation of several proteins, including members of the bcl-2 family, was found, giving first insights into the mode of action of cabazitaxel in GCT. Cabazitaxel shows promising in vitro activity in GCT cells, independent of levels of cisplatin resistance.
Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting
2015-12-01
To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.
Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto
2013-10-01
Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.
Kimura, Akiharu; Hiramatsu, Kiyoshi; Sakuragawa, Tadayuki; Ito, Takaaki; Otsuji, Hidehiko; Tsuchiya, Tomonori; Hara, Tomohiro; Maeda, Takao; Tanaka, Hiroshi; Machiki, Yuichi; Hosoya, Jun; Kojima, Tsuyoshi; Kato, Kenji
2010-02-01
The patient was a 57-year-old man who presented with cancer of the esophagogastric junction. He underwent total gastrectomy, lower esophagectomy, distal pancreatectomy and splenectomy with para-aortic lymphnode dissection by the transthoracoabdominal approach. He was given a daily dose of 100 mg of S-1 as adjuvant chemotherapy. About one year after the operation, lung metastasis was recognized by enhanced CT examination. He began weekly paclitaxel as second-line chemotherapy. Paclitaxel was infused once a week. About two weeks after the first infusion therapy, he was admitted to our hospital with fever and dyspnea. A chest enhanced CT revealed remarkable empyema and mediastinal abscess. Chest drainage and mediastinal drainage were performed.After one month of drainage, the empyema and mediastinal abscess had improved. The metastastic tumor of the lung disappeared at the time of discharge. CR has been maintained for more than a year without chemotherapy.This case suggests that remarkable reduction of the tumor induced by chemotherapy may have caused the empyema and mediastinal abscess.
Li, Bian; Tao, Wang; Shao-Hua, Zhang; Ze-Rui, Qu; Fu-Quan, Jin; Fan, Li; Ze-Fei, Jiang
2018-04-03
In clinical practice, one subgroup patients of breast cancer might have developed resistance to multi-anti-HER2 targeted drugs(trastuzumab, lapatinib and/or T-DM1) and can not benefit from the anti-HER2 targeted therapy continuously. We attempt to change the next therapic way for these patients. Two patients with metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy were treated with pembrolizumab (2 mg/Kg, day1) plus albumin-bound paclitaxel (125 mg/m 2 , day1,8) every 3 weeks. CT evaluation and HER2 ECD test were performed every 2 cycles. Both of the two patients achieved remarkable response with Partial Remission (PR), meanwhile serum HER2 ECD levels (the upper normal limit is 15 ng/ml) showed a remarkable decreases(compared to the base line decreases 75% and 60% respectively). The results indicate that regimen of pembrolizumab combination with albumin-bound paclitaxel might produce response in patients with HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy.
Taxane anticancer agents: a patent perspective
Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin
2016-01-01
Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178
Costa, Maria Luísa; Rodrigues, José A; Azevedo, Joana; Vasconcelos, Vitor; Eiras, Eduardo; Campos, Maria Graça
2018-05-29
A 67-year-old Caucasian male with lung cancer was presented to the Emergency Department with asthenia, anorexia, jaundice and choluria. The patient's lung cancer was being treated medically by a combination of paclitaxel/carboplatin with bi-monthly frequency. The patient was also self-medicating with several natural products, including Chlorella (520 mg/day), Silybum marianum (total of 13.5 mg silymarin/day), zinc sulphate (5.5 mg), selenium (50 μg) and 15 g/day of Curcuma longa. In first chemotherapy cycle no toxicity was observed even he was taking other medications as budesonide and sitagliptin. The toxic events started only after the introduction of the dietary products. Chlorella had contamination with cyanobacteria (Oscillatoriales) and 1.08 μg of cyanotoxin Microcystin-LR (MC-LR) per gram of biomass was found. Patient was consuming ca 0.01 μg MC-LR/kg/day. This case report describes the first known case of paclitaxel toxicity probably related to pharmacokinetic interaction with Turmeric and a contaminated Chlorella supplement resulting in an acute toxic hepatitis and the impact on oncologic patient health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kurdziel, Karen A; Kalen, Joseph D; Hirsch, Jerry I; Wilson, John D; Bear, Harry D; Logan, Jean; McCumisky, James; Moorman-Sykes, Kathy; Adler, Stephen; Choyke, Peter L
2011-09-01
(18)F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that (18)F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, (18)F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of (18)F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ (18)F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of (18)F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study demonstrates the feasibility of using (18)F-fluoropaclitaxel PET/CT tumor imaging and provides radiation dosimetry measurements in humans. Although further study is needed, it is hoped that the measured intratumoral (18)F-fluoropaclitaxel distribution can serve as a surrogate for paclitaxel, and potentially other chemotherapeutic agent retention, in solid tumors.
Overman, M J; Adam, L; Raghav, K; Wang, J; Kee, B; Fogelman, D; Eng, C; Vilar, E; Shroff, R; Dasari, A; Wolff, R; Morris, J; Karunasena, E; Pisanic, R; Azad, N; Kopetz, S
2018-01-01
Hypermethylation of promoter CpG islands [CpG island methylator phenotype (CIMP)] represents a unique pathway for the development of colorectal cancer (CRC), characterized by lack of chromosomal instability and a low rate of adenomatous polyposis coli (APC) mutations, which have both been correlated with taxane resistance. Similarly, small bowel adenocarcinoma (SBA), a rare tumor, also has a low rate of APC mutations. This phase II study evaluated taxane sensitivity in SBA and CIMP-high CRC. The primary objective was Response Evaluation Criteria in Solid Tumors version 1.1 response rate. Eligibility included Eastern Cooperative Oncology Group performance status 0/1, refractory disease, and SBA or CIMP-high metastatic CRC. Nab-paclitaxel was initially administered at a dose of 260 mg/m2 every 3 weeks but was reduced to 220 mg/m2 owing to toxicity. A total of 21 patients with CIMP-high CRC and 13 with SBA were enrolled from November 2012 to October 2014. The efficacy-assessable population (patients who received at least three doses of the treatment) comprised 15 CIMP-high CRC patients and 10 SBA patients. Common grade 3 or 4 toxicities were fatigue (12%), neutropenia (9%), febrile neutropenia (9%), dehydration (6%), and thrombocytopenia (6%). No responses were seen in the CIMP-high CRC cohort and two partial responses were seen in the SBA cohort. Median progression-free survival was significantly greater in the SBA cohort than in the CIMP-high CRC cohort (3.2 months compared with 2.1 months, P = 0.03). Neither APC mutation status nor CHFR methylation status correlated with efficacy in the CIMP-high CRC cohort. In vivo testing of paclitaxel in an SBA patient-derived xenograft validated the activity of taxanes in this disease type. Although preclinical studies suggested taxane sensitivity was associated with chromosomal stability and wild-type APC, we found that nab-paclitaxel was inactive in CIMP-high metastatic CRC. Nab-paclitaxel may represent a novel therapeutic option for SBA. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yu, Lushan; Shi, Da; Ma, Liping; Zhou, Quan; Zeng, Su
2013-07-01
CYP2C8 plays an important role in the metabolism of various drugs, such as paclitaxel, repaglinide and ibuprofen. Polymorphisms in the CYP2C8 gene were shown to influence interindividual differences in the pharmacokinetics of paclitaxel, repaglinide and ibuprofen enantiomers. In this study, three CYP2C8 allelic variants (CYP2C8.2, CYP2C8.3 and CYP2C8.4) and wild-type CYP2C8 (CYP2C8.1) were co-expressed for the first time with human cytochrome P450 oxidoreductase (POR) and cytochrome b5 by using a baculovirus-assisted insect cell expression system. Further, the effects of genotype-phenotype correlations of CYP2C8 alleles on the metabolism of paclitaxel, repaglinide and ibuprofen enantiomers were evaluated. The CLint values of CYP2C8.2, CYP2C8.3 and CYP2C8.4 for paclitaxel were 47.7%, 64.3% and 30.2% of that of CYP2C8.1 (p<0.01). The CLint values of CYP2C8.2 and CYP2C8.4 for repaglinide were 77.9% and 80.2% of that of CYP2C8.1 (p<0.05), respectively, while the CLint value of CYP2C8.3 was 1.31-fold higher than that of CYP2C8.1 (p<0.05). The relative CLint values of CYP2C8.2, CYP2C8.3 and CYP2C8.4 were 110.5%, 72.3% and 49.7% of that of CYP2C8.1 and were 124.6%, 83.4% and 47.4% of that of CYP2C8.1 for R-ibuprofen and S-ibuprofen, respectively. Comparing hydroxylation by CYP2C8.1 and CYP2C8.3 resulted in higher and lower intrinsic clearance of repaglinide and ibuprofen enantiomers, respectively. These in vitro findings were consistent with the pharmacokinetics in volunteers who were heterozygous or homozygous carriers of CYP2C8*3. The results of this study provide useful information for predicting CYP2C8 phenotypes and may contribute to individualized drug therapy in the future. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Arif, E-mail: ahussain@som.umaryland.edu; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Baltimore VA Medical Center, Baltimore, MD
2012-01-01
Purpose: Weekly paclitaxel, concurrent radiation, and androgen deprivation (ADT) were evaluated in patients with high-risk prostate cancer (PC) with or without prior prostatectomy (RP). Methods and Materials: Eligible post-RP patients included: pathological T3 disease, or rising prostate-specific antigen (PSA) {>=}0.5 ng/mL post-RP. Eligible locally advanced PC (LAPC) patients included: 1) cT2b-4N0N+, M0; 2) Gleason score (GS) 8-10; 3) GS 7 + PSA 10-20 ng/mL; or 4) PSA 20-150 ng/mL. Treatment included ADT (4 or 24 months), weekly paclitaxel (40, 50, or 60 mg/m{sup 2}/wk), and pelvic radiation therapy (total dose: RP = 64.8 Gy; LAPC = 70.2 Gy). Results: Fifty-ninemore » patients were enrolled (LAPC, n = 29; RP, n = 30; ADT 4 months, n = 29; 24 months, n = 30; whites n = 29, African Americans [AA], n = 28). Baseline characteristics (median [range]) were: age 67 (45-86 years), PSA 5.9 (0.1-92.1 ng/mL), GS 8 (6-9). At escalating doses of paclitaxel, 99%, 98%, and 95% of doses were given with radiation and ADT, respectively, with dose modifications required primarily in RP patients. No acute Grade 4 toxicities occurred. Grade 3 toxicities were diarrhea 15%, urinary urgency/incontinence 10%, tenesmus 5%, and leukopenia 3%. Median follow-up was 75.3 months (95% CI: 66.8-82.3). Biochemical progression occurred in 24 (41%) patients and clinical progression in 11 (19%) patients. The 5- and 7-year OS rates were 83% and 67%. There were no differences in OS between RP and LAPC, 4- and 24-month ADT, white and AA patient categories. Conclusions: In addition to LAPC, to our knowledge, this is the first study to evaluate concurrent chemoradiation with ADT in high-risk RP patients. With a median follow-up of 75.3 months, this trial also represents the longest follow-up of patients treated with taxane-based chemotherapy with EBRT in high-risk prostate cancer. Concurrent ADT, radiation, and weekly paclitaxel at 40 mg/m{sup 2}/week in RP patients and 60 mg/m{sup 2}/week in LAPC patients is feasible and well-tolerated.« less
Dang, Chau; Guo, Hao; Najita, Julie; Yardley, Denise; Marcom, Kelly; Albain, Kathy; Rugo, Hope; Miller, Kathy; Ellis, Matthew; Shapira, Iuliana; Wolff, Antonio C; Carey, Lisa A; Moy, Beverly; Groarke, John; Moslehi, Javid; Krop, Ian; Burstein, Harold J; Hudis, Clifford; Winer, Eric P; Tolaney, Sara M
2016-01-01
Trastuzumab is a life-saving therapy but is associated with symptomatic and asymptomatic left ventricular ejection fraction (LVEF) decline. We report the cardiac toxic effects of a nonanthracycline and trastuzumab-based treatment for patients with early-stage human epidermal growth factor receptor 2 (ERBB2, formerly HER2 or HER2/neu)-positive breast cancer. To determine the cardiac safety of paclitaxel with trastuzumab and the utility of LVEF monitoring in patients with node-negative, ERBB2-positive breast cancer. In this secondary analysis of an uncontrolled, single group study across 14 medical centers, enrollment of 406 patients with node-negative, ERBB2-positive breast cancer 3 cm, or smaller, and baseline LVEF of greater than or equal to 50% occurred from October 9, 2007, to September 3, 2010. Patients with a micrometastasis in a lymph node were later allowed with a study amendment. Median patient age was 55 years, 118 (29%) had hypertension, and 30 (7%) had diabetes. Patients received adjuvant paclitaxel for 12 weeks with trastuzumab, and trastuzumab was continued for 1 year. Median follow-up was 4 years. Treatment consisted of weekly 80-mg/m2 doses of paclitaxel administered concurrently with trastuzumab intravenously for 12 weeks, followed by trastuzumab monotherapy for 39 weeks. During the monotherapy phase, trastuzumab could be administered weekly 2-mg/kg or every 3 weeks as 6-mg/kg. Radiation and hormone therapy were administered per standard guidelines after completion of the 12 weeks of chemotherapy. Patient LVEF was assessed at baseline, 12 weeks, 6 months, and 1 year. Cardiac safety data, including grade 3 to 4 left ventricular systolic dysfunction (LVSD) and significant asymptomatic LVEF decline, as defined by our study, were reported. Overall, 2 patients (0.5%) (95% CI, 0.1%-1.8%) developed grade 3 LVSD and came off study, and 13 (3.2%) (95% CI, 1.9%-5.4%) had significant asymptomatic LVEF decline, 11 of whom completed study treatment. Median LVEF at baseline was 65%; 12 weeks, 64%; 6 months, 64%; and 1 year, 64%. Cardiac toxic effects from paclitaxel with trastuzumab, manifesting as grade 3 or 4 LVSD or asymptomatic LVEF decline, were low. Patient LVEF was assessed at baseline, 12 weeks, 6 months, and 1 year, and our findings suggest that LVEF monitoring during trastuzumab therapy without anthracyclines could be simplified for many individuals.
Goble, Sharon; Bear, Harry D
2003-08-01
Adjuvant chemotherapy has gained increasing prominence in the treatment of nonmetastatic breast cancer, producing gradual improvement in the survival of these patients. The taxanes offer great hope for adding to the progress in adjuvant treatment, but data have been conflicting. Early results of multi-center trials testing the sequential addition of paclitaxel to anthracycline-based adjuvant chemotherapy have perhaps been prematurely reported, but have already made a major impact on patterns of care for node-positive and even some node-negative patients. The early dramatic improvements in CALG 9344 are fading with time, however, and have not been confirmed by a second similar trial, NSABP B-28. Moreover, it cannot be stated with certainty whether the modest improvements observed by sequential addition of paclitaxel reflect the ability of this drug to kill anthracycline-resistant cancer cells or the increased total duration and amount of treatment. By contrast, the early results of the BCIRG 001 trial suggest that combining docetaxel with doxorubicin may significantly increase survival, but these early results should be viewed with caution and do not necessarily mean that docetaxel is superior to paclitaxel. The role of neoadjuvant chemotherapy for breast cancer has also expanded over the past 2 decades, from its initial use for inoperable locally advanced breast cancer (LABC) to its current use for patients with large operable tumors to make BCT feasible. The neoadjuvant approach also has an important role in clinical trials, where it will allow more rapid comparison of treatment regimens than can be accomplished in the adjuvant setting and provides an opportunity to analyze biologic markers as predictors of response. The value of this approach, however, will ultimately depend on a clear demonstration, not yet available, that a change in therapy that increases primary tumor response will also lead to improved long-term survival. The roles of docetaxel and paclitaxel in the neoadjuvant setting has been actively investigated over the past 5 to 10 years, and exciting results are beginning to emerge. Clearly, docetaxel has potent antitumor activity against breast cancer. Several preliminary results suggest that addition of docetaxel to an anthracycline-based regimen, particularly when added sequentially, as in NASBP B-27 and the Aberdeen trial, results in higher clinical and pathologic response rates. Whether this will translate into increased long-term survival, as suggested by the early results of the Aberdeen trial, remains to be seen. Whether sequential addition of docetaxel to doxorubicin is more or less effective than combining these drugs also has not been established. The results from M.D. Anderson suggesting that paclitaxel given on a weekly schedule was more effective than the same drug given every 3 weeks are particularly intriguing, and they may help to explain why the adjuvant studies with paclitaxel given every 3 weeks have not produced more dramatic results, whereas several studies with docetaxel (also given every 3 weeks) seem so positive. It may be that paclitaxel, with activity that is highly schedule-dependent and for which cell killing is more dependent on the duration of exposure, works best when given weekly, whereas the efficacy of docetaxel depends less on scheduling. If this is the case, then weekly paclitaxel may turn out to be equally effective as docetaxel appears to be even when given every 3 weeks. Alternatively, if docetaxel is simply a more active drug, then giving docetaxel weekly may be the most effective taxane regimen. Whether routine use of weekly chemotherapy administration in the adjuvant or neoadjuvant setting is practical or not is largely subjective, but at least it appears that the toxicity of this approach is acceptable. These issues are also being addressed in ongoing trials. Finally, taxanes have produced dramatic increases in response rates in the neoadjuvant setting, but, except for the Aberdeen trial, survival benefits have not yet been shown. If, however, the high pCR rates do translate into overall survival benefits that are greater than adding taxanes to postoperative adjuvant therapy, it might suggest that, unlike other drugs, taxanes are actually more effective before surgery than after, as predicted originally based on laboratory experiments. Clearly, much work remains to be done in this area of research on breast cancer therapy.
Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine
2016-01-01
The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
Level of evidence for therapeutic drug monitoring of taxanes.
Gerritsen-van Schieveen, Pauline; Royer, Bernard
2011-08-01
Taxanes are anticancer drugs on the market for more than 10 years that are thought to be interesting for therapeutic drug monitoring (TDM): high inter- and intra-patient variability, relationship between exposure and efficacy and especially toxicity. Nevertheless, the paclitaxel and docetaxel characteristics result in different conclusions for these two molecules with respect to their TDM. For paclitaxel, the nonlinear pharmacokinetics makes that the parameter which seems the more reliable to toxicity or outcome is the time during which the plasma concentration exceeds 0.05 μm. Concentration controlled studies using Bayesian adaptation showed that the TDM of paclitaxel is feasible in routine. However, this target needs to be prospectively validated with new weekly schedules of administration, leading to a balance between 'recommended' and 'potentially useful'. For docetaxel, the 3-weekly administration, which is the more effective scheme, is also the more toxic. However, neutropenia can be individually modeled and efficiently predicted without using plasma drug concentrations. The docetaxel TDM using this docetaxel-related neutropenia modeling however needs to be prospectively validated in routine. The level of evidence of TDM thus 'needs to be assessed'. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.