Sample records for pade approximant method

  1. Unfolding the Second Riemann sheet with Pade Approximants: hunting resonance poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masjuan, Pere; Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada

    2011-05-23

    Based on Pade Theory, a new procedure for extracting the pole mass and width of resonances is proposed. The method is systematic and provides a model-independent treatment for the prediction and the errors of the approximation.

  2. A hybrid Pade-Galerkin technique for differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1993-01-01

    A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.

  3. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    NASA Astrophysics Data System (ADS)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  4. Padé Approximant and Minimax Rational Approximation in Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2016-02-01

    The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.

  5. Constraints to Dark Energy Using PADE Parameterizations

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Malekjani, M.; Basilakos, S.; Mehrabi, A.; Mota, D. F.

    2017-07-01

    We put constraints on dark energy (DE) properties using PADE parameterization, and compare it to the same constraints using Chevalier-Polarski-Linder (CPL) and ΛCDM, at both the background and the perturbation levels. The DE equation of the state parameter of the models is derived following the mathematical treatment of PADE expansion. Unlike CPL parameterization, PADE approximation provides different forms of the equation of state parameter that avoid the divergence in the far future. Initially we perform a likelihood analysis in order to put constraints on the model parameters using solely background expansion data, and we find that all parameterizations are consistent with each other. Then, combining the expansion and the growth rate data, we test the viability of PADE parameterizations and compare them with CPL and ΛCDM models, respectively. Specifically, we find that the growth rate of the current PADE parameterizations is lower than ΛCDM model at low redshifts, while the differences among the models are negligible at high redshifts. In this context, we provide for the first time a growth index of linear matter perturbations in PADE cosmologies. Considering that DE is homogeneous, we recover the well-known asymptotic value of the growth index (namely {γ }∞ =\\tfrac{3({w}∞ -1)}{6{w}∞ -5}), while in the case of clustered DE, we obtain {γ }∞ ≃ \\tfrac{3{w}∞ (3{w}∞ -5)}{(6{w}∞ -5)(3{w}∞ -1)}. Finally, we generalize the growth index analysis in the case where γ is allowed to vary with redshift, and we find that the form of γ (z) in PADE parameterization extends that of the CPL and ΛCDM cosmologies, respectively.

  6. PaDe - The particle detection program

    NASA Astrophysics Data System (ADS)

    Ott, T.; Drolshagen, E.; Koschny, D.; Poppe, B.

    2016-01-01

    This paper introduces the Particle Detection program PaDe. Its aim is to analyze dust particles in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko which were recorded by the two OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras onboard the ESA spacecraft Rosetta, see e.g. Keller et al. (2007). In addition to working with the Rosetta data, the code was modified to work with images from meteors. It was tested with data recorded by the ICCs (Intensified CCD Cameras) of the CILBO-System (Canary Island Long-Baseline Observatory) on the Canary Islands; compare Koschny et al. (2013). This paper presents a new method for the position determination of the observed meteors. The PaDe program was written in Python 3.4. Its original intent is to find the trails of dust particles in space from the OSIRIS images. For that it determines the positions where the trail starts and ends. They were found using a fit following the so-called error function (Andrews, 1998) for the two edges of the profiles. The positions where the intensities fall to the half maximum were found to be the beginning and end of the particle. In the case of meteors, this method can be applied to find the leading edge of the meteor. The proposed method has the potential to increase the accuracy of the position determination of meteors dramatically. Other than the standard method of finding the photometric center, our method is not influenced by any trails or wakes behind the meteor. This paper presents first results of this ongoing work.

  7. Analytic approximations to the modon dispersion relation. [in oceanography

    NASA Technical Reports Server (NTRS)

    Boyd, J. P.

    1981-01-01

    Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.

  8. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  9. PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST

  10. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  11. PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST

  12. Delving Into Dissipative Quantum Dynamics: From Approximate to Numerically Exact Approaches

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ta

    In this thesis, I explore dissipative quantum dynamics of several prototypical model systems via various approaches, ranging from approximate to numerically exact schemes. In particular, in the realm of the approximate I explore the accuracy of Pade-resummed master equations and the fewest switches surface hopping (FSSH) algorithm for the spin-boson model, and non-crossing approximations (NCA) for the Anderson-Holstein model. Next, I develop new and exact Monte Carlo approaches and test them on the spin-boson model. I propose well-defined criteria for assessing the accuracy of Pade-resummed quantum master equations, which correctly demarcate the regions of parameter space where the Pade approximation is reliable. I continue the investigation of spin-boson dynamics by benchmark comparisons of the semiclassical FSSH algorithm to exact dynamics over a wide range of parameters. Despite small deviations from golden-rule scaling in the Marcus regime, standard surface hopping algorithm is found to be accurate over a large portion of parameter space. The inclusion of decoherence corrections via the augmented FSSH algorithm improves the accuracy of dynamical behavior compared to exact simulations, but the effects are generally not dramatic for the cases I consider. Next, I introduce new methods for numerically exact real-time simulation based on real-time diagrammatic Quantum Monte Carlo (dQMC) and the inchworm algorithm. These methods optimally recycle Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. In the context of the spin-boson model, I formulate the inchworm expansion in two distinct ways: the first with respect to an expansion in the system-bath coupling and the second as an expansion in the diabatic coupling. In addition, a cumulant version of the inchworm Monte Carlo method is motivated by the latter expansion, which allows for further suppression of the growth of the sign error. I provide a comprehensive comparison of the

  13. The Investigation of Optimal Discrete Approximations for Real Time Flight Simulations

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.; Cook, G.; Henderson, K. C.

    1976-01-01

    The results are presented of an investigation of discrete approximations for real time flight simulation. Major topics discussed include: (1) consideration of the particular problem of approximation of continuous autopilots by digital autopilots; (2) use of Bode plots and synthesis of transfer functions by asymptotic fits in a warped frequency domain; (3) an investigation of the various substitution formulas, including the effects of nonlinearities; (4) use of pade approximation to the solution of the matrix exponential arising from the discrete state equations; and (5) an analytical integration of the state equation using interpolated input.

  14. On the convergence of local approximations to pseudodifferential operators with applications

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1994-01-01

    We consider the approximation of a class pseudodifferential operators by sequences of operators which can be expressed as compositions of differential operators and their inverses. We show that the error in such approximations can be bounded in terms of L(1) error in approximating a convolution kernel, and use this fact to develop convergence results. Our main result is a finite time convergence analysis of the Engquist-Majda Pade approximants to the square root of the d'Alembertian. We also show that no spatially local approximation to this operator can be convergent uniformly in time. We propose some temporally local but spatially nonlocal operators with better long time behavior. These are based on Laguerre and exponential series.

  15. Rational approximations of f(R) cosmography through Pad'e polynomials

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-05-01

    We consider high-redshift f(R) cosmography adopting the technique of polynomial reconstruction. In lieu of considering Taylor treatments, which turn out to be non-predictive as soon as z>1, we take into account the Pad&apose rational approximations which consist in performing expansions converging at high redshift domains. Particularly, our strategy is to reconstruct f(z) functions first, assuming the Ricci scalar to be invertible with respect to the redshift z. Having the so-obtained f(z) functions, we invert them and we easily obtain the corresponding f(R) terms. We minimize error propagation, assuming no errors upon redshift data. The treatment we follow naturally leads to evaluating curvature pressure, density and equation of state, characterizing the universe evolution at redshift much higher than standard cosmographic approaches. We therefore match these outcomes with small redshift constraints got by framing the f(R) cosmology through Taylor series around 0zsimeq . This gives rise to a calibration procedure with small redshift that enables the definitions of polynomial approximations up to zsimeq 10. Last but not least, we show discrepancies with the standard cosmological model which go towards an extension of the ΛCDM paradigm, indicating an effective dark energy term evolving in time. We finally describe the evolution of our effective dark energy term by means of basic techniques of data mining.

  16. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  17. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  18. Rational approximations from power series of vector-valued meromorphic functions

    NASA Technical Reports Server (NTRS)

    Sidi, Avram

    1992-01-01

    Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational approximation procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational approximations thus obtained, and showed that they were akin to Pade approximations. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical approximations to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to approximate simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.

  19. Random-Phase Approximation Methods

    NASA Astrophysics Data System (ADS)

    Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp

    2017-05-01

    Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.

  20. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  1. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  2. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  3. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  4. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  5. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  6. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  7. Dual methods and approximation concepts in structural synthesis

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.

  8. Model reduction of nonsquare linear MIMO systems using multipoint matrix continued-fraction expansions

    NASA Technical Reports Server (NTRS)

    Guo, Tong-Yi; Hwang, Chyi; Shieh, Leang-San

    1994-01-01

    This paper deals with the multipoint Cauer matrix continued-fraction expansion (MCFE) for model reduction of linear multi-input multi-output (MIMO) systems with various numbers of inputs and outputs. A salient feature of the proposed MCFE approach to model reduction of MIMO systems with square transfer matrices is its equivalence to the matrix Pade approximation approach. The Cauer second form of the ordinary MCFE for a square transfer function matrix is generalized in this paper to a multipoint and nonsquare-matrix version. An interesting connection of the multipoint Cauer MCFE method to the multipoint matrix Pade approximation method is established. Also, algorithms for obtaining the reduced-degree matrix-fraction descriptions and reduced-dimensional state-space models from a transfer function matrix via the multipoint Cauer MCFE algorithm are presented. Practical advantages of using the multipoint Cauer MCFE are discussed and a numerical example is provided to illustrate the algorithms.

  9. Three dimensional iterative beam propagation method for optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; Van Keuren, Edward

    2006-10-01

    The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.

  10. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  11. Multi-level methods and approximating distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.

    2016-07-15

    Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less

  12. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  13. Simulation of Simple Controlled Processes with Dead-Time.

    ERIC Educational Resources Information Center

    Watson, Keith R.; And Others

    1985-01-01

    The determination of closed-loop response of processes containing dead-time is typically not covered in undergraduate process control, possibly because the solution by Laplace transforms requires the use of Pade approximation for dead-time, which makes the procedure lengthy and tedious. A computer-aided method is described which simplifies the…

  14. Approximation methods in relativistic eigenvalue perturbation theory

    NASA Astrophysics Data System (ADS)

    Noble, Jonathan Howard

    In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.

  15. Subtraction method in the Second Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo

    2018-02-01

    We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.

  16. Approximation of the exponential integral (well function) using sampling methods

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2015-04-01

    Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.

  17. Second derivatives for approximate spin projection methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less

  18. Applications of Laplace transform methods to airfoil motion and stability calculations

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1979-01-01

    This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.

  19. Approximation methods for stochastic petri nets

    NASA Technical Reports Server (NTRS)

    Jungnitz, Hauke Joerg

    1992-01-01

    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay

  20. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  1. Test particle propagation in magnetostatic turbulence. 2: The local approximation method

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.

  2. Differential Equations, Related Problems of Pade Approximations and Computer Applications

    DTIC Science & Technology

    1988-12-31

    Building 410 1z C ’. O, 4- ~ ~ t ~ Boiling, APE DC 20332-6448 k &L jY naIc l iV n~a -(2)7 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 8a. NAME OF FUNDING / SPONSORING 1b...SECUAITY C SSIFICATION 0 UNCLASSIFIEO/UNLIMITE-D 0 SAME AS RPT. C3 DTIC USERS ((1 ’ ’ 𔃺C 222. NAME OP RESPONSILI INDIVIDUAL 22b. TELEPHONE (include A...0Ŗ- IN A C h M 6 w V21 767- i-= DForm 1473. Je N 6Previou editons are ouch"e PAC 89 5 1 22 5 Grant No. AFOSR-87-0117 - 9 )6 2 Differential

  3. Differential Equations, Related Problems of Pade Approximations and Computer Applications

    DTIC Science & Technology

    1988-01-01

    x e X : d(x,A) Unfortunately. for moderate primes (p < 10,000) 1). Expanders have the property that every A c none of these Ramanujan graphs have a...and for every A c X, Card(A) :< n/2, the graphs of relataively small diameter can be boundary aA has at least c • Card(A) elements. Ramanujan graphs...State, and ZIP,ode) 7b. ADDRESS (City, State, and ZIP Code) - _ - - " Building 410 - C x ,, -Boiling, AFB DC 20332-6448 11a. NAME OF FUNDING

  4. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2017-03-01

    Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.

  5. Approximate methods in gamma-ray skyshine calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faw, R.E.; Roseberry, M.L.; Shultis, J.K.

    1985-11-01

    Gamma-ray skyshine, an important component of the radiation field in the environment of a nuclear power plant, has recently been studied in relation to storage of spent fuel and nuclear waste. This paper reviews benchmark skyshine experiments and transport calculations against which computational procedures may be tested. The paper also addresses the applicability of simplified computational methods involving single-scattering approximations. One such method, suitable for microcomputer implementation, is described and results are compared with other work.

  6. Intermediate boundary conditions for LOD, ADI and approximate factorization methods

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.

    1985-01-01

    A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.

  7. Boundary Approximation Methods for Sloving Elliptic Problems on Unbounded Domains

    NASA Astrophysics Data System (ADS)

    Li, Zi-Cai; Mathon, Rudolf

    1990-08-01

    Boundary approximation methods with partial solutions are presented for solving a complicated problem on an unbounded domain, with both a crack singularity and a corner singularity. Also an analysis of partial solutions near the singular points is provided. These methods are easy to apply, have good stability properties, and lead to highly accurate solutions. Hence, boundary approximation methods with partial solutions are recommended for the treatment of elliptic problems on unbounded domains provided that piecewise solution expansions, in particular, asymptotic solutions near the singularities and infinity, can be found.

  8. Local Approximation and Hierarchical Methods for Stochastic Optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Bolong

    In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the

  9. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  10. 26 CFR 1.985-3 - United States dollar approximate separate transactions method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transactions method. 1.985-3 Section 1.985-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... dollar approximate separate transactions method. (a) Scope and effective date—(1) Scope. This section describes the United States dollar (dollar) approximate separate transactions method of accounting (DASTM...

  11. Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method

    NASA Technical Reports Server (NTRS)

    Kowal, Michael T.

    1997-01-01

    The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.

  12. Approximation methods for control of structural acoustics models with piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Fang, W.; Silcox, R. J.; Smith, R. C.

    1993-01-01

    The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam) is considered. Specifically, this control is implemented via piezoceramic patches on the beam which produces pure bending moments. The incorporation of the feedback control in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input team. Approximation methods in the context of linear quadratic regulator (LQR) state space control formulation are discussed and numerical results demonstrating the effectiveness of this approach in computing feedback controls for noise reduction are presented.

  13. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  14. Extending the Fellegi-Sunter probabilistic record linkage method for approximate field comparators.

    PubMed

    DuVall, Scott L; Kerber, Richard A; Thomas, Alun

    2010-02-01

    Probabilistic record linkage is a method commonly used to determine whether demographic records refer to the same person. The Fellegi-Sunter method is a probabilistic approach that uses field weights based on log likelihood ratios to determine record similarity. This paper introduces an extension of the Fellegi-Sunter method that incorporates approximate field comparators in the calculation of field weights. The data warehouse of a large academic medical center was used as a case study. The approximate comparator extension was compared with the Fellegi-Sunter method in its ability to find duplicate records previously identified in the data warehouse using different demographic fields and matching cutoffs. The approximate comparator extension misclassified 25% fewer pairs and had a larger Welch's T statistic than the Fellegi-Sunter method for all field sets and matching cutoffs. The accuracy gain provided by the approximate comparator extension grew as less information was provided and as the matching cutoff increased. Given the ubiquity of linkage in both clinical and research settings, the incremental improvement of the extension has the potential to make a considerable impact.

  15. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  16. An approximate method for calculating three-dimensional inviscid hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Dejarnette, Fred R.

    1990-01-01

    An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.

  17. Quantum Approximate Methods for the Atomistic Modeling of Multicomponent Alloys. Chapter 7

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Garces, Jorge; Mosca, Hugo; Gargano, pablo; Noebe, Ronald D.; Abel, Phillip

    2007-01-01

    This chapter describes the role of quantum approximate methods in the understanding of complex multicomponent alloys at the atomic level. The need to accelerate materials design programs based on economical and efficient modeling techniques provides the framework for the introduction of approximations and simplifications in otherwise rigorous theoretical schemes. As a promising example of the role that such approximate methods might have in the development of complex systems, the BFS method for alloys is presented and applied to Ru-rich Ni-base superalloys and also to the NiAI(Ti,Cu) system, highlighting the benefits that can be obtained from introducing simple modeling techniques to the investigation of such complex systems.

  18. Spin-1 Heisenberg ferromagnet using pair approximation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Murat; Mert, Gülistan; Kılıç, Ahmet

    2016-06-08

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  19. Two Point Exponential Approximation Method for structural optimization of problems with frequency constraints

    NASA Technical Reports Server (NTRS)

    Fadel, G. M.

    1991-01-01

    The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.

  20. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  1. Methods to approximate reliabilities in single-step genomic evaluation

    USDA-ARS?s Scientific Manuscript database

    Reliability of predictions from single-step genomic BLUP (ssGBLUP) can be calculated by inversion, but that is not feasible for large data sets. Two methods of approximating reliability were developed based on decomposition of a function of reliability into contributions from records, pedigrees, and...

  2. An approximate methods approach to probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.

    1989-01-01

    A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.

  3. Approximation methods for control of acoustic/structure models with piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fang, W.; Silcox, R. J.; Smith, R. C.

    1991-01-01

    The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam) is considered. Specifically, this control is implemented via piezoceramic patches on the beam which produces pure bending moments. The incorporation of the feedback control in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input term. Approximation methods in the context of linear quadratic regulator (LQR) state space control formulation are discussed and numerical results demonstrating the effectiveness of this approach in computing feedback controls for noise reduction are presented.

  4. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    NASA Astrophysics Data System (ADS)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  5. Low rank approximation method for efficient Green's function calculation of dissipative quantum transport

    NASA Astrophysics Data System (ADS)

    Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann

    2013-06-01

    In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.

  6. Laplace transform homotopy perturbation method for the approximation of variational problems.

    PubMed

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  7. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  8. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  9. Trajectory Optimization Using Adjoint Method and Chebyshev Polynomial Approximation for Minimizing Fuel Consumption During Climb

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe

    2013-01-01

    This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.

  10. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  11. Degree of Approximation by a General Cλ -Summability Method

    NASA Astrophysics Data System (ADS)

    Sonker, S.; Munjal, A.

    2018-03-01

    In the present study, two theorems explaining the degree of approximation of signals belonging to the class Lip(α, p, w) by a more general C λ -method (Summability method) have been formulated. Improved estimations have been observed in terms of λ(n) where (λ(n))‑α ≤ n ‑α for 0 < α ≤ 1 as compared to previous studies presented in terms of n. These estimations of infinite matrices are very much applicable in solid state physics which further motivates for an investigation of perturbations of matrix valued functions.

  12. Comparison of approximate solutions to the phonon Boltzmann transport equation with the relaxation time approximation: Spherical harmonics expansions and the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Christenson, J. G.; Austin, R. A.; Phillips, R. J.

    2018-05-01

    The phonon Boltzmann transport equation is used to analyze model problems in one and two spatial dimensions, under transient and steady-state conditions. New, explicit solutions are obtained by using the P1 and P3 approximations, based on expansions in spherical harmonics, and are compared with solutions from the discrete ordinates method. For steady-state energy transfer, it is shown that analytic expressions derived using the P1 and P3 approximations agree quantitatively with the discrete ordinates method, in some cases for large Knudsen numbers, and always for Knudsen numbers less than unity. However, for time-dependent energy transfer, the PN solutions differ qualitatively from converged solutions obtained by the discrete ordinates method. Although they correctly capture the wave-like behavior of energy transfer at short times, the P1 and P3 approximations rely on one or two wave velocities, respectively, yielding abrupt, step-changes in temperature profiles that are absent when the angular dependence of the phonon velocities is captured more completely. It is shown that, with the gray approximation, the P1 approximation is formally equivalent to the so-called "hyperbolic heat equation." Overall, these results support the use of the PN approximation to find solutions to the phonon Boltzmann transport equation for steady-state conditions. Such solutions can be useful in the design and analysis of devices that involve heat transfer at nanometer length scales, where continuum-scale approaches become inaccurate.

  13. Global collocation methods for approximation and the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Solomonoff, A.; Turkel, E.

    1986-01-01

    Polynomial interpolation methods are applied both to the approximation of functions and to the numerical solutions of hyperbolic and elliptic partial differential equations. The derivative matrix for a general sequence of the collocation points is constructed. The approximate derivative is then found by a matrix times vector multiply. The effects of several factors on the performance of these methods including the effect of different collocation points are then explored. The resolution of the schemes for both smooth functions and functions with steep gradients or discontinuities in some derivative are also studied. The accuracy when the gradients occur both near the center of the region and in the vicinity of the boundary is investigated. The importance of the aliasing limit on the resolution of the approximation is investigated in detail. Also examined is the effect of boundary treatment on the stability and accuracy of the scheme.

  14. Low rank approximation methods for MR fingerprinting with large scale dictionaries.

    PubMed

    Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra

    2018-04-01

    This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Calculating Resonance Positions and Widths Using the Siegert Approximation Method

    ERIC Educational Resources Information Center

    Rapedius, Kevin

    2011-01-01

    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…

  16. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  17. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    PubMed

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  18. Elastic Critical Axial Force for the Torsional-Flexural Buckling of Thin-Walled Metal Members: An Approximate Method

    NASA Astrophysics Data System (ADS)

    Kováč, Michal

    2015-03-01

    Thin-walled centrically compressed members with non-symmetrical or mono-symmetrical cross-sections can buckle in a torsional-flexural buckling mode. Vlasov developed a system of governing differential equations of the stability of such member cases. Solving these coupled equations in an analytic way is only possible in simple cases. Therefore, Goľdenvejzer introduced an approximate method for the solution of this system to calculate the critical axial force of torsional-flexural buckling. Moreover, this can also be used in cases of members with various boundary conditions in bending and torsion. This approximate method for the calculation of critical force has been adopted into norms. Nowadays, we can also solve governing differential equations by numerical methods, such as the finite element method (FEM). Therefore, in this paper, the results of the approximate method and the FEM were compared to each other, while considering the FEM as a reference method. This comparison shows any discrepancies of the approximate method. Attention was also paid to when and why discrepancies occur. The approximate method can be used in practice by considering some simplifications, which ensure safe results.

  19. Arrival-time picking method based on approximate negentropy for microseismic data

    NASA Astrophysics Data System (ADS)

    Li, Yue; Ni, Zhuo; Tian, Yanan

    2018-05-01

    Accurate and dependable picking of the first arrival time for microseismic data is an important part in microseismic monitoring, which directly affects analysis results of post-processing. This paper presents a new method based on approximate negentropy (AN) theory for microseismic arrival time picking in condition of much lower signal-to-noise ratio (SNR). According to the differences in information characteristics between microseismic data and random noise, an appropriate approximation of negentropy function is selected to minimize the effect of SNR. At the same time, a weighted function of the differences between maximum and minimum value of AN spectrum curve is designed to obtain a proper threshold function. In this way, the region of signal and noise is distinguished to pick the first arrival time accurately. To demonstrate the effectiveness of AN method, we make many experiments on a series of synthetic data with different SNR from -1 dB to -12 dB and compare it with previously published Akaike information criterion (AIC) and short/long time average ratio (STA/LTA) methods. Experimental results indicate that these three methods can achieve well picking effect when SNR is from -1 dB to -8 dB. However, when SNR is as low as -8 dB to -12 dB, the proposed AN method yields more accurate and stable picking result than AIC and STA/LTA methods. Furthermore, the application results of real three-component microseismic data also show that the new method is superior to the other two methods in accuracy and stability.

  20. Design of A Cyclone Separator Using Approximation Method

    NASA Astrophysics Data System (ADS)

    Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee

    2017-12-01

    A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.

  1. The uniform asymptotic swallowtail approximation - Practical methods for oscillating integrals with four coalescing saddle points

    NASA Technical Reports Server (NTRS)

    Connor, J. N. L.; Curtis, P. R.; Farrelly, D.

    1984-01-01

    Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.

  2. An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.G.

    1999-11-11

    The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.

  3. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Lu, Jinling; Yuan, Shifei; Yang, Jun; Zhou, Xuan

    2017-03-01

    This paper proposes a novel parameter identification method for the lithium-ion (Li-ion) battery equivalent circuit model (ECM) considering the electrochemical properties. An improved pseudo two-dimension (P2D) model is established on basis of partial differential equations (PDEs), since the electrolyte potential is simplified from the nonlinear to linear expression while terminal voltage can be divided into the electrolyte potential, open circuit voltage (OCV), overpotential of electrodes, internal resistance drop, and so on. The model order reduction process is implemented by the simplification of the PDEs using the Laplace transform, inverse Laplace transform, Pade approximation, etc. A unified second order transfer function between cell voltage and current is obtained for the comparability with that of ECM. The final objective is to obtain the relationship between the ECM resistances/capacitances and electrochemical parameters such that in various conditions, ECM precision could be improved regarding integration of battery interior properties for further applications, e.g., SOC estimation. Finally simulation and experimental results prove the correctness and validity of the proposed methodology.

  4. The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds.

    PubMed

    Roussel, Marc R; Tang, Terry

    2006-12-07

    A slow manifold is a low-dimensional invariant manifold to which trajectories nearby are rapidly attracted on the way to the equilibrium point. The exact computation of the slow manifold simplifies the model without sacrificing accuracy on the slow time scales of the system. The Maas-Pope intrinsic low-dimensional manifold (ILDM) [Combust. Flame 88, 239 (1992)] is frequently used as an approximation to the slow manifold. This approximation is based on a linearized analysis of the differential equations and thus neglects curvature. We present here an efficient way to calculate an approximation equivalent to the ILDM. Our method, called functional equation truncation (FET), first develops a hierarchy of functional equations involving higher derivatives which can then be truncated at second-derivative terms to explicitly neglect the curvature. We prove that the ILDM and FET-approximated (FETA) manifolds are identical for the one-dimensional slow manifold of any planar system. In higher-dimensional spaces, the ILDM and FETA manifolds agree to numerical accuracy almost everywhere. Solution of the FET equations is, however, expected to generally be faster than the ILDM method.

  5. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  6. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  7. Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods.

    PubMed

    Bohley, Christian; Heuer, Jana; Stannarius, Ralf

    2005-12-01

    We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives.

  8. Efficient l1 -norm-based low-rank matrix approximations for large-scale problems using alternating rectified gradient method.

    PubMed

    Kim, Eunwoo; Lee, Minsik; Choi, Chong-Ho; Kwak, Nojun; Oh, Songhwai

    2015-02-01

    Low-rank matrix approximation plays an important role in the area of computer vision and image processing. Most of the conventional low-rank matrix approximation methods are based on the l2 -norm (Frobenius norm) with principal component analysis (PCA) being the most popular among them. However, this can give a poor approximation for data contaminated by outliers (including missing data), because the l2 -norm exaggerates the negative effect of outliers. Recently, to overcome this problem, various methods based on the l1 -norm, such as robust PCA methods, have been proposed for low-rank matrix approximation. Despite the robustness of the methods, they require heavy computational effort and substantial memory for high-dimensional data, which is impractical for real-world problems. In this paper, we propose two efficient low-rank factorization methods based on the l1 -norm that find proper projection and coefficient matrices using the alternating rectified gradient method. The proposed methods are applied to a number of low-rank matrix approximation problems to demonstrate their efficiency and robustness. The experimental results show that our proposals are efficient in both execution time and reconstruction performance unlike other state-of-the-art methods.

  9. Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bailey, Harry E.; Beam, Richard M.

    1991-01-01

    Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.

  10. A sequential method for spline approximation with variable knots. [recursive piecewise polynomial signal processing

    NASA Technical Reports Server (NTRS)

    Mier Muth, A. M.; Willsky, A. S.

    1978-01-01

    In this paper we describe a method for approximating a waveform by a spline. The method is quite efficient, as the data are processed sequentially. The basis of the approach is to view the approximation problem as a question of estimation of a polynomial in noise, with the possibility of abrupt changes in the highest derivative. This allows us to bring several powerful statistical signal processing tools into play. We also present some initial results on the application of our technique to the processing of electrocardiograms, where the knot locations themselves may be some of the most important pieces of diagnostic information.

  11. An approximate method for solution to variable moment of inertia problems

    NASA Technical Reports Server (NTRS)

    Beans, E. W.

    1981-01-01

    An approximation method is presented for reducing a nonlinear differential equation (for the 'weather vaning' motion of a wind turbine) to an equivalent constant moment of inertia problem. The integrated average of the moment of inertia is determined. Cycle time was found to be the equivalent cycle time if the rotating speed is 4 times greater than the system's minimum natural frequency.

  12. Introduction to Methods of Approximation in Physics and Astronomy

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2017-04-01

    Modern astronomy reveals an evolving Universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data analysis. In realizing the full discovery potential of these multimessenger approaches, the latter increasingly involves high-performance supercomputing. These lecture notes developed out of lectures on mathematical-physics in astronomy to advanced undergraduate and beginning graduate students. They are organised to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal detection algorithms involving the Fourier transform and examples of numerical integration of ordinary differential equations and some illustrative aspects of modern computational implementation. In the applications, considerable emphasis is put on fluid dynamical problems associated with accretion flows, as these are responsible for a wealth of high energy emission phenomena in astronomy. The topics chosen are largely aimed at phenomenological approaches, to capture main features of interest by effective methods of approximation at a desired level of accuracy and resolution. Formulated in terms of a system of algebraic, ordinary or partial differential equations, this may be pursued by perturbation theory through expansions in a small parameter or by direct numerical computation. Successful application of these methods requires a robust understanding of asymptotic behavior, errors and convergence. In some cases, the number of degrees of freedom may be reduced, e.g., for the purpose of (numerical) continuation or to identify

  13. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-09-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is

  14. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-02-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, and to explore patterns of spatial scaling in forests, we developed a new method for simulating stand-replacing disturbances that is both accurate and 10-50x faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing, e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD applied to LPJ-GUESS results were insignificantly different from the output of the original model LPJ

  15. An approximation method for improving dynamic network model fitting.

    PubMed

    Carnegie, Nicole Bohme; Krivitsky, Pavel N; Hunter, David R; Goodreau, Steven M

    There has been a great deal of interest recently in the modeling and simulation of dynamic networks, i.e., networks that change over time. One promising model is the separable temporal exponential-family random graph model (ERGM) of Krivitsky and Handcock, which treats the formation and dissolution of ties in parallel at each time step as independent ERGMs. However, the computational cost of fitting these models can be substantial, particularly for large, sparse networks. Fitting cross-sectional models for observations of a network at a single point in time, while still a non-negligible computational burden, is much easier. This paper examines model fitting when the available data consist of independent measures of cross-sectional network structure and the duration of relationships under the assumption of stationarity. We introduce a simple approximation to the dynamic parameters for sparse networks with relationships of moderate or long duration and show that the approximation method works best in precisely those cases where parameter estimation is most likely to fail-networks with very little change at each time step. We consider a variety of cases: Bernoulli formation and dissolution of ties, independent-tie formation and Bernoulli dissolution, independent-tie formation and dissolution, and dependent-tie formation models.

  16. Evaluation of Jacobian determinants by Monte Carlo methods: Application to the quasiclassical approximation in molecular scattering

    NASA Technical Reports Server (NTRS)

    Labudde, R. A.

    1971-01-01

    A technique is described which can be used to evaluate Jacobian determinants which occur in classical mechanical and quasiclassical approximation descriptions of molecular scattering. The method may be valuable in the study of reactive scattering using the quasiclassical approximation.

  17. Application of the probabilistic approximate analysis method to a turbopump blade analysis. [for Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.

    1990-01-01

    An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.

  18. Multivariate approximation methods and applications to geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.

    1979-01-01

    The first report in a series is presented which is intended to be written by the author with the purpose of treating a class of approximation methods of functions in one and several variables and ways of applying them to geophysics and geodesy. The first report is divided in three parts and is devoted to the presentation of the mathematical theory and formulas. Various optimal ways of representing functions in one and several variables and the associated error when information is had about the function such as satellite data of different kinds are discussed. The framework chosen is Hilbert spaces. Experiments were performed on satellite altimeter data and on satellite to satellite tracking data.

  19. Approximate Genealogies Under Genetic Hitchhiking

    PubMed Central

    Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.

    2006-01-01

    The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733

  20. Approximation methods for the stability analysis of complete synchronization on duplex networks

    NASA Astrophysics Data System (ADS)

    Han, Wenchen; Yang, Junzhong

    2018-01-01

    Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we study the stability of the complete synchronization on duplex networks. We investigate effects of coupling function on the complete synchronization on duplex networks. We propose two approximation methods to deal with the stability of the complete synchronization on duplex networks. In the first method, we introduce a modified master stability function and, in the second method, we only take into consideration the contributions of a few most unstable transverse modes to the stability of the complete synchronization. We find that both methods work well for predicting the stability of the complete synchronization for small networks. For large networks, the second method still works pretty well.

  1. Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Hoadley, Sherwood Tiffany

    1991-01-01

    The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.

  2. Domain decomposition methods for systems of conservation laws: Spectral collocation approximations

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio

    1989-01-01

    Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.

  3. Combining global and local approximations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1991-01-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.

  4. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  5. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background The Health Information Technology for Economic and Clinical Health (HITECH) Act subsidizes implementation by hospitals of electronic health records with computerized provider order entry (CPOE), which may reduce patient injuries caused by medication errors (preventable adverse drug events, pADEs). Effects on pADEs have not been rigorously quantified, and effects on medication errors have been variable. The objectives of this analysis were to assess the effectiveness of CPOE at reducing pADEs in hospital-related settings, and examine reasons for heterogeneous effects on medication errors. Methods Articles were identified using MEDLINE, Cochrane Library, Econlit, web-based databases, and bibliographies of previous systematic reviews (September 2013). Eligible studies compared CPOE with paper-order entry in acute care hospitals, and examined diverse pADEs or medication errors. Studies on children or with limited event-detection methods were excluded. Two investigators extracted data on events and factors potentially associated with effectiveness. We used random effects models to pool data. Results Sixteen studies addressing medication errors met pooling criteria; six also addressed pADEs. Thirteen studies used pre-post designs. Compared with paper-order entry, CPOE was associated with half as many pADEs (pooled risk ratio (RR) = 0.47, 95% CI 0.31 to 0.71) and medication errors (RR = 0.46, 95% CI 0.35 to 0.60). Regarding reasons for heterogeneous effects on medication errors, five intervention factors and two contextual factors were sufficiently reported to support subgroup analyses or meta-regression. Differences between commercial versus homegrown systems, presence and sophistication of clinical decision support, hospital-wide versus limited implementation, and US versus non-US studies were not significant, nor was timing of publication. Higher baseline rates of medication errors predicted greater reductions (P < 0.001). Other context and

  6. Reliability of the Parabola Approximation Method in Heart Rate Variability Analysis Using Low-Sampling-Rate Photoplethysmography.

    PubMed

    Baek, Hyun Jae; Shin, JaeWook; Jin, Gunwoo; Cho, Jaegeol

    2017-10-24

    Photoplethysmographic signals are useful for heart rate variability analysis in practical ambulatory applications. While reducing the sampling rate of signals is an important consideration for modern wearable devices that enable 24/7 continuous monitoring, there have not been many studies that have investigated how to compensate the low timing resolution of low-sampling-rate signals for accurate heart rate variability analysis. In this study, we utilized the parabola approximation method and measured it against the conventional cubic spline interpolation method for the time, frequency, and nonlinear domain variables of heart rate variability. For each parameter, the intra-class correlation, standard error of measurement, Bland-Altman 95% limits of agreement and root mean squared relative error were presented. Also, elapsed time taken to compute each interpolation algorithm was investigated. The results indicated that parabola approximation is a simple, fast, and accurate algorithm-based method for compensating the low timing resolution of pulse beat intervals. In addition, the method showed comparable performance with the conventional cubic spline interpolation method. Even though the absolute value of the heart rate variability variables calculated using a signal sampled at 20 Hz were not exactly matched with those calculated using a reference signal sampled at 250 Hz, the parabola approximation method remains a good interpolation method for assessing trends in HRV measurements for low-power wearable applications.

  7. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  8. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  9. Evaluation of Several Approximate Methods for Calculating the Symmetrical Bending-Moment Response of Flexible Airplanes to Isotropic Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Yntema, Robert T.

    1959-01-01

    Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.

  10. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  11. S-curve networks and an approximate method for estimating degree distributions of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Li

    2010-12-01

    In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.

  12. An efficient computational method for the approximate solution of nonlinear Lane-Emden type equations arising in astrophysics

    NASA Astrophysics Data System (ADS)

    Singh, Harendra

    2018-04-01

    The key purpose of this article is to introduce an efficient computational method for the approximate solution of the homogeneous as well as non-homogeneous nonlinear Lane-Emden type equations. Using proposed computational method given nonlinear equation is converted into a set of nonlinear algebraic equations whose solution gives the approximate solution to the Lane-Emden type equation. Various nonlinear cases of Lane-Emden type equations like standard Lane-Emden equation, the isothermal gas spheres equation and white-dwarf equation are discussed. Results are compared with some well-known numerical methods and it is observed that our results are more accurate.

  13. Approximation methods of European option pricing in multiscale stochastic volatility model

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Canhanga, Betuel; Malyarenko, Anatoliy; Silvestrov, Sergei

    2017-01-01

    In the classical Black-Scholes model for financial option pricing, the asset price follows a geometric Brownian motion with constant volatility. Empirical findings such as volatility smile/skew, fat-tailed asset return distributions have suggested that the constant volatility assumption might not be realistic. A general stochastic volatility model, e.g. Heston model, GARCH model and SABR volatility model, in which the variance/volatility itself follows typically a mean-reverting stochastic process, has shown to be superior in terms of capturing the empirical facts. However in order to capture more features of the volatility smile a two-factor, of double Heston type, stochastic volatility model is more useful as shown in Christoffersen, Heston and Jacobs [12]. We consider one modified form of such two-factor volatility models in which the volatility has multiscale mean-reversion rates. Our model contains two mean-reverting volatility processes with a fast and a slow reverting rate respectively. We consider the European option pricing problem under one type of the multiscale stochastic volatility model where the two volatility processes act as independent factors in the asset price process. The novelty in this paper is an approximating analytical solution using asymptotic expansion method which extends the authors earlier research in Canhanga et al. [5, 6]. In addition we propose a numerical approximating solution using Monte-Carlo simulation. For completeness and for comparison we also implement the semi-analytical solution by Chiarella and Ziveyi [11] using method of characteristics, Fourier and bivariate Laplace transforms.

  14. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  15. An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.

    PubMed

    Barlow, N S; Schultz, A J; Weinstein, S J; Kofke, D A

    2012-11-28

    A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of "soft" spherical particles with separation distance r interacting through an inverse-power pair potential, φ = ε(σ∕r)(n), where ε and σ are model parameters and n is the "hardness" of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ≥ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.

  16. Atomistic Modeling of Nanostructures via the BFS Quantum Approximate Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Farias, D.

    2003-01-01

    Ideally, computational modeling techniques for nanoscopic physics would be able to perform free of limitations on the type and number of elements, while providing comparable accuracy when dealing with bulk or surface problems. Computational efficiency is also desirable, if not mandatory, for properly dealing with the complexity of typical nano-strucured systems. A quantum approximate technique, the BFS method for alloys, which attempts to meet these demands, is introduced for the calculation of the energetics of nanostructures. The versatility of the technique is demonstrated through analysis of diverse systems, including multi-phase precipitation in a five element Ni-Al-Ti-Cr-Cu alloy and the formation of mixed composition Co-Cu islands on a metallic Cu(III) substrate.

  17. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  18. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.; Bundas, D. J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.

  19. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Bundas, D. J.; Dungundji, J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.

  20. More on approximations of Poisson probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, C

    1980-05-01

    Calculation of Poisson probabilities frequently involves calculating high factorials, which becomes tedious and time-consuming with regular calculators. The usual way to overcome this difficulty has been to find approximations by making use of the table of the standard normal distribution. A new transformation proposed by Kao in 1978 appears to perform better for this purpose than traditional transformations. In the present paper several approximation methods are stated and compared numerically, including an approximation method that utilizes a modified version of Kao's transformation. An approximation based on a power transformation was found to outperform those based on the square-root type transformationsmore » as proposed in literature. The traditional Wilson-Hilferty approximation and Makabe-Morimura approximation are extremely poor compared with this approximation. 4 tables. (RWR)« less

  1. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  2. The application of the Routh approximation method to turbofan engine models

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.

  3. Approximate method of variational Bayesian matrix factorization/completion with sparse prior

    NASA Astrophysics Data System (ADS)

    Kawasumi, Ryota; Takeda, Koujin

    2018-05-01

    We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.

  4. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the

  5. An approximate methods approach to probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.

    1989-01-01

    A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.

  6. Replace-approximation method for ambiguous solutions in factor analysis of ultrasonic hepatic perfusion

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Ding, Mingyue; Yuchi, Ming; Hou, Wenguang; Ye, Huashan; Qiu, Wu

    2010-03-01

    Factor analysis is an efficient technique to the analysis of dynamic structures in medical image sequences and recently has been used in contrast-enhanced ultrasound (CEUS) of hepatic perfusion. Time-intensity curves (TICs) extracted by factor analysis can provide much more diagnostic information for radiologists and improve the diagnostic rate of focal liver lesions (FLLs). However, one of the major drawbacks of factor analysis of dynamic structures (FADS) is nonuniqueness of the result when only the non-negativity criterion is used. In this paper, we propose a new method of replace-approximation based on apex-seeking for ambiguous FADS solutions. Due to a partial overlap of different structures, factor curves are assumed to be approximately replaced by the curves existing in medical image sequences. Therefore, how to find optimal curves is the key point of the technique. No matter how many structures are assumed, our method always starts to seek apexes from one-dimensional space where the original high-dimensional data is mapped. By finding two stable apexes from one dimensional space, the method can ascertain the third one. The process can be continued until all structures are found. This technique were tested on two phantoms of blood perfusion and compared to the two variants of apex-seeking method. The results showed that the technique outperformed two variants in comparison of region of interest measurements from phantom data. It can be applied to the estimation of TICs derived from CEUS images and separation of different physiological regions in hepatic perfusion.

  7. Asymptotic approximation method of force reconstruction: Application and analysis of stationary random forces

    NASA Astrophysics Data System (ADS)

    Sanchez, J.

    2018-06-01

    In this paper, the application and analysis of the asymptotic approximation method to a single degree-of-freedom has recently been produced. The original concepts are summarized, and the necessary probabilistic concepts are developed and applied to single degree-of-freedom systems. Then, these concepts are united, and the theoretical and computational models are developed. To determine the viability of the proposed method in a probabilistic context, numerical experiments are conducted, and consist of a frequency analysis, analysis of the effects of measurement noise, and a statistical analysis. In addition, two examples are presented and discussed.

  8. On the pressure field of nonlinear standing water waves

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  9. A third-order approximation method for three-dimensional wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Negretti, Daniele

    2012-03-01

    Multibody train analysis is used increasingly by railway operators whenever a reliable and time-efficient method to evaluate the contact between wheel and rail is needed; particularly, the wheel-rail contact is one of the most important aspects that affects a reliable and time-efficient vehicle dynamics computation. The focus of the approach proposed here is to carry out such tasks by means of online wheel-rail elastic contact detection. In order to improve efficiency and save time, a main analytical approach is used for the definition of wheel and rail surfaces as well as for contact detection, then a final numerical evaluation is used to locate contact. The final numerical procedure consists in finding the zeros of a nonlinear function in a single variable. The overall method is based on the approximation of the wheel surface, which does not influence the contact location significantly, as shown in the paper.

  10. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  11. Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation

    NASA Astrophysics Data System (ADS)

    Bervillier, C.; Boisseau, B.; Giacomini, H.

    2008-02-01

    The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).

  12. Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability

    NASA Astrophysics Data System (ADS)

    Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas

    2016-09-01

    A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.

  13. Metaheuristic optimisation methods for approximate solving of singular boundary value problems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong

    2017-07-01

    This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.

  14. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  15. Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2011-05-10

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  16. Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2011-01-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly. PMID:21552350

  17. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  18. Grating-based holographic diffraction methods for X-rays and neutrons: phase object approximation and dynamical theory

    DOE PAGES

    Feng, Hao; Ashkar, Rana; Steinke, Nina; ...

    2018-02-01

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  19. Radiative Transfer Model for Operational Retrieval of Cloud Parameters from DSCOVR-EPIC Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Molina Garcia, V.; Doicu, A.; Loyola, D. G.

    2016-12-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) measures the radiance in the backscattering region. To make sure that all details in the backward glory are covered, a large number of streams is required by a standard radiative transfer model based on the discrete ordinates method. Even the use of the delta-M scaling and the TMS correction do not substantially reduce the number of streams. The aim of this work is to analyze the capability of a fast radiative transfer model to retrieve operationally cloud parameters from EPIC measurements. The radiative transfer model combines the discrete ordinates method with matrix exponential for the computation of radiances and the matrix operator method for the calculation of the reflection and transmission matrices. Standard acceleration techniques as, for instance, the use of the normalized right and left eigenvectors, telescoping technique, Pade approximation and successive-order-of-scattering approximation are implemented. In addition, the model may compute the reflection matrix of the cloud by means of the asymptotic theory, and may use the equivalent Lambertian cloud model. The various approximations are analyzed from the point of view of efficiency and accuracy.

  20. An extension of the fenske-hall LCAO method for approximate calculations of inner-shell binding energies of molecules

    NASA Astrophysics Data System (ADS)

    Zwanziger, Ch.; Reinhold, J.

    1980-02-01

    The approximate LCAO MO method of Fenske and Hall has been extended to an all-election method allowing the calculation of inner-shell binding energies of molecules and their chemical shifts. Preliminary results are given.

  1. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.

    PubMed

    Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong

    2011-12-01

    In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

  2. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  3. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  4. Numerical simulation of groundwater flow in strongly anisotropic aquifers using multiple-point flux approximation method

    NASA Astrophysics Data System (ADS)

    Lin, S. T.; Liou, T. S.

    2017-12-01

    Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.

  5. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  6. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  7. A method to approximate a closest loadability limit using multiple load flow solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  8. Approximate method for calculating free vibrations of a large-wind-turbine tower structure

    NASA Technical Reports Server (NTRS)

    Das, S. C.; Linscott, B. S.

    1977-01-01

    A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.

  9. A new momentum integral method for approximating bed shear stress

    NASA Astrophysics Data System (ADS)

    Wengrove, M. E.; Foster, D. L.

    2016-02-01

    In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for

  10. Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Kordy, Michal Adam

    The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the

  11. Renormalization group methods for the Reynolds stress transport equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.

    1992-01-01

    The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.

  12. Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

    NASA Astrophysics Data System (ADS)

    Barrios, Lizandra; Rubayo-Soneira, Jesús; González-Lezana, Tomás

    2016-03-01

    Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0 ,j = 1) → SH + H and Si + O2(v = 0 ,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

  13. Relaxation and approximate factorization methods for the unsteady full potential equation

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.

    1984-01-01

    The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.

  14. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  15. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  16. Direct application of Padé approximant for solving nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario

    2014-01-01

    This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.

  17. Spline-based Rayleigh-Ritz methods for the approximation of the natural modes of vibration for flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1985-01-01

    Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.

  18. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  19. Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation

    NASA Astrophysics Data System (ADS)

    Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia

    2013-08-01

    Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.

  20. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  1. Monotonically improving approximate answers to relational algebra queries

    NASA Technical Reports Server (NTRS)

    Smith, Kenneth P.; Liu, J. W. S.

    1989-01-01

    We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.

  2. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  3. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  4. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  5. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  6. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  7. Structural Reliability Analysis and Optimization: Use of Approximations

    NASA Technical Reports Server (NTRS)

    Grandhi, Ramana V.; Wang, Liping

    1999-01-01

    This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different

  8. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  9. [A method of measuring presampled modulation transfer function using a rationalized approximation of geometrical edge slope].

    PubMed

    Honda, Michitaka

    2014-04-01

    Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.

  10. On approximation of non-Newtonian fluid flow by the finite element method

    NASA Astrophysics Data System (ADS)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.

  11. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Pazner, Will; Persson, Per-Olof

    2018-02-01

    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.

  12. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  14. Energy conservation - A test for scattering approximations

    NASA Technical Reports Server (NTRS)

    Acquista, C.; Holland, A. C.

    1980-01-01

    The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.

  15. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    PubMed Central

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  16. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics

    PubMed Central

    Chen, Wenan; Larrabee, Beth R.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Haralambieva, Iana H.; Poland, Gregory A.; Schaid, Daniel J.

    2015-01-01

    Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564

  17. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.

    PubMed

    Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J

    2015-07-01

    Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. Copyright © 2015 by the Genetics Society of America.

  18. Stochastic approximation methods-Powerful tools for simulation and optimization: A survey of some recent work on multi-agent systems and cyber-physical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, George; Wang, Le Yi; Zhang, Hongwei

    2014-12-10

    Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomlymore » switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided.« less

  19. Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps

    DOE PAGES

    Isotalo, Aarno; Pusa, Maria

    2016-05-01

    The Chebyshev Rational Approximation Method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant sub-steps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the LU decompositions for the linear solves required in CRAM only need to be formed on the first substep. Themore » improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. Lastly, with substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.« less

  20. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  1. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  2. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  3. Practical approximation method for firing-rate models of coupled neural networks with correlated inputs

    NASA Astrophysics Data System (ADS)

    Barreiro, Andrea K.; Ly, Cheng

    2017-08-01

    Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.

  4. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  5. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  6. Empirical comparison study of approximate methods for structure selection in binary graphical models.

    PubMed

    Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel

    2014-03-01

    Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mean-field approximation for spacing distribution functions in classical systems

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-01-01

    We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.

  8. The closure approximation in the hierarchy equations.

    NASA Technical Reports Server (NTRS)

    Adomian, G.

    1971-01-01

    The expectation of the solution process in a stochastic operator equation can be obtained from averaged equations only under very special circumstances. Conditions for validity are given and the significance and validity of the approximation in widely used hierarchy methods and the ?self-consistent field' approximation in nonequilibrium statistical mechanics are clarified. The error at any level of the hierarchy can be given and can be avoided by the use of the iterative method.

  9. Mean-field approximation for spacing distribution functions in classical systems.

    PubMed

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T L

    2012-01-01

    We propose a mean-field method to calculate approximately the spacing distribution functions p((n))(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p((n))(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed. © 2012 American Physical Society

  10. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    NASA Astrophysics Data System (ADS)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  11. Inversion and approximation of Laplace transforms

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.

  12. Application of a computationally efficient method to approximate gap model results with a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Lischke, H.

    2014-07-01

    To be able to simulate climate change effects on forest dynamics over the whole of Switzerland, we adapted the second-generation DGVM (dynamic global vegetation model) LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) to the Alpine environment. We modified model functions, tuned model parameters, and implemented new tree species to represent the potential natural vegetation of Alpine landscapes. Furthermore, we increased the computational efficiency of the model to enable area-covering simulations in a fine resolution (1 km) sufficient for the complex topography of the Alps, which resulted in more than 32 000 simulation grid cells. To this aim, we applied the recently developed method GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) (Scherstjanoi et al., 2013) to LPJ-GUESS. GAPPARD derives mean output values from a combination of simulation runs without disturbances and a patch age distribution defined by the disturbance frequency. With this computationally efficient method, which increased the model's speed by approximately the factor 8, we were able to faster detect the shortcomings of LPJ-GUESS functions and parameters. We used the adapted LPJ-GUESS together with GAPPARD to assess the influence of one climate change scenario on dynamics of tree species composition and biomass throughout the 21st century in Switzerland. To allow for comparison with the original model, we additionally simulated forest dynamics along a north-south transect through Switzerland. The results from this transect confirmed the high value of the GAPPARD method despite some limitations towards extreme climatic events. It allowed for the first time to obtain area-wide, detailed high-resolution LPJ-GUESS simulation results for a large part of the Alpine region.

  13. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  14. On the origins of approximations for stochastic chemical kinetics.

    PubMed

    Haseltine, Eric L; Rawlings, James B

    2005-10-22

    This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.

  15. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  16. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  17. An outer approximation method for the road network design problem

    PubMed Central

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111

  18. An outer approximation method for the road network design problem.

    PubMed

    Asadi Bagloee, Saeed; Sarvi, Majid

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.

  19. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  20. A Gaussian-based rank approximation for subspace clustering

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Peng, Chong; Hu, Yunhong; He, Guoping

    2018-04-01

    Low-rank representation (LRR) has been shown successful in seeking low-rank structures of data relationships in a union of subspaces. Generally, LRR and LRR-based variants need to solve the nuclear norm-based minimization problems. Beyond the success of such methods, it has been widely noted that the nuclear norm may not be a good rank approximation because it simply adds all singular values of a matrix together and thus large singular values may dominant the weight. This results in far from satisfactory rank approximation and may degrade the performance of lowrank models based on the nuclear norm. In this paper, we propose a novel nonconvex rank approximation based on the Gaussian distribution function, which has demanding properties to be a better rank approximation than the nuclear norm. Then a low-rank model is proposed based on the new rank approximation with application to motion segmentation. Experimental results have shown significant improvements and verified the effectiveness of our method.

  1. The effect of Fisher information matrix approximation methods in population optimal design calculations.

    PubMed

    Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C

    2016-12-01

    With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.

  2. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  3. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  4. Decentralized Bayesian search using approximate dynamic programming methods.

    PubMed

    Zhao, Yijia; Patek, Stephen D; Beling, Peter A

    2008-08-01

    We consider decentralized Bayesian search problems that involve a team of multiple autonomous agents searching for targets on a network of search points operating under the following constraints: 1) interagent communication is limited; 2) the agents do not have the opportunity to agree in advance on how to resolve equivalent but incompatible strategies; and 3) each agent lacks the ability to control or predict with certainty the actions of the other agents. We formulate the multiagent search-path-planning problem as a decentralized optimal control problem and introduce approximate dynamic heuristics that can be implemented in a decentralized fashion. After establishing some analytical properties of the heuristics, we present computational results for a search problem involving two agents on a 5 x 5 grid.

  5. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  6. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  7. Computational Modeling of Proteins based on Cellular Automata: A Method of HP Folding Approximation.

    PubMed

    Madain, Alia; Abu Dalhoum, Abdel Latif; Sleit, Azzam

    2018-06-01

    The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic-hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H-H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H's at even positions and the other side ignores H's at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H-H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.

  8. Approximated maximum likelihood estimation in multifractal random walks

    NASA Astrophysics Data System (ADS)

    Løvsletten, O.; Rypdal, M.

    2012-04-01

    We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.

  9. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    PubMed

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  10. Approximate cluster analysis method and three-dimensional diagram of optical characteristics of lunar surface

    NASA Astrophysics Data System (ADS)

    Yevsyukov, N. N.

    1985-09-01

    An approximate isolation algorithm for the isolation of multidimensional clusters is developed and applied in the construction of a three-dimensional diagram of the optical characteristics of the lunar surface. The method is somewhat analogous to that of Koontz and Fukunaga (1972) and involves isolating two-dimensional clusters, adding a new characteristic, and linearizing, a cycle which is repeated a limited number of times. The lunar-surface parameters analyzed are the 620-nm albedo, the 620/380-nm color index, and the 950/620-nm index. The results are presented graphically; the reliability of the cluster-isolation process is discussed; and some correspondences between known lunar morphology and the cluster maps are indicated.

  11. Approximate isotropic cloak for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Ghosh, Tuhin; Tarikere, Ashwin

    2018-05-01

    We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.

  12. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  13. A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach

    NASA Astrophysics Data System (ADS)

    Wu, Dongmei; Wang, Zhongcheng

    2006-03-01

    According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting approximation y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain approximate coefficients of approximation y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical approximations, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method

  14. The blind leading the blind: Mutual refinement of approximate theories

    NASA Technical Reports Server (NTRS)

    Kedar, Smadar T.; Bresina, John L.; Dent, C. Lisa

    1991-01-01

    The mutual refinement theory, a method for refining world models in a reactive system, is described. The method detects failures, explains their causes, and repairs the approximate models which cause the failures. The approach focuses on using one approximate model to refine another.

  15. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  16. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase.

    PubMed

    Rossi, Mariana; Liu, Hanchao; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele

    2014-11-14

    Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks D2O doped with HOD and pure H2O at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm(-1). Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.

  17. A new method to approximate load-displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine.

    PubMed

    Jalalian, Athena; Tay, Francis E H; Arastehfar, Soheil; Liu, Gabriel

    2017-06-01

    Load-displacement relationships of spinal motion segments are crucial factors in characterizing the stiffness of scoliotic spine models to mimic the spine responses to loads. Although nonlinear approach to approximation of the relationships can be superior to linear ones, little mention has been made to deriving personalized nonlinear load-displacement relationships in previous studies. A method is developed for nonlinear approximation of load-displacement relationships of spinal motion segments to assist characterizing in vivo the stiffness of spine models. We propose approximation by tangent functions and focus on rotational displacements in lateral direction. The tangent functions are characterized using lateral bending test. A multi-body model was characterized to 18 patients and utilized to simulate four spine positions; right bending, left bending, neutral, and traction. The same was done using linear functions to assess the performance of the proposed tangent function in comparison with the linear function. Root-mean-square error (RMSE) of the displacements estimated by the tangent functions was 44 % smaller than the linear functions. This shows the ability of our tangent function in approximation of the relationships for a range of infinitesimal to large displacements involved in the spine movement to the four positions. In addition, the models based on the tangent functions yielded 67, 55, and 39 % smaller RMSEs of Ferguson angles, locations of vertebrae, and orientations of vertebrae, respectively, implying better estimates of spine responses to loads. Overall, it can be concluded that our method for approximating load-displacement relationships of spinal motion segments can offer good estimates of scoliotic spine stiffness.

  18. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  19. A continued fraction resummation form of bath relaxation effect in the spin-boson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn

    2015-02-28

    In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.

  20. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    PubMed

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  1. New approximate orientation averaging of the water molecule interacting with the thermal neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, M.I.; Minic, D.M.; Rakic, A.D.

    1992-02-01

    This paper reports that exactly describing the time of thermal neutron collisions with water molecules, orientation averaging is performed by an exact method (EOA{sub k}) and four approximate methods (two well known and two less known). Expressions for the microscopic scattering kernel are developed. The two well-known approximate orientation averaging methods are Krieger-Nelkin (K-N) and Koppel-Young (K-Y). The results obtained by one of the two proposed approximate orientation averaging methods agree best with the corresponding results obtained by EOA{sub k}. The largest discrepancies between the EOA{sub k} results and the results of the approximate methods are obtained using the well-knowmore » K-N approximate orientation averaging method.« less

  2. On Born approximation in black hole scattering

    NASA Astrophysics Data System (ADS)

    Batic, D.; Kelkar, N. G.; Nowakowski, M.

    2011-12-01

    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.

  3. Application of improved Vogel’s approximation method in minimization of rice distribution costs of Perum BULOG

    NASA Astrophysics Data System (ADS)

    Nahar, J.; Rusyaman, E.; Putri, S. D. V. E.

    2018-03-01

    This research was conducted at Perum BULOG Sub-Divre Medan which is the implementing institution of Raskin program for several regencies and cities in North Sumatera. Raskin is a program of distributing rice to the poor. In order to minimize rice distribution costs then rice should be allocated optimally. The method used in this study consists of the Improved Vogel Approximation Method (IVAM) to analyse the initial feasible solution, and Modified Distribution (MODI) to test the optimum solution. This study aims to determine whether the IVAM method can provide savings or cost efficiency of rice distribution. From the calculation with IVAM obtained the optimum cost is lower than the company's calculation of Rp945.241.715,5 while the cost of the company's calculation of Rp958.073.750,40. Thus, the use of IVAM can save rice distribution costs of Rp12.832.034,9.

  4. A result about scale transformation families in approximation

    NASA Astrophysics Data System (ADS)

    Apprato, Dominique; Gout, Christian

    2000-06-01

    Scale transformations are common in approximation. In surface approximation from rapidly varying data, one wants to suppress, or at least dampen the oscillations of the approximation near steep gradients implied by the data. In that case, scale transformations can be used to give some control over overshoot when the surface has large variations of its gradient. Conversely, in image analysis, scale transformations are used in preprocessing to enhance some features present on the image or to increase jumps of grey levels before segmentation of the image. In this paper, we establish the convergence of an approximation method which allows some control over the behavior of the approximation. More precisely, we study the convergence of an approximation from a data set of , while using scale transformations on the values before and after classical approximation. In addition, the construction of scale transformations is also given. The algorithm is presented with some numerical examples.

  5. Approximation methods for inverse problems involving the vibration of beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.

  6. Identification of approximately duplicate material records in ERP systems

    NASA Astrophysics Data System (ADS)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  7. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  8. Karhunen Loève approximation of random fields by generalized fast multipole methods

    NASA Astrophysics Data System (ADS)

    Schwab, Christoph; Todor, Radu Alexandru

    2006-09-01

    KL approximation of a possibly instationary random field a( ω, x) ∈ L2( Ω, d P; L∞( D)) subject to prescribed meanfield Ea(x)=∫a(ω,x) dP(ω) and covariance Va(x,x')=∫(a(ω,x)-Ea(x))(a(ω,x')-Ea(x')) dP(ω) in a polyhedral domain D⊂Rd is analyzed. We show how for stationary covariances Va( x, x') = ga(| x - x'|) with ga( z) analytic outside of z = 0, an M-term approximate KL-expansion aM( ω, x) of a( ω, x) can be computed in log-linear complexity. The approach applies in arbitrary domains D and for nonseparable covariances Ca. It involves Galerkin approximation of the KL eigenvalue problem by discontinuous finite elements of degree p ⩾ 0 on a quasiuniform, possibly unstructured mesh of width h in D, plus a generalized fast multipole accelerated Krylov-Eigensolver. The approximate KL-expansion aM( x, ω) of a( x, ω) has accuracy O(exp(- bM1/ d)) if ga is analytic at z = 0 and accuracy O( M- k/ d) if ga is Ck at zero. It is obtained in O( MN(log N) b) operations where N = O( h- d).

  9. Cost-effectiveness of ward-based pharmacy care in surgical patients: protocol of the SUREPILL (Surgery & Pharmacy In Liaison) study.

    PubMed

    de Boer, Monica; Ramrattan, Maya A; Kiewiet, Jordy J S; Boeker, Eveline B; Gombert-Handoko, Kim B; van Lent-Evers, Nicolette A E M; Kuks, Paul F; Dijkgraaf, Marcel G W; Boermeester, Marja A; Lie-A-Huen, Loraine

    2011-03-07

    Preventable adverse drug events (pADEs) are widely known to be a health care issue for hospitalized patients. Surgical patients are especially at risk, but prevention of pADEs in this population is not demonstrated before. Ward-based pharmacy interventions seem effective in reducing pADEs in medical patients. The cost-effectiveness of these preventive efforts still needs to be assessed in a comparative study of high methodological standard and also in the surgical population. For these aims the SUREPILL (Surgery & Pharmacy in Liaison) study is initiated. A multi-centre controlled trial, with randomisation at ward-level and preceding baseline assessments is designed. Patients admitted to the surgical study wards for elective surgery with an expected length of stay of more than 48 hours will be included. Patients admitted to the intervention ward, will receive ward-based pharmacy care from the clinical pharmacy team, i.e. pharmacy practitioners and hospital pharmacists. This ward-based pharmacy intervention includes medication reconciliation in consultation with the patient at admission, daily medication review with face-to-face contact with the ward doctor, and patient counselling at discharge. Patients admitted in the control ward, will receive standard pharmaceutical care.The primary clinical outcome measure is the number of pADEs per 100 elective admissions. These pADEs will be measured by systematic patient record evaluation using a trigger tool. Patient records positive for a trigger will be evaluated on causality, severity and preventability by an independent expert panel. In addition, an economic evaluation will be performed from a societal perspective with the costs per preventable ADE as the primary economic outcome. Other outcomes of this study are: severity of pADEs, number of patients with pADEs per total number of admissions, direct (non-)medical costs and indirect non-medical costs, extra costs per prevented ADE, number and type of pharmacy

  10. Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene J. W.; Kenny, Sean P.

    1991-01-01

    A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.

  11. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Zaky, M. A.

    2015-01-01

    In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.

  12. Application of vector-valued rational approximations to the matrix eigenvalue problem and connections with Krylov subspace methods

    NASA Technical Reports Server (NTRS)

    Sidi, Avram

    1992-01-01

    Let F(z) be a vectored-valued function F: C approaches C sup N, which is analytic at z=0 and meromorphic in a neighborhood of z=0, and let its Maclaurin series be given. We use vector-valued rational approximation procedures for F(z) that are based on its Maclaurin series in conjunction with power iterations to develop bona fide generalizations of the power method for an arbitrary N X N matrix that may be diagonalizable or not. These generalizations can be used to obtain simultaneously several of the largest distinct eigenvalues and the corresponding invariant subspaces, and present a detailed convergence theory for them. In addition, it is shown that the generalized power methods of this work are equivalent to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the theory provides a set of completely new results and constructions for these Krylov subspace methods. This theory suggests at the same time a new mode of usage for these Krylov subspace methods that were observed to possess computational advantages over their common mode of usage.

  13. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  14. Engine With Regression and Neural Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).

  15. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  16. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  17. Approximation method for determining the static stability of a monoplane glider

    NASA Technical Reports Server (NTRS)

    Lippisch, A

    1927-01-01

    The calculations in this paper afford an approximate solution of the static stability. A derivation of the formulas for moment coefficient of a wing, moment coefficient of elevator, and the total moment of the combined wing and elevator and the moment coefficient with reference to the center of gravity are provided.

  18. Approximate Green's function methods for HZE transport in multilayered materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  19. Method for making 2-electron response reduced density matrices approximately N-representable

    NASA Astrophysics Data System (ADS)

    Lanssens, Caitlin; Ayers, Paul W.; Van Neck, Dimitri; De Baerdemacker, Stijn; Gunst, Klaas; Bultinck, Patrick

    2018-02-01

    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schrödinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not N-representable. That is, the response 2-RDM does not correspond to an actual physical N-electron wave function. We present a new algorithm for making these non-N-representable 2-RDMs approximately N-representable, i.e., it has the right symmetry and normalization and it fulfills the P-, Q-, and G-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties which is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between this initial response 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, Q-matrix, and G-matrix are positive semidefinite, i.e., their eigenvalues are non-negative. Our method is suitable for fixing non-N-representable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.

  20. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less

  1. ALGORITHM TO REDUCE APPROXIMATION ERROR FROM THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD APPLIED TO SOIL FREEZING.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1985-01-01

    An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.

  2. Approximation of reliabilities for multiple-trait model with maternal effects.

    PubMed

    Strabel, T; Misztal, I; Bertrand, J K

    2001-04-01

    Reliabilities for a multiple-trait maternal model were obtained by combining reliabilities obtained from single-trait models. Single-trait reliabilities were obtained using an approximation that supported models with additive and permanent environmental effects. For the direct effect, the maternal and permanent environmental variances were assigned to the residual. For the maternal effect, variance of the direct effect was assigned to the residual. Data included 10,550 birth weight, 11,819 weaning weight, and 3,617 postweaning gain records of Senepol cattle. Reliabilities were obtained by generalized inversion and by using single-trait and multiple-trait approximation methods. Some reliabilities obtained by inversion were negative because inbreeding was ignored in calculating the inverse of the relationship matrix. The multiple-trait approximation method reduced the bias of approximation when compared with the single-trait method. The correlations between reliabilities obtained by inversion and by multiple-trait procedures for the direct effect were 0.85 for birth weight, 0.94 for weaning weight, and 0.96 for postweaning gain. Correlations for maternal effects for birth weight and weaning weight were 0.96 to 0.98 for both approximations. Further improvements can be achieved by refining the single-trait procedures.

  3. Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.

    PubMed

    Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong

    2016-06-01

    Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature.

    PubMed

    Nguyen, Phuong H; Derreumaux, Philippe

    2012-01-14

    One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by overestimating entropy for systems with rugged free energy landscapes. Here, we propose a simple method to improve the QH approximation, i.e., to reduce QH entropy. We approximate the potential energy landscape of the system by an effective harmonic potential, and request that this potential must produce exactly the configurational temperature of the system. Due to this constraint, the force constants associated with the effective harmonic potential are increased, or equivalently, entropy of motion governed by this effective harmonic potential is reduced. We also introduce the effective configurational temperature concept which can be used as an indicator to check the anharmonicity of the free energy landscape. To validate the new method we compare it with the recently developed expansion approximate method by calculating entropy of one simple model system and two peptides with 3 and 16 amino acids either in gas phase or in explicit solvent. We show that the new method appears to be a good choice in practice as it is a compromise between accuracy and computational speed. A modification of the expansion approximate method is also introduced and advantages are discussed in some detail.

  5. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  6. The unitary convolution approximation for heavy ions

    NASA Astrophysics Data System (ADS)

    Grande, P. L.; Schiwietz, G.

    2002-10-01

    The convolution approximation for the impact-parameter dependent energy loss is reviewed with emphasis on the determination of the stopping force for heavy projectiles. In this method, the energy loss in different impact-parameter regions is well determined and interpolated smoothly. The physical inputs of the model are the projectile-screening function (in the case of dressed ions), the electron density and oscillators strengths of the target atoms. Moreover, the convolution approximation, in the perturbative mode (called PCA), yields remarkable agreement with full semi-classical-approximation (SCA) results for bare as well as for screened ions at all impact parameters. In the unitary mode (called UCA), the method contains some higher-order effects (yielding in some cases rather good agreement with full coupled-channel calculations) and approaches the classical regime similar as the Bohr model for large perturbations ( Z/ v≫1). The results are then used to compare with experimental values of the non-equilibrium stopping force as a function of the projectile charge as well as with the equilibrium energy loss under non-aligned and channeling conditions.

  7. Cosmological collapse and the improved Zel'dovich approximation.

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.

    Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.

  8. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

    2009-12-01

    A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.

  9. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σ c(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  10. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  11. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  12. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques

    NASA Astrophysics Data System (ADS)

    Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric

    2007-02-01

    We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.

  13. Incomplete Sparse Approximate Inverses for Parallel Preconditioning

    DOE PAGES

    Anzt, Hartwig; Huckle, Thomas K.; Bräckle, Jürgen; ...

    2017-10-28

    In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as anmore » attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.« less

  14. Spline methods for approximating quantile functions and generating random samples

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1985-01-01

    Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.

  15. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.

    PubMed

    Liu, Haofei; Sun, Wei

    2017-08-01

    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  16. Approximation Set of the Interval Set in Pawlak's Space

    PubMed Central

    Wang, Jin; Wang, Guoyin

    2014-01-01

    The interval set is a special set, which describes uncertainty of an uncertain concept or set Z with its two crisp boundaries named upper-bound set and lower-bound set. In this paper, the concept of similarity degree between two interval sets is defined at first, and then the similarity degrees between an interval set and its two approximations (i.e., upper approximation set R¯(Z) and lower approximation set R_(Z)) are presented, respectively. The disadvantages of using upper-approximation set R¯(Z) or lower-approximation set R_(Z) as approximation sets of the uncertain set (uncertain concept) Z are analyzed, and a new method for looking for a better approximation set of the interval set Z is proposed. The conclusion that the approximation set R 0.5(Z) is an optimal approximation set of interval set Z is drawn and proved successfully. The change rules of R 0.5(Z) with different binary relations are analyzed in detail. Finally, a kind of crisp approximation set of the interval set Z is constructed. We hope this research work will promote the development of both the interval set model and granular computing theory. PMID:25177721

  17. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  18. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  19. Recent results of nonlinear estimators applied to hereditary systems.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    An application of the extended Kalman filter to delayed systems to estimate the state and time delay is presented. Two nonlinear estimators are discussed and the results compared with those of the Kalman filter. For all the filters considered, the hereditary system was treated with the delay in the pure form and by using Pade approximations of the delay. A summary of the convergence properties of the filters studied is given. The results indicate that the linear filter applied to the delayed system performs inadequately while the nonlinear filters provide reasonable estimates of both the state and the parameters.

  20. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  1. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, ourmore » FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.« less

  2. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.; Watson, Layne T.

    1998-01-01

    Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.

  3. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  4. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  5. Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods

    NASA Technical Reports Server (NTRS)

    Good, Brian; Chaka, Anne; Bozzolo, Guillermo

    2003-01-01

    Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects

  6. An Approximate Dissipation Function for Large Strain Rubber Thermo-Mechanical Analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2003-01-01

    Mechanically induced viscoelastic dissipation is difficult to compute. When the constitutive model is defined by history integrals, the formula for dissipation is a double convolution integral. Since double convolution integrals are difficult to approximate, coupled thermo-mechanical analyses of highly viscous rubber-like materials cannot be made with most commercial finite element software. In this study, we present a method to approximate the dissipation for history integral constitutive models that represent Maxwell-like materials without approximating the double convolution integral. The method requires that the total stress can be separated into elastic and viscous components, and that the relaxation form of the constitutive law is defined with a Prony series. Numerical data is provided to demonstrate the limitations of this approximate method for determining dissipation. Rubber cylinders with imbedded steel disks and with an imbedded steel ball are dynamically loaded, and the nonuniform heating within the cylinders is computed.

  7. Scattering from very rough layers under the geometric optics approximation: further investigation.

    PubMed

    Pinel, Nicolas; Bourlier, Christophe

    2008-06-01

    Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approximation, recently developed by Pinel et al. [Waves Random Complex Media17, 283 (2007)] and reduced to the geometric optics approximation, is used and investigated in more detail. The contributions from the higher orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method, recently developed by Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)], and accelerated by the forward-backward method with spectral acceleration. They highlight that there is very good agreement between the developed method and the reference numerical method for all scattering orders and that the method can be applied to root-mean-square (RMS) heights at least down to 0.25lambda.

  8. Approximate solution of coupled cluster equations: application to the coupled cluster doubles method and non-covalent interacting systems.

    PubMed

    Smiga, Szymon; Fabiano, Eduardo

    2017-11-15

    We have developed a simplified coupled cluster (SCC) methodology, using the basic idea of scaled MP2 methods. The scheme has been applied to the coupled cluster double equations and implemented in three different non-iterative variants. This new method (especially the SCCD[3] variant, which utilizes a spin-resolved formalism) has been found to be very efficient and to yield an accurate approximation of the reference CCD results for both total and interaction energies of different atoms and molecules. Furthermore, we demonstrate that the equations determining the scaling coefficients for the SCCD[3] approach can generate non-empirical SCS-MP2 scaling coefficients which are in good agreement with previous theoretical investigations.

  9. Analytic approximation for random muffin-tin alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, R.; Gray, L.J.; Kaplan, T.

    1983-03-15

    The methods introduced in a previous paper under the name of ''traveling-cluster approximation'' (TCA) are applied, in a multiple-scattering approach, to the case of a random muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calculation to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-shell components of the mean resolvent, needed for the calculation of spectral functions, are obtained by standard methods involving single-site scattering wave functions. The single-site TCA is just the usual coherent-potential approximation, expressed in a form particularly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA, ensuringmore » convergence upon iteration to a unique self-consistent solution with the physically essential Herglotz properties.« less

  10. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level

    NASA Astrophysics Data System (ADS)

    Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky

    2018-03-01

    The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.

  11. Best uniform approximation to a class of rational functions

    NASA Astrophysics Data System (ADS)

    Zheng, Zhitong; Yong, Jun-Hai

    2007-10-01

    We explicitly determine the best uniform polynomial approximation to a class of rational functions of the form 1/(x-c)2+K(a,b,c,n)/(x-c) on [a,b] represented by their Chebyshev expansion, where a, b, and c are real numbers, n-1 denotes the degree of the best approximating polynomial, and K is a constant determined by a, b, c, and n. Our result is based on the explicit determination of a phase angle [eta] in the representation of the approximation error by a trigonometric function. Moreover, we formulate an ansatz which offers a heuristic strategies to determine the best approximating polynomial to a function represented by its Chebyshev expansion. Combined with the phase angle method, this ansatz can be used to find the best uniform approximation to some more functions.

  12. Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...

    2016-08-04

    This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less

  13. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection.

    PubMed

    Ozkan, Gokhan; Guzel, Kadriye Gorkem Ulu

    2017-08-01

    The objective of this clinical study was to compare conventional caries detection techniques, pen-type laser fluorescence device, and near-infrared light transillumination method in approximal dentin caries lesions. The study included 157 patients, aged 12-18, without any cavity in the posterior teeth. Two calibrated examiners carried out the assessments of selected approximal caries sites independently. After the assessments, the unopened sites were excluded and a total of 161 approximal sites were included in the study. When both the examiners arrived at a consensus regarding the presence of dentin caries, the detected lesions were opened with a conical diamond burr, the cavity extent was examined and validated (gold standard). Sensitivity, specificity, negative predictive value, positive predictive value, accuracy, and area under the ROC curve (Az) values among the caries detection methods were calculated. Bitewing radiography and near-infrared (NIR) light transillumination methods showed the highest sensitivity (0.83-0.82) and accuracy (0.82-0.80) among the methods. Visual inspection showed the lowest sensitivity (0.54). Laser fluorescence device and visual inspection showed nearly equal performance. Near-infrared light transillumination can be used as an alternative method to approximal dentin caries detection. Visual inspection and laser fluorescence device alone should not be used for approximal dentin caries.

  14. Approximation of reliability of direct genomic breeding values

    USDA-ARS?s Scientific Manuscript database

    Two methods to efficiently approximate theoretical genomic reliabilities are presented. The first method is based on the direct inverse of the left hand side (LHS) of mixed model equations. It uses the genomic relationship matrix for a small subset of individuals with the highest genomic relationshi...

  15. Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses.

    PubMed

    Gu, Xin; Mulder, Joris; Hoijtink, Herbert

    2018-05-01

    Informative hypotheses are increasingly being used in psychological sciences because they adequately capture researchers' theories and expectations. In the Bayesian framework, the evaluation of informative hypotheses often makes use of default Bayes factors such as the fractional Bayes factor. This paper approximates and adjusts the fractional Bayes factor such that it can be used to evaluate informative hypotheses in general statistical models. In the fractional Bayes factor a fraction parameter must be specified which controls the amount of information in the data used for specifying an implicit prior. The remaining fraction is used for testing the informative hypotheses. We discuss different choices of this parameter and present a scheme for setting it. Furthermore, a software package is described which computes the approximated adjusted fractional Bayes factor. Using this software package, psychological researchers can evaluate informative hypotheses by means of Bayes factors in an easy manner. Two empirical examples are used to illustrate the procedure. © 2017 The British Psychological Society.

  16. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  17. Approximate symmetries of Hamiltonians

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  18. Finite state modeling of aeroelastic systems

    NASA Technical Reports Server (NTRS)

    Vepa, R.

    1977-01-01

    A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.

  19. Geometrical-optics approximation of forward scattering by coated particles.

    PubMed

    Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang

    2004-03-20

    By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.

  20. Approximate l-fold cross-validation with Least Squares SVM and Kernel Ridge Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Richard E; Zhang, Hao; Parker, Lynne Edwards

    2013-01-01

    Kernel methods have difficulties scaling to large modern data sets. The scalability issues are based on computational and memory requirements for working with a large matrix. These requirements have been addressed over the years by using low-rank kernel approximations or by improving the solvers scalability. However, Least Squares Support VectorMachines (LS-SVM), a popular SVM variant, and Kernel Ridge Regression still have several scalability issues. In particular, the O(n^3) computational complexity for solving a single model, and the overall computational complexity associated with tuning hyperparameters are still major problems. We address these problems by introducing an O(n log n) approximate l-foldmore » cross-validation method that uses a multi-level circulant matrix to approximate the kernel. In addition, we prove our algorithm s computational complexity and present empirical runtimes on data sets with approximately 1 million data points. We also validate our approximate method s effectiveness at selecting hyperparameters on real world and standard benchmark data sets. Lastly, we provide experimental results on using a multi-level circulant kernel approximation to solve LS-SVM problems with hyperparameters selected using our method.« less

  1. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  2. Speed-up of the volumetric method of moments for the approximate RCS of large arbitrary-shaped dielectric targets

    NASA Astrophysics Data System (ADS)

    Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe

    2017-08-01

    A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.

  3. Big geo data surface approximation using radial basis functions: A comparative study

    NASA Astrophysics Data System (ADS)

    Majdisova, Zuzana; Skala, Vaclav

    2017-12-01

    Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.

  4. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times.

    PubMed

    dos Reis, Mario; Yang, Ziheng

    2011-07-01

    The molecular clock provides a powerful way to estimate species divergence times. If information on some species divergence times is available from the fossil or geological record, it can be used to calibrate a phylogeny and estimate divergence times for all nodes in the tree. The Bayesian method provides a natural framework to incorporate different sources of information concerning divergence times, such as information in the fossil and molecular data. Current models of sequence evolution are intractable in a Bayesian setting, and Markov chain Monte Carlo (MCMC) is used to generate the posterior distribution of divergence times and evolutionary rates. This method is computationally expensive, as it involves the repeated calculation of the likelihood function. Here, we explore the use of Taylor expansion to approximate the likelihood during MCMC iteration. The approximation is much faster than conventional likelihood calculation. However, the approximation is expected to be poor when the proposed parameters are far from the likelihood peak. We explore the use of parameter transforms (square root, logarithm, and arcsine) to improve the approximation to the likelihood curve. We found that the new methods, particularly the arcsine-based transform, provided very good approximations under relaxed clock models and also under the global clock model when the global clock is not seriously violated. The approximation is poorer for analysis under the global clock when the global clock is seriously wrong and should thus not be used. The results suggest that the approximate method may be useful for Bayesian dating analysis using large data sets.

  5. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    PubMed

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  6. An empirical method for approximating stream baseflow time series using groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May

    2014-11-01

    Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.

  7. Adaptive control using neural networks and approximate models.

    PubMed

    Narendra, K S; Mukhopadhyay, S

    1997-01-01

    The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.

  8. ASP: Automated symbolic computation of approximate symmetries of differential equations

    NASA Astrophysics Data System (ADS)

    Jefferson, G. F.; Carminati, J.

    2013-03-01

    A recent paper (Pakdemirli et al. (2004) [12]) compared three methods of determining approximate symmetries of differential equations. Two of these methods are well known and involve either a perturbation of the classical Lie symmetry generator of the differential system (Baikov, Gazizov and Ibragimov (1988) [7], Ibragimov (1996) [6]) or a perturbation of the dependent variable/s and subsequent determination of the classical Lie point symmetries of the resulting coupled system (Fushchych and Shtelen (1989) [11]), both up to a specified order in the perturbation parameter. The third method, proposed by Pakdemirli, Yürüsoy and Dolapçi (2004) [12], simplifies the calculations required by Fushchych and Shtelen's method through the assignment of arbitrary functions to the non-linear components prior to computing symmetries. All three methods have been implemented in the new MAPLE package ASP (Automated Symmetry Package) which is an add-on to the MAPLE symmetry package DESOLVII (Vu, Jefferson and Carminati (2012) [25]). To our knowledge, this is the first computer package to automate all three methods of determining approximate symmetries for differential systems. Extensions to the theory have also been suggested for the third method and which generalise the first method to systems of differential equations. Finally, a number of approximate symmetries and corresponding solutions are compared with results in the literature.

  9. Approximating genomic reliabilities for national genomic evaluation

    USDA-ARS?s Scientific Manuscript database

    With the introduction of standard methods for approximating effective daughter/data contribution by Interbull in 2001, conventional EDC or reliabilities contributed by daughter phenotypes are directly comparable across countries and used in routine conventional evaluations. In order to make publishe...

  10. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  11. Approximate method for predicting the permanent set in a beam in vacuo and in water subject to a shock wave

    NASA Technical Reports Server (NTRS)

    Stiehl, A. L.; Haberman, R. C.; Cowles, J. H.

    1988-01-01

    An approximate method to compute the maximum deformation and permanent set of a beam subjected to shock wave laoding in vacuo and in water was investigated. The method equates the maximum kinetic energy of the beam (and water) to the elastic plastic work done by a static uniform load applied to a beam. Results for the water case indicate that the plastic deformation is controlled by the kinetic energy of the water. The simplified approach can result in significant savings in computer time or it can expediently be used as a check of results from a more rigorous approach. The accuracy of the method is demonstrated by various examples of beams with simple support and clamped support boundary conditions.

  12. The Approximate Bayesian Computation methods in the localization of the atmospheric contamination source

    NASA Astrophysics Data System (ADS)

    Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.

    2015-09-01

    In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.

  13. Blocking performance approximation in flexi-grid networks

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Tan, Liansheng

    2016-12-01

    The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.

  14. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  15. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  16. Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation

    NASA Astrophysics Data System (ADS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes

    2014-09-01

    A modification to the Rayleigh-Gans approximation is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans approximation and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans approximation is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans approximation. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans approximation is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans approximation in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.

  17. Designing quantum information processing via structural physical approximation.

    PubMed

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  18. Designing quantum information processing via structural physical approximation

    NASA Astrophysics Data System (ADS)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  19. Approximate Model Checking of PCTL Involving Unbounded Path Properties

    NASA Astrophysics Data System (ADS)

    Basu, Samik; Ghosh, Arka P.; He, Ru

    We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as PCTL formulas. Such approximate methods have been proposed primarily to deal with state-space explosion that makes the exact model checking by numerical methods practically infeasible for large systems. However, the existing statistical methods either consider a restricted subset of PCTL, specifically, the subset that can only express bounded until properties; or rely on user-specified finite bound on the sample path length. We propose a new method that does not have such restrictions and can be effectively used to reason about unbounded until properties. We approximate probabilistic characteristics of an unbounded until property by that of a bounded until property for a suitably chosen value of the bound. In essence, our method is a two-phase process: (a) the first phase is concerned with identifying the bound k 0; (b) the second phase computes the probability of satisfying the k 0-bounded until property as an estimate for the probability of satisfying the corresponding unbounded until property. In both phases, it is sufficient to verify bounded until properties which can be effectively done using existing statistical techniques. We prove the correctness of our technique and present its prototype implementations. We empirically show the practical applicability of our method by considering different case studies including a simple infinite-state model, and large finite-state models such as IPv4 zeroconf protocol and dining philosopher protocol modeled as Discrete Time Markov chains.

  20. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Neese, Frank

    2013-07-01

    The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.

  1. Boson expansions based on the random phase approximation representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrocchi, V.G.; Tamura, T.

    1984-04-01

    A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.

  2. UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1985-01-01

    This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.

  3. Minimal-Approximation-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2016-12-01

    A decentralized adaptive backstepping control design using minimal function approximators is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function approximator, without requiring the use of multiple function approximators and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function approximator. Thus, the proposed approach only uses one function approximator to implement each local controller, while existing decentralized backstepping control methods require the number of function approximators equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.

  4. On the stability analysis of approximate factorization methods for 3D Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1993-01-01

    The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.

  5. Wavelets and distributed approximating functionals

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Kouri, D. J.; Hoffman, D. K.

    1998-07-01

    A general procedure is proposed for constructing father and mother wavelets that have excellent time-frequency localization and can be used to generate entire wavelet families for use as wavelet transforms. One interesting feature of our father wavelets (scaling functions) is that they belong to a class of generalized delta sequences, which we refer to as distributed approximating functionals (DAFs). We indicate this by the notation wavelet-DAFs. Correspondingly, the mother wavelets generated from these wavelet-DAFs are appropriately called DAF-wavelets. Wavelet-DAFs can be regarded as providing a pointwise (localized) spectral method, which furnishes a bridge between the traditional global methods and local methods for solving partial differential equations. They are shown to provide extremely accurate numerical solutions for a number of nonlinear partial differential equations, including the Korteweg-de Vries (KdV) equation, for which a previous method has encountered difficulties (J. Comput. Phys. 132 (1997) 233).

  6. Quickly Approximating the Distance Between Two Objects

    NASA Technical Reports Server (NTRS)

    Hammen, David

    2009-01-01

    A method of quickly approximating the distance between two objects (one smaller, regarded as a point; the other larger and complexly shaped) has been devised for use in computationally simulating motions of the objects for the purpose of planning the motions to prevent collisions.

  7. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  8. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  9. Representation of the exact relativistic electronic Hamiltonian within the regular approximation

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-12-01

    The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent linear operators within the regular approximation. An effective relativistic Hamiltonian has been obtained, which yields in lowest order directly the infinite-order regular approximation (IORA) rather than the zeroth-order regular approximation method. Further perturbational expansion of the exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based on ordinary (IORAn) or double [IORAn(2)] perturbation theory (n: order of expansion), which provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3(2) are accurate up to c-20. Furthermore, IORA is improved by using the IORA wave function to calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The outstanding performance of this new IORA method coined scaled IORA is documented in atomic and molecular calculations.

  10. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  11. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  12. Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics

    ERIC Educational Resources Information Center

    Schlitt, D. W.

    1977-01-01

    Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)

  13. ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.

  14. Calculation of strange resonances from Kπ scattering

    NASA Astrophysics Data System (ADS)

    Rodas, A.; Peláez, J. R.; Ruiz de Elvira, J.

    2017-09-01

    We present a determination of the mass, width and coupling of the strange resonances appearing in pion-kaon scattering below 1.8 GeV, namely the much debated $K^*_0(800)$ or $\\kappa$, the scalar $K^*_0(1430)$, the $K^*(892)$ and $K^*(1410)$ vectors, the spin-two $K^*_2(1430)$ as well as the spin-three $K^*_3(1780)$. The parameters of each resonance are determined using a direct analytic continuation of the pion-kaon partial waves by means of Pad\\'e approximants, thus avoiding any particular model description of their pole positions and residues, while taking into account the analytic requirements imposed by dispersion relations.

  15. Order reduction of z-transfer functions via multipoint Jordan continued-fraction expansion

    NASA Technical Reports Server (NTRS)

    Lee, Ying-Chin; Hwang, Chyi; Shieh, Leang S.

    1992-01-01

    The order reduction problem of z-transfer functions is solved by using the multipoint Jordan continued-fraction expansion (MJCFE) technique. An efficient algorithm that does not require the use of complex algebra is presented for obtaining an MJCFE from a stable z-transfer function with expansion points selected from the unit circle and/or the positive real axis of the z-plane. The reduced-order models are exactly the multipoint Pade approximants of the original system and, therefore, they match the (weighted) time-moments of the impulse response and preserve the frequency responses of the system at some characteristic frequencies, such as gain crossover frequency, phase crossover frequency, bandwidth, etc.

  16. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  17. Data approximation using a blending type spline construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmo, Rune; Bratlie, Jostein

    2014-11-18

    Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less

  18. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method.

    PubMed

    Matveev, Alexei V; Rösch, Notker

    2008-06-28

    We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n

  19. A Varifold Approach to Surface Approximation

    NASA Astrophysics Data System (ADS)

    Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon

    2017-11-01

    We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method.

  20. Harmonic-phase path-integral approximation of thermal quantum correlation functions

    NASA Astrophysics Data System (ADS)

    Robertson, Christopher; Habershon, Scott

    2018-03-01

    We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.

  1. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  2. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition

    NASA Astrophysics Data System (ADS)

    Chen, Shuhong; Tan, Zhong

    2007-11-01

    In this paper, we consider the nonlinear elliptic systems under controllable growth condition. We use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. We extend previous partial regularity results under the natural growth condition to the case of the controllable growth condition, and directly establishing the optimal Hölder exponent for the derivative of a weak solution.

  3. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  4. Renormalization group analysis of the Reynolds stress transport equation

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Barton, J. M.

    1992-01-01

    The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately.

  5. New Method for the Approximation of Corrected Calcium Concentrations in Chronic Kidney Disease Patients.

    PubMed

    Kaku, Yoshio; Ookawara, Susumu; Miyazawa, Haruhisa; Ito, Kiyonori; Ueda, Yuichirou; Hirai, Keiji; Hoshino, Taro; Mori, Honami; Yoshida, Izumi; Morishita, Yoshiyuki; Tabei, Kaoru

    2016-02-01

    The following conventional calcium correction formula (Payne) is broadly applied for serum calcium estimation: corrected total calcium (TCa) (mg/dL) = TCa (mg/dL) + (4 - albumin (g/dL)); however, it is inapplicable to chronic kidney disease (CKD) patients. A total of 2503 venous samples were collected from 942 all-stage CKD patients, and levels of TCa (mg/dL), ionized calcium ([iCa(2+) ] mmol/L), phosphate (mg/dL), albumin (g/dL), and pH, and other clinical parameters were measured. We assumed corrected TCa (the gold standard) to be equal to eight times the iCa(2+) value (measured corrected TCa). Then, we performed stepwise multiple linear regression analysis by using the clinical parameters and derived a simple formula for corrected TCa approximation. The following formula was devised from multiple linear regression analysis: Approximated  corrected TCa (mg/dL) = TCa + 0.25 × (4 - albumin) + 4 × (7.4 - p H) + 0.1 × (6 - phosphate) + 0.3. Receiver operating characteristic curves analysis illustrated that area under the curve of approximated corrected TCa for detection of measured corrected TCa ≥ 8.4 mg/dL and ≤ 10.4 mg/dL were 0.994 and 0.919, respectively. The intraclass correlation coefficient demonstrated superior agreement using this new formula compared to other formulas (new formula: 0.826, Payne: 0.537, Jain: 0.312, Portale: 0.582, Ferrari: 0.362). In CKD patients, TCa correction should include not only albumin but also pH and phosphate. The approximated corrected TCa from this formula demonstrates superior agreement with the measured corrected TCa in comparison to other formulas. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  6. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  7. Application of a computationally efficient method to approximate gap model results with a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Lischke, H.

    2014-02-01

    To be able to simulate climate change effects on forest dynamics over the whole of Switzerland, we adapted the second generation DGVM LPJ-GUESS to the Alpine environment. We modified model functions, tuned model parameters, and implemented new tree species to represent the potential natural vegetation of Alpine landscapes. Furthermore, we increased the computational efficiency of the model to enable area-covering simulations in a fine resolution (1 km) sufficient for the complex topography of the Alps, which resulted in more than 32 000 simulation grid cells. To this aim, we applied the recently developed method GAPPARD (Scherstjanoi et al., 2013) to LPJ-GUESS. GAPPARD derives mean output values from a combination of simulation runs without disturbances and a patch age distribution defined by the disturbance frequency. With this computationally efficient method, that increased the model's speed by approximately the factor 8, we were able to faster detect shortcomings of LPJ-GUESS functions and parameters. We used the adapted LPJ-GUESS together with GAPPARD to assess the influence of one climate change scenario on dynamics of tree species composition and biomass throughout the 21st century in Switzerland. To allow for comparison with the original model, we additionally simulated forest dynamics along a north-south-transect through Switzerland. The results from this transect confirmed the high value of the GAPPARD method despite some limitations towards extreme climatic events. It allowed for the first time to obtain area-wide, detailed high resolution LPJ-GUESS simulation results for a large part of the Alpine region.

  8. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation

  9. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  10. Calculation of light delay for coupled microrings by FDTD technique and Padé approximation.

    PubMed

    Huang, Yong-Zhen; Yang, Yue-De

    2009-11-01

    The Padé approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Padé approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Padé approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Padé approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials.

  11. A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudip; Pahari, Dola; Mukherjee, Debashis; Mahapatra, Uttam Sinha

    2004-04-01

    The traditional multireference (MR) coupled-cluster (CC) methods based on the effective Hamiltonian are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) involving real or avoided curve crossing. State-specific MR-based approaches obviate this limitation. The state-specific MRCC (SS-MRCC) method developed some years ago [Mahapatra et al., J. Chem. Phys. 110, 6171 (1999)] can handle quasidegeneracy of varying degrees over a wide range of PES, including regions of real or avoided curve-crossing. Motivated by its success, we have suggested and explored in this paper a suite of physically motivated coupled electron-pair approximations (SS-MRCEPA) like methods, which are designed to capture the essential strength of the parent SS-MRCC method without significant sacrificing its accuracy. These SS-MRCEPA theories, like their CC counterparts, are based on complete active space, treat all the reference functions on the same footing and provide a description of potentially uniform precision of PES of states with varying MR character. The combining coefficients of the reference functions are self-consistently determined along with the cluster amplitudes themselves. The newly developed SS-MRCEPA methods are size-extensive, and are also size-consistent with localized orbitals. Among the various versions, there are two which are invariant with respect to the restricted rotations among doubly occupied and active orbitals separately. Similarity of performance of this latter and the noninvariant versions at the crossing points of the degenerate orbitals imply that the all the methods presented are rather robust with respect to the rotations among degenerate orbitals. Illustrative numerical applications are presented for PES of the ground state of a number of difficult test cases such as the model H4, H8 problems, the insertion of Be into H2, and Li2, where intruders exist and for a state of a molecule such as CH2, with

  12. Communicating Professional Noticing through Animations as a Transformational Approximation of Practice

    ERIC Educational Resources Information Center

    Amador, Julie M.; Estapa, Anna; Weston, Tracy; Kosko, Karl

    2016-01-01

    This paper explores the use of animations as an approximation of practice to provide a transformational technology experience for elementary mathematics preservice teachers. Preservice teachers in mathematics methods courses at six universities (n = 126) engaged in a practice of decomposing and approximating components of a fraction lesson. Data…

  13. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  14. Data-Driven Model Reduction and Transfer Operator Approximation

    NASA Astrophysics Data System (ADS)

    Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank

    2018-06-01

    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.

  15. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  16. Legendre-Tau approximation for functional differential equations. Part 3: Eigenvalue approximations and uniform stability

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1984-01-01

    The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.

  17. Approximate Solutions for Flow with a Stretching Boundary due to Partial Slip

    PubMed Central

    Filobello-Nino, U.; Vazquez-Leal, H.; Sarmiento-Reyes, A.; Benhammouda, B.; Jimenez-Fernandez, V. M.; Pereyra-Diaz, D.; Perez-Sesma, A.; Cervantes-Perez, J.; Huerta-Chua, J.; Sanchez-Orea, J.; Contreras-Hernandez, A. D.

    2014-01-01

    The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient. PMID:27433526

  18. An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1993-01-01

    R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)

  19. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  20. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2013-08-01

    Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can

  1. On the dynamics of approximating schemes for dissipative nonlinear equations

    NASA Technical Reports Server (NTRS)

    Jones, Donald A.

    1993-01-01

    Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.

  2. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  3. Approximate analysis for repeated eigenvalue problems with applications to controls-structure integrated design

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Hou, Gene J. W.

    1994-01-01

    A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.

  4. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  5. Series approximation to probability densities

    NASA Astrophysics Data System (ADS)

    Cohen, L.

    2018-04-01

    One of the historical and fundamental uses of the Edgeworth and Gram-Charlier series is to "correct" a Gaussian density when it is determined that the probability density under consideration has moments that do not correspond to the Gaussian [5, 6]. There is a fundamental difficulty with these methods in that if the series are truncated, then the resulting approximate density is not manifestly positive. The aim of this paper is to attempt to expand a probability density so that if it is truncated it will still be manifestly positive.

  6. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    DTIC Science & Technology

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  7. LCAMP: Location Constrained Approximate Message Passing for Compressed Sensing MRI

    PubMed Central

    Sung, Kyunghyun; Daniel, Bruce L; Hargreaves, Brian A

    2016-01-01

    Iterative thresholding methods have been extensively studied as faster alternatives to convex optimization methods for solving large-sized problems in compressed sensing. A novel iterative thresholding method called LCAMP (Location Constrained Approximate Message Passing) is presented for reducing computational complexity and improving reconstruction accuracy when a nonzero location (or sparse support) constraint can be obtained from view shared images. LCAMP modifies the existing approximate message passing algorithm by replacing the thresholding stage with a location constraint, which avoids adjusting regularization parameters or thresholding levels. This work is first compared with other conventional reconstruction methods using random 1D signals and then applied to dynamic contrast-enhanced breast MRI to demonstrate the excellent reconstruction accuracy (less than 2% absolute difference) and low computation time (5 - 10 seconds using Matlab) with highly undersampled 3D data (244 × 128 × 48; overall reduction factor = 10). PMID:23042658

  8. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  9. Speech Enhancement, Gain, and Noise Spectrum Adaptation Using Approximate Bayesian Estimation

    PubMed Central

    Hao, Jiucang; Attias, Hagai; Nagarajan, Srikantan; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    This paper presents a new approximate Bayesian estimator for enhancing a noisy speech signal. The speech model is assumed to be a Gaussian mixture model (GMM) in the log-spectral domain. This is in contrast to most current models in frequency domain. Exact signal estimation is a computationally intractable problem. We derive three approximations to enhance the efficiency of signal estimation. The Gaussian approximation transforms the log-spectral domain GMM into the frequency domain using minimal Kullback–Leiber (KL)-divergency criterion. The frequency domain Laplace method computes the maximum a posteriori (MAP) estimator for the spectral amplitude. Correspondingly, the log-spectral domain Laplace method computes the MAP estimator for the log-spectral amplitude. Further, the gain and noise spectrum adaptation are implemented using the expectation–maximization (EM) algorithm within the GMM under Gaussian approximation. The proposed algorithms are evaluated by applying them to enhance the speeches corrupted by the speech-shaped noise (SSN). The experimental results demonstrate that the proposed algorithms offer improved signal-to-noise ratio, lower word recognition error rate, and less spectral distortion. PMID:20428253

  10. Photoluminescence Analysis of White-Light-Emitting Si Nanoparticles Using Effective Mass Approximation Method

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon Jo; Kim, Yang Do; Kim, Eun Kyu; Park, Jae Gwan

    2005-07-01

    White-light-emitting Si nanoparticles were prepared from the sodium silicide (NaSi) precursor. The photoluminescence of colloidal Si nanoparticles has been fitted by effective mass approximation (EMA). We analyzed the correlation between experimental photoluminescence and simulated fitting curves. Both the mean diameter and the size dispersion of the white-light-emitting Si nanoparticles were estimated.

  11. Visualizing, Approximating, and Understanding Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5

  12. Meta-regression approximations to reduce publication selection bias.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2014-03-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.

    ERIC Educational Resources Information Center

    McDaniel, Suzanne T.

    1979-01-01

    A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)

  14. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  15. A diffusion approximation for ocean wave scatterings by randomly distributed ice floes

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley

    2016-11-01

    This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.

  16. Sparsest representations and approximations of an underdetermined linear system

    NASA Astrophysics Data System (ADS)

    Tardivel, Patrick J. C.; Servien, Rémi; Concordet, Didier

    2018-05-01

    In an underdetermined linear system of equations, constrained l 1 minimization methods such as the basis pursuit or the lasso are often used to recover one of the sparsest representations or approximations of the system. The null space property is a sufficient and ‘almost’ necessary condition to recover a sparsest representation with the basis pursuit. Unfortunately, this property cannot be easily checked. On the other hand, the mutual coherence is an easily checkable sufficient condition insuring the basis pursuit to recover one of the sparsest representations. Because the mutual coherence condition is too strong, it is hardly met in practice. Even if one of these conditions holds, to our knowledge, there is no theoretical result insuring that the lasso solution is one of the sparsest approximations. In this article, we study a novel constrained problem that gives, without any condition, one of the sparsest representations or approximations. To solve this problem, we provide a numerical method and we prove its convergence. Numerical experiments show that this approach gives better results than both the basis pursuit problem and the reweighted l 1 minimization problem.

  17. On the integration of reinforcement learning and approximate reasoning for control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    The author discusses the importance of strengthening the knowledge representation characteristic of reinforcement learning techniques using methods such as approximate reasoning. The ARIC (approximate reasoning-based intelligent control) architecture is an example of such a hybrid approach in which the fuzzy control rules are modified (fine-tuned) using reinforcement learning. ARIC also demonstrates that it is possible to start with an approximately correct control knowledge base and learn to refine this knowledge through further experience. On the other hand, techniques such as the TD (temporal difference) algorithm and Q-learning establish stronger theoretical foundations for their use in adaptive control and also in stability analysis of hybrid reinforcement learning and approximate reasoning-based controllers.

  18. The frozen nucleon approximation in two-particle two-hole response functions

    DOE PAGES

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; ...

    2017-07-10

    Here, we present a fast and efficient method to compute the inclusive two-particle two-hole (2p–2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q ≳kF. The second approximation involves using in the “frozen” meson-exchange currents (MEC) an effective Δ-propagator averaged over the Fermimore » sea. Within the resulting “frozen nucleon approximation”, the inclusive 2p–2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.« less

  19. The frozen nucleon approximation in two-particle two-hole response functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.

    Here, we present a fast and efficient method to compute the inclusive two-particle two-hole (2p–2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q ≳kF. The second approximation involves using in the “frozen” meson-exchange currents (MEC) an effective Δ-propagator averaged over the Fermimore » sea. Within the resulting “frozen nucleon approximation”, the inclusive 2p–2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.« less

  20. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins.

    PubMed

    Ghose, R; Fushman, D; Cowburn, D

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.

  1. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  2. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, D.; Dubray, N.; Verriere, M.

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less

  3. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.

    2018-04-01

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).

  4. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    DOE PAGES

    Regnier, D.; Dubray, N.; Verriere, M.; ...

    2017-12-20

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less

  5. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  6. The method of approximate cluster analysis and the three-dimensional diagram of optical characteristics of the lunar surface

    NASA Astrophysics Data System (ADS)

    Evsyukov, N. N.

    1984-12-01

    An approximate isolation algorithm for the isolation of multidimensional clusters is developed and applied in the construction of a three-dimensional diagram of the optical characteristics of the lunar surface. The method is somewhat analogous to that of Koontz and Fukunaga (1972) and involves isolating two-dimensional clusters, adding a new characteristic, and linearizing, a cycle which is repeated a limited number of times. The lunar-surface parameters analyzed are the 620-nm albedo, the 620/380-nm color index, and the 950/620-nm index. The results are presented graphically; the reliability of the cluster-isolation process is discussed; and some correspondences between known lunar morphology and the cluster maps are indicated.

  7. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4

  8. A well-posed optimal spectral element approximation for the Stokes problem

    NASA Technical Reports Server (NTRS)

    Maday, Y.; Patera, A. T.; Ronquist, E. M.

    1987-01-01

    A method is proposed for the spectral element simulation of incompressible flow. This method constitutes in a well-posed optimal approximation of the steady Stokes problem with no spurious modes in the pressure. The resulting method is analyzed, and numerical results are presented for a model problem.

  9. Approximate formulas for elasticity of the Tornquist functions and some their advantages

    NASA Astrophysics Data System (ADS)

    Issin, Meyram

    2017-09-01

    In this article functions of demand for prime necessity, second necessity and luxury goods depending on the income are considered. These functions are called Tornquist functions. By means of the return model the demand for prime necessity goods and second necessity goods are approximately described. Then on the basis of a method of the smallest squares approximate formulas for elasticity of these Tornquist functions are received. To receive an approximate formula for elasticity of function of demand for luxury goods, the linear asymptotic formula is constructed for this function. Some benefits of approximate formulas for elasticity of Tornquist functions are specified.

  10. The global frequency-wave number spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements. Volume 100, No. C12; The Journal of Geophysical Research

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Stammer, Detlef

    1995-01-01

    Two years of altimetric data from the TOPEX/POSEIDON spacecraft have been used to produce preliminary estimates of the space and time spectra of global variability for both sea surface height and slope. The results are expressed in terms of both degree variances from spherical harmonic expansions and in along-track wavenumbers. Simple analytic approximations both in terms of piece-wise power laws and Pade fractions are provided for comparison with independent measurements and for easy use of the results. A number of uses of such spectra exist, including the possibility of combining the altimetric data with other observations, predictions of spatial coherences, and the estimation of the accuracy of apparent secular trends in sea level.

  11. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  12. Approximated analytical solution to an Ebola optimal control problem

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.

    2016-11-01

    An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.

  13. Revisiting the Landau fluid closure.

    NASA Astrophysics Data System (ADS)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  14. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  15. Approximate analytical modeling of leptospirosis infection

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Atikah; Azmi, Amirah; Yusof, Fauzi Mohamed; Ismail, Ahmad Izani

    2017-11-01

    Leptospirosis is an infectious disease carried by rodents which can cause death in humans. The disease spreads directly through contact with feces, urine or through bites of infected rodents and indirectly via water contaminated with urine and droppings from them. Significant increase in the number of leptospirosis cases in Malaysia caused by the recent severe floods were recorded during heavy rainfall season. Therefore, to understand the dynamics of leptospirosis infection, a mathematical model based on fractional differential equations have been developed and analyzed. In this paper an approximate analytical method, the multi-step Laplace Adomian decomposition method, has been used to conduct numerical simulations so as to gain insight on the spread of leptospirosis infection.

  16. Traveling-cluster approximation for uncorrelated amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A.K.; Mills, R.; Kaplan, T.

    1984-11-15

    We have developed a formalism for including cluster effects in the one-electron Green's function for a positionally disordered (liquid or amorphous) system without any correlation among the scattering sites. This method is an extension of the technique known as the traveling-cluster approximation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararaksa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz solution. To our knowledge, this is the only analytic theory for considering cluster effects. Furthermore, we have performedmore » some computer calculations in the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results have been compared with ''exact calculations'' (which, in principle, take into account all cluster effects) and with the coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approximation distorts some of the features of the exact results.« less

  17. An approximation technique for predicting the transient response of a second order nonlinear equation

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Baumgarten, J. R.

    1975-01-01

    An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.

  18. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    PubMed

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.

  19. Cosmological applications of Padé approximant

    NASA Astrophysics Data System (ADS)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.

  20. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  1. A faster 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H

    2015-11-01

    Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.

  2. Modeling boundary measurements of scattered light using the corrected diffusion approximation

    PubMed Central

    Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.

    2012-01-01

    We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102

  3. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    PubMed

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright

  4. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  5. Estimation of under-reporting in epidemics using approximations.

    PubMed

    Gamado, Kokouvi; Streftaris, George; Zachary, Stan

    2017-06-01

    Under-reporting in epidemics, when it is ignored, leads to under-estimation of the infection rate and therefore of the reproduction number. In the case of stochastic models with temporal data, a usual approach for dealing with such issues is to apply data augmentation techniques through Bayesian methodology. Departing from earlier literature approaches implemented using reversible jump Markov chain Monte Carlo (RJMCMC) techniques, we make use of approximations to obtain faster estimation with simple MCMC. Comparisons among the methods developed here, and with the RJMCMC approach, are carried out and highlight that approximation-based methodology offers useful alternative inference tools for large epidemics, with a good trade-off between time cost and accuracy.

  6. An approximate method for determining of investment risk

    NASA Astrophysics Data System (ADS)

    Slavkova, Maria; Tzenova, Zlatina

    2016-12-01

    In this work a method for determining of investment risk during all economic states is considered. It is connected to matrix games with two players. A definition for risk in a matrix game is introduced. Three properties are proven. It is considered an appropriate example.

  7. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  8. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.

    2016-03-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  9. An application of forward-backward difference approximation method on the optimal control problem in the transmission of tuberculosis model

    NASA Astrophysics Data System (ADS)

    Rahmah, Z.; Subartini, B.; Djauhari, E.; Anggriani, N.; Supriatna, A. K.

    2017-03-01

    Tuberculosis (TB) is a disease that is infected by the bacteria Mycobacterium tuberculosis. The World Health Organization (WHO) recommends to implement the Baccilus Calmete Guerin (BCG) vaccine in toddler aged two to three months to be protected from the infection. This research explores the numerical simulation of forward-backward difference approximation method on the model of TB transmission considering this vaccination program. The model considers five compartments of sub-populations, i.e. susceptible, vaccinated, exposed, infected, and recovered human sub-populations. We consider here the vaccination as a control variable. The results of the simulation showed that vaccination can indeed reduce the number of infected human population.

  10. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.

    PubMed

    Pahle, Jürgen

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem.

  11. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches

    PubMed Central

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097

  12. Constructive methods for the ground-state energy of fully interacting fermion gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera Navarro, V.C.; Baker G.A. Jr.; Benofy, L.P.

    1987-11-01

    A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is applied to a typical fully interacting fermion gas. This is ''neutron matter'' interacting via (a) the repulsive ''Bethe homework-problem'' potential, (b) a hard-core--plus--square-well potential, and (c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-nucleon potential. Pade extrapolation techniques and generalizations thereof are employed to represent both the density dependence as well as the attractive coupling dependence of the perturbation expansion. Equations of state are constructed and compared with Jastrow--Monte Carlo calculations as well as expectations based onmore » semiempirical mass formulas. Excellent agreement is found with the latter.« less

  13. Closure to new results for an approximate method for calculating two-dimensional furrow infiltration

    USDA-ARS?s Scientific Manuscript database

    In a discussion paper, Ebrahimian and Noury (2015) raised several concerns about an approximate solution to the two-dimensional Richards equation presented by Bautista et al (2014). The solution is based on a procedure originally proposed by Warrick et al. (2007). Such a solution is of practical i...

  14. Ionization energies and electron affinities from a random-phase-approximation many-body Green's-function method including exchange interactions

    NASA Astrophysics Data System (ADS)

    Heßelmann, Andreas

    2017-06-01

    A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.

  15. Restoring the Pauli principle in the random phase approximation ground state

    NASA Astrophysics Data System (ADS)

    Kosov, D. S.

    2017-12-01

    Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.

  16. Approximately adaptive neural cooperative control for nonlinear multiagent systems with performance guarantee

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian

    2017-04-01

    This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.

  17. Resumming the large-N approximation for time evolving quantum systems

    NASA Astrophysics Data System (ADS)

    Mihaila, Bogdan; Dawson, John F.; Cooper, Fred

    2001-05-01

    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,ẋ)=(12)∑Ni=1x˙2i-(g/8N)[∑Ni=1x2i- r20]2. The key to these approximations is to treat both the x propagator and the x2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest N better than the dynamic Debye screening approximation.

  18. Bounded-Degree Approximations of Stochastic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less

  19. Application of AWE Along with a Combined FEM/MoM Technique to Compute RCS of a Cavity-Backed Aperture in an Infinite Ground Plane Over a Frequency Range

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M.D.

    1997-01-01

    A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture results in an integro-differential equation with electric field as the unknown variable, the electric field obtained from the solution of the integro-differential equation is expanded in Taylor series. The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. The series is then matched via the Pade approximation to a rational polynomial, which can be used to extrapolate the electric field over a frequency range. The RCS of the cavity-backed aperture is calculated using the electric field at different frequencies. Numerical results for a rectangular cavity, a circular cavity, and a material filled cavity are presented over a frequency range. Good agreement between AWE and the exact solution over the frequency range is obtained.

  20. Adaptive optics system performance approximations for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-10-01

    Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.

  1. Approximate matching of structured motifs in DNA sequences.

    PubMed

    El-Mabrouk, Nadia; Raffinot, Mathieu; Duchesne, Jean-Eudes; Lajoie, Mathieu; Luc, Nicolas

    2005-04-01

    Several methods have been developed for identifying more or less complex RNA structures in a genome. All these methods are based on the search for conserved primary and secondary sub-structures. In this paper, we present a simple formal representation of a helix, which is a combination of sequence and folding constraints, as a constrained regular expression. This representation allows us to develop a well-founded algorithm that searches for all approximate matches of a helix in a genome. The algorithm is based on an alignment graph constructed from several copies of a pushdown automaton, arranged one on top of another. This is a first attempt to take advantage of the possibilities of pushdown automata in the context of approximate matching. The worst time complexity is O(krpn), where k is the error threshold, n the size of the genome, p the size of the secondary expression, and r its number of union symbols. We then extend the algorithm to search for pseudo-knots and secondary structures containing an arbitrary number of helices.

  2. Limitations of shallow nets approximation.

    PubMed

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Jacobian-free approximate solvers for hyperbolic systems: Application to relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Castro, Manuel J.; Gallardo, José M.; Marquina, Antonio

    2017-10-01

    We present recent advances in PVM (Polynomial Viscosity Matrix) methods based on internal approximations to the absolute value function, and compare them with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Another important feature of the proposed methods is that they are suitable to be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions, e.g., the relativistic magnetohydrodynamics (RMHD) equations. On the other hand, the proposed Jacobian-free solvers have also been extended to the case of approximate DOT (Dumbser-Osher-Toro) methods, which can be regarded as simple and efficient approximations to the classical Osher-Solomon method, sharing most of it interesting features and being applicable to general hyperbolic systems. To test the properties of our schemes a number of numerical experiments involving the RMHD equations are presented, both in one and two dimensions. The obtained results are in good agreement with those found in the literature and show that our schemes are robust and accurate, running stable under a satisfactory time step restriction. It is worth emphasizing that, although this work focuses on RMHD, the proposed schemes are suitable to be applied to general hyperbolic systems.

  4. Correlation Energies from the Two-Component Random Phase Approximation.

    PubMed

    Kühn, Michael

    2014-02-11

    The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.

  5. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbonmore » nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.« less

  6. Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation

    PubMed Central

    Ting, T. O.; Zhang, Nan; Guan, Sheng-Uei; Wong, Prudence W. H.

    2013-01-01

    Precise photovoltaic (PV) behavior models are normally described by nonlinear analytical equations. To solve such equations, it is necessary to use iterative procedures. Aiming to make the computation easier, this paper proposes an approximate single-diode PV model that enables high-speed predictions for the electrical characteristics of commercial PV modules. Based on the experimental data, statistical analysis is conducted to validate the approximate model. Simulation results show that the calculated current-voltage (I-V) characteristics fit the measured data with high accuracy. Furthermore, compared with the existing modeling methods, the proposed model reduces the simulation time by approximately 30% in this work. PMID:24298205

  7. Linear Approximation to Optimal Control Allocation for Rocket Nozzles with Elliptical Constraints

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, Johnm W.

    2011-01-01

    In this paper we present a straightforward technique for assessing and realizing the maximum control moment effectiveness for a launch vehicle with multiple constrained rocket nozzles, where elliptical deflection limits in gimbal axes are expressed as an ensemble of independent quadratic constraints. A direct method of determining an approximating ellipsoid that inscribes the set of attainable angular accelerations is derived. In the case of a parameterized linear generalized inverse, the geometry of the attainable set is computationally expensive to obtain but can be approximated to a high degree of accuracy with the proposed method. A linear inverse can then be optimized to maximize the volume of the true attainable set by maximizing the volume of the approximating ellipsoid. The use of a linear inverse does not preclude the use of linear methods for stability analysis and control design, preferred in practice for assessing the stability characteristics of the inertial and servoelastic coupling appearing in large boosters. The present techniques are demonstrated via application to the control allocation scheme for a concept heavy-lift launch vehicle.

  8. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    NASA Astrophysics Data System (ADS)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  9. A walk through the approximations of ab initio multiple spawning

    NASA Astrophysics Data System (ADS)

    Mignolet, Benoit; Curchod, Basile F. E.

    2018-04-01

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  10. A walk through the approximations of ab initio multiple spawning.

    PubMed

    Mignolet, Benoit; Curchod, Basile F E

    2018-04-07

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  11. Approximate circuits for increased reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less

  12. Investigation of approximate models of experimental temperature characteristics of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  13. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  14. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE PAGES

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    2016-11-28

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  15. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    DOE PAGES

    Regnier, D.; Verriere, M.; Dubray, N.; ...

    2015-11-30

    In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle amore » realistic calculation of fission dynamics.« less

  16. Approximation for limit cycles and their isochrons.

    PubMed

    Demongeot, Jacques; Françoise, Jean-Pierre

    2006-12-01

    Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).

  17. The approximation of anomalous magnetic field by array of magnetized rods

    NASA Astrophysics Data System (ADS)

    Denis, Byzov; Lev, Muravyev; Natalia, Fedorova

    2017-07-01

    The method for calculation the vertical component of an anomalous magnetic field from its absolute value is presented. Conversion is based on the approximation of magnetic induction module anomalies by the set of singular sources and the subsequent calculation for the vertical component of the field with the chosen distribution. The rods that are uniformly magnetized along their axis were used as a set of singular sources. Applicability analysis of different methods of nonlinear optimization for solving the given task was carried out. The algorithm is implemented using the parallel computing technology on the NVidia GPU. The approximation and calculation of vertical component is demonstrated for regional magnetic field of North Eurasia territories.

  18. Local facet approximation for image stitching

    NASA Astrophysics Data System (ADS)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  19. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    PubMed

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  20. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  1. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    PubMed

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  2. A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks

    NASA Astrophysics Data System (ADS)

    Bronstein, Leo; Koeppl, Heinz

    2018-01-01

    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.

  3. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. ɛ-connectedness, finite approximations, shape theory and coarse graining in hyperspaces

    NASA Astrophysics Data System (ADS)

    Alonso-Morón, Manuel; Cuchillo-Ibanez, Eduardo; Luzón, Ana

    2008-12-01

    We use upper semifinite hyperspaces of compacta to describe ε-connectedness and to compute homology from finite approximations. We find a new connection between ε-connectedness and the so-called Shape Theory. We construct a geodesically complete R-tree, by means of ε-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite approximations of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite approximation with the Vietoris-Rips complexes of such approximations at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. This paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite approximations.

  5. CyClus: a fast, comprehensive cylindrical interface approximation clustering/reranking method for rigid-body protein-protein docking decoys.

    PubMed

    Omori, Satoshi; Kitao, Akio

    2013-06-01

    We propose a fast clustering and reranking method, CyClus, for protein-protein docking decoys. This method enables comprehensive clustering of whole decoys generated by rigid-body docking using cylindrical approximation of the protein-proteininterface and hierarchical clustering procedures. We demonstrate the clustering and reranking of 54,000 decoy structures generated by ZDOCK for each complex within a few minutes. After parameter tuning for the test set in ZDOCK benchmark 2.0 with the ZDOCK and ZRANK scoring functions, blind tests for the incremental data in ZDOCK benchmark 3.0 and 4.0 were conducted. CyClus successfully generated smaller subsets of decoys containing near-native decoys. For example, the number of decoys required to create subsets containing near-native decoys with 80% probability was reduced from 22% to 50% of the number required in the original ZDOCK. Although specific ZDOCK and ZRANK results were demonstrated, the CyClus algorithm was designed to be more general and can be applied to a wide range of decoys and scoring functions by adjusting just two parameters, p and T. CyClus results were also compared to those from ClusPro. Copyright © 2013 Wiley Periodicals, Inc.

  6. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  7. MEANS: python package for Moment Expansion Approximation, iNference and Simulation

    PubMed Central

    Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C.; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2016-01-01

    Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system’s moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. Availability and implementation: https://github.com/theosysbio/means Contacts: m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153663

  8. MEANS: python package for Moment Expansion Approximation, iNference and Simulation.

    PubMed

    Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C; Kirk, Paul D W; Stumpf, Michael P H

    2016-09-15

    Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. https://github.com/theosysbio/means m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Swiss-cheese models and the Dyer-Roeder approximation

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre

    2014-06-01

    In view of interpreting the cosmological observations precisely, especially when they involve narrow light beams, it is crucial to understand how light propagates in our statistically homogeneous, clumpy, Universe. Among the various approaches to tackle this issue, Swiss-cheese models propose an inhomogeneous spacetime geometry which is an exact solution of Einstein's equation, while the Dyer-Roeder approximation deals with inhomogeneity in an effective way. In this article, we demonstrate that the distance-redshift relation of a certain class of Swiss-cheese models is the same as the one predicted by the Dyer-Roeder approach, at a well-controlled level of approximation. Both methods are therefore equivalent when applied to the interpretation of, e.g., supernova obervations. The proof relies on completely analytical arguments, and is illustrated by numerical results.

  10. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  11. Adaptive EMG noise reduction in ECG signals using noise level approximation

    NASA Astrophysics Data System (ADS)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  12. On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.

    2011-01-01

    Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.

  13. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  14. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  15. Error analysis for spectral approximation of the Korteweg-De Vries equation

    NASA Technical Reports Server (NTRS)

    Maday, Y.; recent years.

    1987-01-01

    The conservation and convergence properties of spectral Fourier methods for the numerical approximation of the Korteweg-de Vries equation are analyzed. It is proved that the (aliased) collocation pseudospectral method enjoys the same convergence properties as the spectral Galerkin method, which is less effective from the computational point of view. This result provides a precise mathematical answer to a question raised by several authors in recent years.

  16. Spline approximation, Part 1: Basic methodology

    NASA Astrophysics Data System (ADS)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  17. SET: a pupil detection method using sinusoidal approximation

    PubMed Central

    Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili

    2015-01-01

    Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as “SET”) that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations (“Natural”); and images of less challenging indoor scenes (“CASIA-Iris-Thousand”). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library (“DLL”), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641

  18. Testing approximate predictions of displacements of cosmological dark matter halos

    NASA Astrophysics Data System (ADS)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  19. Robust approximation-free prescribed performance control for nonlinear systems and its application

    NASA Astrophysics Data System (ADS)

    Sun, Ruisheng; Na, Jing; Zhu, Bin

    2018-02-01

    This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.

  20. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  1. Approximating a nonlinear advanced-delayed equation from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-10-01

    We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.

  2. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  3. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  4. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  5. A Method for Approximating the Bivariate Normal Correlation Coefficient.

    ERIC Educational Resources Information Center

    Kirk, David B.

    Improvements of the Gaussian quadrature in conjunction with the Newton-Raphson iteration technique (TM 000 789) are discussed as effective methods of calculating the bivariate normal correlation coefficient. (CK)

  6. Monotone Boolean approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less

  7. Rapid and Robust Cross-Correlation-Based Seismic Phase Identification Using an Approximate Nearest Neighbor Method

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.

    2016-12-01

    The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.

  8. Real-time dynamics of matrix quantum mechanics beyond the classical approximation

    NASA Astrophysics Data System (ADS)

    Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas

    2018-03-01

    We describe a numerical method which allows to go beyond the classical approximation for the real-time dynamics of many-body systems by approximating the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state approximation is accurate for significantly smaller field strengths and longer times than the classical one. Applying this approximation to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.

  9. Stable finite element approximations of two-phase flow with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-09-01

    A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.

  10. Testing approximations for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.

  11. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    PubMed

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Approximating quantum many-body wave functions using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Cai, Zi; Liu, Jinguo

    2018-01-01

    In this paper, we demonstrate the expressibility of artificial neural networks (ANNs) in quantum many-body physics by showing that a feed-forward neural network with a small number of hidden layers can be trained to approximate with high precision the ground states of some notable quantum many-body systems. We consider the one-dimensional free bosons and fermions, spinless fermions on a square lattice away from half-filling, as well as frustrated quantum magnetism with a rapidly oscillating ground-state characteristic function. In the latter case, an ANN with a standard architecture fails, while that with a slightly modified one successfully learns the frustration-induced complex sign rule in the ground state and approximates the ground states with high precisions. As an example of practical use of our method, we also perform the variational method to explore the ground state of an antiferromagnetic J1-J2 Heisenberg model.

  13. Linear approximations of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Su, R.

    1983-01-01

    The development of a method for designing an automatic flight controller for short and vertical take off aircraft is discussed. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system called the modified tangent model was introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this the linear part (about a state space point x sub 0) of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x sub 0 yields the same modified tangent model.

  14. Binarized cross-approximate entropy in crowdsensing environment.

    PubMed

    Skoric, Tamara; Mohamoud, Omer; Milovanovic, Branislav; Japundzic-Zigon, Nina; Bajic, Dragana

    2017-01-01

    Personalised monitoring in health applications has been recognised as part of the mobile crowdsensing concept, where subjects equipped with sensors extract information and share them for personal or common benefit. Limited transmission resources impose the use of local analyses methodology, but this approach is incompatible with analytical tools that require stationary and artefact-free data. This paper proposes a computationally efficient binarised cross-approximate entropy, referred to as (X)BinEn, for unsupervised cardiovascular signal processing in environments where energy and processor resources are limited. The proposed method is a descendant of the cross-approximate entropy ((X)ApEn). It operates on binary, differentially encoded data series split into m-sized vectors. The Hamming distance is used as a distance measure, while a search for similarities is performed on the vector sets. The procedure is tested on rats under shaker and restraint stress, and compared to the existing (X)ApEn results. The number of processing operations is reduced. (X)BinEn captures entropy changes in a similar manner to (X)ApEn. The coding coarseness yields an adverse effect of reduced sensitivity, but it attenuates parameter inconsistency and binary bias. A special case of (X)BinEn is equivalent to Shannon's entropy. A binary conditional entropy for m =1 vectors is embedded into the (X)BinEn procedure. (X)BinEn can be applied to a single time series as an auto-entropy method, or to a pair of time series, as a cross-entropy method. Its low processing requirements makes it suitable for mobile, battery operated, self-attached sensing devices, with limited power and processor resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Animations as a Transformational Approximation of Practice for Preservice Teachers to Communicate Professional Noticing

    ERIC Educational Resources Information Center

    Amador, Julie; Weston, Tracy; Estapa, Anne; Kosko, Karl; De Araujo, Zandra

    2016-01-01

    This paper explores the use of animations as an approximation of practice to provide a transformational technology experience for elementary mathematics preservice teachers. Preservice teachers in mathematics methods courses at six universities (n = 126) engaged in a practice of decomposing and approximating components of a fraction lesson. Data…

  16. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  17. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  18. Analytical Method of Approximating the Motion of a Spinning Vehicle with Variable Mass and Inertia Properties Acted Upon by Several Disturbing Parameters

    NASA Technical Reports Server (NTRS)

    Buglia, James J.; Young, George R.; Timmons, Jesse D.; Brinkworth, Helen S.

    1961-01-01

    An analytical method has been developed which approximates the dispersion of a spinning symmetrical body in a vacuum, with time-varying mass and inertia characteristics, under the action of several external disturbances-initial pitching rate, thrust misalignment, and dynamic unbalance. The ratio of the roll inertia to the pitch or yaw inertia is assumed constant. Spin was found to be very effective in reducing the dispersion due to an initial pitch rate or thrust misalignment, but was completely Ineffective in reducing the dispersion of a dynamically unbalanced body.

  19. Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation

    NASA Astrophysics Data System (ADS)

    Maltsev, I. A.; Shabaev, V. M.; Tupitsyn, I. I.; Kozhedub, Y. S.; Plunien, G.; Stöhlker, Th.

    2017-10-01

    A method for calculation of electron-positron pair production in low-energy heavy-ion collisions beyond the monopole approximation is presented. The method is based on the numerical solving of the time-dependent Dirac equation with the full two-center potential. The one-electron wave functions are expanded in the finite basis set constructed on the two-dimensional spatial grid. Employing the developed approach the probabilities of bound-free pair production are calculated for collisions of bare uranium nuclei at the energy near the Coulomb barrier. The obtained results are compared with the corresponding values calculated in the monopole approximation.

  20. Covariance approximation for fast and accurate computation of channelized Hotelling observer statistics

    NASA Astrophysics Data System (ADS)

    Bonetto, P.; Qi, Jinyi; Leahy, R. M.

    2000-08-01

    Describes a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, the authors derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. The theoretical analysis models both the Poission statistics of PET data and the inhomogeneity of tracer uptake. The authors show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow the authors to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm.

  1. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  2. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  3. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  4. Artificial neural networks and approximate reasoning for intelligent control in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  5. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  6. Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions

    DOE PAGES

    Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...

    2017-01-09

    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less

  7. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1991-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  8. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1990-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  9. ``Glue" approximation for the pairing interaction in the Hubbard model with next nearest neighbor hopping

    NASA Astrophysics Data System (ADS)

    Khatami, Ehsan; Macridin, Alexandru; Jarrell, Mark

    2008-03-01

    Recently, several authors have employed the ``glue" approximation for the Cuprates in which the full pairing vertex is approximated by the spin susceptibility. We study this approximation using Quantum Monte Carlo Dynamical Cluster Approximation methods on a 2D Hubbard model. By considering a reasonable finite value for the next nearest neighbor hopping, we find that this ``glue" approximation, in the current form, does not capture the correct pairing symmetry. Here, d-wave is not the leading pairing symmetry while it is the dominant symmetry using the ``exact" QMC results. We argue that the sensitivity of this approximation to the band structure changes leads to this inconsistency and that this form of interaction may not be the appropriate description of the pairing mechanism in Cuprates. We suggest improvements to this approximation which help to capture the the essential features of the QMC data.

  10. Exact and Approximate Stability of Solutions to Traveling Salesman Problems.

    PubMed

    Niendorf, Moritz; Girard, Anouck R

    2018-02-01

    This paper presents the stability analysis of an optimal tour for the symmetric traveling salesman problem (TSP) by obtaining stability regions. The stability region of an optimal tour is the set of all cost changes for which that solution remains optimal and can be understood as the margin of optimality for a solution with respect to perturbations in the problem data. It is known that it is not possible to test in polynomial time whether an optimal tour remains optimal after the cost of an arbitrary set of edges changes. Therefore, this paper develops tractable methods to obtain under and over approximations of stability regions based on neighborhoods and relaxations. The application of the results to the two-neighborhood and the minimum 1 tree (M1T) relaxation are discussed in detail. For Euclidean TSPs, stability regions with respect to vertex location perturbations and the notion of safe radii and location criticalities are introduced. Benefits of this paper include insight into robustness properties of tours, minimum spanning trees, M1Ts, and fast methods to evaluate optimality after perturbations occur. Numerical examples are given to demonstrate the methods and achievable approximation quality.

  11. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  12. Simple approximation of total emissivity of CO2-H2O mixture used in the zonal method of calculation of heat transfer by radiation

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.

    2014-12-01

    The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.

  13. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  14. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    PubMed

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  15. Testing approximate predictions of displacements of cosmological dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these

  16. Fast Approximations of the Rotational Diffusion Tensor and their Application to Structural Assembly of Molecular Complexes

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2011-01-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. PMID:21604302

  17. Fast approximations of the rotational diffusion tensor and their application to structural assembly of molecular complexes.

    PubMed

    Berlin, Konstantin; O'Leary, Dianne P; Fushman, David

    2011-07-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. Copyright © 2011 Wiley-Liss, Inc.

  18. Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Karampagia, S.; Casten, R. F.

    2011-05-15

    Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation formore » the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.« less

  19. Is probabilistic bias analysis approximately Bayesian?

    PubMed Central

    MacLehose, Richard F.; Gustafson, Paul

    2011-01-01

    Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311

  20. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJMPC..2750029A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJMPC..2750029A"><span>A consensus algorithm for <span class="hlt">approximate</span> string matching and its application to QRS complex detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alba, Alfonso; Mendez, Martin O.; Rubio-Rincon, Miguel E.; Arce-Santana, Edgar R.</p> <p>2016-08-01</p> <p>In this paper, a novel algorithm for <span class="hlt">approximate</span> string matching (ASM) is proposed. The novelty resides in the fact that, unlike most other <span class="hlt">methods</span>, the proposed algorithm is not based on the Hamming or Levenshtein distances, but instead computes a score for each symbol in the search text based on a consensus measure. Those symbols with sufficiently high scores will likely correspond to <span class="hlt">approximate</span> instances of the pattern string. To demonstrate the usefulness of the proposed <span class="hlt">method</span>, it has been applied to the detection of QRS complexes in electrocardiographic signals with competitive results when compared against the classic Pan-Tompkins (PT) algorithm. The proposed <span class="hlt">method</span> outperformed PT in 72% of the test cases, with no extra computational cost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071353&hterms=ccs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dccs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071353&hterms=ccs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dccs"><span>Comparison of cross sections from the quasi-classical trajectory <span class="hlt">method</span> and the j(z)-conserving centrifugal sudden <span class="hlt">approximation</span> with accurate quantum results for an atom-rigid nonlinear polyatomic collision</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwenke, David W.</p> <p>1993-01-01</p> <p>We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical <span class="hlt">methods</span> used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) <span class="hlt">approximation</span>, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS <span class="hlt">approximation</span> gives good results, while the QCT <span class="hlt">method</span> can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA131316','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA131316"><span><span class="hlt">Approximation</span> <span class="hlt">Methods</span> in Multidimensional Filter Design and Related Problems Encountered in Multidimensional System Design.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-03-21</p> <p>zero , it is necessary that B M(0) be nonzero. In the case considered here, B M(0) is taken to be nonsingula and withot loss of generality it may be set...452. (c.51 D. Levin, " General order Padd type rational <span class="hlt">approximants</span> defined from a double power series," J. Inst. Maths. Applics., 18, 1976, pp. 1-8...common zeros in the closed unit bidisc, U- 2 . The 2-D setting provides a nice theoretical framework for generalization of these stabilization results to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982MolPh..46..449M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982MolPh..46..449M"><span>SCF-Xα-SW electron densities with the overlapping sphere <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.</p> <p></p> <p>Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα <span class="hlt">methods</span>, which do not employ the spherical muffin-tin (MT) potential <span class="hlt">approximation</span>, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT <span class="hlt">approximation</span> in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS <span class="hlt">approximation</span> is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS <span class="hlt">approximation</span> increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880016773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880016773"><span>Semi-discrete <span class="hlt">approximations</span> to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tadmor, Eitan</p> <p>1988-01-01</p> <p>A convergence theory for semi-discrete <span class="hlt">approximations</span> to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity <span class="hlt">method</span> is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this <span class="hlt">method</span> is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference <span class="hlt">approximations</span> (e.g., the high resolution TVD and UNO <span class="hlt">methods</span>), finite element <span class="hlt">approximations</span> (e.g., the Streamline-Diffusion <span class="hlt">methods</span>) and spectral and pseudospectral <span class="hlt">approximations</span> (e.g., the Spectral Viscosity <span class="hlt">methods</span>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29035228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29035228"><span>Universal <span class="hlt">Approximation</span> by Using the Correntropy Objective Function.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nayyeri, Mojtaba; Sadoghi Yazdi, Hadi; Maskooki, Alaleh; Rouhani, Modjtaba</p> <p>2017-10-16</p> <p>Several objective functions have been proposed in the literature to adjust the input parameters of a node in constructive networks. Furthermore, many researchers have focused on the universal <span class="hlt">approximation</span> capability of the network based on the existing objective functions. In this brief, we use a correntropy measure based on the sigmoid kernel in the objective function to adjust the input parameters of a newly added node in a cascade network. The proposed network is shown to be capable of <span class="hlt">approximating</span> any continuous nonlinear mapping with probability one in a compact input sample space. Thus, the convergence is guaranteed. The performance of our <span class="hlt">method</span> was compared with that of eight different objective functions, as well as with an existing one hidden layer feedforward network on several real regression data sets with and without impulsive noise. The experimental results indicate the benefits of using a correntropy measure in reducing the root mean square error and increasing the robustness to noise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998AmJPh..66..352S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998AmJPh..66..352S"><span>On <span class="hlt">approximate</span> formulas for the electrostatic force between two conducting spheres</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sliško, Josip; Brito-Orta, Raúl A.</p> <p>1998-04-01</p> <p>A series expression for the electrostatic force between two charged conducting spheres having equal radii and charges is derived using the <span class="hlt">method</span> of electrical images. This expression is a special case of that for two spheres with arbitrary charges and radii, found by Maxwell using zonal harmonics. Keeping in mind the use of <span class="hlt">approximate</span> formulas for the interpretation of classroom measurements of the electrostatic force between spheres, we comment on two incorrect <span class="hlt">approximate</span> formulas and examine the contribution of the first few non-Coulomb terms of the correct formula by comparing with values obtained using a computational approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..96e4607H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..96e4607H"><span>Analysis of corrections to the eikonal <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hebborn, C.; Capel, P.</p> <p>2017-11-01</p> <p>Various corrections to the eikonal <span class="hlt">approximations</span> are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this <span class="hlt">approximation</span> to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal <span class="hlt">approximation</span>. On the contrary, a semiclassical <span class="hlt">approximation</span> that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal <span class="hlt">approximation</span>. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA029655','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA029655"><span><span class="hlt">Approximations</span> of Two-Attribute Utility Functions</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-09-01</p> <p>preferred to") be a bina-zy relation on the set • of simple probability measures or ’gambles’ defined on a set T of consequences. Throughout this study it...simplifying independence assumptions. Although there are several approaches to this problem, the21 present study will focus on <span class="hlt">approximations</span> of u... study will elicit additional interest in the topic. 2. REMARKS ON <span class="hlt">APPROXIMATION</span> THEORY This section outlines a few basic ideas of <span class="hlt">approximation</span> theory</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981PhyS...24..601P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981PhyS...24..601P"><span>The Effective Correlation Theory for Liquid 3He</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puoskari, M.; Kallio, A.</p> <p>1981-09-01</p> <p>We show that when the antisymmetry of liquid 3He is treated with the effective correlation theory of Lado, the optimal HNC solution gives very good agreement with the optimal FHNC theory when in the latter the long wave length properties due to Fermi cancellations are treated properly. When in addition elementary diagrams are calculated with the <span class="hlt">Pade</span> <span class="hlt">approximation</span>, we obtain ground state energies that agree quite well with the Monte-Carlo results of Ceperley, Chester and Kalos and Levesque, especially at low densities. In addition we calculate the contribution of the three-body factors in the variational wave function. For the expectation value of the ground state energy we obtain altogether - 1.62 ± 0.15 K at a saturation density 0.015 ± 0.001 Å-3.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.901a2173G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.901a2173G"><span>Born <span class="hlt">approximation</span> in linear-time invariant system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gumjudpai, Burin</p> <p>2017-09-01</p> <p>An alternative way of finding the LTI’s solution with the Born <span class="hlt">approximation</span>, is investigated. We use Born <span class="hlt">approximation</span> in the LTI and in the transformed LTI in form of Helmholtz equation. General solution are considered as infinite series or Feynman graph. Slow-roll <span class="hlt">approximation</span> are explored. Transforming the LTI system into Helmholtz equation, <span class="hlt">approximated</span> general solution can be found for any given forms of force with its initial value.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1378957-errors-from-approximation-ode-systems-reduced-order-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1378957-errors-from-approximation-ode-systems-reduced-order-models"><span>Errors from <span class="hlt">approximation</span> of ODE systems with reduced order models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vassilevska, Tanya</p> <p>2016-12-30</p> <p>This is a code to calculate the error from <span class="hlt">approximation</span> of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) <span class="hlt">methods</span> and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the <span class="hlt">method</span> using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617226','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617226"><span>Exploiting Multi-Step Sample Trajectories for <span class="hlt">Approximate</span> Value Iteration</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-01</p> <p>WORK UNIT NUMBER IH 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AFRL/ RISC 525 Brooks Road, Rome NY 13441-4505 Binghamton University...S) AND ADDRESS(ES) Air Force Research Laboratory/Information Directorate Rome Research Site/ RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR...iteration <span class="hlt">methods</span> for reinforcement learning (RL) generalize experience from limited samples across large state-action spaces. The function <span class="hlt">approximators</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JChPh.122f4104F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JChPh.122f4104F"><span>Connection between the regular <span class="hlt">approximation</span> and the normalized elimination of the small component in relativistic quantum theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filatov, Michael; Cremer, Dieter</p> <p>2005-02-01</p> <p>The regular <span class="hlt">approximation</span> to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular <span class="hlt">approximation</span> (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular <span class="hlt">approximation</span> to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable <span class="hlt">method</span>, it was used as a suitable starting point for the development of the second-order regular <span class="hlt">approximation</span> to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll <span class="hlt">approximation</span>, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An <span class="hlt">approximation</span> was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the <span class="hlt">approximate</span> integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic <span class="hlt">methods</span>. The <span class="hlt">methods</span> can be run with density functional theory and any wave function <span class="hlt">method</span>. NESC-SORA has the advantage that it does not imply a picture change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPBra..19...61D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPBra..19...61D"><span><span class="hlt">Approximate</span> Model of Zone Sedimentation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dzianik, František</p> <p>2011-12-01</p> <p>The process of zone sedimentation is affected by many factors that are not possible to express analytically. For this reason, the zone settling is evaluated in practice experimentally or by application of an empirical mathematical description of the process. The paper presents the development of <span class="hlt">approximate</span> model of zone settling, i.e. the general function which should properly <span class="hlt">approximate</span> the behaviour of the settling process within its entire range and at the various conditions. Furthermore, the specification of the model parameters by the regression analysis of settling test results is shown. The suitability of the model is reviewed by graphical dependencies and by statistical coefficients of correlation. The <span class="hlt">approximate</span> model could by also useful on the simplification of process design of continual settling tanks and thickeners.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MolPh.116.1428D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MolPh.116.1428D"><span>Accelerating the coupled-cluster singles and doubles <span class="hlt">method</span> using the chain-of-sphere <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert</p> <p>2018-06-01</p> <p>In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity <span class="hlt">approximation</span>. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890017257','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890017257"><span>Some spectral <span class="hlt">approximation</span> of one-dimensional fourth-order problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernardi, Christine; Maday, Yvon</p> <p>1989-01-01</p> <p>Some spectral type collocation <span class="hlt">method</span> well suited for the <span class="hlt">approximation</span> of fourth-order systems are proposed. The model problem is the biharmonic equation, in one and two dimensions when the boundary conditions are periodic in one direction. It is proved that the standard Gauss-Lobatto nodes are not the best choice for the collocation points. Then, a new set of nodes related to some generalized Gauss type quadrature formulas is proposed. Also provided is a complete analysis of these formulas including some new issues about the asymptotic behavior of the weights and we apply these results to the analysis of the collocation <span class="hlt">method</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.cs.cornell.edu/~yexiang/publications/Xiaojian-Wu-et-al-aaai-2018-final.pdf','USGSPUBS'); return false;" href="https://www.cs.cornell.edu/~yexiang/publications/Xiaojian-Wu-et-al-aaai-2018-final.pdf"><span>Efficiently <span class="hlt">approximating</span> the Pareto frontier: Hydropower dam placement in the Amazon basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.</p> <p>2018-01-01</p> <p>Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time <span class="hlt">approximation</span> scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that <span class="hlt">approximates</span> the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our <span class="hlt">approximation</span> scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to <span class="hlt">approximate</span> the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our <span class="hlt">methods</span> outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to <span class="hlt">approximate</span> the Pareto frontier of a variety of multiobjective problems on tree-structured networks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016776','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016776"><span>An <span class="hlt">approximate</span> theoretical <span class="hlt">method</span> for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunter, Craig A.</p> <p>1995-01-01</p> <p>An analytical/numerical <span class="hlt">method</span> has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an <span class="hlt">approximate</span> integral momentum <span class="hlt">method</span> based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC <span class="hlt">method</span>. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23554899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23554899"><span>DendroBLAST: <span class="hlt">approximate</span> phylogenetic trees in the absence of multiple sequence alignments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kelly, Steven; Maini, Philip K</p> <p>2013-01-01</p> <p>The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel <span class="hlt">method</span> called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This <span class="hlt">method</span> differs from other <span class="hlt">methods</span> by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this <span class="hlt">method</span> produces phylogenetic trees that are more accurate than other commonly-used distance based <span class="hlt">methods</span> though not as accurate as maximum likelihood <span class="hlt">methods</span> from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an <span class="hlt">approximate</span> phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional <span class="hlt">methods</span>. Taken together these results demonstrate that <span class="hlt">approximate</span> phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST <span class="hlt">method</span> is freely available for use at http://www.dendroblast.com/.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>