2012-01-01
We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603
Meynet, Paola; Hale, Sarah E; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D; Werner, David
2012-05-01
We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. © 2012 American Chemical Society
Oleszczuk, Patryk; Godlewska, Paulina; Reible, Danny D; Kraska, Piotr
2017-08-01
The aim of the present study was to determine the effect of activated carbon (AC) or biochars on the bioaccessibility (C bioacc ) of polycyclic aromatic hydrocarbons (PAHs) in soils vegetated with willow (Salix viminalis). The study determined the effect of willow on the C bioacc PAHs and the effect of the investigated amendments on changes in dissolved organic carbon (DOC), crop yield and the content of PAHs in plants. PAH-contaminated soil was amended with 2.5 wt% AC or biochar. Samples from individual plots with and without plants were collected at the beginning of the experiment and after 3, 6, 12 and 18 months. The C bioacc PAHs were determined using sorptive bioaccessibility extraction (SBE) (silicon rods and hydroxypropyl-β-cyclodextrin). Both AC and biochar caused a decrease in the C bioacc PAHs. Immediately after adding AC, straw-derived biochar or willow-derived biochar to the soil, the reduction in the sum of 16 (Σ16) C bioacc PAHs was 70.3, 38.0, and 29.3%, respectively. The highest reduction of C bioacc was observed for 5- and 6-ring PAHs (from 54.4 to 100%), whereas 2-ring PAHs were reduced only 8.0-25.4%. The reduction of C bioacc PAHs increased over time. Plants reduced C bioacc in all soils although effects varied by soil treatment and PAH. Willow grown in AC- and biochar-amended soil accumulated less phenanthrene than in the control soil. The presence of AC in the soil also affected willow yield and shoot length and DOC was reduced from 53.5 to 66.9% relative to unamended soils. In the biochars-amended soil, no changes in soil DOC content were noted nor effects on willow shoot length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, S.R.; Jones, K.C.
The uptake of polynuclear aromatic hydrocarbons (PAHs) from sewage sludge-amended soils by carrots (Daucus carota) was investigated. Carrots were grown in control soils and soils amended with three sludge application rates, 15, 55, and 180 t/ha. Applied sludge contained 17.2 mg [summation]PAH/kg, a concentration typical for a sludge derived from a rural area. Carrot foliage, root peels and root cores were analyzed for 15 PAH compounds. Carrots foliage PAH concentrations were unaffected by sludge applications (PAH loadings), but root peel PAH concentrations increased to a plateau concentration with increasing soil PAH levels. Low molecular weight PAH compounds dominate dindividual componentsmore » of the [summation]PAH load in the root tissues. The PAH concentrations detected in the root peels were all significantly lower than in the foliage, which receives PAH inputs from the atmosphere. Carrot core [summation]PAH concentrations were unaffected by sludge application, implying little or no transfer of PAHs from the peels to the core. About 70% of the PAH burden found in carrots was associated with the peels. Fresh weight carrot core concentrations were all <4.2 [mu]g/kg. Overall, this investigation suggests that the risks posed to human health by PAHs applied in sewage sludge to arable soils are minimal.« less
Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.
Li, Chun-Hua; Wong, Yuk-Shan; Wang, Hong-Yuan; Tam, Nora Fung-Yee
2015-04-01
Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3. Copyright © 2015. Published by Elsevier B.V.
Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial.
Hale, Sarah E; Elmquist, Marie; Brändli, Rahel; Hartnik, Thomas; Jakob, Lena; Henriksen, Thomas; Werner, David; Cornelissen, Gerard
2012-04-01
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-08-16
Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.
Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Garnier, Patricia
2018-03-01
A new model that was able to simulate the behaviours of polycyclic aromatic hydrocarbons (PAH) during composting and after the addition of the composts to agricultural soil is presented here. This model associates modules that describe the physical, biological and biochemical processes involved in PAH dynamics in soils, along with a module describing the compost degradation resulting in PAH release. The model was calibrated from laboratory incubations using three 14 C-PAHs, phenanthrene, fluoranthene and benzo(a)pyrene, and three different composts consisting of two mature and one non-mature composts. First, the labelled PAHs were added to the compost over 28days, and spiked composts were then added to the soil over 55days. The model calculates the proportion of biogenic and physically bound residues in the non-extractable compartment of PAHs at the end of the compost incubation to feed the initial conditions of the model for soil amended with composts. For most of the treatments, a single parameter set enabled to simulate the observed dynamics of PAHs adequately for all the amended soil treatments using a Bayesian approach. However, for fluoranthene, different parameters that were able to simulate the growth of a specific microbial biomass had to be considered for mature compost. Processes that occurred before the compost application to the soil strongly influenced the fate of PAHs in the soil. Our results showed that the PAH dissipation during compost incubation was higher in mature composts because of the higher specific microbial activity, while the PAH dissipation in amended soil was higher in the non-mature compost because of the higher availability of PAHs and the higher co-metabolic microbial activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Nwaichi, Eucharia O; Osuji, Leo C; Onyeike, Eugene N
2011-04-01
Growth performance and phytoremediation of soil of the Niger Delta Region of Nigeria artificially-contaminated with crude oil (up to 100 mL/2 kg soil) using centrosema pubescen Benth was investigated for 12 weeks. The soil samples in which the plants were established were either un-amended, or amended with NPK, or UREA or chicken manure. The extents of removal of PAHs and BTEX were measured as well as the rates of growth of the plants. Gas Chromatographic analysis confirmed the degradation of carcinogenic hydrocarbons like BTEXs and PAHs with this technique. At the highest dose of crude, the contaminant concentrations were 43 mg/kg PAHs, 10 mg/kg BTEX, and 5,613 mg/kg O&G. The greatest percent removal of BTEX was observed at the highest contaminant dose, and with the manure amendment. Similar trends were observed with PAHs and although they were less marked, the trends with PAHs may have been more highly statistically significant. There was no measurable plant uptake of contaminants. Inhibition of plant growth (measured as leaf area, shoot length and production of dry weight) was proportional to the dose of crude oil, but the manure amendment was very effective at reducing the growth inhibition. Interestingly, manure amendment reduced the phytotoxicity significantly in this study.
Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn
2014-11-01
Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides information on the response of soil bacterial, archaeal and fungal communities during the degradation of three priority pollutants and contributes to a knowledge base that can inform the development of effective bioremediation strategies for contaminated sites.
Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.
Lukić, B; Huguenot, D; Panico, A; Fabbricino, M; van Hullebusch, E D; Esposito, G
2016-08-01
This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.
Stefaniuk, Magdalena; Oleszczuk, Patryk; Różyło, Krzysztof
2017-12-01
The application of sewage sludge with biochar as fertilizer may be a new method improves soil properties. Biochar increases of the crops productivity and reduction of bioavailability of contaminants. In the present study the persistence of sum of 16 (Σ16) PAHs (US EPA 16 PAHs) in a sewage sludge-amended soil (11t/h) and in a sewage sludge-amended soil with the addition of biochar (at a rate of 2.5, 5 or 10% of sewage sludge (dry weight basis)) was determined. This study was carried out as a plot experiment over a period of 18months. Samples for analysis were taken at the beginning of the study and after 6, 12 and 18months from the beginning of the experiment. Application of sewage sludge as a soil amendment did not cause a significant change (P≥0.05) in the soil content of Σ16 PAHs. In turn, the addition of biochar with sewage sludge to the soil, regardless of the contribution of biochar in the sewage sludge, resulted in a significant decrease in PAH content already at the beginning of the experiment. Throughout the experiment, in all treatments the PAH content varied, predominantly showing a decreasing trend. Ultimately, after 18months the content of Σ16 PAHs decreased by 19% in the experiment with sewage sludge alone and by 45, 35 and 28% in the experiment with sewage sludge and the 2.5%, 5.0% and 10% biochar rates, respectively. After 18months of the study, the largest losses in the sewage sludge-amended soil were observed for 2- and 3-ring PAHs. In the sewage sludge- and biochar-amended soil, compared to the beginning of the study and the sewage sludge-amended soil, the highest losses were found for 5- and 6-ring PAHs (2.5 and 5.0% rates) as well as for 5- and 2-ring PAHs (10% rate). Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Zaisheng; Jiang, Helong; Li, Xiaohong; Shi, Yuan
2014-05-15
The removal of pyrene and benzo[a]pyrene (BaP) were investigated in freshwater sediments with amendment of seven different organic matters including cyanobacteria-derived organic matter (COM), plant-derived organic matter (POM), and humic substances (HS). During the 210 days of experiments, the amendment of COM or HS enhanced significantly the removal of pyrene and BaP in sediments, especially with fresh COM (FCOM) treatment much superior to HS. On the contrary, degradation of these polycyclic aromatic hydrocarbons (PAHs) was not significantly improved and even inhibited in POM-amended sediments. The first-order rate constants of pyrene and BaP degradation in the FCOM-amended sediments reached 0.00540±0.00017d(-1) and 0.00517±0.00057d(-1), respectively, and were about three and five folds of those in the control treatment. The enhanced PAHs degradation in FCOM-amended sediments was related to higher PAH-degrading bacteria number and bioavailability with a result of biostimulation and priming effect by labile carbon and high-value nutrition in FCOM. Thus, this study improved our understanding about effects of settled biomass from cyanobacterial blooms, which occurred frequently in eutrophic aquatic ecosystems, on the natural attenuation of PAHs in sediments. Furthermore, this study would also help develop a new promising approach to remediate PAH-contaminated sediments through utilization of cyanobacterial bloom biomass. Copyright © 2014 Elsevier B.V. All rights reserved.
Adrion, Alden C.; Singleton, David R.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.
2016-01-01
Abstract Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high–molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high–molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility. PMID:27678476
Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-09-01
Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.
Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil
USDA-ARS?s Scientific Manuscript database
A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...
Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne
2015-09-01
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa
2016-01-15
Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.
Oleszczuk, Patryk; Kuśmierz, Marcin; Godlewska, Paulina; Kraska, Piotr; Pałys, Edward
2016-07-01
The presence of polycyclic aromatic hydrocarbons (PAHs) in biochars hinders their environmental use. The aim of this study was to determine the freely dissolved (Cfree) PAH content in soil amended with biochar in a long-term (851 days) field experiment. Biochar was added to the soil at a rate of 30 and 45 t/ha. The addition of biochar to the soil resulted in a decrease in Σ13 Cfree PAHs by 25 and 22%, in the soil with the addition of biochar at the rate of 30 and 45 t/ha, respectively. As far as individual PAHs are concerned, in most cases a reduction in Cfree was also observed (from 3.6 to 66%, depending on the biochar rate). During the first 105 days of the experiment, the content of Σ13 Cfree in the biochar-amended soil significantly decreased by 26% (30 t/ha) and 36% (45 t/ha). After this period of time until the end of the experiment, no significant changes in Cfree were observed, regardless of the biochar rate. However, the behavior of individual PAH groups differed depending on the number of rings and experimental treatment. Ultimately, after 851 days of the experiment the content of Σ13 Cfree PAHs was lower by 29% (30 t/ha) and 35% (45 t/ha) compared to the beginning of the study as well as lower by 40% (30 t/ha) and 42% (45 t/ha) than in the control soil. The log KTOC coefficients calculated for the biochar-amended soils were higher immediately after adding biochar and subsequently they gradually decreased, indicating the reduced strength of the interaction between biochar and the studied PAHs. The obtained results show that the addition of biochar to soil does not create a risk in terms of the content of Cfree PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil.
Gartler, Jorg; Wimmer, Bernhard; Soja, Gerhard; Reichenauer, Thomas G
2014-01-01
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.
Nwaichi, Eucharia Oluchi; Frac, Magdalena; Nwoha, Paul Aleruchi; Eragbor, Progress
2015-01-01
A field experiment investigating the removal and/or uptake of Polycyclic Aromatic Hydrocarbons (PAHs) and specific metals (As, Cd, Cr) from a crude oil polluted agricultural soil was performed during the 2013 wet season using four plant species: Fimbristylis littoralis, Hevea brasilensis (Rubber plants), Cymbopogom citratus (Lemon grass), and Vigna subterranea (Bambara nuts). Soil functional diversity and soil-enzyme interactions were also investigated. The diagnostic ratios and the correlation analysis identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs at the study site. A total of 16 PAHs were identified, 6 of which were carcinogenic. Up to 42.4 mg kg(-1) total PAHs was recorded prior to the experiments. At 90 d, up to 92% total PAH reduction and 96% As removal were achieved using F. littoralis, the best performing species. The organic soil amendment (poultry dung) rendered most of the studied contaminants unavailable for uptake. However, the organic amendment accounted for over 70% of the increased dehydrogenase, phosphatase, and proteolytic enzymes activities in the study. Overall, the combined use of soil amendments and phytoremediation significantly improved the microbial community activity, thus promoting the restoration of the ecosystem.
Jakob, Lena; Hartnik, Thomas; Henriksen, Thomas; Elmquist, Marie; Brändli, Rahel C; Hale, Sarah E; Cornelissen, Gerard
2012-07-01
A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 ± 44% and the PAC amendment reduced them by 72 ± 19%. For the investigated plants the BSAFs were reduced by 46 ± 36% and 53 ± 22% by the GAC and PAC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of a cationic surfactant on the volatilization of PAHs from soil.
Lu, Li; Zhu, Lizhong
2012-06-01
Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.
Ni, Ni; Song, Yang; Shi, Renyong; Liu, Zongtang; Bian, Yongrong; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-12-01
The aim of this study was to reveal the mechanisms on how biochar reduces bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in tuberous vegetables. Corn straw-derived biochar pyrolyzed at 300°C (CB300) or bamboo-derived biochar pyrolyzed at 700°C (BB700) was amended into PAH-contaminated soil planted with carrot (Daucus carota L.). After 150days, 2% CB300 or 2% BB700 amendments significantly reduced the bioaccumulation of PAHs in carrot root (p<0.05), especially for high-molecular-weight PAHs. In the non-rhizosphere, either CB300 or BB700 suppressed PAH dissipation and decreased the bioavailability via adsorption processes. Compared to the control, the total concentration of PAHs in the rhizosphere was higher in the 2% BB700 treatment but the bioavailable concentration was lower. This indicates that BB700 decreased the bioavailability of PAHs primarily via immobilization (adsorption processes). By contrast, the total and bioavailable PAH concentrations were both lower in the 2% CB300 treatment than those in the control. The abundance of bacteria such as Arthrobacter and Flavobacterium and the total number of genes playing important roles in microbial PAH degradation processes increased significantly (p<0.05), which were likely responsible for the rapid dissipation of PAHs in the 2% CB300 treatment in the rhizosphere. These results indicate that CB300 decreased the PAH bioavailability primarily via increasing degradation of PAHs by indigenous microorganisms. The two biochars both showed better effectiveness at reducing the bioavailability of high-molecular-weight PAHs than the low-molecular-weight PAHs in the rhizosphere. Therefore, the mechanisms on how biochar reduces the PAH uptake into carrot are dependent on the type of biochar (e.g., pyrolysis temperature and feedstock) and root presence. Copyright © 2017 Elsevier B.V. All rights reserved.
Davie-Martin, Cleo L; Stratton, Kelly G; Teeguarden, Justin G; Waters, Katrina M; Simonich, Staci L Massey
2017-09-05
Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.
Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T
2018-01-01
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-04-05
A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.
Wayland, Mark; Headley, John V; Peru, Kerry M; Crosley, Robert; Brownlee, Brian G
2008-01-01
An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands.
Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao
2013-06-01
The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies.
Włóka, Dariusz; Placek, Agnieszka; Rorat, Agnieszka; Smol, Marzena; Kacprzak, Małgorzata
2017-11-01
The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO 2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO 2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO 2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William
2007-09-30
The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.
Pyrene fate affected by humic acid amendment in soil slurry systems.
Liang, Yanna; Sorensen, Darwin L; McLean, Joan E; Sims, Ronald C
2008-09-10
Humic acid (HA) has been found to affect the solubility, mineralization, and bound residue formation of polycyclic aromatic hydrocarbons (PAHs). However, most of the studies on the interaction between HA and PAH concentrated on one or two of the three phases. Few studies have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in soil systems for all three phases. In this study, three doses of standard Elliott soil HA (ESHA), 15, 187.5, and 1,875 mug ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems along with non-radiolabeled pyrene; 14C and 14CO2 were monitored for each system for a period of 120 days. The highest amendment dose significantly increased the 14C fraction in the aqueous phase within 24 h, but not after that time. Pyrene mineralization was significantly inhibited by the highest dose over the 120-day study. While organic solvent extractable 14C decreased with time in all systems, non-extractable or bound 14C was significantly enhanced with the highest dose of ESHA addition. Amendment of the highest dose of ESHA to pyrene contaminated soil was observed to have two major functions. The first was to mitigate CO2 production significantly by reducing 14CO2 from 14C pyrene mineralization. The second was to significantly increase stable bound 14C formation, which may serve as a remediation end point. Overall, this study demonstrated a practical approach for decontamination of PAH contaminated soil. This approach may be applicable to other organic contaminated environments where active bioremediation is taking place.
Over the last decade, several studies reported that the partitioning of PAHs to sediments, in some cases, did not follow predictions based on equilibrium partitioning theory. One explanation for these differences is the presence of a second sedimentary phase with partitioning cha...
A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...
Liao, Changjun; Liang, Xujun; Lu, Guining; Thai, Truonggiang; Xu, Wending; Dang, Zhi
2015-02-01
Understanding the uptake of organic pollutants by plants is an important part of the assessment of risks from crops grown on contaminated soils. This study was an investigation of the effects of surfactants added to PAHs-contaminated soil on the uptake and accumulation of PAHs in maize tissues during phytoremediation. The accumulation of phenanthrene (PHE) and pyrene (PYR) by maize plant was not influenced significantly by the surfactant amendment to the soil. The distribution of PHE and PYR in maize tissues was not positively correlated with the corresponding lipid contents. Remarkably, the concentrations of PHE (20.9 ng g(-1)) and PYR (0.9 ng g(-1)) in maize grain were similar to or even much lower than those in some foods. Moreover, surfactants could enhance the removal of pollutants from contaminated soil during phytoremediation, which might be due to surfactant desorption ability and microbial activity in soil. The study suggests that use of maize plant with surfactant is an alternative technology for remediation of PAHs-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.
Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R
2018-07-03
This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.
Yeast Pah1p Phosphatidate Phosphatase Is Regulated by Proteasome-mediated Degradation*
Pascual, Florencia; Hsieh, Lu-Sheng; Soto-Cardalda, Aníbal; Carman, George M.
2014-01-01
Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-dependent manner. Pah1p from exponential phase cells was a relatively stable protein, and its abundance was not affected by incubation with an extract from stationary phase cells. Recombinant Pah1p was degraded upon incubation with the 100,000 × g pellet fraction of stationary phase cells, although the enzyme was stable when incubated with the same fraction of exponential phase cells. MG132, an inhibitor of proteasome function, prevented degradation of the recombinant enzyme. Endogenously expressed and plasmid-mediated overexpressed levels of Pah1p were more abundant in the stationary phase of cells treated with MG132. Pah1p was stabilized in mutants with impaired proteasome (rpn4Δ, blm10Δ, ump1Δ, and pre1 pre2) and ubiquitination (hrd1Δ, ubc4Δ, ubc7Δ, ubc8Δ, and doa4Δ) functions. The pre1 pre2 mutations that eliminate nearly all chymotrypsin-like activity of the 20 S proteasome had the greatest stabilizing effect on enzyme levels. Taken together, these results supported the conclusion that Pah1p is subject to proteasome-mediated degradation in the stationary phase. That Pah1p abundance was stabilized in pah1Δ mutant cells expressing catalytically inactive forms of Pah1p and dgk1Δ mutant cells with induced expression of DGK1-encoded diacylglycerol kinase indicated that alteration in phosphatidate and/or diacylglycerol levels might be the signal that triggers Pah1p degradation. PMID:24563465
Stefaniuk, Magdalena; Oleszczuk, Patryk
2016-11-01
Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willumsen, P.A.; Arvin, E.
To achieve a better quantitative understanding of the stimulating or inhibiting effect of surfactants on the metabolism of polycyclic aromatic hydrocarbons (PAHs), a biodegradation model describing solubilization, bioavailability, and biodegradation of crystalline fluoranthene is proposed and used to model experimental data. The degradation was investigated in batch systems containing the PAH-degrading bacterium Sphingomonas paucimobilis strain EPA505, the nonionic surfactant Triton X-100, and a fluoranthene-amended liquid mineral salts medium. Surfactant-enhanced biodegradation is complex; however, the biodegradation model predicted fluoranthene disappearance and the initial mineralization well. Surfactant-amendment did increase fluoranthene mineralization rates by strain EPA505; however, the increases were not proportional tomore » the rates of fluoranthene solubilization. The surfactant clearly influenced the microbial PAH metabolism as indicated by a rapid accumulation of colored products and by a surfactant -related decreased in the overall extent of fluoranthene mineralization. Model estimations of the bioavailability of micelle-solubilized fluoranthene, the relatively fast fluoranthene disappearance, and the accumulation of extracellular compounds in the degradation system suggest that low availability of micellar fluoranthene is not the only factor controlling surfactant-enhanced biodegradation. Also factors such as the extent of accumulation and bioavailability of the PAH metabolites and the crystalline solubilization rate in the presence of surfactants may determine the overall effect of surfactant-enhanced biodegradation of high molecular weight PAHs.« less
Košnář, Zdeněk; Mercl, Filip; Tlustoš, Pavel
2018-05-30
A 120-day pot experiment was conducted to compare the ability of natural attenuation and phytoremediation approaches to remove polycyclic aromatic hydrocarbons (PAHs) from soil amended with PAHs-contaminated biomass fly ash. The PAH removal from ash-treated soil was compared with PAHs-spiked soil. The removal of 16 individual PAHs from soil ranged between 4.8% and 87.8% within the experiment. The natural attenuation approach led to a negligible total PAH removal. The phytoremediation was the most efficient approach for PAH removal, while the highest removal was observed in the case of ash-treated soil. The content of low molecular weight (LMW) PAHs and the total PAHs in this treatment significantly decreased (P <.05) over the whole experiment by 47.6% and 29.4%, respectively. The tested level of PAH soil contamination (~1600 µg PAH/kg soil dry weight) had no adverse effects on maize growth as well on the biomass yield. In addition, the PAHs were detected only in maize roots and their bioaccumulation factors were significantly lower than 1 suggesting negligible PAH uptake from soil by maize roots. The results showed that PAHs of ash origin were similarly susceptible to removal as spiked PAHs. The presence of maize significantly boosted the PAH removal from soil and its aboveground biomass did not represent any environmental risk. Copyright © 2018 Elsevier Inc. All rights reserved.
Activated carbon amendment for in-situ remediation
NASA Astrophysics Data System (ADS)
Elmquist, M.; Brändli, R.; Henriksen, T.; Hartnik, T.; Cornelissen, G.
2009-04-01
For the first time in Europe, a novel and innovative remediation technique is used in a field pilot study. This technique is amendment of the soil with two types of activated carbon (AC). Here, one pulverized AC (PAC, 50% < 15µm and 3% >150 µm) and one granular AC (GAC, 1.7-0.43 mm) is tested. The idea of this technique is that the added AC binds organic contaminants so strongly that they cannot be taken up in living organisms or transported to other environmental compartments. Laboratory studies with 2% (wt %) AC amendment to an urban soil reduced the freely dissolved pore water concentrations of PAH by 17% to 99% (Brändli et al. 2008). Several parameters such as dissolved organic carbon (DOC), K, NO2, NO3, NH4, PO4 and PAH, are being measured in this field study. Plant growth and earthworm bioaccumulation tests were also carried out during the summer months. DOC showed a 70% reduction between untreated soil and soil with PAC about one year after the amendment. In the soil mixed with GAC, a 55% reduction could be measured. For K, a 40% lowering value was observed for the soil with GAC compared to no affect for the soil with PAC. NH4 was reduced by 50% for both GAC and PAC amended soils compared to the untreated soil, whereas NO2 and NO3 increased with 2-4 times for the soil with GAC and no effect were seen for the soil with PAC. The freely dissolved PAH concentrations were reduced by 49-78% for the soil with GAC and 82-96% for the soil with PAC. The plant experiment showed best growth rate in the soil with GAC, followed by the untreated soil and least growth was measured on the PAC treated soil. The low growth rate seen in the soil with PAC may come from the fact that DOC and some other nutrients are also being sorbed to the PAC surface together with the organic pollutants and are thereby taken away from the biological cycle. Amendment of soil with AC remediates the soil from organic contaminants when these pollutants are sorbed to the AC surface. This is an easy technique that can be performed to a relatively low cost. However, the AC particles may also sorb other constituents of the effluent water such as DOC and nutrients which in turn may lead to reduced plant growth rate. Therefore, the long-term effects of this amendment technique have to be studied more closely. Reference Rahel C. Brändli, Thomas Hartnik, Thomas Henriksen, Gerard Cornelissen, (2008) Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil, Chemosphere doi:10.1016/j.chemosphere.2008.08.034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This decision document presents an amendment to the selected remedial action for the Texarkana Wood Preserving Co. Superfund Site. This amendment fundamentally changes the Record of Decision (ROD) executed by the Regional Administrator on September 25, 1990. This amended remedy will seal and contain soils contaminated with greater than 3 ppm (parts per million) benzo(a)pyrene equivalents, 2450 ppm total poly aromatic hydrocarbons (PAH), 20 ppb (parts per billion) as 2,3,7,8 TCDD equivalents and 150 ppm pentachlorophenol beneath a soil cap.
Li, Jun; Pignatello, Joseph J; Smets, Barth F; Grasso, Domenico; Monserrate, Esteban
2005-03-01
We examined the biodegradation and desorption of a set of 15 polycyclic aromatic hydrocarbon (PAH) compounds in coal tar-contaminated soil at a former manufactured gas plant site to evaluate the feasibility of in situ bioremediation. Experiments were conducted in well-mixed aerobic soil suspensions containing various additives over a 93- to 106-d period. In general, both biotransformation and desorption decreased with PAH ring size, becoming negligible for the six-ring PAH compounds. Biodegradation by indigenous microorganisms was strongly accelerated by addition of inorganic nutrients (N, P, K, and trace metals). The rates of biotransformation of PAH compounds by indigenous microorganisms in nutrient-amended flasks outpaced their maximum (i.e., chelate-enhanced) rates of desorption to an infinite sink (Tenax) in sterilized systems run in parallel, suggesting that indigenous organisms facilitated desorption. Biodegradation by indigenous organisms in nutrient-amended flasks appeared to be unaffected by the addition of a site-derived bacterial enrichment culture, resulting in approximately 100-fold higher aromatic dioxygenase levels, and by the addition of 0.01 M chelating agent (citrate or pyrophosphate), although such chelating agents greatly enhanced desorption in microbially inactivated flasks. The strong ability of nutrients to enhance degradation of the bioavailable PAHs indicates that their persistence for many decades at this site likely results from nutrient-limited natural biodegradation, and it also suggests that an effective strategy for their bioremediation could consist simply of adding inorganic nutrients.
Han, Zhantao; Sani, Badruddeen; Akkanen, Jarkko; Abel, Sebastian; Nybom, Inna; Karapanagioti, Hrissi K; Werner, David
2015-04-09
Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus. Copyright © 2014 Elsevier B.V. All rights reserved.
García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique
2015-03-21
Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of PAH contamination in soil treated with solid by-products from shale pyrolysis.
Nicolini, Jaqueline; Khan, Muhammad Y; Matsui, M; Côcco, Lílian C; Yamamoto, Carlos I; Lopes, Wilson A; de Andrade, Jailson B; Pillon, Clenio N; Arizaga, Gregorio G Carbajal; Mangrich, Antonio S
2015-01-01
The aim of this work was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils to which solid shale materials (SSMs) were added as soil conditioners. The SSMs were derived from the Petrosix pyrolysis process developed by Petrobras (Brazil). An improved ultrasonic agitation method was used to extract the PAHs from the solid samples (soils amended with SSMs), and the concentrations of the compounds were determined by gas chromatography coupled to mass spectrometry (GC-MS). The procedure provided satisfactory recoveries, detection limits, and quantification limits. The two-, three-, and four-ring PAHs were most prevalent, and the highest concentration was obtained for phenanthrene (978 ± 19 μg kg(-1) in a pyrolyzed shale sample). The use of phenanthrene/anthracene and fluoranthene/pyrene ratios revealed that the PAHs were derived from petrogenic rather than pyrogenic sources. The measured PAH concentrations did not exceed national or international limit values, suggesting that the use of SSMs as soil conditioners should not cause environmental damage.
Pore Water PAH Transport in Amended Sediment Caps
NASA Astrophysics Data System (ADS)
Gidley, P. T.; Kwon, S.; Ghosh, U.
2009-05-01
Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.
Marquez-Bravo, Lydia G; Briggs, Dean; Shayler, Hannah; McBride, Murray; Lopp, Donna; Stone, Edie; Ferenz, Gretchen; Bogdan, Kenneth G; Mitchell, Rebecca G; Spliethoff, Henry M
2016-02-01
A total of 69 soil samples from 20 community gardens in New York City (New York, USA) were collected and analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) and black carbon. For each garden, samples were collected from nongrowing areas (non-bed) and from vegetable-growing beds, including beds with and without visible sources of PAHs. The sum of the US Environmental Protection Agency's 16 priority PAHs ranged up to 150 mg/kg, and the median (5.4 mg/kg) and mean (14.2 mg/kg) were similar to those previously reported for urban areas in the northeast United States. Isomer ratios indicated that the main sources of PAHs were petroleum, coal, and wood combustion. The PAH concentrations were significantly and positively associated with black carbon and with modeled air PAH concentrations, suggesting a consistent relationship between historical deposition of atmospheric carbon-adsorbed PAHs and current PAH soil concentrations. Median PAH soil concentration from non-bed areas was higher (7.4 mg/kg) than median concentration from beds in the same garden (4.0 mg/kg), and significantly higher than the median from beds without visible sources of PAHs (3.5 mg/kg). Median PAH concentration in beds from gardens with records of soil amendments was 58% lower compared with beds from gardens without those records. These results suggest that gardening practices in garden beds without visible sources of PAHs contribute to reduce PAH soil concentrations. © 2015 SETAC.
Mallory, Michael J.; Law, Michael J.; Buckingham, Lela E.; Strich, Randy
2010-01-01
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains. PMID:20971827
Trzesicka-Mlynarz, D; Ward, O P
1995-06-01
A mixed culture, isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAHs), grew on and degraded fluoranthene in aqueous media supplemented with glucose, yeast extract, and peptone. Increased complex nitrogen levels in the medium promoted bacterial growth and a greater extent of fluoranthene degradation. Amendment of the media with high glucose levels also diminished specific fluoranthene degradation. The mixed culture was capable of degrading a range of other PAHs, including benzo[a]pyrene, anthracene, phenanthrene, acenaphthene, and fluorene. The mixed culture contained four predominant isolates, all of which were Gram-negative rods, three of which were identified as Pseudomonas putida, Flavobacterium sp., and Pseudomonas aeruginosa. Better degradation of a defined PAH mixture was observed with the mixed culture than with individual isolates. A reconstituted culture, prepared by combining the four individual isolates, manifested a similar PAH biodegradation performance to the original mixed culture. When compared with the mixed culture, individual isolates exhibited a relatively good capacity to remove more water-soluble PAHs (acenaphthene, fluorene, phenanthrene, fluoranthene). In contrast, removal of less water-soluble PAHs (anthracene and pyrene) was low or negligible with isolated cultures compared with the mixed culture.
PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees.
Mueller, Kevin E; Shann, Jodi R
2006-08-01
While trees have demonstrated potential in phytoremediation of several organic contaminants, little is known regarding their ability to impact the common soil contaminant PAHs. Several species of native North American trees were planted in soil artificially contaminated with three PAHs. Plant biomass, PAH dissipation, and microbial mineralization were monitored over the course of one year and environmental conditions were allowed to follow typical seasonal patterns. PAH dissipation and mineralization were not affected by planting. Extensive and rapid loss of PAHs was observed and attributed to high bioavailability and microbial activity in all treatments. The rate of this loss may have masked any significant planting effects. Anthracene was found to be more recalcitrant than pyrene or phenanthrene. Parallel soil aging studies indicated that sequestration to soil components was minimal. Contrary to common inferences in literature, amendment with decaying fine roots inhibited PAH degradation by the soil microbial community. Seasonal variation in environmental factors and rhizosphere dynamics may have also reduced or negated the effect of planting and should be taken into account in future phytoremediation trials. The unique root traits of trees may pose a challenge to traditional thought regarding PAH dissipation in the rhizosphere of plants.
Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy.
Kong, Lulu; Gao, Yuanyuan; Zhou, Qixing; Zhao, Xuyang; Sun, Zhongwei
2018-02-05
Sawdust and wheat straw biochars prepared at 300°C and 500°C were applied to petroleum-polluted soil for an 84-day incubation to estimate their effectiveness on polycyclic aromatic hydrocarbons (PAHs) removal. Biochars alone were most effective at reducing PAHs contents. However, adding biochar to soils in company with NaN 3 solution resulted in a decreasing trend in terms of PAHs removal, which was even lower than treatment CK without biochar. Moreover, it was discovered by PCR-DGGE files and sequencing analysis that the predominant bacterial diversity slightly decreased but the abundance of some specific taxa, including PAHs degraders, was promoted with biochar input. These results highlighted the potential of biochar application on accelerating PAHs biodegradation, which could be attributed to the properties of biochars that benefit for making the amended soil a better habitat for microbes. The impacts of biochar preparation and pollutants nature on PAHs removal were also determined. Significant reduction in the PAHs contents was detected when adding biochar prepared at a high temperature (500°C), while the feedstocks of biochar showed little effect on PAHs removal. Due to the high hydrophobicity of aromatic rings, high-molecular weight PAHs were found much more resistant to microbial degradation in comparison with low-molecular weight PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Xuemei; Hu, Hangwei; Shi, Xiuzhen; Zhang, Limei; He, Jizheng
2017-04-01
Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mediated Effects of Perceived Competence on Youth Physical Activity and Sedentary Behavior.
Bai, Yang; Chen, Senlin; Vazou, Spyridoula; Welk, Gregory J; Schaben, Jodee
2015-01-01
This study evaluates whether physical activity (PA) and sedentary behavior (SB) are influenced by a common mediating relationship. A total of 1,552 participants in 3rd to 12th grade completed an online survey that included assessments of PA at school (PAS), PA at home (PAH), and SB as well as a battery of psychosocial variables (i.e., attraction to PA and perceived competence). Perceived competence had a direct positive effect on PA and a negative effect on SB. These associations were consistently (but partially) mediated by attraction to PA; however, the indirect effect (IE) of perceived competence was stronger for PAH (IE = .27, p < .05) than for PAS (IE = .07, p < .05), or SB (IE = .13, p < .05). This study revealed some direct effects and IEs of perceived competence on PAS, PAH, and SB through attraction to PA as the mediator. PA and SB may be influenced by some common underlying psychosocial mediators.
Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.
Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho
2017-09-20
Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.
Zhu, Hongbo; Aitken, Michael D.
2010-01-01
We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C12E8), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant’s critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C12E8 did not enhance PAH removal at any dose. In the absence of surfactant, <5% of any PAH desorbed from the soil over an 18-d period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C12E8 at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited. PMID:20586488
Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing
2010-09-01
The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. Copyright 2010 Elsevier Ltd. All rights reserved.
Achieving synergy between chemical oxidation and stabilization in a contaminated soil.
Srivastava, Vipul J; Hudson, Jeffrey Michael; Cassidy, Daniel P
2016-07-01
Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising temperatures above 30 °C (heat activation) and/or increasing pH above 10.5 (alkaline activation). Heat is released by the reaction of CaO with water, and pH increases because this reaction produces Ca(OH)2. Heat activation is preferred because it generates 2 mol of oxidizing radicals per mole of PS, whereas alkaline activation releases only 1. The relative contribution of heat vs. alkaline activation increased with CaO content of the ISS amendment, which was reflected by enhanced contaminant oxidation with increasing CaO content, and was confirmed by comparing to controls promoting purely heat or alkaline (NaOH) activation. The test soil was contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAH), particularly naphthalene (NAP). ISS-activated PS oxidized between 47% and 84% of the BTEX & NAP, and between 13% and 33% of the higher molecular weight PAH. ISS-activated PS reduced the leachability of BTEX & NAP by 76%-91% and of the 17 PAH by 83%-96%. Combined ISCO/ISS reduced contaminant leachability far than ISCO or ISS treatments alone, demonstrating the synergy that is possible with combined remedies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya
2016-10-01
The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.
Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M
2016-02-01
Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.
Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis
Rao, P. S. S.; Kumar, Santosh
2015-01-01
High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767
Rombolà, Alessandro G; Meredith, Will; Snape, Colin E; Baronti, Silvia; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele
2015-09-15
The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils, while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs changed and impacted differently the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha(-1)) gave rise to a sharp increase in soil organic carbon, which could be accounted for by an increase in BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g(-1) and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 μg g(-1) in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils and decreased with time from 153 to 78 ng g(-1) remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes.
Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays.
Bastos, A C; Prodana, M; Abrantes, N; Keizer, J J; Soares, A M V M; Loureiro, S
2014-11-01
It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha(-1)). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l(-1)) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l(-1)) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose-response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25% mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100% SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection.
2017-06-30
United States (NRC 2007). At elevated concentrations, these contaminants pose long-term risks to ecosystems and human health . 4 Reactive amendments...ability to reduce bioavailable concentrations thereby reducing ecological and human health risks. 6 2.1.2 AquaGate Composite Aggregate...could be of great interest as a remedy to HOC-impacted (e.g., PCBs, polycyclic aromatic hydrocarbon [PAHs], and pesticides ) surface sediments in
Zhang, Shu-ying; Wang, Qing-feng; Wan, Rui; Xie, Shu-guang
2011-01-01
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role. PMID:21887852
Thomas, John C; Cable, Edward; Dabkowski, Robert T; Gargala, Stephanie; McCall, Daniel; Pangrazzi, Garett; Pierson, Adam; Ripper, Mark; Russell, Donald K; Rugh, Clayton L
2013-01-01
A 1.3-acre phytoremediation site was constructed to mitigate polyaromatic hydrocarbon (PAH) contamination from a former steel mill in Michigan. Soil was amended with 10% (v/v) compost and 5% (v/v) poultry litter. The site was divided into twelve 11.89 m X 27.13 m plots, planted with approximately 35,000 native Michigan perennials, and soils sampled for three seasons. Soil microbial density generally increased in subplots of Eupatorium perfoliatum (boneset), Aster novae-angliae (New England aster), Andropogon gerardii (big bluestem), and Scirpus atrovirens (green bulrush) versus unplanted subplots. Using enumeration assays with root exudates, PAH degrading bacteria were greatest in soils beneath plants. Initially predominant, Arthrobacter were found capable of degrading a PAH cocktail in vitro, especially upon the addition of root exudate. Growth of some Arthrobacter isolates was stimulated by root exudate. The frequency of Arthrobacter declined in planted subplots with a concurrent increase in other species, including secondary PAH degraders Bacillus and Nocardioides. In subplots supporting only weeds, an increase in Pseudomonas density and little PAH removal were observed. This study supports the notion that a dynamic interplay between the soil, bacteria, and native plant root secretions likely contributes to in situ PAH phytoremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com
miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5pmore » might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down-regulated in PAH tissues and hypoxia-mediated HPASMCs. • Dnmt1 is up-regulated in PAH tissues and hypoxia-mediated HPASMCs. • miR-140-5p regulates HPASMC proliferation, apoptosis and differentiation. • Dnmt1 and SOD2 regulates HPASMC proliferation, apoptosis and differentiation. • miR-140-5p targets Dnmt1 and regulates SOD2 expression.« less
Rain, Silvia; Bos, Denielli da Silva Goncalves; Handoko, M. Louis; Westerhof, Nico; Stienen, Ger; Ottenheijm, Coen; Goebel, Max; Dorfmüller, Peter; Guignabert, Christophe; Humbert, Marc; Bogaard, Harm‐Jan; dos Remedios, Cris; Saripalli, Chandra; Hidalgo, Carlos G.; Granzier, Henk L.; Vonk‐Noordegraaf, Anton; van der Velden, Jolanda; de Man, Frances S.
2014-01-01
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH. PMID:24895160
Chen, Baoliang; Ding, Jie
2012-08-30
To assess the "bioaccessible" pool of mycelia-bound polycyclic aromatic hydrocarbons (PAHs) and to quantify its biodegradation kinetics in soil, a soil-slurry system containing mycelial pellets of Phanerochaete chrysosporium as a separable biophase was set up. In sterilized and unsterilized soil-slurry, the distribution and dissipation of phenanthrene and pyrene in soil, fungal body of P. chrysosporium and water were independently quantified over the incubation periods. Biosorption and biodegradation contributions to bio-dissipation of dissolved- and sorbed-PAHs were identified. The biodegradation kinetics of PAHs by allochthonous P. chrysosporium and soil wild microorganisms was higher than those predicted by a coupled desorption-biodegradation model, suggesting both allochthonous and wild microorganisms could access sorbed-PAHs. The obvious hysteresis of PAHs in soil reduced their biodegradation, while the biosorbed-PAHs in P. chrysosporium body as an interim pool exhibited reversibly desorption and were almost exhausted via biodegradation. Both biosorption and direct biodegradation of PAHs in soil slurry were stimulated by allochthonous P. chrysosporium. After 90-day incubation, the respective biodegradation percentages for phenanthrene and pyrene were 63.8% and 51.9% in the unsterilized soil without allochthonous microorganisms, and then increased to 94.9% and 90.6% when amended with live P. chrysosporium. These indicate that allochthonous and wild microorganisms may synergistically attack sorbed-PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wenger, Daniela; Gerecke, Andreas C.; Heeb, Norbert V.; Hueglin, Christoph; Seiler, Cornelia; Haag, Regula; Naegeli, Hanspeter; Zenobi, Renato
Atmospheric particulate matter (PM) is an air-suspended mixture of solid and liquid particles that vary in size, shape, and chemical composition. Long-term exposure to elevated concentrations of fine atmospheric particles is considered to pose a health threat to humans and animals. In this context, it has been hypothesized that toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs) play an important role. Some PAHs are known to be carcinogenic and it has been shown that carcinogenic effects of PAHs are mediated by the aryl hydrocarbon receptor (AhR). In this study, PM1 was collected at a rural and an urban traffic site during an intense winter smog period, in which concentration of PM1 often exceeded 50 μg m -3. We applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify PM1-associated chemicals that induce AhR-mediated gene expression. This activity was expressed as CALUX equivalents of 2,3,7,8-tetrachlorodibenzodioxin (PM-TCDD-CEQs). In addition, concentrations of PAHs in the PM1 extracts were determined using gas chromatography/high-resolution mass spectrometry. Concentrations of PM-TCDD-CEQs ranged from 10 to 85 pg m -3 and from 19 to 87 pg m -3 at the urban and rural site, respectively. By the use of known relative potency factors, the measured concentration of a PAH was converted into a PAH-TCDD-CEQ concentration. ΣPAH-TCDD-CEQ and PM-TCDD-CEQ were highly correlated at both sites ( r2 = 0.90 and 0.69). The calculated ΣPAH-TCDD-CEQs explain between 2% and 20% of the measured PM-TCDD-CEQs. Benzo[ k]fluoranthene was the most important PAH causing approximately 60% of the total ΣPAH-TCDD-CEQ activity. In contrast to NO, CO, PM10, and PM1, the concentration of PM-TCDD-CEQs showed no significant difference between the two sites. No indications were found that road traffic emissions caused elevated concentrations of PM-TCDD-CEQs at the urban traffic site.
NASA Astrophysics Data System (ADS)
Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Deschamps, Marjolaine; Benoit, Pierre; Garnier, Patricia
2017-04-01
Numerous studies have shown the presence of organic pollutants (OPs) in composts. Compost application in agricultural soil generates flux of OPs and among them polycyclic aromatic hydrocarbons (PAHs). A potential accumulation of PAHs in soils from successive compost applications could imply risks to environment. To explore and design scenarios that help land managers in their impact evaluations when composts are added in soils, there is a need to a new generation of models built from multi-modules that mimic the whole interactions between the different processes describing OP dynamic in soil. Our work is based on the implementation of an interdisciplinary global model for PAHs in soil by coupling modules describing the major physical, biochemical and biological processes influencing the fate of PAHs in soil, with modules that simulate water transfer, heat transfer, solute transport, and organic matter transformation under climatic conditions. The coupling is being facilitated by the «VSOIL» modeling platform. The steps of our modelling study are the following: 1) calibrate the field model using parameters previously estimated in laboratory completed with field data on a short period, 2) test the simulations using field experimental data, 3) build scenarios to explore the impact of PAHs accumulation in a long term (40 years). Our results show that the model can adequately predict the fate of PAHs in soil and can contribute to clarify some of unexplored aspects regarding the behavior of PAHs in soil like their mineralization and stabilization. Scenarios that predict the dynamic of PAHs in soil at long terms show a low PAH accumulation in soil after 40 years due to a high sequestration of the PAH in soils that is slightly higher for municipal solid waste composts than for green waste sludge composts.
Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment. PMID:27630626
Osgood, Ross S; Upham, Brad L; Bushel, Pierre R; Velmurugan, Kalpana; Xiong, Ka-Na; Bauer, Alison K
2017-05-01
Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Osgood, Ross S.; Upham, Brad L.; Bushel, Pierre R.; Velmurugan, Kalpana; Xiong, Ka-Na
2017-01-01
Abstract Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. PMID:28329830
NASA Astrophysics Data System (ADS)
María De la Rosa, José; Sánchez-Martín, Águeda; Villaverde-Capellán, Jaime; Madrid, Fernando; Paneque, Marina; Knicker, Heike
2017-04-01
Biochar may act as a soil conditioner, enhancing plant growth by supplying and retaining nutrients and by providing other services such as improving soil physical, chemical and biological properties. Feedstock properties and production conditions drive the nature of produced biochars [1]. Special attention have to be paid to their content of polycyclic aromatic hydrocarbons (PAHs), which are persistent organic pollutants formed during biochar production due to incomplete combustion (pyrolysis step) [2]. These PAHs may enter the environment when the biochar is applied as soil conditioner. Therefore, the intention of this study was to test a potential hazardous impact of biochar amendment due to the presence of PAHs. In order to find a relationship between pyrolysis conditions, feedstock and abundance of PAHs, four biochars produced from different feedstock were analyzed. Three biochars were produced by technical pyrolysis (500-600 °C; 20 min) from wood, paper sludge and sewage sludge respectively (samples B1, B2 and B3). The fourth biochar sample derived from old grapevine wood by using the traditional carbonization method in kilns (kiln-stack wood biochar; B4). A detailed characterization of physical and chemical properties of these samples can be found in De la Rosa et al, [3]. Two different PAHs extraction techniques were applied to evaluate the total and available PAHs content of the biochars. They consisted in an extraction with toluene using a Soxhlet extractor and a non-exhaustive extraction with Cyclodextrins (CDs). Chromatographic and mass spectrometric conditions applied are described in [1]. Total PAHs yielded between 3 ppm (B3) and 7 (B4) ppm. The production of biochar by using traditional kilns instead of controlled pyrolysis, increased significantly the total PAHs levels. No direct relationship was found between the total PAHs and the PAHs extracted by CDs, which can be considered as the bioavailable fraction. This parameter should replace the total PAHs to determine the real hazardous impact of the use of biochar as soil amendment. [1] J.M. De la Rosa, M. Paneque, I. Hilber, F. Blum, H. Knicker, T. Bucheli, J. Soils and Sediments 16 (2016) 557-565. [2] T. Bucheli, I Hilber, H. Schmidt. In Lehmann J, Joseph S (eds) Biochar for Environmental Management (2nd ed.), Earthscan, London, UKA. (2015). [3] J.M. De la Rosa, M. Paneque, A.Z. Miller, H. Knicker, Science of the Total Environment 499 (2014) 175-184. Acknowledgements: J.M. de la Rosa thanks The Spanish Ministry of Economy and Competitiveness (MINECO) for his "Ramón y Cajal" post-doctoral contract. MINECO, the European Regional Development Fund and the Marie Curie Integration Grants of 7th European Community Framework Programme are thanked for the financial support to this study (projects CGL2015-64811-P and PCIG12-GA-2012-333784).
Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.
Xiong, Bijing; Zhang, Youchi; Hou, Yanwei; Arp, Hans Peter H; Reid, Brian J; Cai, Chao
2017-09-01
The inoculation of rice straw biochar with PAH-degrading Mycobacterium gilvum (1.27 × 10 11 ± 1.24 × 10 10 cell g -1 ), and the subsequent amendment of this composite material to PAHs contaminated (677 mg kg -1 ) coke plant soil, was conducted in order to investigate if would enhance PAHs biodegradation in soils. The microbe-biochar composite showed superior degradation capacity for phenanthrene, fluoranthene and pyrene. Phenanthrene loss in the microbe-biochar composite, free cell alone and biochar alone treatments was, respectively, 62.6 ± 3.2%, 47.3 ± 4.1% and non-significant (P > 0.05); whereas for fluoranthene loss it was 52.1 ± 2.3%; non-significant (P > 0.05) and non-significant (P > 0.05); and for pyrene loss it was 62.1 ± 0.9%; 19.7 ± 6.5% and 13.5 ± 2.8%. It was hypothesized that the improved remediation was underpinned by i) biochar enhanced mass transfer of PAHs from the soil to the carbonaceous biochar "sink", and ii) the subsequent degradation of the PAHs by the immobilized M. gilvum. To test this mechanism, a surfactant (Brij 30; 20 mg g -1 soil), was added to impede PAHs mass transfer to biochar and sorption. The surfactant increased solution phase PAH concentrations and significantly (P < 0.05) reduced PAH degradation in the biochar immobilized M. gilvum treatments; indicating the enhanced degradation occurred between the immobilized M. gilvum and biochar sorbed PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodegradation and photooxidation of crude oil under natural sunlight in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Bacosa, H. P.; Erdner, D.; Liu, Z.
2016-02-01
An enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) spill. While the oil degradation and bacterial communities in the deep-sea plume have been widely investigated, the effect of sunlight on oil and bacterial assemblages in surface waters have received less attention. In this study, we amended surface water collected near the DWH site with crude oil and/or Corexit dispersant and incubated under natural sunlight in the nGoM for 36 d in summer of 2013. The residual alkanes, polycyclic aromatic hydrocarbons (PAHs), and alkalyted PAHs were analyzed by GC-MS, and bacterial community was determined via pyrosequencing. The results show that n-alkane biodegradation rate constants (first order) were ca. ten-fold higher than the photooxidation rate constants. While biodegradation was characterized by a lag phase, photooxidation rate constants for the 2-3 ring and 4-5 ring PAHs, were 0.08-0.98 day-1 and 0.01-0.07 day-1, respectively. Compared to biodegradation, photooxidation increased the transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. Sunlight significantly reduced bacterial diversity and a driver of shifts in bacterial community structure in oil and Corexit treatments. In amended treatments, sunlight increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Halomonas and Bartonella, while the dark treatments enriched Thalassobius, Winogradskyella, Alcanivorax, Formosa, Eubacterium, Erythrobacter, Natronocella, and Pseudomonas. This suggests that different bacteria are degrading the hydrocarbons in the dark and under light exposure. In a follow up study using DNA-Stable isotope probing (SIP), we identified the alkane and PAH degraders using 13C-labeled hexadecane and phenanthrene, respectively. The results of metagenomic and metatranscriptomic analyses in the light and dark incubations will be presented. For the first time, we demonstrated the effects of sunlight in structuring microbial communities oil polluted water. This study provides quantitative measures of oil degradation under relevant field conditions, and improves our understanding of the role of sunlight on the fate of spilled oil and microbial community composition in the nGoM.
Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao
2013-01-01
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032
Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira
2014-09-01
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
15 CFR 923.83 - Mediation of amendments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Mediation of amendments. 923.83... Programs § 923.83 Mediation of amendments. (a) Section 307(h)(2) of the Act provides for mediation of... management program. Accordingly mediation is available to states or federal agencies when a serious...
USDA-ARS?s Scientific Manuscript database
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian J. Allan; Kirk T. Semple; Rina Hare
This work aimed to evaluate the relative contribution of soil catabolic activity, contaminant bioaccessibility, and nutrient levels on the biodegradation of field-aged polycyclic aromatic hydrocarbons and phenolic compounds in three municipal gas plant site soils. Extents of biodegradation achieved, in 6 week-long soil slurry assays, under the following conditions were compared: (i) with inoculation of catabolically active PAH and phenol-degrading microorganisms, (ii) with and without hydroxypropyl-{beta}-cyclodextrin supplementation (HPCD; 100 g L{sup -1}), and finally (iii) with the provision of additional inorganic nutrients in combination with HPCD. Results indicated no significant (p {lt} 0.05) differences between biodegradation endpoints attained in treatmentsmore » inoculated with catabolically active microorganisms as compared with the uninoculated control. Amendments with HPCD significantly (p {lt} 0.05) lowered biodegradation endpoints for most PAHs and phenolic compounds. Only in one soil did the combination of HPCD and nutrients consistently achieve better bioremediation endpoints with respect to the HPCD-only treatments. Thus, for most compounds, biodegradation was not limited by the catabolic activity of the indigenous microorganisms but rather by processes resulting in limited availability of contaminants to degraders. It is therefore suggested that the bioremediation of PAH and phenol impacted soils could be enhanced through HPCD amendments. In addition, the biodegradability of in situ and spiked (deuterated analogues) PAHs following 120 days aging of the soils suggested that this contact time was not sufficient to obtain similar partitions to that observed for field-aged contaminants; with the spiked compounds being significantly (p {lt} 0.05) more available for biodegradation. 42 refs., 5 figs., 2 tabs.« less
Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W
2015-10-30
Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.
Sulfate-Reducing Naphthalene Degraders Are Picky Eaters.
Wolfson, Sarah J; Porter, Abigail W; Kerkhof, Lee J; McGuinness, Lora M; Prince, Roger C; Young, Lily Y
2018-06-25
Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source. Pristine coastal sediments were obtained from the Jacques Cousteau National Estuarine Research Reserve in Tuckerton, New Jersey, an ecological reserve which has no direct input or source of hydrocarbons. After an initial exposure to naphthalene, primary anaerobic transfer cultures completely degraded 500 µM naphthalene within 139 days. Subsequent transfer cultures mineralized naphthalene within 21 days with stoichiometric sulfate loss. Enriched cultures efficiently utilized only naphthalene and 2-methylnaphthalene from the hydrocarbon mixtures in crude oil. To determine the microorganisms responsible for naphthalene degradation, stable isotope probing was utilized on cultures amended with fully labeled 13 C-naphthalene as substrate. Three organisms were found to unambiguously synthesize 13 C-DNA from 13 C-naphthalene within 7 days. Phylogenetic analysis revealed that 16S rRNA genes from two of these organisms are closely related to the known naphthalene degrading isolates NaphS2 and NaphS3 from PAH-contaminated sites. A third 16S rRNA gene was only distantly related to its closest relative and may represent a novel naphthalene degrading microbe from this environment.
2010-01-01
Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water solubility. PHE uptake by wheat roots caused an increase in external solution pH, implying that wheat roots take up PHE via a PHE/nH+ symport system. Conclusion It is concluded that an active, carrier-mediated and energy-consuming influx process is involved in the uptake of PHE by plant roots. PMID:20307286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, J.; Sylte, W.W.
1997-12-31
The deposition of atmospheric polyaromatic hydrocarbons (PAHs) into San Diego Bay was evaluated at an initial study level. This study was part of an overall initial estimate of PAH waste loading to San Diego Bay from all environmental pathways. The study of air pollutant deposition to water bodies has gained increased attention both as a component of Total Maximum Daily Load (TMDL) determinations required under the Clean Water Act and pursuant to federal funding authorized by the 1990 Clean Air Act Amendments to study the atmospheric deposition of hazardous air pollutants to the Great Waters, which includes coastal waters. Tomore » date, studies under the Clean Air Act have included the Great Lakes, Chesapeake Bay, Lake Champlain, and Delaware Bay. Given the limited resources of this initial study for San Diego Bay, the focus was on maximizing the use of existing data and information. The approach developed included the statistical evaluation of measured atmospheric PAH concentrations in the San Diego area, the extrapolation of EPA study results of atmospheric PAH concentrations above Lake Michigan to supplement the San Diego data, the estimation of dry and wet deposition with published calculation methods considering local wind and rainfall data, and the comparison of resulting PAH deposition estimates for San Diego Bay with estimated PAH emissions from ship and commercial boat activity in the San Diego area. The resulting PAH deposition and ship emission estimates were within the same order of magnitude. Since a significant contributor to the atmospheric deposition of PAHs to the Bay is expected to be from shipping traffic, this result provides a check on the order of magnitude on the PAH deposition estimate. Also, when compared against initial estimates of PAH loading to San Diego Bay from other environmental pathways, the atmospheric deposition pathway appears to be a significant contributor.« less
Long-term simulation of in situ biostimulation of polycyclic aromatic hydrocarbon-contaminated soil
Jones, Maiysha D.; Singleton, David R.; Aitken, Michael D.
2016-01-01
A continuous-flow column study was conducted to evaluate the long-term effects of in situ biostimulation on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil from a manufactured gas plant site. Simulated groundwater amended with oxygen and inorganic nutrients was introduced into one column, while a second column receiving unamended groundwater served as a control. PAH and dissolved oxygen (DO) concentrations, as well as microbial community profiles, were monitored along the column length immediately before and at selected intervals up to 534 days after biostimulation commenced. Biostimulation resulted in significantly greater PAH removal than in the control condition (73% of total measured PAHs vs. 34%, respectively), with dissolution accounting for a minor amount of the total mass loss (~6%) in both columns. Dissolution was most significant for naphthalene, acenaphthene, and fluorene, accounting for >20% of the total mass removed for each. A known group of PAH-degrading bacteria, ‘Pyrene Group 2’ (PG2), was identified as a dominant member of the microbial community and responded favorably to biostimulation. Spatial and temporal variations in soil PAH concentration and PG2 abundance were strongly correlated to DO advancement, although there appeared to be transport of PG2 organisms ahead of the oxygen front. At an estimated oxygen demand of 6.2 mg O2/g dry soil and a porewater velocity of 0.8 m/day, it took between 374 and 466 days for oxygen breakthrough from the 1-m soil bed in the biostimulated column. This study demonstrated that the presence of oxygen was the limiting factor in PAH removal, as opposed to the abundance and/or activity of PAH-degrading bacteria once oxygen reached a previously anoxic zone. PMID:22311590
Gomez-Eyles, Jose L; Ghosh, Upal
2018-07-01
A bench scale study was conducted to evaluate the effectiveness of in situ amendments to reduce the bioavailability of pollutants in sediments from a site impacted with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and cadmium. The amendments tested included fine and coarse coal-based activated carbons (AC), an enhanced pinewood derived biochar (EPB), organoclay, and coke dosed at 5% of sediment dry weight. Strong reductions in total PCB porewater concentrations were observed in sediments amended with the fine AC (94.9-99.5%) and EPB (99.6-99.8%). More modest reductions were observed for the coarse AC, organoclay, and coke. Strong reductions in porewater PCB concentrations were reflected in reductions in total PCB bioaccumulation in fresh water oligochaetes for both the fine AC (91.9-96.0%) and EPB (96.1-96.3%). Total PAH porewater concentrations were also greatly reduced by the fine AC (>96.1%) and EPB (>97.8%) treatments. EPB matched or slightly outperformed the fine AC throughout the study, despite sorption data indicating a much stronger affinity of PCBs for the fine AC. Modeling EPB and fine AC effectiveness on other sediments confirmed the high effectiveness of the EPB was due to the very low final porewater concentrations and differences in the native bioavailability between sediments. However, low bulk density and poor settling characteristics make biochars difficult to apply in an aquatic setting. Neither the EPB nor the fine AC amendments were able to significantly reduce Cd bioavailability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain
Patel, Dipali; Kopec, Jolanta; Fitzpatrick, Fiona; McCorvie, Thomas J.; Yue, Wyatt W.
2016-01-01
The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme. PMID:27049649
Ingestion of contaminated soil is an exposure pathway at approximately one-half of the Superfund sites in the United States. This study was designed to evaluate the impacts of aging in soil on the availability of polycyclic aromatic hydrocarbons (PAHs). Two coal tar (CT)-amended ...
Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo
2008-12-01
We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.
Wawra, Anna; Friesl-Hanl, Wolfgang; Jäger, Anna; Puschenreiter, Markus; Soja, Gerhard; Reichenauer, Thomas; Watzinger, Andrea
2018-03-01
Co-contaminations of soils with organic and inorganic pollutants are a frequent environmental problem. Due to their toxicity and recalcitrance, the heterogeneous pollutants may persist in soil. The hypothesis of this study was that degradation of polycyclic aromatic hydrocarbons (PAHs) is enhanced if heavy metals in soil are immobilized and their bioavailability reduced. For metal immobilization and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) were deployed in an incubation batch experiment. The second part of the experiment consisted of a greenhouse pot experiment applying fast-growing and pollution-tolerant woody plants (willow and black locust). Soil amendments initially immobilized NH 4 NO 3 -extractable zinc, cadmium, and lead; after 100 days of incubation, soil amendments showed reductions only for cadmium and a tendency to enhance arsenic mobility. In order to monitor the remediation success, a 13 C-phenanthrene (PHE) label was applied. 13 C-phospholipid fatty acid analysis ( 13 C-PLFA) further enabled the identification of PHE-degrading soil microorganisms. Both experiments exhibited a similar PLFA profile. Gram-negative bacteria (esp. cy17:0, 16:1ω7 + 6, 18:1ω7c) were the most significant microbial group taking up 13 C-PHE. Plants effectively increased the label uptake by gram-positive bacteria and increased the biomass of the fungal biomarker, although their contribution to the degradation process was minor. Plants tended to prolong PAH dissipation in soil; at the end of the experiment, however, all treatments showed equally low total PAH concentrations in soil. While black locust plants tended not to take up potentially toxic trace elements, willows accumulated them in their leaves. The results of this study show that the chosen treatments did not enhance the remediation of the experimental soil.
Remediation of soil-bound polynuclear aromatic hydrocarbons using nonionic surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeom, IckTae; Ghosh, Mriganka; Cox, C.
1996-12-31
The solubilization and biodegradation of soil-bound PAHs from a manufactured gas plant (MGP) site soil was investigated using surfactants. Three nonionic polyoxyethylene (POE) surfactants, Triton X-100, Tween 80, and Brij 35, were used. The fate of four PAHs, phenanthrene, anthracene, pyrene, and benzo(a)pyrene were monitored during the remediation process. The measured concentrations of solubilized PAHs agreed well with those estimated using micelle-water partitioning coefficient, K{sub m}, and Raoult`s law. The solubilization of soil-bound PAHs by surfactants is a slow, nonequilibrium process. Diffusion of PAH molecules within the weathered soil-tar matrix is proposed as the rate-limiting step in solubilizing PAHs frommore » such soils. A radial diffusion model is used to describe solubilization of PAHs by surfactant washing. The model predicts experimental results fairly well at low surfactant dosages while at high dosages it somewhat overestimates the extent of solubilization. Biodegradation studies were performed using a natural consortium of microorganisms enriched from PAH-contaminated soils. Surfactants enhanced biodegradation of PAHs except for Tween 80. However, biodegradation of surfactants themselves appear to attenuate the beneficial effects of surfactant-mediated bioremediation.« less
A Peripheral Blood Signature of Vasodilator-Responsive Pulmonary Arterial Hypertension
Hemnes, Anna R.; Trammell, Aaron W.; Archer, Stephen L.; Rich, Stuart; Yu, Chang; Nian, Hui; Penner, Niki; Funke, Mitchell; Wheeler, Lisa; Robbins, Ivan M.; Austin, Eric D.; Newman, John H.; West, James
2014-01-01
Background Heterogeneity in response to treatment of pulmonary arterial hypertension (PAH) is a major challenge to improving outcome in this disease. Although vasodilator responsive PAH (VR-PAH) accounts for a minority of cases, VR-PAH has a pronounced response to calcium channel blockers and better survival than non-responsive PAH (VN-PAH). We hypothesized that VR-PAH has a different molecular etiology from VN-PAH that can be detected in the peripheral blood. Methods and Results Microarrays of cultured lymphocytes from VR-PAH and VN-PAH patients followed at Vanderbilt University were performed with quantitative PCR performed on peripheral blood for the 25 most different genes. We developed a decision tree to identify VR-PAH patients based on the results with validation in a second VR-PAH cohort from the University of Chicago. We found broad differences in gene expression patterns on microarray analysis including cell-cell adhesion factors, cytoskeletal and rho/GTPase genes. 13/25 genes tested in whole blood were significantly different: EPDR1, DSG2, SCD5, P2RY5, MGAT5, RHOQ, UCHL1, ZNF652, RALGPS2, TPD52, MKNL1, RAPGEF2 and PIAS1. Seven decision trees were built using expression levels of two genes as the primary genes: DSG2, a desmosomal cadherin involved in Wnt/β-catenin signaling, and RHOQ, which encodes a cytoskeletal protein involved in insulin-mediated signaling. These trees correctly identified 5/5 VR-PAH in the validation cohort. Conclusions VR-PAH and VN-PAH can be differentiated using RNA expression patterns in peripheral blood. These differences may reflect different molecular etiologies of the two PAH phenotypes. This biomarker methodology may identify PAH patients that have a favorable treatment response. PMID:25361553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipsky, S.R.; Alexander, G.; McMurray, W.
1977-02-01
Techniques were developed to produce excellent high performance glass capillary columns for gas chromatographic analyses of a wide range of complex mixtures of organic compounds, including those containing a wide array of polycyclic aromatic hydrocarbons (PAH) derived from a coal liquefaction process. Work was begun to assess the potential mutogenicity and/or carcinogenicity of the various isolated PAH fractions utilizing a unique host mediated bioassay system. Preliminary results indicate that further efforts will be required to determine dose response parameters of cultured mouse leukemia cells, as well as suitable vehicles for the satisfactory introduction of certain PAH fractions into this particularmore » bioassay system.« less
NASA Astrophysics Data System (ADS)
Mitra, S.; Webb, C.; Zimmerman, A. R.; Bostick, K. W.; Wozniak, A. S.; Hatcher, P.
2017-12-01
The proposed benefits of biochar (residues of the incomplete combustion of biomass) as a carbon-negative soil amendment have led to its wide application in soils. However, recent studies have shown that the compounds in biochar may not be as refractory in the soil environment as previously assumed. For example, mobilization or transformation of the organic molecules in biochar via solubilization, may occur in nature. Such mobilization has the potential to alter biochar's potential to sequester carbon. Moreover, many of the leached molecules may be reactive, toxic and carcinogenic. In this study, we quantified two classes of such compounds, polycyclic aromatic hydrocarbons and oxygenated polycyclic aromatic hydrocarbons (PAHs and OPAHs, respectively) in the solids and leachates of an oak and grass biochar thermal series (pyrolyzed at 400, 525, 650 °C). We compare PAH and OPAH yields and concentrations as a function of the initial biochar feedstock as well as its pyrolysis temperature. Solid biochars yielded considerably higher amounts of total PAHs/OPAHs than the liquid extracts. Grass pyrolyzed at 400°C yielded 4,760 ng/g total PAHs/OPAHs per gram of solid biochar whereas oak pyrolyzed at 650°C contained 2,840 ng/g total PAHs/OPAHs per gram of solid biochar. Preliminary results for oak biochar indicate that solubilization of PAHs and OPAHs is greatest when pyrolyzed at 250 °C with concentrations of 1.64 ng/g total PAHs/OPAHs per gram of aqueous leachate. For grass, the greatest solubilization of PAHs/OPAHs occurs at pyrolysis temperatures of 400°C with 2.94 g/ng total PAHs/OPAHs per gram of aqueous leachate. These experiments will improve our understanding of the mobility of pyrogenic C in the environment and potential for pyrogenic C export from terrestrial systems and negative effects to aquatic ecosystems, and may result in new chemical markers for pyrogenic organic matter in environmental samples.
NASA Astrophysics Data System (ADS)
Cook, Amanda M.; Ricca, Alessandra; Mattioda, Andrew L.; Bouwman, Jordy; Roser, Joseph; Linnartz, Harold; Bregman, Jonathan; Allamandola, Louis J.
2015-01-01
Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H2O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H2O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H2O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati & Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO2 and H2CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ~2%-4% level relative to H2O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.
Pascual, Florencia; Soto-Cardalda, Aníbal; Carman, George M.
2013-01-01
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids in the exponential phase of growth occurs at the expense of the storage lipid triacylglycerol. As exponential phase cells progress into the stationary phase, the synthesis of triacylglycerol occurs at the expense of phospholipids. Early work indicates a role of the phosphatidate phosphatase (PAP) in this metabolism; the enzyme produces the diacylglycerol needed for the synthesis of triacylglycerol and simultaneously controls the level of phosphatidate for the synthesis of phospholipids. Four genes (APP1, DPP1, LPP1, and PAH1) encode PAP activity in yeast, and it has been unclear which gene is responsible for the synthesis of triacylglycerol throughout growth. An analysis of lipid synthesis and composition, as well as PAP activity in various PAP mutant strains, showed the essential role of PAH1 in triacylglycerol synthesis throughout growth. Pah1p is a phosphorylated enzyme whose in vivo function is dependent on its dephosphorylation by the Nem1p-Spo7p protein phosphatase complex. nem1Δ mutant cells exhibited defects in triacylglycerol synthesis and lipid metabolism that mirrored those imparted by the pah1Δ mutation, substantiating the importance of Pah1p dephosphorylation throughout growth. An analysis of cells bearing PPAH1-lacZ and PPAH1-DPP1 reporter genes showed that PAH1 expression was induced throughout growth and that the induction in the stationary phase was stimulated by inositol supplementation. A mutant analysis indicated that the Ino2p/Ino4p/Opi1p regulatory circuit and transcription factors Gis1p and Rph1p mediated this regulation. PMID:24196957
KSCS FOR A PAH AND PCB ASSOCIATED WITH A MARINE SEDIMENT AMENDED WITH SEVERAL TYPES OF SOOT CARBON
Soot carbon (SC) originates from the combustion of fossil fuels and biomass and is found in sediments around the world. SC comprises up to 30% of organic carbon in sediment and is now commonly recognized as a phase which must be considered when predicting the environmental par...
Oleszczuk, Patryk; Kołtowski, Michał
2017-02-01
The aim of this study was to investigate co-application of biochar and nano zero-valent iron (nZVI) in order to increase the degradation of PAHs and reduce the toxicity of soils historically contaminated with these compounds. To performed the experiment biochar, biochar with nZVI (2 g kg -1 or 10 g kg -1 soil), or nZVI alone (2 g kg -1 or 10 g kg -1 soil) were added to the PAHs contaminated soils. The soils alone and soils with amendments were aged by mixing for 7 and 30 days. After that the chemical analysis were carried out and total (C tot ) and C free PAH content in the samples were determined. Moreover, the toxicity of aqueous extracts were investigated using the Microtox ® (Vibrio fischeri) method. Results showed that any of used nZVI dose did not reduce the content of C tot or C free PAHs in contaminated soils, but biochar applied both alone and together with the nZVI significantly reduced C tot and C free PAHs. However, no significant differences in PAH reduction were found between biochar alone and biochar with nZVI addition. This indicates that the observed reduction was mostly associated with the sorption properties of biochar. Moreover, only in the case of co-application of biochar and nZVI reduction of the toxicity of nZVI to V. fischeri was observed. The toxic effect was different and depend on the type of soil and their properties including total organic carbon and black carbon content, which may affect the PAHs reduction efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Margolis, Amy E; Herbstman, Julie B; Davis, Katie S; Thomas, Valerie K; Tang, Deliang; Wang, Ya; Wang, Shuang; Perera, Frederica P; Peterson, Bradley S; Rauh, Virginia A
2016-07-01
We evaluated the influence of prenatal exposure to widespread urban air pollutants on the development of self-regulation and social competence in a longitudinal prospective cohort of children born to nonsmoking minority women in New York City. Air pollutant exposure was estimated categorically by level of polycyclic aromatic hydrocarbon (PAH)-DNA adducts in maternal blood collected at delivery, providing a biomarker of maternal exposure to PAH over a 2- to 3-month period. Deficient emotional self-regulation (DESR) was defined as moderate elevations on three specific scales of the child behavior checklist (anxious/depressed, aggressive behavior, and attention problems). We used generalized estimating equations to assess the influence of prenatal exposure to PAH on DESR in children at 3-5, 7, 9, and 11 years of age, adjusted for gender and race/ethnicity. Next, we assessed the association of prenatal exposure to PAH with social competence, as measured by the social responsiveness scale (SRS), the association of impaired self-regulation with social competence, and whether impairment in self-regulation mediated the association of prenatal exposure to PAH with social competence. We detected a significant interaction (at p = .05) of exposure with time, in which the developmental trajectory of self-regulatory capacity was delayed in the exposed children. Multiple linear regression revealed a positive association between presence of PAH-DNA adducts and problems with social competence (p < .04), level of dysregulation and problems with social competence (p < .0001), and evidence that self-regulation mediates the association of prenatal exposure to PAH with social competence (p < .0007). These data suggest that prenatal exposure to PAH produces long-lasting effects on self-regulatory capacities across early and middle childhood, and that these deficits point to emerging social problems with real-world consequences for high-risk adolescent behaviors in this minority urban cohort. © 2016 Association for Child and Adolescent Mental Health.
Hong, Zhigang; Chen, Kuang-Hueih; DasGupta, Asish; Potus, Francois; Dunham-Snary, Kimberly; Bonnet, Sebastien; Tian, Lian; Fu, Jennifer; Breuils-Bonnet, Sandra; Provencher, Steeve; Wu, Danchen; Mewburn, Jeffrey; Ormiston, Mark L.
2017-01-01
Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted. PMID:27648837
Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming
2001-01-01
Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337
Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao
2014-12-01
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis. © 2014 National Research Council Canada. The Plant Journal © 2014 Society For Experimental Biology and John Wiley & Sons.
Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter
2010-04-01
Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.
Louati, Hela; Said, Olfa Ben; Soltani, Amel; Got, Patrice; Mahmoudi, Ezzeddine; Cravo-Laureau, Cristiana; Duran, Robert; Aissa, Patricia; Pringault, Olivier
2013-11-01
Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30 days. Bioremediation treatments, nutrient amendment and addition of a hydrocarbon-degrading bacterium, were also tested to enhance PAH biodegradation. Results clearly show the important role of meiofauna as structuring factor for bacterial communities with significant changes observed in the molecular fingerprints. However, these structural changes were not concomitant with changes in biomass or function. PAH contamination had a severe impact on total meiofaunal abundance with a strong decrease of nematodes and the complete disappearance of polychaetes and copepods. In contrast, correspondence analysis, based on T-RFLP fingerprints, showed that contamination by PAH resulted in small shifts in microbial composition, with or without meiofauna, suggesting a relative tolerance of bacteria to the PAH cocktail. The PAH bioremediation treatments were highly efficient with more than 95% biodegradation. No significant difference was observed in presence or absence of meiofauna. Nutrient addition strongly enhanced bacterial and meiofaunal abundances as compared to control and contaminated microcosms, as well as inducing important changes in the bacterial community structure. Nutrients thus were the main structural factor in shaping bacterial community composition, while the role of meiofauna was less evident.
Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.
2013-01-01
Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615
In situ microbiota distinguished primary anthropogenic stressor in freshwater sediments.
Xie, Yuwei; Floehr, Tilman; Zhang, Xiaowei; Xiao, Hongxia; Yang, Jianghua; Xia, Pu; Burton, G Allen; Hollert, Henner
2018-08-01
Conventional assessment and evaluation of sediment quality are based on laboratory-based ecotoxicological and chemical measurements with lack of concern for ecological relevance. Microbiotas in sediment are responsive to pollutants and can be used as alternative ecological indicators of sediment pollutants; however, the linkage between the microbial ecology and ecotoxicological endpoints in response to sediment contamination has been poorly evaluated. Here, in situ microbiotas from the Three Gorges Reservoir (TGR) area of the Yangtze River were characterized by DNA metabarcoding approaches, and then, changes of in situ microbiotas were compared with the ecotoxicological endpoint, aryl hydrocarbon receptor (AhR) mediated activity, and level of polycyclic aromatic hydrocarbons (PAHs) in sediments. PAHs and organic pollutant mixtures mediating AhR activity had different effects on the structures of microbiotas. Specifically, Shannon indices of protistan communities were negatively correlated with the levels of AhR mediated activity and PAHs. The sediment AhR activity was positively correlated with the relative abundance of prokaryotic Acetobacteraceae, but had a negative correlation with protistan Oxytrichidae. Furthermore, a quantitative classification model was built to predict the level of AhR activity based on the relative abundances of Acetobacteraceae and Oxytrichidae. These results suggested that in situ Protista communities could provide a useful tool for monitoring and assessing ecological stressors. The observed responses of microbial community provided supplementary evidence to support that the AhR-active pollutants, such as PAHs, were the primary stressors of the aquatic community in TGR area. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph
2015-01-20
Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts andmore » PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.« less
Balaji, V; Arulazhagan, P; Ebenezer, P
2014-05-01
The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University
2013-03-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less
Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel
2015-12-30
We studied in the laboratory the bioremediation effects over a 100-day period of three edaphic biostimulants (BS) obtained from sewage sludge (SS) and from two different types of chicken feathers (CF1 and CF2), in a soil polluted with three polycyclic aromatic hydrocarbons (PAH) (phenanthrene, Phe; pyrene, Py; and benzo(a)pyrene, BaP), at a concentration of 100 mg kg(-1) soil. We determined their effects on enzymatic activities and on soil microbial community. Those BS with larger amounts of proteins and a higher proportion of peptides (<300 daltons), exerted a greater stimulation on the soil biochemical properties and microbial community, possibly because low molecular weight proteins can be easily assimilated by soil microorganisms. The soil dehydrogenase, urease, β-glucosidase and phosphatase activities and microbial community decreased in PAH-polluted soil. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe. The application of the BS to PAH-polluted soils decreased the inhibition of the soil biological properties, principally at 7 days into the experiment. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe and was higher in polluted soils amended with CF2, followed by SS and CF1, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René
2006-04-01
Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.
Han, Gil-Soo; Carman, George M
2017-08-11
The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Jacobs, Wouter; van de Veerdonk, Mariëlle C.; Trip, Pia; de Man, Frances; Heymans, Martijn W.; Marcus, Johannes T.; Kawut, Steven M.; Bogaard, Harm-Jan; Boonstra, Anco
2014-01-01
Background: Male sex is an independent predictor of worse survival in pulmonary arterial hypertension (PAH). This finding might be explained by more severe pulmonary vascular disease, worse right ventricular (RV) function, or different response to therapy. The aim of this study was to investigate the underlying cause of sex differences in survival in patients treated for PAH. Methods: This was a retrospective cohort study of 101 patients with PAH (82 idiopathic, 15 heritable, four anorexigen associated) who were diagnosed at VU University Medical Centre between February 1999 and January 2011 and underwent right-sided heart catheterization and cardiac MRI to assess RV function. Change in pulmonary vascular resistance (PVR) was taken as a measure of treatment response in the pulmonary vasculature, whereas change in RV ejection fraction (RVEF) was used to assess RV response to therapy. Results: PVR and RVEF were comparable between men and women at baseline; however, male patients had a worse transplant-free survival compared with female patients (P = .002). Although male and female patients showed a similar reduction in PVR after 1 year, RVEF improved in female patients, whereas it deteriorated in male patients. In a mediator analysis, after correcting for confounders, 39.0% of the difference in transplant-free survival between men and women was mediated through changes in RVEF after initiating PAH medical therapies. Conclusions: This study suggests that differences in RVEF response with initiation of medical therapy in idiopathic PAH explain a significant portion of the worse survival seen in men. PMID:24306900
Otte, Jens C.; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B.; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A.; Braunbeck, Thomas; Giesy, John P.; Hecker, Markus; Hollert, Henner
2013-01-01
The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported. PMID:24146763
Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?
Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong
2016-06-01
Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (<1%), primarily due to their smaller RePs. Overall, the present study provides information on distributions and AhR binding affinities for SOs as baseline data for degradation products of polystyrene plastic in the coastal environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suedel, B.C.; Rodgers, J.H. Jr.
1996-07-01
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) with a hydrophobic nature (water solubility = 265 {mu}g/L; U.S. EPA 1980) and a propensity to sorb to sediments. Fluoranthene has a K{sub oc} of 4.65, an intermediate value for PAHs. Fluoranthene can be toxic to some aquatic organisms at concentrations lower than its aqueous solubility. Therefore, desorption from sediments could produce aqueous concentrations that are harmful to aquatic organisms. Very few studies have examined the toxicity of fluoranthene to freshwater organisms. Data for other PAHs show that crustaceans are the most sensitive species, followed by polychaete worms and fish. Effects of fluoranthene-amendedmore » sediments on selected marine benthic organisms were examined. The objectives of this research were to (1) determine the relative sensitivities of Daphnia magna Straus, Hyalella azteca Saussure, Chironomus tentans Fabricius, and Stylaria lacustris Linnaeus in 48-hr and 10-d aqueous phase exposures to fluoranthene; and (2) determine the relative responses of these organisms in 10-d fluoranthene-amended sediment exposures. 12 refs., 3 tabs.« less
Zhou, Xing-Hua; Xi, Feng-Na; Zhang, Yi-Ming; Lin, Xian-Fu
2011-06-01
A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)(n) bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10⁻⁷ mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.
Hsieh, Lu-Sheng; Su, Wen-Min; Han, Gil-Soo; Carman, George M.
2015-01-01
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. PMID:25809482
Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra
2015-02-01
The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 7-acre Midco II site is an abandoned chemical waste storage and disposal facility in Gary, Indiana. Land use in the surrounding area is predominantly industrial. The underlying aquifer, which is used primarily for non-drinking purposes, is highly susceptible to contamination from surface sources. From 1976 to 1978, the site was used for treatment, storage, and disposal of chemical and bulk liquid wastes. The ROD amends a 1989 ROD that addressed the remaining contaminated soil, pit wastes, and ground water by treatment of an estimated 35,000 cubic yards of soil wastes. The amended remedy reduces the estimated amount of soilmore » to be treated, as a result of new information on arsenic data and amended soil CALs, further defines the site cover requirements, and further defines the requirements for deep well injection of contaminated ground water. The primary contaminants of concern affecting the subsurface soil, sediment, and ground water are VOCs, including methylene chloride, benzene, toluene, TCE, and xylenes; other organics, including PCBs, phenols, and PAHs; and metals, including chromium, and lead. The amended remedial action for the ROD is included.« less
Xiao, Ruiyang; Arnot, Jon A; MacLeod, Matthew
2015-11-01
Dietary exposure is considered the dominant pathway for fish exposed to persistent, hydrophobic chemicals in the environment. Here we present a dynamic, fugacity-based three-compartment bioaccumulation model that describes the fish body as one compartment and the gastrointestinal tract (GIT) as two compartments. The model simulates uptake from the GIT by passive diffusion and micelle-mediated diffusion, and chemical degradation in the fish and the GIT compartments. We applied the model to a consistent measured dietary uptake and depuration dataset for rainbow trout (n=215) that is comprised of chlorinated benzenes, biphenyls, dioxins, diphenyl ethers, and polycyclic aromatic hydrocarbons (PAHs). Model performance relative to the measured data is statistically similar regardless of whether micelle-mediated diffusion is included; however, there are considerable uncertainties in modeling this process. When degradation in the GIT is assumed to be negligible, modeled chemical elimination rates are similar to measured rates; however, predicted concentrations of the PAHs are consistently higher than measurements by up to a factor of 20. Introducing a kinetic limit on chemical transport from the fish compartment to the GIT and increasing the rate constant for degradation of PAHs in tissues of the liver and/or GIT are required to achieve good agreement between the modelled and measured concentrations for PAHs. Our results indicate that the apparent low absorption efficiency of PAHs relative to the chemicals with similar hydrophobicity is attributable to biotransformation in the liver and/or the GIT. Our results provide process-level insights about controls on the extent of bioaccumulation of chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Goodale, B. C.; La Du, J.; Tilton, S. C.; Sullivan, C. M.; Bisson, W. H.; Waters, K. M.; Tanguay, R. L.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. PMID:26141390
Brandenburg, Jonas; Head, Jessica A
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are potent teratogens. Recent research suggests that early life exposure to PAHs can affect health outcomes later in life. Some of these latent responses may be mediated by epigenetic mechanisms such as DNA methylation. The role of DNA methylation in regulating responses to PAHs in birds is currently unknown. Here, we assess the effect of in ovo exposure to the model PAH, benzo[k]fluoranthene (BkF), on aryl hydrocarbon receptor (AHR) mediated cytochrome P4501A (CYP1A) gene expression and promoter methylation in chicken embryos. Fertilized chicken eggs were injected with BkF (0-100μg/kg) prior to incubation. BkF exposure was associated with an increase in CYP1A4 and CYP1A5 mRNA levels at mid-incubation (embryonic day 10), which dropped to baseline levels towards the end of the incubation period (embryonic day 19). The transient induction in CYP1A expression was accompanied by small but significant increases in CYP1A promoter methylation, which persisted until after shortly after hatching. Methylation within the CYP1A promoter was correlated with levels of CYP1A5, but not CYP1A4 mRNA. Characterization of the role of DNA methylation in the AHR response pathway may increase our understanding of the effects of early life exposure to PAHs in birds. Copyright © 2017 Elsevier Inc. All rights reserved.
Management of pulmonary arterial hypertension with a focus on combination therapies.
Benza, Raymond L; Park, Myung H; Keogh, Anne; Girgis, Reda E
2007-05-01
Pulmonary arterial hypertension (PAH) is a rare but frequently fatal condition marked by vasoconstriction and vascular remodeling within small pulmonary arteries. The pathobiology of PAH involves imbalances in a multitude of endogenous mediators, which promote aberrant cellular growth, vasoconstriction and hemostasis within the pulmonary vascular tree. The mechanisms promoting these pathologic effects are complex. This complexity is highlighted by the many overlapping secondary messenger systems through which these mediators work. In light of this natural redundancy, it is not surprising that many of the drugs used to treat PAH, which have shown short-term efficacy, fall "short of the mark" in reversing or halting the progression of this disease in the long run. This very redundancy in pathways makes the case for the use of combination of drugs with differing mechanisms of action to treat PAH. Similar to what is now accepted as the standard of care for the treatment of cancer and left ventricular dysfunction, combination therapy has the greatest promise for inducing the most complete vascular remodeling of the pulmonary vasculature by "shutting down" as many of these pathologic pathways as possible. Combination therapies involving existing therapies or new agents with improved pharmacokinetic and/or pharmacodynamic properties represent an emerging clinical paradigm for patients with sub-optimally managed disease. As emerging data in this field of therapy comes to fruition, further reductions in the morbidity and mortality associated with PAH will manifest. The goal of this report is to review the philosophy of combination therapy and present the available data in this area of study.
Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan
2017-02-15
The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence for the involvement of type I interferon in pulmonary arterial hypertension.
George, Peter M; Oliver, Eduardo; Dorfmuller, Peter; Dubois, Olivier D; Reed, Daniel M; Kirkby, Nicholas S; Mohamed, Nura A; Perros, Frederic; Antigny, Fabrice; Fadel, Elie; Schreiber, Benjamin E; Holmes, Alan M; Southwood, Mark; Hagan, Guy; Wort, Stephen J; Bartlett, Nathan; Morrell, Nicholas W; Coghlan, John G; Humbert, Marc; Zhao, Lan; Mitchell, Jane A
2014-02-14
Evidence is increasing of a link between interferon (IFN) and pulmonary arterial hypertension (PAH). Conditions with chronically elevated endogenous IFNs such as systemic sclerosis are strongly associated with PAH. Furthermore, therapeutic use of type I IFN is associated with PAH. This was recognized at the 2013 World Symposium on Pulmonary Hypertension where the urgent need for research into this was highlighted. To explore the role of type I IFN in PAH. Cells were cultured using standard approaches. Cytokines were measured by ELISA. Gene and protein expression were measured using reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. The role of type I IFN in PAH in vivo was determined using type I IFN receptor knockout (IFNAR1(-/-)) mice. Human lung cells responded to types I and II but not III IFN correlating with relevant receptor expression. Type I, II, and III IFN levels were elevated in serum of patients with systemic sclerosis associated PAH. Serum interferon γ inducible protein 10 (IP10; CXCL10) and endothelin 1 were raised and strongly correlated together. IP10 correlated positively with pulmonary hemodynamics and serum brain natriuretic peptide and negatively with 6-minute walk test and cardiac index. Endothelial cells grown out of the blood of PAH patients were more sensitive to the effects of type I IFN than cells from healthy donors. PAH lung demonstrated increased IFNAR1 protein levels. IFNAR1(-/-) mice were protected from the effects of hypoxia on the right heart, vascular remodeling, and raised serum endothelin 1 levels. These data indicate that type I IFN, via an action of IFNAR1, mediates PAH.
Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis
Zhang, Zhenlu; He, Guijuan; Catanzaro, Nicholas; Wu, Zujian; Xie, Lianhui
2018-01-01
Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection. PMID:29649282
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 62-acre Koppers (Texarkana Plant) site is a former wood treatment facility located in Texarkana, Texas. From 1910 to 1961, the Koppers Company treated wood onsite using PCP, creosote, and metallic salts. After onsite operations ceased in 1961, the structures were removed and the property was sold for residential and industrial development. The 1992 ROD amendment appends the provisions of the mandate to the remedy, as established in the 1988 ROD. The primary contaminants of concern, as provided in the 1988 ROD, affecting the soil, sediment, debris, and ground water are VOCs, including benzene, toluene, and xylenes; other organics, includingmore » PAHs and PCP; and metals, including arsenic.« less
Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong
2017-02-01
The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.
Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport
An, Guohua; Wang, Xiaodong
2014-01-01
Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway. PMID:25002746
Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi
2015-04-28
Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less
Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.; ...
2015-07-03
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less
Goodale, B C; La Du, J; Tilton, S C; Sullivan, C M; Bisson, W H; Waters, K M; Tanguay, R L
2015-10-01
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.
Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja
2017-02-01
Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.
Adhikari, Puspa L; Maiti, Kanchan; Bosu, Somiddho; Jones, Patrick R
2016-06-15
Particle-mediated vertical flux of polycyclic aromatic hydrocarbons (PAHs) plays an important role in their removal from upper oceans and sets a limit on the amount delivered to the deep-sea sediments. In this study, we applied a one-dimensional steady-state (234)Th scavenging model to estimate vertical flux of PAHs in the northern Gulf of Mexico and compared them with sediment trap based flux estimates. The (234)Th-based ∑PAH43 fluxes were 6.7±1.0μgm(-2)d(-1) and 3.7±0.6μgm(-2)d(-1) while sediment trap-based fluxes were 4.0±0.6μgm(-2)d(-1) and 4.5±0.7μgm(-2)d(-1) at 150m and 250m, respectively. Alkylated homologues contributed to 80% of the total PAH fluxes which is in contrary to other regions where combustion derived parent PAHs dominate the fluxes. The results indicate that the (238)U-(234)Th disequilibria can be an effective tracer of particulate PAH fluxes in upper mesopelagic zones and can provide flux estimates with high spatial coverage needed to quantify their long term fate and transport in the marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...
Singleton, David R.; Guzmán Ramirez, Liza; Aitken, Michael D.
2009-01-01
Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels. PMID:19270134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Love Canal (93rd Street) site is an inactive hazardous waste site located in Niagara Falls, New York. The 19-acre 93rd Street School site, one of several operable units for the Love Canal Superfund site, is the focus of the Record of Decision (ROD). The fill material is reported to contain fly ash and BHC (a pesticide) waste. The ROD amends the 1988 ROD, and addresses final remediation of onsite contaminated soil through excavation and offsite disposal. The primary contaminants of concern affecting the soil are VOCs including toluene and xylenes; other organics including PAHs and pesticides; and metals includingmore » arsenic, chromium, and lead.« less
Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael
2016-06-01
Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.
Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast*
Soto-Cardalda, Aníbal; Fakas, Stylianos; Pascual, Florencia; Choi, Hyeon-Son; Carman, George M.
2012-01-01
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway. PMID:22128164
Lipid partitioning at the nuclear envelope controls membrane biogenesis
Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon
2015-01-01
Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581
NASA Technical Reports Server (NTRS)
Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.
2002-01-01
Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.
Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M; Baker, Andrew H; MacLean, Margaret R
2012-01-01
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. PMID:22525513
Chavan, Hemantkumar; Krishnamurthy, Partha
2012-01-01
Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424
Mediated Effects of Perceived Competence on Youth Physical Activity and Sedentary Behavior
ERIC Educational Resources Information Center
Bai, Yang; Chen, Senlin; Vazou, Spyridoula; Welk, Gregory J.; Schaben, Jodee
2015-01-01
Purpose: This study evaluates whether physical activity (PA) and sedentary behavior (SB) are influenced by a common mediating relationship. Method: A total of 1,552 participants in 3rd to 12th grade completed an online survey that included assessments of PA at school (PAS), PA at home (PAH), and SB as well as a battery of psychosocial variables…
Calderone, Alicia; Stevens, Wendy; Prior, David; Nandurkar, Harshal; Gabbay, Eli; Proudman, Susanna M; Williams, Trevor; Celermajer, David; Sahhar, Joanne; Wong, Peter K K; Thakkar, Vivek; Dwyer, Nathan; Wrobel, Jeremy; Chin, Weng; Liew, Danny; Staples, Margaret; Buchbinder, Rachelle; Nikpour, Mandana
2016-12-08
Systemic sclerosis (SSc) is a severe and costly multiorgan autoimmune connective tissue disease characterised by vasculopathy and fibrosis. One of the major causes of SSc-related death is pulmonary arterial hypertension (PAH), which develops in 12-15% of patients with SSc and accounts for 30-40% of deaths. In situ thrombosis in the small calibre peripheral pulmonary vessels resulting from endothelial dysfunction and an imbalance of anticoagulant and prothrombotic mediators has been implicated in the complex pathophysiology of SSc-related PAH (SSc-PAH), with international clinical guidelines recommending the use of anticoagulants for some types of PAH, such as idiopathic PAH. However, anticoagulation has not become part of standard clinical care for patients with SSc-PAH as only observational evidence exists to support its use. Therefore, we present the rationale and methodology of a phase III randomised controlled trial (RCT) to evaluate the efficacy, safety and cost-effectiveness of anticoagulation in SSc-PAH. This Australian multicentre RCT will compare 2.5 mg apixaban with placebo, in parallel treatment groups randomised in a 1:1 ratio, both administered twice daily for 3 years as adjunct therapy to stable oral PAH therapy. The composite primary outcome measure will be the time to death or clinical worsening of PAH. Secondary outcomes will include functional capacity, health-related quality of life measures and adverse events. A cost-effectiveness analysis of anticoagulation versus placebo will also be undertaken. Ethical approval for this RCT has been granted by the Human Research Ethics Committees of all participating centres. An independent data safety monitoring board will review safety and tolerability data for the duration of the trial. The findings of this RCT are to be published in open access journals. ACTRN12614000418673, Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Calderone, Alicia; Stevens, Wendy; Prior, David; Nandurkar, Harshal; Gabbay, Eli; Proudman, Susanna M; Williams, Trevor; Celermajer, David; Sahhar, Joanne; Wong, Peter K K; Thakkar, Vivek; Dwyer, Nathan; Wrobel, Jeremy; Chin, Weng; Liew, Danny; Staples, Margaret; Buchbinder, Rachelle; Nikpour, Mandana
2016-01-01
Introduction Systemic sclerosis (SSc) is a severe and costly multiorgan autoimmune connective tissue disease characterised by vasculopathy and fibrosis. One of the major causes of SSc-related death is pulmonary arterial hypertension (PAH), which develops in 12–15% of patients with SSc and accounts for 30–40% of deaths. In situ thrombosis in the small calibre peripheral pulmonary vessels resulting from endothelial dysfunction and an imbalance of anticoagulant and prothrombotic mediators has been implicated in the complex pathophysiology of SSc-related PAH (SSc-PAH), with international clinical guidelines recommending the use of anticoagulants for some types of PAH, such as idiopathic PAH. However, anticoagulation has not become part of standard clinical care for patients with SSc-PAH as only observational evidence exists to support its use. Therefore, we present the rationale and methodology of a phase III randomised controlled trial (RCT) to evaluate the efficacy, safety and cost-effectiveness of anticoagulation in SSc-PAH. Methods and analysis This Australian multicentre RCT will compare 2.5 mg apixaban with placebo, in parallel treatment groups randomised in a 1:1 ratio, both administered twice daily for 3 years as adjunct therapy to stable oral PAH therapy. The composite primary outcome measure will be the time to death or clinical worsening of PAH. Secondary outcomes will include functional capacity, health-related quality of life measures and adverse events. A cost-effectiveness analysis of anticoagulation versus placebo will also be undertaken. Ethics and dissemination Ethical approval for this RCT has been granted by the Human Research Ethics Committees of all participating centres. An independent data safety monitoring board will review safety and tolerability data for the duration of the trial. The findings of this RCT are to be published in open access journals. Trial registration number ACTRN12614000418673, Pre-results. PMID:27932335
Jedrychowski, Wiesław A; Perera, Frederica P; Majewska, Renata; Mrozek-Budzyn, Dorota; Mroz, Elżbieta; Roen, Emily L; Sowa, Agata; Jacek, Ryszard
2015-01-01
Fetal exposure to environmental toxicants may program the development of children and have long-lasting health impacts. The study tested the hypothesis that depressed height gain in childhood is associated with prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead and mercury). The study sample comprised 379 children born to non-smoking mothers among whom a total of 2011 height measurements were carried out over the 9-year follow-up period. Prenatal airborne PAH exposure was assessed by personal air monitoring of the mother in the second trimester of pregnancy and heavy metals were measured in cord blood. At the age of 3 residential air monitoring was done to evaluate the level of airborne PAH, and at the age 5 the levels of heavy metals were measured in capillary blood. The effect estimates of prenatal PAH exposure on height growth over the follow-up were adjusted in the General Estimated Equation (GEE) models for a wide set of relevant covariates. Prenatal exposure to airborne PAH showed a significant negative association with height growth, which was significantly decreased by 1.1cm at PAH level above 34.7 ng/m(3) (coeff.=-1.07, p=0.040). While prenatal lead exposure was not significantly associated with height restriction, the effect of mercury was inversely related to cord blood mercury concentration above 1.2 μg/L (coeff.=-1.21, p=0.020), The observed negative impact of prenatal PAH exposure on height gain in childhood was mainly mediated by shorter birth length related to maternal PAH exposure during pregnancy. The height gain deficit associated with prenatal mercury exposure was not seen at birth, but the height growth was significantly slower at later age. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, W.; Kleunen, A. van; Immerzeel, J.
The purpose of this study was to assess the suitability of applying equilibrium partitioning (EqP) theory to predict the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by earthworms when these are exposed to contaminated soils in the field. Studies carried out in situ in various contaminated floodplain sites showed the presence of linear relationships with intercept zero between the lipid-normalized concentration of different PAHs in the earthworm, Lumbricus rubellus and the organic-matter-normalized concentration of the compounds in soil. The demonstration of such an isometric relationship is in agreement with the prediction of EqP theory that the biota-soil accumulation factor (BSAF) shouldmore » be independent of the octanol/water partition coefficient, log K{sub ow}. The average BSAF of PAH compounds in the sampled 20-cm top layer of soil was 0.10. The present study also investigated the route of uptake of PAHs for earthworms in soil. The bioconcentration factor of low-molecular-weight PAHs, such as phenanthrene, fluoranthene, and pyrene, was derived from bioconcentration kinetic modeling of water-only experiments and found to be of the same order of magnitude as the bioaccumulation factor in the field when the latter was normalized to calculated concentrations in soil pore water. The results indicated that the exposure of earthworms to PAHs in soil is mediated through direct contact of the worms with the dissolved interstitial soil-water phase, further supporting the applicability of EqP theory to PAHs. The experimental data on the biotransformation of PAHs suggest that earthworms possess some capacity of metabolization, although this does not seem to be a major factor in the total elimination of these compounds. Even though the EqP approach was found to be applicable to low-molecular-weight PAHs with respect to the prediction of bioaccumulation by earthworms in the field, the results were less conclusive for high-molecular-weight compounds, such as benzo[a]pyrene.« less
Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-12-15
Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC. Copyright © 2014. Published by Elsevier Ltd.
Race, J E; Grassl, S M; Williams, W J; Holtzman, E J
1999-02-16
The cloned organic anion transporters from rat, mouse, and winter flounder (rOAT1, mOAT1, fROAT) mediate the coupled exchange of alpha-ketoglutarate with multiple organic anions, including p-aminohippurate (PAH). We have isolated two novel gene products from human kidney which bear significant homology to the known OATs and belong to the amphiphilic solute facilitator (ASF) family. The cDNAs, hOAT1 and hOAT3, encode for 550- and 568-amino-acid residue proteins, respectively. hOAT1 and hOAT3 mRNAs are expressed strongly in kidney and weakly in brain. Both genes map to chromosome 11 region q11.7. PAH uptake by Xenopus laevis oocytes injected with hOAT1 mRNA is increased 100-fold compared to water-injected oocytes. PAH uptake is chloride dependent and is not further increased by preincubation of oocytes in 5 mM glutarate. Uptake of PAH is inhibited by probenicid, alpha-ketoglutarate, bumetanide, furosemide, and losartan, but not by salicylate, urate, choline, amilioride, and hydrochlorothiazide. Copyright 1999 Academic Press.
T-cell responses in oiled guillemots and swans in a rehabilitation setting.
Troisi, Gera M
2013-07-01
Aquatic birds are commonly affected by oil spills. Despite rehabilitation efforts, the majority of rehabilitated common guillemots (Uria aalge) do not survive, whereas mute swans (Cygnus olor) tend to have higher postrelease survival. Polyaromatic hydrocarbons (PAHs) present in crude oil and diesel are immunotoxic in birds affecting cell-mediated responses to immunogens. Because it is a target of PAH toxicity, T-lymphocyte response to controlled mitogen administration (phytohemagglutinnin test) was investigated in a scoping study as a potentially useful minimally invasive in vivo test of cell-mediated immunity. The test was performed on 69 mute swans and 31 common guillemots stranded on the Norfolk and Lincolnshire coastline and inland waterways in England (UK) either due to injury or to contamination with crude or diesel oil. T-lymphocyte response was significantly decreased in swans with greater oil scores. T-lymphocyte responses were also decreased in guillemots, but this finding was not statistically significant.
Pilot scale aided-phytoremediation of a co-contaminated soil.
Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William
2018-03-15
A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.
Rep. Cole, Tom [R-OK-4
2012-05-30
House - 12/19/2012 On motion to suspend the rules and agree to the resolution, as amended Agreed to by the Yeas and Nays: (2/3 required): 398 - 5 (Roll no. 635). (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
This ROD Amendment changes a component of the selected remedial action for contaminated soil. The original selected remedy documented in the March 1996 Record of Decision (ROD) is a series of remedial actions that address the principal threats at the Site, by removing the most highly contaminated soil, extracting nonaqueous phase liquid (NAPL) from and treating contaminated groundwater, and capping the most highly contaminated sediment. Because significant levels of dioxin are present in soil areas originally identified for excavation and on-site biological treatment (i.e, areas where contamination exceeds the action levels for PCP and PAHs), it now appears unlikely thatmore » this intended treatment will achieve the level of risk reduction contemplated in the 1996 ROD. Accordingly, DEQ and EPA have selected an alternative remedy for contaminated soil at the McCormick and Baxter site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Rui; Bao, Chunrong; Jiang, Lianyong
Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less
Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.
2008-12-15
The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less
Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.
2013-01-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566
Shi, Jiafu; Yang, Chen; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Wenyan; Song, Xiaokai; Ai, Qinghong; Tian, Chunyong
2013-10-23
Microcapsules with diverse wall structures may exhibit different performance in specific applications. In the present study, three kinds of mussel-inspired polydopamine (PDA) microcapsules with different wall structures have been prepared by a template-mediated method. More specifically, three types of CaCO3 microspheres (poly(allylamine hydrochloride), (PAH)-doped CaCO3; pure-CaCO3; and poly(styrene sulfonate sodium), (PSS)-doped CaCO3) were synthesized as sacrificial templates, which were then treated by dopamine to obtain the corresponding PDA-CaCO3 microspheres. Through treating these microspheres with disodium ethylene diamine tetraacetic acid (EDTA-2Na) to remove CaCO3, three types of PDA microcapsules were acquired: that was (1) PAH-PDA microcapsule with a thick (∼600 nm) and highly porous capsule wall composed of interconnected networks, (2) pure-PDA microcapsule with a thick (∼600 nm) and less porous capsule wall, (3) PSS-PDA microcapsule with a thin (∼70 nm) and dense capsule wall. Several characterizations confirmed that a higher degree in porosity and interconnectivity of the capsule wall would lead to a higher mass transfer coefficient. When serving as the carrier for catalase (CAT) immobilization, these enzyme-encapsulated PDA microcapsules showed distinct structure-related activity and stability. In particular, PAH-PDA microcapsules with a wall of highly interconnected networks displayed several significant advantages, including increases in enzyme encapsulation efficiency and enzyme activity/stability and a decrease in enzyme leaching in comparison with other two types of PDA microcapsules. Besides, this hierarchically structured PAH-PDA microcapsule may find other promising applications in biocatalysis, biosensors, drug delivery, etc.
Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.
Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A
2014-12-01
Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of the performance of biochars as an adsorbent for polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Jung, J.; Kang, S.; Ok, Y.; Choi, Y.
2016-12-01
Biochars, byproducts generated by pyrolysis of biomass, are known to have several advantages as a soil amendment such as carbon sequestration effect, enhancement of soil microbial activity, and nutrient supply. Because of their high surface area and affinity to organic pollutants, biochars are also being evaluated as an adsorbent for hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in soils, stormwater, and wastewater. Depending on their organic precursors and pyrolysis temperatures, biochars have been shown to have various physicochemical properties, which should determine their performance as an adsorbent for hydrophobic organic pollutants. In this study, we obtained biochars derived from soybean stover, wood chip, rice husk, and sewage sludge with pyrolysis temperatures of 700°, 250°, 500°, and 500°, respectively, to investigate their performance for PAH adsorption. Adsorption kinetic and isotherm experiments were conducted using naphthalene and phenanthrene as model compounds. Soybean stover biochar reached close to equilibrium in 7 days while the others did in 25 days in the kinetic experiments. The first-order sorption rate constants were greater for naphthalene than for phenanthrene for all biochars studied, and they were generally in the order of soybean stover>rice husk>sewage sludge>wood chip biochars for the two contaminants. The removal rates of aqueous PAHs at equilibrium were in the order of soybean stover>rice husk>sewage sludge>wood chip biochars at a concentration range of a few ng/mL. The results suggested that the sorption capability and the rate is generally greater for biochar produced from plant materials than that from sludge, and for biochar produced at higher pyrolysis temperature. Comparing the sorption properties of the biochars and granular activated carbon (GAC), it is shown that biochar produced at optimal conditions can exhibit performance for PAH adsorption similar to GAC.
Pulmonary hypertension in rheumatic diseases: epidemiology and pathogenesis.
Shahane, Anupama
2013-07-01
The focus of this review is to increase awareness of pulmonary arterial hypertension (PAH) in patients with rheumatic diseases. Epidemiology and pathogenesis of PAH in rheumatic diseases is reviewed, with recommendations for early screening and diagnosis and suggestion of possible role of immunosuppressive therapy in treatment for PAH in rheumatic diseases. A MEDLINE search for articles published between January 1970 and June 2012 was conducted using the following keywords: pulmonary hypertension, scleroderma, systemic sclerosis, pulmonary arterial hypertension, connective tissues disease, systemic lupus erythematosus, mixed connective tissue disease, rheumatoid arthritis, Sjogren's syndrome, vasculitis, sarcoidosis, inflammatory myopathies, dermatomyositis, ankylosing spondylitis, spondyloarthropathies, diagnosis and treatment. Pathogenesis and disease burden of PAH in rheumatic diseases was highlighted, with emphasis on early consideration and workup of PAH. Screening recommendations and treatment were touched upon. PAH is most commonly seen in systemic sclerosis and may be seen in isolation or in association with interstitial lung disease. Several pathophysiologic processes have been identified including an obliterative vasculopathy, veno-occlusive disease, formation of microthrombi and pulmonary fibrosis. PAH in systemic lupus erythematosus is associated with higher prevalence of antiphospholipid and anticardiolipin antibodies and the presence of Raynaud's phenomenon. Endothelial proliferation with vascular remodeling, abnormal coagulation with thrombus formation and immune-mediated vasculopathy are the postulated mechanisms. Improvement with immunosuppressive medications has been reported. Pulmonary fibrosis, extrinsic compression of pulmonary arteries and granulomatous vasculitis have been reported in patients with sarcoidosis. Intimal and medial hyperplasia with luminal narrowing has been observed in Sjogren's syndrome, mixed connective tissue disease and inflammatory myopathies. Pulmonary arterial hypertension (PAH) associated with rheumatic diseases carries a particularly grim prognosis with faster progression of disease and poor response to therapy. Though largely associated with systemic sclerosis, it is being increasingly recognized in other rheumatic diseases. An underlying inflammatory component may explain the poor response to therapy in patients with rheumatic diseases and is a rationale for consideration of immunosuppressive therapy in conjunction with vasodilator therapy in treatment for PAH. Further studies identifying pathogenetic pathways and possible targets of therapy, especially the role of immunomodulatory medications, are warranted.
Ghanem, Mohamed M; Battelli, Lori A; Law, Brandon F; Castranova, Vincent; Kashon, Michael L; Nath, Joginder; Hubbs, Ann F
2009-01-01
Background Many polycyclic aromatic hydrocarbons (PAHs) can cause DNA adducts and initiate carcinogenesis. Mixed exposures to coal dust (CD) and PAHs are common in occupational settings. In the CD and PAH-exposed lung, CD increases apoptosis and causes alveolar type II (AT-II) cell hyperplasia but reduces CYP1A1 induction. Inflammation, but not apoptosis, appears etiologically associated with reduced CYP1A1 induction in this mixed exposure model. Many AT-II cells in the CD-exposed lungs have no detectable CYP1A1 induction after PAH exposure. Although AT-II cells are a small subfraction of lung cells, they are believed to be a potential progenitor cell for some lung cancers. Because CYP1A1 is induced via ligand-mediated nuclear translocation of the aryl hydrocarbon receptor (AhR), we investigated the effect of CD on PAH-induced nuclear translocation of AhR in AT-II cells isolated from in vivo-exposed rats. Rats received CD or vehicle (saline) by intratracheal (IT) instillation. Three days before sacrifice, half of the rats in each group started daily intraperitoneal injections of the PAH, β-naphthoflavone (BNF). Results Fourteen days after IT CD exposure and 1 day after the last intraperitoneal BNF injection, AhR immunofluorescence indicated that proportional AhR nuclear expression and the percentage of cells with nuclear AhR were significantly increased in rats receiving IT saline and BNF injections compared to vehicle controls. However, in CD-exposed rats, BNF did not significantly alter the nuclear localization or cytosolic expression of AhR compared to rats receiving CD and oil. Conclusion Our findings suggest that during particle and PAH mixed exposures, CD alters the BNF-induced nuclear translocation of AhR in AT-II cells. This provides an explanation for the modification of CYP1A1 induction in these cells. Thus, this study suggests that mechanisms for reduced PAH-induced CYP1A1 activity in the CD exposed lung include not only the effects of inflammation on the lung as a whole, but also reduced PAH-associated nuclear translocation of AhR in an expanded population of AT-II cells. PMID:19650907
Chemically dispersed oil is cytotoxic and genotoxic to sperm whale skin cells.
Wise, Catherine F; Wise, James T F; Wise, Sandra S; Wise, John Pierce
2018-06-01
Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Jeon, Seungyeon; Hong, Seongjin; Kwon, Bong-Oh; Park, Jinsoon; Song, Sung Joon; Giesy, John P; Khim, Jong Seong
2017-02-01
The west coast of Korea has experienced environmental deterioration for more than half a century. In the present study, we specifically aimed to: i) evaluate potential toxicities of contaminants in sediments that cause effects mediated through the aryl hydrocarbon receptor (AhR) and estrogen receptor (ER); ii) determine spatio-temporal distributions of polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs); and iii) identify causes of greater potencies of samples. From 2010 to 2014, sediments were collected from 12 major estuarine and coastal regions along the west coast of South Korea. In vitro cell bioassays were performed to determine AhR- and ER-mediated potencies using H4IIE-luc and MVLN cells, respectively. Fifteen PAHs and six APs in sediments were identified by GC/MSD. Results of bioassays generally showed a low-to-moderate degree of contamination, however, greater AhR- and ER-mediated potencies were measured at some locations. Concentrations of PAHs and APs varied among locations, which indicated that sources were independently affected by the surrounding environment (e.g., industrial complex and cities). Results of bioassays were generally well correlated with concentrations of putative causative chemicals. Benzo[k]fluoranthene, dibenz[a,h]anthracene, and benzo[b]fluoranthene were the major AhR agonists, explaining approximately 30% of the bioassay-derived benzo[a]pyrene equivalent concentration (BaP-EQ). Unknown AhR and ER agonists and potential mixture effects remain in question. Overall, the present study provides baseline information on chemical contaminations and potential toxicity of sediments in a fairly wide geographical region of the west coast of South Korea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diesel exhaust inhalation exposure induces pulmonary arterial hypertension in mice.
Liu, Jing; Ye, Xiaoqing; Ji, Dapeng; Zhou, Xiaofei; Qiu, Cong; Liu, Weiping; Yu, Luyang
2018-06-01
Diesel exhaust (DE) is one of the main sources of urban air pollution. An increasing number of evidence showed the association of air pollution with cardiovascular diseases. Pulmonary arterial hypertension (PAH) is one of the most disastrous vascular diseases, which results in right ventricular failure and death. However, the relationship of DE inhalation exposure with PAH is still unknown. In this study, male adult mice were exposed by inhalation to filtered ambient air (negative control), 10% O 2 hypoxia (PAH-phenotype positive control), 350 μg/m 3 particulate matter whole DE, or the combination of DE and hypoxic condition. DE inhalation induced PAH-phenotype accompanied with increased right ventricular systolic pressure (RVSP), right ventricle hypertrophy and pulmonary arterial thickening in a mouse model. DE exposure induced the proliferation of vascular smooth muscle cells (VSMCs) and apoptosis of endothelial cells in pulmonary artery. DE inhalation exposure induced an accumulation of CD45 + lymphocytes and CD68 + macrophages surrounding and infiltrating pulmonary arteriole. The levels of pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and IL-13 produced by T helper 17 (Th17) and Th2 cells were markedly elevated in lung tissues of mice after DE inhalation exposure. Our findings suggest DE exposure induces PAH by activating Th17-skewed and Th2-droved responses, stimulating VSMCs proliferation and inducing endothelial cell apoptosis by the production of multifunctional pro-inflammatory cytokines, especially IL-6 and TNF-α. Considering the adverse impact of air pollution on health care, it is imperative to understand air pollution-induced susceptibility of progressive cardiopulmonary disease, such as PAH, and also elucidate critical mechanistic pathways which mediate pulmonary artery vascular remodeling and may serve as targets for preventive measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.
Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua
2016-06-01
Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.
DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles.
Ross, Jeffrey A; Nelson, Garret B; Mutlu, Esra; Warren, Sarah H; Gilmour, M Ian; DeMarini, David M
2015-01-01
Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.
Kabátková, Markéta; Svobodová, Jana; Pěnčíková, Kateřina; Mohatad, Dilshad Shaik; Šmerdová, Lenka; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan
2015-01-05
Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2015-12-01
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension.
Zhang, Yonghong; Xie, Xinming; Zhu, Yanting; Liu, Lu; Feng, Wei; Pan, Yilin; Zhai, Cui; Ke, Rui; Li, Shaojun; Song, Yang; Fan, Yuncun; Fan, Fenling; Wang, Xiaochuang; Li, Fengjuan; Li, Manxiang
2015-01-01
It has been shown that activation of Notch3 signaling is involved in the development of pulmonary arterial hypertension (PAH) by stimulating pulmonary arteries remodeling, while the molecular mechanisms underlying this are still largely unknown. The aims of this study are to address these issues. Monocrotaline dramatically increased right ventricle systolic pressure to 39.0 ± 2.6 mmHg and right ventricle hypertrophy index to 53.4 ± 5.3% (P < 0.05 versus control) in rats, these were accompanied with significantly increased proliferation and reduced apoptosis of pulmonary vascular cells as well as pulmonary arteries remodeling. Treatment of PAH model with specific Notch inhibitor DAPT significantly reduced right ventricle systolic pressure to 26.6 ± 1.3 mmHg and right ventricle hypertrophy index to 33.5 ± 2.6% (P < 0.05 versus PAH), suppressed proliferation and enhanced apoptosis of pulmonary vascular cells as well as inhibited pulmonary arteries remodeling. Our results further indicated that level of Notch3 protein and NICD3 were increased in MCT-induced model of PAH, this was accompanied with elevation of Skp2 and Hes1 protein level and reduction of P27Kip1. Administration of rats with DAPT-prevented MCT induced these changes. Our results suggest that Notch3 signaling activation stimulated pulmonary vascular cells proliferation by Skp2-and Hes1-mediated P27Kip1 reduction, and Notch3 might be a new target to treat PAH.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... Change FINRA is proposing to amend FINRA Rule 14107 of the Code of Mediation Procedure (``Mediation Code'') to provide the Director of Mediation (``Mediation Director'') with discretion to determine whether parties to a FINRA mediation may select a mediator who is not on FINRA's mediator roster. The text of the...
Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma
Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.
2014-01-01
Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
Assessment of metal and PAH profiles in SUDS soil based on an improved experimental procedure.
Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine
2017-11-01
The increasing use of infiltration-based systems for stormwater management questions the soil's ability to act as a long-term filter for runoff contaminants, and brings about operational matters regarding the most effective maintenance practices to enhance contaminant retention in SUDS. This paper reports the vertical extent of metal and PAH contamination in the soil of seven source-control devices in operation for more than 10 years, assessed via a two-step sampling strategy to optimize the representativeness of the contamination profiles. Metal distribution was typically characterized by a significant surface buildup, followed by a decrease in concentrations with increasing depth, usually coming close to the background values. PAH were more heterogeneously distributed with depth, but their accumulation was globally restricted to the upper 10-40 cm. This indicates an interesting potential for pollution interception by the upper horizons of soil, but does not necessarily prevent from downward fluxes, even while measuring low surface contents, as deeper strata may have lesser retention capacities. Specific amendments of the surface soil may help prevent this problem. Surface soil renewal - which would be necessary over 2.5-30 cm in four sites, according to the "strictest" standards for soil remediation - may regenerate the soil's sorption potential, but such a practice could disrupt the interactions with the local ecosystem, so this should be carried out exceptionally and not as a preventive measure. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; Perron, M.M.; Friedman, C.L.
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspectedmore » that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.« less
Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...
Zhou, Zhi-Feng; Yao, Yan-Hong; Wang, Ming-Xia; Zuo, Xiao-Hu
2017-10-01
It has previously been confirmed that polycyclic aromatic hydrocarbons (PAHs) could be degraded by soil microbes coupling with denitrification, but the relationships among soil denitrifiers, PAHs, and nitrate under obligate anaerobic condition are still unclear. Here, co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers were investigated through a 45-day incubation experiment. Two groups of soil treatments with (N 30 ) and without (N 0 ) nitrate (30 mg kg -1 dry soil) amendment were conducted, and each group contained three treatments with different pyrene concentrations (0, 30, and 60 mg kg -1 dry soil denoted as P 0 , P 30 , and P 60 , respectively). The pyrene content, abundances of denitrification concerning genes (narG, periplasmic nitrate reductase gene; nirS, cd 1 -nitrite reductase gene; nirK, copper-containing nitrite reductase gene), and productions of N 2 O and CO 2 were measured at day 3, 14, 28, and 45, and the bacterial community structures in four represented treatments (N 0 P 0 , N 0 P 60 , N 30 P 0 , and N 30 P 60 ) were analyzed at day 45. The results indicated that the treatments with higher pyrene concentration had higher final pyrene removal rates than the treatments with lower pyrene concentration. Additionally, intensive emission of N 2 O was detected in all treatments only at day 3, but a continuous production of CO 2 was measured in each treatment during the incubation. Nitrate amendment could enhance the activity of soil denitrifiers, and be helpful for soil microbes to sustain their activity. While pyrene seemed had no influence on the productions of N 2 O and CO 2 , and amendment with pyrene or nitrate both had no obvious effect on abundances of denitrification concerning genes. Furthermore, it was nitrate but not pyrene had an obvious influence on the community structure of soil bacteria. These results revealed that, under anaerobic condition, the activity and abundance of soil denitrifiers both were insensitive to pyrene, but nitrate could improve the activity of soil denitrfiers and induce the shifts in soil bacterial community structure.
Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan
2016-01-01
Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.
15 CFR 923.83 - Mediation of amendments.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Amendments to and Termination of Approved Management... “serious disagreements” between a Federal agency and a coastal State during administration of an approved...
Pyrene and benzo[a]pyrene metabolism by the filamentous fungus, Penicillium janthinellum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Launen, L.; Pinto, L.; Kiehlmann, E.
1995-12-31
The incomplete combustion of fossil fuels generates polycyclic aromatic hydrocarbons (PAH). These include 4-5 ring PAH, of which many are potent carcinogens and mutagens that persist in soil for years. Fungi can oxidize these compounds via two mechanisms: (1) by extracellular peroxidases (Basidiomycete fungi), or (2) by a putative cytochrome P450 enzyme system. The authors have previously isolated Penicillium janthinellum from petroleum-contaminated soil and shown that it possesses high activity to oxidize pyrene, benzo(a)pyrene and chrysene in liquid culture. The purpose of this study was to evaluate the effect of changing growth condition glucose, nitrate and agitation levels, on pyrenemore » metabolism by P. janthinellum using a 3 x 2 x 2 factorial design. Spores were inoculated into minimal salts media amended with varying carbon or nitrogen concentrations and containing {sup 14}C-pyrene. The level of glucose and nitrate significantly affected the bioconversion: low glucose and nitrate levels increased the loss of parent PAH from the medium. However this effect was independent of biomass. Biometer flask experiments using {sup 14}C-pyrene showed that most pyrene became cell-associated within 7 days of incubation. Cell associated {sup 14}C-pyrene was inextractable by ethyl acetate but was recovered in methylene chloride. This result was confirmed by the mass balance result from a 10 day time course experiment using {sup 14}C-pyrene or {sup 14}C-BaP. Greater than 70% of the radiolabel in cultures containing live cells was strongly associated with the cell matter within 7 days, relative to < 1 % association with dead cells. The authors conclude that: (1) pyrene and BaP oxidation was affected by C and N levels in the growth medium independent of cell mass and (2) {sup 14}C-PAH became strongly associated with live but not dead cells within 7 days in liquid culture.« less
Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.
2016-01-01
Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. PMID:27006450
Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A
2016-07-01
Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. © FASEB.
75 FR 13727 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... Mediation Program. OMB Control Number: 0560-0165. Summary of Collection: The Farm Service Agency (FSA) amended its agricultural loan mediation regulations to implement the requirements of the Federal Crop... involved with the administration of an agricultural mediation program. FSA will collect information by mail...
77 FR 28536 - Representation Procedures and Rulemaking Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... NATIONAL MEDIATION BOARD 29 CFR Part 1206 [Docket No. C-7034] RIN 3140-ZA01 Representation Procedures and Rulemaking Authority AGENCY: National Mediation Board. ACTION: Proposed rule with request for comments. SUMMARY: This proposal amends the National Mediation Board's (NMB or Board) existing rules for...
76 FR 41449 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... Mediation Program. OMB Control Number: 0560-0165. Summary of Collection: The Farm Service Agency (FSA) amended its agricultural loan mediation regulations to implement the requirements of the Federal Crop... involved with the administration of an agricultural mediation program. FSA will collect information by mail...
Interleukin-6 overexpression induces pulmonary hypertension.
Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B
2009-01-30
Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.
Maternal exposure to benzo[b]fluoranthene disturbs reproductive performance in male offspring mice.
Kim, Ahyoung; Park, Mira; Yoon, Tae Ki; Lee, Woo Sik; Ko, Jeong-Jae; Lee, Kangseok; Bae, Jeehyeon
2011-05-30
Polycyclic aromatic hydrocarbons (PAHs) are a large family of environmentally prevalent toxic compounds generated from the combustion of organic materials and diesel exhaust. Humans and wild animals are exposed to PAHs mostly through dietary intake of contaminated food. Benzo[b]fluoranthene (B[b]F) is a common constituent of PAH complexes present in diverse types of food. B[b]F has been found in human milk, raising the demand for the need for risk assessment of offspring after maternal exposure to B[b]F. In the present study, pregnant mice were orally exposed to low doses (2-2000μg/kg body weight) of B[b]F during gestational and lactational periods, and their male offspring were assessed. Maternal B[b]F exposure disturbed normal sperm function in F1 offspring. To understand the molecular and cellular mechanisms by which the perinatal exposure to B[b]F decreased sperm quality, the testes of young adult F1 mice were examined for changes in expression of steroidogenesis-related and testicular apoptosis mediators and found that aryl hydrocarbon receptor, estrogen receptor α, and a set of proapoptotic proteins including Bax, Noxa, Bad, and Bim were significantly upregulated. Therefore, the current transgenerational animal study implies that consumption of PAH-contaminated diets by mothers may possibly influence their offspring to cause dysfunctional male reproductive function in humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation
Aljubran, Salman A.; Rajanbabu, Venugopal; Bao, Huynh; Mohapatra, Shyam M.; Lockey, Richard; Kolliputi, Narasaiah
2012-01-01
Introduction Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs. Methods In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay. Results EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control. Conclusion These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH. PMID:22662197
Sahoo, Sanghamitra; Meijles, Daniel N.; Al Ghouleh, Imad; Tandon, Manuj; Cifuentes-Pagano, Eugenia; Sembrat, John; Rojas, Mauricio; Goncharova, Elena; Pagano, Patrick J.
2016-01-01
Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH. PMID:27144530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, M.; Bik, D.P.; Bickers, D.R.
1986-03-05
Naturally occurring plant phenols such as tannic acid (TA), quercetin (QT), myricetin (MY) and anthraflavic acid (AA) have been shown to inhibit the mutagenicity of several bay-region diolepoxides of PAHs. Since skin is a target for PAH carcinogenesis, they investigated the effect of these plant phenols on epidermal aryl hydrocarbon hydroxylase (AHH) activity and the binding of PAHs to DNA in SENCAR mice. Each of the plant phenols tested was found to be an in vitro and in vivo inhibitor of epidermal AHH activity with I/sub 50/ values ranging from 4.4 x 10/sup -5/ - 12.4 x 10/sup -5/M inmore » control and 3-methylcholanthrene (MCA) pretreated skin. On an equimolar basis TA was the most potent inhibitor with a Ki of 81 ..mu..M. Incubation of TA, QT, MY and AA with epidermal microsomes resulted in varying degrees of inhibition of enzyme mediated covalent binding of benzo(a)pyrene (BP) to calf thymus DNA. TA (25 ..mu..M) showed maximum inhibition (64%). A single topical application (12 ..mu..mol) of TA, QT, MY and AA resulted in significant decrease in the binding of BP, BP-7,8-diol and 7,12-dimethylbenz(a)anthracene to epidermal DNA. The formation of (+)-7..beta..,8..cap alpha..-dihydroxy-9..cap alpha..,10..cap alpha..-epoxy-7,8,9,10-tetrahydro-BP-deoxyguanine adduct in epidermis was significantly reduced (62-86%) following topical application of the plant phenols. Their results suggest that some of these plant phenols have substantial though variable potential to modify the risk of PAHs induced skin carcinogenicity.« less
Associations between mutations and a VNTR in the human phenylalanine hydroxylase gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltsov, A.A.; Eisensmith, R.C.; Woo, S.L.C.
1992-09-01
The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiples of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1,more » 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between theses alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations. 32 refs., 3 figs., 3 tabs.« less
Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang
2013-01-01
Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.
Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang
2013-01-01
Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100
Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar
NASA Astrophysics Data System (ADS)
Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal
2016-04-01
Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (-48.4%), Ni (-41.4%), Co (-36.9%), Cu (-35.7%), Mn (-34.3%), Cd (-33.2%), and Pb (-30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the combined treatment. Peroxidase, phenol oxidase, and catalase activities were not affected by these treatments. Acid phosphatase activity decreased, whereas alkaline phosphatase activity increased due to biochar and fly ash treatment. Microbial biomass carbon increased significantly (P < 0.05) with biochar (+27.9%), fly ash (19.8%), and char + ash (+27.9%) applications. Maize grain yield was increased by biochar (+11.4%) and char + ash (+28.1%) treatments. The total PAH concentration decreased from 4191 μg/kg in control to 1930 μg/kg in fly ash; 1509 μg/kg in biochar and 1011 μg/kg in ash + char treatments. Among the different PAHs the concentration was higher for BkF, which decreased from 713 μg/kg in control to 139 - 315 μg/kg under different treatments. Overall, combined application of fly ash and biochar was found to be effective in amelioration of soil quality parameters and improving crop yield.
Effects of water immersion on renal hemodynamics in normal man
NASA Technical Reports Server (NTRS)
Epstein, M.; Levinson, R.; Loutzenhiser, R.
1976-01-01
The present study was undertaken to delineate the effects of water immersion to the neck (NI) on renal plasma flow and glomerular filtration rate as assessed by the clearance of p-aminohippuric acid (PAH) and inulin, respectively. Nine normal male subjects were studied on two occasions, control and NI. The conditions of seated posture and time of day were identical. Immersion did not alter either clearance at a time when sodium excretion was increasing markedly. The constancy of PAH clearance during NI suggests that renal blood flow is unaltered and that the natriuresis of NI is mediated independently of alterations in overall renal perfusion. The sluggish decline of a natriuresis during recovery is consistent with the presence of a humoral factor contributing to the encountered natriuresis.
77 FR 38171 - Freedom of Information Act and Privacy Act Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
.... 9301.8 through 9301.10. (3) Mediation. A response to an appeal will advise the requester that the 2007 FOIA amendments created the Office of Government Information Services (OGIS) to offer mediation...
15 CFR 930.35 - Negative determinations for proposed activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... detail in the Federal agency's analysis may vary depending on the scope and complexity of the activity... mediation or OCRM mediation services provided for in subpart G. [65 FR 77154, Dec. 8, 2000, as amended at 71...
The pathophysiology of pulmonary hypertension in left heart disease.
Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M
2015-11-01
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J J; Vogel, Timothy M; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈22mgL -1 )) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Yin, Ke; Viana, Priscilla; Zhao, Xiuhong; Rockne, Karl
2010-07-15
Collateral Channel is a heavily polluted former navigation slip to the Chicago Sanitary and Ship Canal (Illinois, USA). Characterization of sediment cores taken in the channel show high levels of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and other contaminants in deposited sediment dating back to the 1800's. Of these, PAHs were the contaminants of greatest concern based upon exceedance of sediment contamination criteria (Sigma(16) PAHs up to 1500mg/kg). Benthic animal counts revealed a lack of biodiversity, with relatively low levels of small tubificid oligochaetes (generally <3000/m(2)) in surficial sediments. Comparison of surficial sediment contaminant levels between 1995 and 2005 showed few decreases in contaminant levels, indicating a lack of "natural recovery" processes occurring in the channel. These results led to an analysis of sediment amendments for an active capping demonstration project in the channel using transport models developed in our previous work (Viana et al., 2008). Based on the sediment characterization and modeling results, the active capping design will be focused on organic contaminant sequestration through the use of organoclay. A site-specific difficulty is the substantial rates of gas ebullition from anaerobic organic matter biodegradation in the sediments, particularly in the summer months. These gases can open advective channels that may result in substantial pollution release and compromise cap effectiveness, and thus the capping scenario must control for such releases. The active capping layer will underlay a sloped sand layer and a high permeability gas venting system to allow biogenically-produced gas migration to shoreline collectors through an innovative support grid. The cap will include an overlaying wetland to remove nutrients from the adjoining Chicago River and provide a public recreational space. Copyright 2010 Elsevier B.V. All rights reserved.
Opportunities and challenges in the use of coal fly ash for soil improvements--a review.
Shaheen, Sabry M; Hooda, Peter S; Tsadilas, Christos D
2014-12-01
Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jedrychowski, Wieslaw; Perera, Frederica P.; Tang, Deliang; Stigter, Laura; Mroz, Elzbieta; Flak, Elzbieta; Spengler, John; Budzyn-Mrozek, Dorota; Kaim, Irena; Jacek, Ryszard
2011-01-01
We previously reported an association between prenatal exposure to airborne PAH and lower birth weight, birth length and head circumference. The main goal of the present analysis was to assess the possible impact of co-exposure to PAH-containing of barbecued meat consumed during pregnancy on birth outcomes. The birth cohort consisted of 432 pregnant women who gave birth at term (>36 weeks of gestation). Only non-smoking women with singleton pregnancies, 18-35 years of age, and who were free from chronic diseases such as diabetes and hypertension were included in the study. Detailed information on diet over pregnancy was collected through interviews and the measurement of exposure to airborne PAHs was carried out by personal air monitoring during the second trimester of pregnancy. The effect of barbecued meat consumption on birth outcomes (birthweight, length and head circumference at birth) was adjusted in multiple linear regression models for potential confounding factors such as prenatal exposure to airborne PAHs, child’s sex, gestational age, parity, size of mother (maternal prepregnancy weight, weight gain in pregnancy) and prenatal environmental tobacco smoke (ETS). The multivariable regression model showed a significant deficit in birthweight associated with barbecued meat consumption in pregnancy (coeff = −106.0 g; 95%CI: −293.3, −35.8); The effect of exposure to airborne PAHs was about the same magnitude order (coeff. = −164.6 g; 95%CI: −172.3, − 34.7). Combined effect of both sources of exposure amounted to birth weight deficit of 214.3 g (95%CI: −419.0, − 9.6). Regression models performed for birth length and head circumference showed similar trends but the estimated effects were of borderline significance level. As the intake of barbecued meat did not affect the duration of pregnancy, the reduced birthweight could not have been mediated by shortened gestation period. In conclusion, the study results provided epidemiologic evidence that prenatal PAH exposure from diet including grilled meat might be hazardous for fetal development. PMID:22079395
Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...
Characterization and Low-Cost Remediation of Soils Contaminated by Timbers in Community Gardens.
Heiger-Bernays, W; Fraser, A; Burns, V; Diskin, K; Pierotti, D; Merchant-Borna, K; McClean, M; Brabander, D; Hynes, H P
2009-01-01
Urban community gardens worldwide provide significant health benefits to those gardening and consuming fresh produce from them. Urban gardens are most often placed in locations and on land in which soil contaminants reflect past practices and often contain elevated levels of metals and organic contaminants. Garden plot dividers made from either railroad ties or chromated copper arsenate (CCA) pressure treated lumber contribute to the soil contamination and provide a continuous source of contaminants. Elevated levels of polycyclic aromatic hydrocarbons (PAHs) derived from railroad ties and arsenic from CCA pressure treated lumber are present in the gardens studied. Using a representative garden, we 1) determined the nature and extent of urban community garden soil contaminated with PAHs and arsenic by garden timbers; 2) designed a remediation plan, based on our sampling results, with our community partner guided by public health criteria, local regulation, affordability, and replicability; 3) determined the safety and advisability of adding city compost to Boston community gardens as a soil amendment; and 4) made recommendations for community gardeners regarding healthful gardening practices. This is the first study of its kind that looks at contaminants other than lead in urban garden soil and that evaluates the effect on select soil contaminants of adding city compost to community garden soil.
Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing
Luo, Chunling; Zhang, Dayi; Zhang, Gan
2015-01-01
Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099
Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.
2008-01-01
Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors (BAF) ranged from 0.05 (galaxolide) to 27 (triclosan). This study documents that when AWIs are present in source materials that are land applied, such as biosolids and swine manure, AWIs can be transferred to earthworms. ?? 2008 American Chemical Society.
Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension.
Rakotomalala, G; Agard, C; Tonnerre, P; Tesse, A; Derbré, S; Michalet, S; Hamzaoui, J; Rio, M; Cario-Toumaniantz, C; Richomme, P; Charreau, B; Loirand, G; Pacaud, P
2013-06-21
Different parts of Mimosa pigra (MPG) are used in traditional medicine in Madagascar, tropical Africa, South America and Indonesia for various troubles including cardiovascular disorders. To investigate the mechanisms underlying the vascular effects of MPG by assessing in vitro its antioxidant and anti-inflammatory properties, and its vascular relaxing effects, and in vivo, its action on hypoxic pulmonary hypertension (PAH) in rats. The antioxidant activity of MPG leaf hydromethanolic extract was determined by using both the 1,1-diphenyl-2-picrylhydrazyl radical scavenging and the oxygen radical absorbance capacity in vitro assays. Anti-inflammatory properties were assayed on TNFα-induced VCAM-1 expression in endothelial cells. The vasorelaxant effect of MPG extract was studied on rat arterial rings pre-contracted with phenylephrine (1μM) in the presence or absence of the endothelium. In vivo MPG extract effects were analyzed in chronic hypoxic PAH, obtained by housing male Wistar rats, orally treated or not with MPG extract (400mg/kg/d), in a hypobaric chamber for 21 days. MPG leaf extract had antioxidant and anti-inflammatory properties. It induced endothelium-dependent, NO-mediated relaxation of rat aorta and pulmonary artery. In vivo, chronic MPG treatment reduced hypoxic PAH in rat by decreasing by 22.3% the pulmonary arterial pressure and by 20.0% and 23.9% the pulmonary artery and cardiac remodelling, respectively. This effect was associated with a restoration of endothelium function and a 2.3-fold increase in endothelial NO synthase phosphorylation. MPG leaf hydromethanolic extract contained tryptophan and flavonoids, including quercetin glycosides. Both compounds also efficiently limit hypoxia-induced PAH. Our results show endothelial protective action of MPG leaf hydromethanolic extract which is likely to be due to its antioxidant action. MPG successfully attenuated the development of PAH, thus demonstrating the protective effect of MPG on cardiovascular diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chen, Xinping; Talati, Megha; Fessel, Joshua P.; Hemnes, Anna R.; Gladson, Santhi; French, Jaketa; Shay, Sheila; Trammel, Aaron; Phillips, John A.; Hamid, Rizwan; Cogan, Joy D.; Dawson, Elliott P.; Womble, Kristie E.; Hedges, Lora K.; Martinez, Elizabeth G.; Wheeler, Lisa A.; Loyd, James E.; Majka, Susan J.; West, James; Austin, Eric D.
2015-01-01
Background Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature which preferentially affects females. Estrogens, such as the metabolite 16α-hydroxyestrone (16αOHE), may contribute to PAH pathogenesis; and, alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via miR-29 family upregulation, and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. Methods and Results MicroRNA (miR) array profiling of human lung tissue found elevation of miRs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared to controls, and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/hr for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in PPARγ and CD36 in those mice exposed to 16αOHE, as well as from protein derived from HPAH lungs compared to controls. Bmpr2 mice treated with anti-miR-29 (α-miR29) (20mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared to controls. PASMCs derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with α-miR29 transfection in vitro; endothelial-like cells derived from HPAH patient iPS cell lines were similar, and improved with α-miR29 treatment. Conclusions 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indices of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH, and reveals a possible novel therapeutic target. PMID:26487756
RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.
Barman, Scott A; Zhu, Shu; White, Richard E
2009-01-01
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.
Wu, Connie; So, Jessica; Davis-Dusenbery, Brandi N; Qi, Hank H; Bloch, Donald B; Shi, Yang; Lagna, Giorgio; Hata, Akiko
2011-12-01
Hypoxia contributes to the pathogenesis of various human diseases, including pulmonary artery hypertension (PAH), stroke, myocardial or cerebral infarction, and cancer. For example, acute hypoxia causes selective pulmonary artery (PA) constriction and elevation of pulmonary artery pressure. Chronic hypoxia induces structural and functional changes to the pulmonary vasculature, which resembles the phenotype of human PAH and is commonly used as an animal model of this disease. The mechanisms that lead to hypoxia-induced phenotypic changes have not been fully elucidated. Here, we show that hypoxia increases type I collagen prolyl-4-hydroxylase [C-P4H(I)], which leads to prolyl-hydroxylation and accumulation of Argonaute2 (Ago2), a critical component of the RNA-induced silencing complex (RISC). Hydroxylation of Ago2 is required for the association of Ago2 with heat shock protein 90 (Hsp90), which is necessary for the loading of microRNAs (miRNAs) into the RISC, and translocation to stress granules (SGs). We demonstrate that hydroxylation of Ago2 increases the level of miRNAs and increases the endonuclease activity of Ago2. In summary, this study identifies hypoxia as a mediator of the miRNA-dependent gene silencing pathway through posttranslational modification of Ago2, which might be responsible for cell survival or pathological responses under low oxygen stress.
Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin
2015-03-15
Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.
SHEN, Guofeng; TAO, Shu; WEI, Siye; ZHANG, Yanyan; WANG, Rong; WANG, Bin; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Yuanchen; CHEN, Han; YANG, Yifeng; WANG, Wei; WANG, Xilong; LIU, Wenxin; SIMONICH, Staci L. M.
2012-01-01
Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study, the EFs of 28 pPAHs (EFPAH28), 9 nPAHs (EFPAHn9) and 4 oPAHs (EFPAHo4) were measured for residential combustion of 27 wood fuels in rural China. The measured EFPAH28, EFPAHn9, and EFPAHo4 for brushwood were 86.7±67.6, 3.22±1.95×10−2, and 5.56±4.32 mg/kg, which were significantly higher than 12.7±7.0, 8.27±5.51×10−3, and 1.19±1.87 mg/kg for fuel wood combustion (p < 0.05). Sixteen U.S. EPA priority pPAHs contributed approximately 95% of the total of the 28 pPAHs measured. EFs of pPAHs, nPAHs, and oPAHs were positively correlated with one another. Measured EFs varied obviously depending on fuel properties and combustion conditions. The EFs of pPAHs, nPAHs, and oPAHs were significantly correlated with modified combustion efficiency and fuel moisture. Nitro-naphthalene and 9-fluorenone were the most abundant nPAHs and oPAHs identified. Both nPAHs and oPAHs showed relatively high tendencies to be present in the particulate phase than pPAHs due to their lower vapor pressures. The gas-particle partitioning of freshly emitted pPAHs, nPAHs and oPAHs was primarily controlled by organic carbon absorption. PMID:22765266
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, S.N.; Huang, X.D.; Zeiler, L.F.
1997-11-01
A quantitative structure-activity relationship model for the photoinduced toxicity of 16 polycyclic aromatic hydrocarbons (PAHs) to duckweed (Lemna gibba) in simulated solar radiation (SSR) was developed. Lemna gibba was chosen for this study because toxicity could be considered in two compartments: water column and leaf tissue. Modeling of photoinduced toxicity was described by photochemical reactions between PAHs and a hypothetical group of endogenous biomolecules (G) required for normal growth, with damage to G by PAHs and/or photomodified PAHs in SSR resulting in impaired growth. The reaction scheme includes photomodification of PAHs, uptake of PAHs into leaves, triplet-state formation of intactmore » PAHs, photosensitization reactions that damage G, and reactions between photomodified PAHs and G. The assumptions used were: the PAH photomodification rate is slower than uptake of chemicals into leaves, the PAH concentration in aqueous solution is nearly constant during a toxicity test, the fluence rate of actinic radiation is lower within leaves than in the aqueous phase, and the toxicity of intact PAHs in the dark is negligible. A series of differential equations describing the reaction kinetics of intact and photomodifed PAHs with G was derived. The resulting equation for PAH toxicity was a function of treatment period, initial PAH concentration, relative absorbance of SSR by each PAH, quantum yield for formation of triplet-state PAH, and rate of PAH photomodification. Data for growth in the presence of intact and photomodified PAHs were used to empirically solve for a photosensitization constant (PSC) and a photomodification constant (PMC) for each of the 16 PAHs tested. For 9 PAHs the PMC dominates and for 7 PAHs the PSC dominates.« less
Wang, Jian; Liu, Juan; Ling, Wanting; Huang, Qingguo; Gao, Yanzheng
2017-11-15
Vegetables accumulate polycyclic aromatic hydrocarbons (PAHs) at high concentrations when grown in contaminated sites. Inoculation with PAH-degrading endophytic bacteria (EB PAH ) has been recognized as one of the most promising ways to remove PAHs from plant bodies; however, the performance of single endophytic bacteria is generally limited. This investigation used a composite of eight EB PAH to reduce the contamination and health risk posed by 16 EPA priority PAHs in vegetables including Chinese cabbage (Brassica chinensis L.) and pakchoi (Brassica campestris L.). Composite EB PAH have strong PAH degradation abilities, and more than 65% of ∑PAH were degraded after 10-day insuspension with composite EB PAH . Vegetable were contacted with composite EB PAH by seed soaking (SS) and leaf painting (LP) with an EB PAH cell incubation at OD 600nm =0.2-1.5. Compared with those in non-inoculated controls, the ∑PAH concentrations in edible parts of Chinese cabbage and pakchoi colonized by composite EB PAH via SS and LP with bacterial suspension at OD 600nm =0.2-1.5 were 42.07-70.77% and 15.79-53.20% lower, and the incremental lifetime cancer risk (ILCR) values for males and females were 31.78-84.08% and 26.60-83.40% smaller, respectively. SS was the optimal inoculation method for reducing PAH concentrations and ILCR values. Our results indicate that inoculating plants with composite EB PAH can lower the health risk posed by vegetables contaminated with PAHs, and may be used to mitigate plant PAH contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Nishimura, Chiya; Horii, Yuichi; Tanaka, Shuhei; Asante, Kwadwo Ansong; Ballesteros, Florencio; Viet, Pham Hung; Itai, Takaaki; Takigami, Hidetaka; Tanabe, Shinsuke; Fujimori, Takashi
2017-06-01
We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS. Copyright © 2016 Elsevier Ltd. All rights reserved.
PAH EMISSION AT THE BRIGHT LOCATIONS OF PDRs: THE grandPAH HYPOTHESIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.; Tielens, A. G. G. M.; Boersma, C.
2015-07-01
The polycyclic aromatic hydrocarbon (PAH) emission observed in the Spitzer Infrared Spectrograph spectra of bright mid-IR locations of NGC 7023, NGC 2023, and NGC 1333 was analyzed. These objects show large variations in PAH band ratios when studied through spectral mapping. Nevertheless, the mid-IR spectra at these bright spots show a remarkably similar PAH emission. We used the NASA Ames PAH IR Spectroscopic Database to fit the observations and analyze the derived PAH populations. Our results show that PAH emission in the 5–15 μm range appears to be rather insensitive to variations of the radiation field. Similar PAH populations ofmore » neutral small to medium-sized PAHs (∼50%), with ionized species contributing in slightly less than 50%, provide very good fits. Analyzing the degeneracy of the results shows that subtle (but intrinsic) variations in the emission properties of individual PAHs lead to observable differences in the resulting spectra. On top of this, we found that variations of <30% in the PAH abundances would lead to noticeable spectral differences between the three photodissociation regions (PDRs). Therefore, PAH populations must be remarkably similar at these different lines of sight. To account for this, we suggest the concept of grandPAHs as a unique mixture of the most stable PAHs emitting at these spots. Using NGC 7023 as an example, the grandPAHs refer to the robust PAH population that results from the intense processing of PAHs at the border limit between the PDR and the molecular cloud, where, due to the UV radiation that destroys the PAH population, the abundance of PAHs starts decreasing as we move toward the star.« less
Roszko, Marek; Kamińska, Marta; Szymczyk, Krystyna; Jędrzejczak, Renata
2018-01-02
The aim of this work was to assess dietary risk resulting from consumption of polycyclic aromatic hydrocarbons (PAHs) with tea infusions. To this end, levels of 28 PAHs in black, green, red and white teas available on the Polish retail market have been assessed. Profiles and correlation between concentrations of individual PAHs have been identified. A model study on transfer of PAHs from tea leaves into tea preparations has been conducted. Relatively high concentrations of 28 evaluated PAHs have been found in 58 tested samples of black, green, red and white teas sampled on the Polish retail market. Total concentration ∑28PAH ranged from 57 to 696 µg kg -1 with mean 258 µg kg -1 (dry tea leaves). The most mature tea leaves fermented to a small degree contained relatively the highest PAH levels among all four tested tea types. Relatively low PAH transfer rates into tea infusions and limited volumes of the consumed tea keep the risks associated with PAH dietary intake at a safely low level. The worst-case scenario dietary intake values were 7.62/0.82/0.097 ng kg -1 b.w. day -1 (estimated on the basis of the maximum found concentrations 696/113/23 µg kg -1 and maximum observed transfer rates 24/16/9%) for ∑28PAH/∑PAH4/B[a]P, respectively. MOE values calculated using the above worst case estimates exceeded 700,000 and 400,000 (BMDL 10 0.07 and 0.34 mg kg -1 b.w. day -1 ) for B[a]P and PAH4, respectively. Both B[a]P and PAH4 concentrations may be used as indicators of total PAH concentration in tea leaves; PAH4 slightly better fits low molecular weight PAHs. Several correlations between various PAHs/groups of PAHs have been identified, the strongest one (R 2 = 0.92) between PAH4 and EU PAH 15+1.
Ghanem, Mohamed M.; Battelli, Lori A.; Mercer, Robert R.; Scabilloni, James F.; Kashon, Michael L.; Ma, Jane Y.C.; Nath, Joginder; Hubbs, Ann F.
2006-01-01
Background Miners inhaling respirable coal dust (CD) frequently develop coal workers’ pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. Methods We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal β-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe)-CH2-OPH]. Results In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. Conclusions Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model. PMID:16966090
Oestrogen receptor alpha in pulmonary hypertension.
Wright, Audrey F; Ewart, Marie-Ann; Mair, Kirsty; Nilsen, Margaret; Dempsie, Yvonne; Loughlin, Lynn; Maclean, Margaret R
2015-05-01
Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT(+) mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT(+) mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Andren, Ove; Ohlson, Anna‐Lena; Carlsson, Jessica; Andersson, Swen‐Olof; Giunchi, Francesca; Rider, Jennifer R.; Fiorentino, Michelangelo
2017-01-01
Background The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (Tregs). In the present study we evaluated the prevalence of Treg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Methods Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4+ Tregs and CD8+ Tregs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of Tregs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. Results In men with prostate cancer, similarly high numbers of stromal CD4+ Tregs were identified in PAH and tumor, but CD4+ Tregs were less common in PIN. Greater numbers of epithelial CD4+ Tregs in normal prostatic tissue were positively associated with both Gleason score and pT‐stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4+ Tregs in the normal prostatic tissue counterpart. Conclusions Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4+ Tregs and indicate that transformation of the anti‐tumor immune response may be initiated even before the primary tumor is established. PMID:29105795
Dixon, Holly M; Scott, Richard P; Holmes, Darrell; Calero, Lehyla; Kincl, Laurel D; Waters, Katrina M; Camann, David E; Calafat, Antonia M; Herbstman, Julie B; Anderson, Kim A
2018-05-01
Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (r s = 0.53 and p = 0.01; r s = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (r s = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstract PAHs detected in samples collected from urban pregnant women.
Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?
Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey
2017-01-01
Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate. PMID:29051449
NASA Astrophysics Data System (ADS)
Boersma, C.; Bregman, J.; Allamandola, L. J.
2016-11-01
Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μm PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction (f I ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μm PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov
Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g.,more » the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f {sub i} ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.« less
Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?
Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey
2017-08-15
Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.
Physical model for the photo-induced toxicity of polycyclic aromatic hydrocarbons (PAHs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenburg, B.M.; Krylov, S.N.; Huang, H.D.
1994-12-31
A model for photo-induced toxicity of PAHs to duckweed was developed. Growth inhibition was described by photochemical reactions between PAHs and a hypothetical group of biomolecules (given the notation G) which are required for growth of the plants. Light activation of PAHs was considered in a two compartment system (water and leaves). The reaction scheme includes: photooxidation of PAHs, partitioning of PAHs into leaves, triplet formation of intact PAHs, photosensitization reactions that consume G, and reaction between photooxidized PAHs and G. The assumptions used in the model are: the rate of PAH photooxidation is slower than the rate of assimilation,more » PAH content in solution is approximately constant over the length of the toxicity test, the fluence rate of actinic radiation is lower in the leaves than in solution, the toxicity of intact PAHs with G in the absence of light is negligible, and the reaction of photooxidized PAHs with G does not require light. The authors then analyzed a series of differential equations that described toxicity. The result was an expression for growth inhibition as a function of the initial concentration of the PAH, the spectral distribution of the light source, the absorption spectrum of the PAH, the quantum yield for formation of triplet state PAH, and the rate of photo-oxidation of the PAH. The expression also includes two complex constants that can be solved by a least squares analysis of the empirical data for growth inhibition. Thus, the model allows a prediction of PAH photo-induced toxicity using only physical parameters of PAHs.« less
NASA Astrophysics Data System (ADS)
Walgraeve, Christophe; Chantara, Somporn; Sopajaree, Khajornsak; De Wispelaere, Patrick; Demeestere, Kristof; Van Langenhove, Herman
2015-04-01
An analytical method using gas chromatography high resolution mass spectrometry was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs (of which 4 diketones, 3 ketones, 4 aldehydes and one anhydride) on atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10). The magnetic sector mass spectrometer was run in multiple ion detection mode (MID) with a mass resolution above 10 000 (10% valley definition) and allows for a selective accurate mass detection of the characteristic ions of the target analytes. Instrumental detection limits between 0.04 pg and 1.34 pg were obtained for the PAHs, whereas for the oxy-PAHs they ranged between 0.08 pg and 2.13 pg. Pressurized liquid extraction using dichloromethane was evaluated and excellent recoveries ranging between 87% and 98% for the PAHs and between 74% and 110% for 10 oxy-PAHs were obtained, when the optimum extraction temperature of 150 °C was applied. The developed method was finally used to determine PAHs and oxy-PAHs concentration levels from particulate matter samples collected in the wet season at 4 different locations in Chiang Mai, Thailand (n = 72). This study brings forward the first concentration levels of oxy-PAHs in Thailand. The median of the sum of the PAHs and oxy-PAHs concentrations was 3.4 ng/m3 and 1.1 ng/m3 respectively, which shows the importance of the group of the oxy-PAHs as PM10 constituents. High molecular weight PAHs contributed the most to the ∑PAHs. For example, benzo[ghi]perylene was responsible for 30-44% of the ∑PAHs. The highest contribution to ∑oxy-PAHs came from 1,8-napthalic anhydride (26-78%), followed by anthracene-9,10-dione (4-27%) and 7H-benzo[de]anthracene-7-one (6-26%). Indications of the degradation of PAHs and/or formation of oxy-PAHs were observed.
Mishamandani, Sara; Gutierrez, Tony; Berry, David; Aitken, Michael D
2016-06-01
Emerging evidence shows that hydrocarbonoclastic bacteria (HCB) may be commonly found associated with phytoplankton in the ocean, but the ecology of these bacteria and how they respond to crude oil remains poorly understood. Here, we used a natural diatom-bacterial assemblage to investigate the diversity and response of HCB associated with a cosmopolitan marine diatom, Skeletonema costatum, to crude oil. Pyrosequencing analysis and qPCR revealed a dramatic transition in the diatom-associated bacterial community, defined initially by a short-lived bloom of Methylophaga (putative oil degraders) that was subsequently succeeded by distinct groups of HCB (Marinobacter, Polycyclovorans, Arenibacter, Parvibaculum, Roseobacter clade), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential. Interestingly, these oil-enriched organisms contributed to the apparent and exclusive biodegradation of substituted and non-substituted polycyclic aromatic hydrocarbons (PAHs), thereby suggesting that the HCB community associated with the diatom is tuned to specializing in the degradation of PAHs. Furthermore, the formation of marine oil snow (MOS) in oil-amended incubations was consistent with its formation during the Deepwater Horizon oil spill. This work highlights the phycosphere of phytoplankton as an underexplored biotope in the ocean where HCB may contribute importantly to the biodegradation of hydrocarbon contaminants in marine surface waters. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mishamandani, Sara; Gutierrez, Tony; Berry, David; Aitken, Michael D.
2016-01-01
Summary Emerging evidence shows that hydrocarbonoclastic bacteria (HCB) may be commonly found associated with phytoplankton in the ocean, but the ecology of these bacteria and how they respond to crude oil remains poorly understood. Here, we used a natural diatom-bacterial assemblage to investigate the diversity and response of HCB associated with a cosmopolitan marine diatom, S. costatum, to crude oil. Pyrosequencing analysis revealed a dramatic transition in the diatom-associated bacterial community, defined initially by a short-lived bloom of Methylophaga (putative oil-degraders) that was subsequently succeeded by a distinct groups of HCB (Marinobacter, Polycyclovorans, Arenibacter, Parvibaculum, Roseobacter clade), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential. Interestingly, these oil-enriched organisms contributed to the apparent and exclusive biodegradation of substituted and non-substituted polycyclic aromatic hydrocarbons (PAHs), thereby suggesting that the HCB community associated with the diatom is tuned to specializing in the degradation of PAHs. Furthermore, the formation of marine oil snow (MOS) in oil-amended incubations was consistent with its formation during the Deepwater Horizon oil spill. This work highlights the phycosphere of phytoplankton as an underexplored biotope in the ocean where HCB may contribute importantly to the biodegradation of hydrocarbon contaminants in marine surface waters. PMID:26184578
Gutierrez, Tony; Biddle, Jennifer F; Teske, Andreas; Aitken, Michael D
2015-01-01
Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [(13)C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from (13)C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.
Gutierrez, Tony; Biddle, Jennifer F.; Teske, Andreas; Aitken, Michael D.
2015-01-01
Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea. PMID:26217326
Kołtowski, Michał; Hilber, Isabel; Bucheli, Thomas D; Oleszczuk, Patryk
2016-10-01
The aim of this study was to determine the effect of steam activation of biochars on the immobilization of freely dissolved (Cfree) and bioaccessible fraction (Cbioacc) of PAHs in soils. Additionally, the toxicity to various organisms like Vibrio fischeri, Lepidium sativum and Folsomia candida was measured before and after the amendment of biochars to soils. Three biochars produced from willow, coconut and wheat straw were steam activated and added to three different soils with varying content and origin of PAHs (coke vs. bitumen). The soils with the addition of the biochars (activated and non-activated) were incubated for a period of 60days. Steam activation of the biochars resulted in more pronounced reduction of both Cfree and Cbioacc. The range of the increase in effectiveness was from 10 to 84% for Cfree and from 50 to 99% for Cbioacc. In contrast, the effect of activation on the toxicity of the soils studied varied greatly and was specific to a particular test and soil type. Essentially, biochar activation did not result in a change of phytotoxicity, but it increased or decreased (depending on the parameter, type of biochar, contaminant source, and soil and soil type) the toxic effect to F. candida, and decreased the toxicity of leachates to V. fischeri. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, Junnan; Zhong, Junjun; Yang, Yifeng; Li, Bengang; Shen, Guofeng; Su, Yuhong; Wang, Chen; Shen, Huizhong; Wang, Bin; Wang, Rong; Huang, Ye; Zhang, Yanyan; Cao, Hongying; Zhu, Ying; Simonich, Staci L. M.; Tao, Shu
2012-01-01
The concentration and composition of PAHs emitted from biomass cooking fuel were characterized in a rural non-smoking household in northern China. Twenty-two parent PAHs (pPAHs), 12 nitro-PAHs (nPAHs), and 4 oxy-PAHs (oPAHs) were measured in the kitchen, bedroom, and outdoors during both summer and winter. The most severe contamination occurred in the kitchen in the winter, where the daily mean concentrations of pPAHs, nPAHs, and oPAHs were 7500±4100, 38±29, and 8400±9200 ng/m3, respectively. Our results suggest that the nPAHs were largely from secondary formation in ambient air while oPAHs were either from primary emission of biomass burning or secondary formation from pPAHs in the kitchen. The daily mean benzo(a)pyrene equivalent exposure concentration was as high as 200±160 ng/m3 in the winter for the housewife who did the cooking compared to 59±37 ng/m3 for the control group that did not cook. PMID:22209516
Simulation of polycyclic aromatic hydrocarbons transport in multimedia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Chu, C.J.
1999-07-01
Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developedmore » by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.« less
NASA Astrophysics Data System (ADS)
Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold
2014-02-01
Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boersma, C.; Bregman, J.; Allamandola, L. J.
2015-06-01
Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer/IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed. Here, results from fitting the 5.2-14.5 μm spectrum at each pixel using exclusively PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb/) and observed PAH band strength ratios, determined after isolating the PAH bands, are combined. This enables the first quantitative and spectrally consistent calibration of PAH charge proxies. Calibration is straightforward because the 6.2/11.2 μm PAH band strength ratio varies linearly with the ionized fraction (PAH ionization parameter) as determined from the intrinsic properties of the individual PAHs comprising the database. This, in turn, can be related to the local radiation field, electron density, and temperature. From these relations diagnostic templates are developed to deduce the PAH ionization fraction and astronomical environment in other objects. The commonly used 7.7/11.2 μm PAH band strength ratio fails as a charge proxy over a significant fraction of the nebula. The 11.2/12.7 μm PAH band strength ratio, commonly used as a PAH erosion indicator, is revealed to be a better tracer for PAH charge across NGC 7023. Attempting to calibrate the 12.7/11.2 μm PAH band strength ratio against the PAH hydrogen adjacency ratio (duo+trio)/solo is, unexpectedly, anti-correlated. This work both validates and extends the results from Paper I and Paper II.
Karaca, Gizem; Cindoruk, S Siddik; Tasdemir, Yücel
2014-05-01
In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography-mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 degrees C. It was determined that 40% decrease was ensured in sigma12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of sigma12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.
Kamiya, Yuta; Iijima, Akihiro; Ikemori, Fumikazu; Okuda, Tomoaki; Ohura, Takeshi
2016-01-01
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are novel species of environmental contaminants whose possible sources remain unclear. The occurrence of ClPAHs within total suspended particles (TSP) is compared with weekly air samples at two sites of differing characteristics (industrial and residential) in the megacity of Nagoya, Japan. Samples were collected over 12 months during 2011–2012. All 24 species of targeted ClPAHs were detected at both industrial and residential sites, where mean concentrations of total ClPAHs in TSP were 20.7 and 14.1 pg/m3, respectively. High concentrations at the industrial site were frequently observed during winter, suggesting potent seasonal ClPAH sources there. Positive matrix factorization modeling of particulate ClPAH source identification and apportioning were conducted for datasets including ClPAHs, PAHs, elements and ions, plus elemental carbons in TSP. Eight factors were identified as possible ClPAH sources, with estimates that the dominant one was a specific source of ClPAH emission (31%), followed by traffic (23%), photodegradable and semi-volatile species (18%), long-range transport (11%), and industry and oil combustion (10%). Source contributions of ClPAHs differed substantially from those of PAHs. This suggests specific and/or potent ClPAH sources in the local area, and that the production mechanisms between ClPAHs and PAHs are substantially different. PMID:27922081
Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan
2016-05-01
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567
Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph
2014-02-01
Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov
2015-06-10
Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer/IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed. Here, results from fitting the 5.2–14.5 μm spectrum at each pixel using exclusively PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb/) and observed PAH band strength ratios, determined after isolating the PAH bands, are combined. This enables the first quantitative and spectrally consistent calibration of PAH charge proxies. Calibration is straightforward because the 6.2/11.2 μm PAH band strength ratio varies linearly with the ionized fraction (PAH ionization parameter) as determined from the intrinsic properties ofmore » the individual PAHs comprising the database. This, in turn, can be related to the local radiation field, electron density, and temperature. From these relations diagnostic templates are developed to deduce the PAH ionization fraction and astronomical environment in other objects. The commonly used 7.7/11.2 μm PAH band strength ratio fails as a charge proxy over a significant fraction of the nebula. The 11.2/12.7 μm PAH band strength ratio, commonly used as a PAH erosion indicator, is revealed to be a better tracer for PAH charge across NGC 7023. Attempting to calibrate the 12.7/11.2 μm PAH band strength ratio against the PAH hydrogen adjacency ratio (duo+trio)/solo is, unexpectedly, anti-correlated. This work both validates and extends the results from Paper I and Paper II.« less
Martena, M J; Grutters, M M P; De Groot, H N; Konings, E J M; Rietjens, I M C M
2011-01-01
Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aimed to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. From 2003 to 2008, benzo[a]pyrene exceeded the limit of quantification (LOQ) in 553 (44%) of 1258 supplements with a lower-bound mean of 3.37 µg kg(-1). In 2008 and 2009, benzo[a]pyrene and 12 other EFSA priority PAH were determined in 333 food supplements. Benzo[a]pyrene exceeded the LOQ in 210 (63%) food supplements with a lower-bound mean of 5.26 µg kg(-1). Lower-bound mean levels for PAH4 and PAH8(-indeno[1,2,3-cd]pyrene) were 33.5 and 40.5 µg kg(-1), respectively. Supplements containing resveratrol, Ginkgo biloba, St. John's wort and propolis showed relatively high PAH4 levels in 2008 and 2009. Before 2008, supplements with these ingredients and also dong quai, green tea or valerian contained relatively high benzo[a]pyrene levels. On average, PAH4 intake resulting from food supplement use will be at the lower end of the range of contributions of main food groups to PAH4 exposure, although individual food supplements can contribute significantly to PAH4 exposure. Regular control of EFSA indicator PAH levels in food supplements may prove a way forward to reduce further the intake of PAH from food.
Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay.
Wang, Zucheng; Liu, Shasha; Bu, Zhao-Jun; Wang, Shengzhong
2018-04-28
The dynamics of polycyclic aromatic hydrocarbon (PAH) degradation in Sphagnum litters and the decomposition of the litters were investigated. PAH concentration decreased to approximately half of the initial concentration as Sphagnum litters decayed. The initial PAH concentration was 489.2 ± 72.2 ng g -1 , and the concentration after 120 days of incubation was 233.0 ± 5.8 ng g -1 . The different PAH compositions changed concentrations at different times. The low-molecular-weight (LMW) and high-molecular-weight (HMW) PAHs started to be degraded after incubation and after 40 days of incubation, respectively. PAH concentrations in the Sphagnum litters correlated with the total organic carbon (TOC) content (p < 0.05), indicating that PAHs were associated with the TOC of the Sphagnum litters and were degraded as organic matter decayed. The positive relationship between LMW PAH concentration and the soluble carbohydrate content (p < 0.05) indicated that LMW PAHs and the readily decomposed organic carbon fractions were cometabolized, or that LMW PAHs were mainly absorbed by soluble carbohydrate. The weak negative correlation between fulvic acid (FA) and PAH concentrations (p < 0.1) indicated that FA may enhance PAH degradation. Redundancy analysis suggested that the contents of both soluble carbohydrate and cellulose significantly affected the changes in PAH concentrations (p < 0.05), and that FA content and C/N ratios may also contribute to the changes in PAH concentrations (p < 0.1). However, the polyphenol that was related to microbial activities was not associated with changes in PAH concentrations. These results suggested that litter quality is more important than microbial activities in PAH degradation in Sphagnum litters.
Afegbua, Seniyat Larai; Batty, Lesley Claire
2018-04-27
Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.
Galiè, Nazzareno; Denton, Christopher P; Dardi, Fabio; Manes, Alessandra; Mazzanti, Gaia; Li, Baohui; Varanese, Lucio; Esler, Anne; Harmon, Cathi; Palazzini, Massimiliano
2017-05-15
The primary objective of this post hoc analysis was to evaluate clinical outcomes of tadalafil in patients with pulmonary arterial hypertension (PAH) associated with connective tissue disease (CTD-PAH) compared with patients with idiopathic/heritable PAH (I/H-PAH) for primary and key secondary efficacy endpoints, and safety. This analysis included adult patients with CTD-PAH or I/H-PAH who participated in the PHIRST and PHIRST-2 studies. Patients were randomized 1:1:1:1:1 to tadalafil (2.5, 10, 20, or 40mg) or placebo in the PHIRST study and the majority of these patients were subsequently assigned 40mg in PHIRST-2. Patients taking 20mg in PHIRST without demonstrating clinical worsening continued on 20mg in PHIRST-2. Outcomes analyzed included 6MWD, WHO-FC, and incidence and time to first occurrence of clinical worsening. Safety was assessed through evaluation of adverse events (AEs), clinical laboratory data, electrocardiograms, and physical examinations. Increased 6MWD in PHIRST was maintained in both CTD-PAH and I/H-PAH subgroups for 52weeks. Patients with CTD-PAH tended to be older, were more likely female, had lower exercise capacity, were more likely to have clinical worsening, and experienced AEs more frequently than patients with I/H-PAH. The effect of tadalafil treatment in patients enrolled in both PHIRST studies was detectable for both I/H-PAH and CTD-PAH subgroups. In general, subgroup differences were modest. Patients with CTD-PAH may perform less well than patients with I/H-PAH in safety and efficacy measures in all treatment groups, which is similar to other studies demonstrating a worse prognosis for patients with CTD-PAH. Copyright © 2017. Published by Elsevier B.V.
Zhang, Di; Cao, Shan-Ping; Sun, Jian-Lin; Zeng, Hui
2014-02-01
188 surface soil samples were collected in Shenzhen of China to determine the occurrence and spatial differentiation of polycyclic aromatic hydrocarbons (PAHs), based on which we studied the correlation between PAHs concentrations and urbanization levels, as well as the PAHs ecological risk. The total concentrations of 28 PAHs (sigma28 PAHs), 16 EPA PAHs (sigma 16 PAHs) and 7 carcinogenic PAHs (sigma7 CarPAHs) ranged from 5 to 7939 ng x g(-1), 2 to 6745 ng x g(-1) and not detected to 3786 ng x g(-1), respectively. 8 kinds of land use types according to sigma16 PAHs average levels in descending order were: transportation lands, commercial lands, industrial lands, agricultural lands, residential lands, urban green space, orchards and woodland. And sigma16 PAHs of construction and non-construction lands samples were mainly derived from combustion of various fossil fuels with contribution of 75.1% and 68.2%, respectively. Significant positive correlation was also found between PAHs concentrations of high molecular weight and urbanization levels. And PAHs pollution in the top soils of Shenzhen was at a low-end level of the world.
Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia
2013-01-01
Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328
Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia
2011-07-01
Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing-Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air-soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m³ and 114 ng/m³, respectively, with a median total PAH concentration of 349 ng/m³. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban-rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%-77% of the spatial variation in ambient air PAH concentrations. The annual median air-soil gas exchange flux of PAHs was 42.2 ng/m²/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air-soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air-soil gas exchange of PAHs. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merino, Agustin; Rey-Salgueiro, Ledicia; Omil, Beatriz; Martinez-Carballo, Elena; Simal-Gandara, Jesus
2015-04-01
Due to their important concentration of nutrient and charcoal, wood ash from biomass power plants (WA) can be used as a fertilizer and organic amendment in intensively managed soils. Unlike biochar produced in under anoxic conditions, the nature of the organic compounds present in wood ash has been scarcely studied. Due to the incomplete combustion, wood ash may contain a wide range of organic compounds, from charred to highly condensed refractory biomass, which determines the possibilities of WA as an organic amendment. In addition, the possible environmental risk of this practice must be assessed by determining the content of water-soluble and insoluble organic contaminants. due to the incomplete combustion of organic matter, organic pollutants, such as Polycyclic Aromatic Hydrocarbons (PAHs), can be formed and can remain in the combustion residue. Also, the four alkyl benzene volatile organic compounds (benzene, toluene, ethylbenzene, and the ortho, para, and meta xylenes) can be formed, depending on certain conditions during combustion. For this study 15 biomass power stations in Spain were selected. In all of them the feedstock is pine or eucalyptus branches and bark. Nine of them were bottom wood ash generated from wood fires furnaces, obtained from grate-fired or water-tube boilers. Whereas four of them were fly ash, obtained in cyclone separators. The samples were collected following a common procedure to ensure the representiveness of the sampling. Bottom ash samples were fraccionated in three fractions: < 2mm, 2-5 mm and > 5mm. Each fraction was characterized for organic matter and BTEX, styrene and total petroleum hydrocarbons Polycyclic Aromatic Hydrocarbons. For each analyzes, three replicates were analyzed per sample. Mixes wood ash shows higher amounts of charred material than fly ash. The 13 C CPMAS NMR, DSC/TG and FTIR analysis showed the loss of carbohydrates and aliphatic constituents and revealed the formation of aromatic compounds. The atomic H/C ratios, NMR spectra, DSC and FTIR confirmed the presence of condensed structures, specially in the coarse particles. However, the different wood ash showed an important range of properties revealing the presence from charred material to charcoal containing condensed structures (H/C ratios lower than 0.6; aromaticity higher than 80 % and T50-DSC higher than 500 °C). Typical organic pollutants including those water-soluble such as BTEX plus styrene, but also those water-insoluble such as polycyclic aromatic hydrocarbons (PAHs), together with aliphatic hydrocarbons, were examined in the ash. Their contents were related to degree of combustion of the biomass, determined through the content and composition of the organic matter in the wood ash. The sum of BTEX plus styrene varied from non-detected to 30 mg/kg, and the total amounts of PAHs (total PAHs) ranged between non-detected and 422 µg/kg, not exceeding the regulated limits. This research provides basic information for the evaluation of the environmental risk and potential uses of WW incinerator bottom ash The results demonstrate the important variability in the charred material properties of the different power plants and size-particles. The organic compounds contents are also variable, but in all cases were levels of pollutants in all the samples were below the limits for both soil and industrial use (Environmental Protection Agency in the European Union and the USA.
Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui
2018-04-25
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M.
1997-05-01
Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD formore » 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.« less
Jafri, Salema; Ormiston, Mark L
2017-12-01
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.
ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; Kwok, Sun, E-mail: zhangy96@hku.hk, E-mail: sunkwok@hku.hk
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support formore » the PAH hypothesis.« less
Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.
Visioli, Giovanna; Conti, Federica D; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, Davey L; Vamerali, Teofilo
2016-03-01
Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).
Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air, Japan
NASA Astrophysics Data System (ADS)
Ohura, Takeshi; Horii, Yuichi; Kojima, Mitsuhiro; Kamiya, Yuta
2013-12-01
Concentrations of 3- to 5-ring chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and corresponding PAHs were quantified in 3-h integrated air samples, taken serially over 3-day periods in December 2009 (winter) and August 2010 (summer) in the urban area of Shizuoka, Japan. Twenty species of targeted ClPAHs were detected in both gas and particle phases throughout each campaign. Mean concentrations of total ClPAHs in the winter and summer campaigns were 133 ± 53 pg m-3 and 32 ± 27 pg m-3, respectively. Throughout the campaigns, diurnal variations of total ClPAHs concentrations did not have periodic fluctuation such as decreasing in daytime and increasing in nighttime, observed in PAHs. However, the mean concentrations of particulate ClPAHs trended to be slightly higher in nighttime than in daytime, but not for gaseous ClPAHs. Significant correlations were observed between the concentrations of total ClPAHs and total PAHs in particulate phase, but not in gaseous phase. In addition, for particulate phase, there were significant correlations between the concentrations of individual ClPAHs and corresponding parent PAHs, nitrate, and chlorine in summer, but not in winter. Considering these behaviors of ClPAHs in the air, the emission sources could have features of as follows: (i) specific emission sources emitted both ClPAHs and PAHs in particulate phase could be present in the area; (ii) particulate ClPAHs could be more strongly influenced by local sources and photochemical reactions rather than by transboundary air pollution; (iii) the possible sources could be combustion processes included biomass and fossil fuels.
Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables.
Li, Huidong; Zhu, Duanwei; Lu, Xiao; Du, Hongxia; Guan, Shuai; Chen, Zilei
2018-01-28
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic environmental pollutants posing a potential risk to human health. This study was constructed to investigate the presence of 16 PAHs in six commonly consumed vegetables collected from the markets in Shandong, China by a quick, easy, cheap, effective, rugged, safe (QuEChERS)-based extraction method coupled with gas chromatography-mass spectrometry (GC-MS). Our results showed that the vegetables were polluted with PAHs at an alarming level, of which celery contained the highest total concentration of PAHs (Σ16 PAH), whereas cucumbers contained the lowest Σ16 PAH. Besides, the dietary exposure of PAHs was assessed in these vegetables based on the maximum Σ16 PAH. The results showed that the populations in Shandong were exposed to 23-213 ng/d of PAHs through these six vegetables, suggesting that vegetables are the major sources of PAHs in the diet. Hence, it is necessary to monitor the PAH levels in vegetables. Our study provides guidance for future legislative actions regarding PAH levels in vegetables in China.
Performance of PAHs emission from bituminous coal combustion.
Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa
2004-12-01
Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.
Kuang, Yuan-wen; Zhou, Guo-yi; Wen, Da-zhi; Li, Jiong; Sun, Fang-fang
2011-09-01
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were examined and potential sources of PAHs were identified from the dated tree-rings of Masson pine (Pinus massoniana L.) near two industrial sites (Danshuikeng, DSK and Xiqiaoshan, XQS) in the Pearl River Delta of south China. Total concentrations of PAHs (∑PAHs) were revealed with similar patterns of temporal trends in the tree-rings at both sites, suggesting tree-rings recorded the historical variation in atmospheric PAHs. The differences of individual PAHs and of ∑PAHs detected in the tree-rings between the two sites reflected the historical differences of airborne PAHs. Regional changes in industrial activities might contribute to the site-specific and period-specific patterns of the tree-ring PAHs. The diagnostic PAH ratios of Ant/(Ant + PA), FL/(FL + Pyr), and BaA/(BaA + Chr)) revealed that PAHs in the tree-rings at both sites mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood burning, coal combustion, diesel, and gasoline-powered vehicular emissions were the dominant contributors of PAHs sources at DSK, while diesel combustion, gasoline and natural gas combustion, and incomplete coal combustion were responsible for the main origins of PAHs at XQS. Tree-ring analysis of PAHs was indicative of PAHs from a mixture of sources of combustion, thus minimizing the bias of short-term active air sampling.
Yang, Xunan; Yu, Liuqian; Chen, Zefang; Xu, Meiying
2016-01-01
Traditional risk assessment and source apportionment of sediments based on bulk polycyclic aromatic hydrocarbons (PAHs) can introduce biases due to unknown aging effects in various sediments. We used a mild solvent (hydroxypropyl-β-cyclodextrin) to extract the bioavailable fraction of PAHs (a-PAHs) from sediment samples collected in Pearl River, southern China. We investigated the potential application of this technique for ecological risk assessments and source apportionment. We found that the distribution of PAHs was associated with human activities and that the a-PAHs accounted for a wide range (4.7%–21.2%) of total-PAHs (t-PAHs), and high risk sites were associated with lower t-PAHs but higher a-PAHs. The correlation between a-PAHs and the sediment toxicity assessed using tubificid worms (r = −0.654, P = 0.021) was greater than that from t-PAH-based risk assessment (r = −0.230, P = 0.472). Moreover, the insignificant correlation between a-PAH content and mPEC-Q of low molecular weight PAHs implied the potiential bias of t-PAH-based risk assessment. The source apportionment from mild extracted fractions was consistent across different indicators and was in accordance with typical pollution sources. Our results suggested that mild extraction-based approaches reduce the potential error from aging effects because the mild extracted PAHs provide a more direct indicator of bioavailability and fresher fractions in sediments. PMID:26976450
Angus, James A; Hughes, Richard J A; Wright, Christine E
2017-12-01
Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
Coghlan, John Gerry; Galiè, Nazzareno; Barberà, Joan Albert; Frost, Adaani E; Ghofrani, Hossein-Ardeschir; Hoeper, Marius M; Kuwana, Masataka; McLaughlin, Vallerie V; Peacock, Andrew J; Simonneau, Gérald; Vachiéry, Jean-Luc; Blair, Christiana; Gillies, Hunter; Miller, Karen L; Harris, Julia H N; Langley, Jonathan; Rubin, Lewis J
2017-01-01
Background Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH), in particular systemic sclerosis (SSc), had an attenuated response compared with idiopathic PAH in most trials. Thus, there is uncertainty regarding the benefit of PAH-targeted therapy in some forms of CTD-PAH. Objective To explore the safety and efficacy of initial combination therapy with ambrisentan and tadalafil versus ambrisentan or tadalafil monotherapy in patients with CTD-PAH and SSc-PAH enrolled in the AMBITION trial. Methods This was a post hoc analysis of patients with CTD-PAH and SSc-PAH from AMBITION, an event-driven, double-blind trial in patients with WHO functional class II/III PAH. Treatment-naive patients were randomised 2:1:1 to once-daily initial combination therapy with ambrisentan plus tadalafil or monotherapy with ambrisentan or tadalafil, respectively. The primary endpoint was time to the first clinical failure event (first occurrence of death, hospitalisation for worsening PAH, disease progression or unsatisfactory long-term clinical response). Results In the primary analysis set (N=500), 187 patients had CTD-PAH, of whom 118 had SSc-PAH. Initial combination therapy reduced the risk of clinical failure versus pooled monotherapy in each subgroup: CTD-PAH (HR 0.43 (95% CI 0.24 to 0.77)) and SSc-PAH (0.44 (0.22 to 0.89)). The most common AE was peripheral oedema, which was reported more frequently with initial combination therapy than monotherapy in the two PAH subgroups. The relative frequency of adverse events between those on combination therapy versus monotherapy was similar across subgroups. Conclusions This post hoc subgroup analysis provides evidence that CTD-PAH and SSc-PAH patients benefit from initial ambrisentan and tadalafil combination therapy. Trial registration number NCT01178073, post results. PMID:28039187
Coghlan, John Gerry; Galiè, Nazzareno; Barberà, Joan Albert; Frost, Adaani E; Ghofrani, Hossein-Ardeschir; Hoeper, Marius M; Kuwana, Masataka; McLaughlin, Vallerie V; Peacock, Andrew J; Simonneau, Gérald; Vachiéry, Jean-Luc; Blair, Christiana; Gillies, Hunter; Miller, Karen L; Harris, Julia H N; Langley, Jonathan; Rubin, Lewis J
2017-07-01
Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH), in particular systemic sclerosis (SSc), had an attenuated response compared with idiopathic PAH in most trials. Thus, there is uncertainty regarding the benefit of PAH-targeted therapy in some forms of CTD-PAH. To explore the safety and efficacy of initial combination therapy with ambrisentan and tadalafil versus ambrisentan or tadalafil monotherapy in patients with CTD-PAH and SSc-PAH enrolled in the AMBITION trial. This was a post hoc analysis of patients with CTD-PAH and SSc-PAH from AMBITION, an event-driven, double-blind trial in patients with WHO functional class II/III PAH. Treatment-naive patients were randomised 2:1:1 to once-daily initial combination therapy with ambrisentan plus tadalafil or monotherapy with ambrisentan or tadalafil, respectively. The primary endpoint was time to the first clinical failure event (first occurrence of death, hospitalisation for worsening PAH, disease progression or unsatisfactory long-term clinical response). In the primary analysis set (N=500), 187 patients had CTD-PAH, of whom 118 had SSc-PAH. Initial combination therapy reduced the risk of clinical failure versus pooled monotherapy in each subgroup: CTD-PAH (HR 0.43 (95% CI 0.24 to 0.77)) and SSc-PAH (0.44 (0.22 to 0.89)). The most common AE was peripheral oedema, which was reported more frequently with initial combination therapy than monotherapy in the two PAH subgroups. The relative frequency of adverse events between those on combination therapy versus monotherapy was similar across subgroups. This post hoc subgroup analysis provides evidence that CTD-PAH and SSc-PAH patients benefit from initial ambrisentan and tadalafil combination therapy. NCT01178073, post results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Soliman, Y S; Al Ansari, E M S; Wade, T L
2014-08-30
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gao, Guanwei; Chen, Hongping; Liu, Pingxiang; Hao, Zhenxia; Ma, Guicen; Chai, Yunfeng; Wang, Chen; Lu, Chengyin
2017-06-01
Residues of polycyclic aromatic hydrocarbons (PAHs) in green tea and tea infusion were determined using gas chromatography-tandem mass spectrometry to study their dissipation pattern during green tea processing and infusion. Concentration and evaporation of PAHs during tea processing were the key factors affecting PAH residue content in product intermediates and in green tea. PAH residues in tea leaves increased by 2.4-3.1 times during the manufacture of green tea using the electric heating model. After correction to dry weight, PAH residue concentrations decreased by 33.5-48.4% during green tea processing because of PAH evaporation. Moreover, spreading and drying reduced PAH concentrations. The transfer rates of PAH residues from green tea to infusion varied from 4.6% to 7.2%, and PAH leaching was higher in the first infusion than in the second infusion. These results are useful for assessing exposure to PAHs from green tea and in formulating controls for the maximum residue level of PAHs in green tea.
Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.
Wang, Chunhui; Zhou, Shenglu; Wu, Shaohua; Song, Jing; Shi, Yaxing; Li, Baojie; Chen, Hao
2017-10-01
The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑ 16 PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaP eq ) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.
Liu, Feng; Hu, Shuai; Guo, Xiaojuan; Niu, Lixia; Cai, Huayang; Yang, Qingshu
2018-06-01
To examine the impacts of estuarine mixing on the dispersion of polycyclic aromatic hydrocarbons (PAHs), seasonal variations in the vertical distribution of dissolved PAHs in the Humen River mouth of the Pearl River Estuary, which is a tide-dominated estuary, were thoroughly examined. An analysis of the vertical distribution of the concentration, composition and sources of PAHs indicates enhanced mixing of PAHs in January relative to June, which is strongly related to seasonal variations in the magnitude of estuarine mixing. Furthermore, the vertical distribution of PAHs initially indicated an increase and then a decrease from the surface layer to the bottom layer. In general, estuarine mixing promotes the vertical dispersion of PAHs, causing a more even PAHs distribution, while salinity stratification can trap PAHs, resulting in higher PAHs concentrations. Our study indicates that salinity variability stimulates significant dynamic effects regarding the dispersion of PAHs within estuarine environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Connective tissue disease-associated pulmonary arterial hypertension
Howard, Luke S.
2015-01-01
Although rare in its idiopathic form, pulmonary arterial hypertension (PAH) is not uncommon in association with various associated medical conditions, most notably connective tissue disease (CTD). In particular, it develops in approximately 10% of patients with systemic sclerosis and so these patients are increasingly screened to enable early detection. The response of patients with systemic sclerosis to PAH-specific therapy appears to be worse than in other forms of PAH. Survival in systemic sclerosis-associated PAH is inferior to that observed in idiopathic PAH. Potential reasons for this include differences in age, the nature of the underlying pulmonary vasculopathy and the ability of the right ventricle to cope with increased afterload between patients with systemic sclerosis-associated PAH and idiopathic PAH, while coexisting cardiac and pulmonary disease is common in systemic sclerosis-associated PAH. Other forms of connective tissue-associated PAH have been less well studied, however PAH associated with systemic lupus erythematosus (SLE) has a better prognosis than systemic sclerosis-associated PAH and likely responds to immunosuppression. PMID:25705389
Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.
2012-01-01
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467
Interstellar dehydrogenated PAH anions: vibrational spectra
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor
2018-03-01
Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.
Lin, Yan; Qiu, Xinghua; Ma, Yiqiu; Ma, Jin; Zheng, Mei; Shao, Min
2015-01-01
The occurrence of polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (NPAHs), as well as their transformation may have significant health impacts on humans. To investigate the level, spatial distribution and the transformation process of PAHs and NPAHs in North China, we performed a griddedfield passive air sampling campaign in summer of 2011. The median concentration of 25 PAH congeners and 13 NPAHs was 294 ng m(-3) (or 26.7 mg sample(-1)) and 203 ng sample(-1), respectively. Relative higher level of PAHs in Shanxi Province and NPAHs in megacities was observed. In North China, coal/biomass combustion and photochemical formation was the predominant source of PAHs and NPAHs, respectively.To investigate the relationship between these pollutants, a model incorporating NPAHs, PAHs and NO(2) was established, and the result indicated that NO(2) will promote the transformation processes from PAHs to NPAHs, which may increase the total toxicity of PAH-NPAH mixtures.
Geiger, Stephen C; Azzolina, Nicholas A; Nakles, David V; Hawthorne, Steven B
2016-07-01
Polycyclic aromatic hydrocarbons (PAHs) are major drivers of risk at many urban and/or industrialized sediment sites. The US Environmental Protection Agency (USEPA) currently recommends using measurements of 18 parent + 16 groups of alkylated PAHs (PAH-34) to assess the potential for sediment-bound PAHs to impact benthic organisms at these sites. ASTM Method D7363-13 was developed to directly measure low-level sediment porewater PAH concentrations. These concentrations are then compared to ambient water criteria (final chronic values [FCVs]) to assess the potential for impact to benthic organisms. The interlaboratory validation study that was used to finalize ASTM D7363-13 was developed using 24 of the 2-, 3-, and 4-ring PAHs (PAH-24) that are included in the USEPA PAH-34 analyte list. However, it is the responsibility of the user of ASTM Method D7363 to establish a test method to quantify the remaining 10 higher molecular weight PAHs that make up PAH-34. These higher molecular weight PAHs exhibit extremely low saturation solubilities that make their detection difficult in porewater, which has proven difficult to implement in a contract laboratory setting. As a result, commercial laboratories are hesitant to conduct the method on the entire PAH-34 analyte list. This article presents a statistical comparison of the ability of the PAH-24 and PAH-34 porewater results to predict survival of the freshwater amphipod Hyalella azteca, using the original 269 sediment samples used to gain ASTM D7363 Method approval. The statistical analysis shows that the PAH-24 are statistically indistinguishable from the PAH-34 for predicting toxicity. These results indicate that the analysis of freely dissolved porewater PAH-24 is sufficient for making risk-based decisions based on benthic invertebrate toxicity (survival and growth). This reduced target analyte list should result in a cost-saving for stakeholders and broader implementation of the method at PAH-impacted sediment sites. Integr Environ Assess Manag 2016;12:493-499. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H; Chen, Jiu-Chiuan; Fan, Zhi-Hua Tina; Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R 2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Li, Jianwang; Shang, Xu; Zhao, Zhixu; Tanguay, Robert L.; Dong, Qiaoxiang; Huang, Changjiang
2012-01-01
The town of Shuitou was renowned as the leather capital of China because of its large-scale tanning industry, but the industry’s lack of pollution controls has caused severe damage to the local water system. This study determined 15 priority polycyclic aromatic hydrocarbons (PAHs) in water, sediment, soil, and plant samples collected from Aojiang River and its estuary. The total PAHs ranged from 910 to 1520 ng/L in water samples. The total PAH in sediments were moderate to low in comparison with other rivers and estuaries in China, but the relative proportions of PAHs per million people are high when considering the population size associated with each watershed. Ratios of fluoranthene/pyrene and PAHs with low/high molecular weight suggest a petrogenic PAH origin. The PAH composition profile in soil was similar to that in sediment with 4–6 ring PAHs being dominant. The PAHs with 2–3 rings were the dominant species in plant leaves. There were no correlations between PAHs in soils and in plants, suggesting that PAHs accumulate in plant leaves through absorption from the air. The general observation of elevated PAH concentrations in all matrix suggests a possible contribution by the local leather industry on the PAH concentrations in the Aojiang watershed. PMID:19726127
Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta.
Nwaichi, E O; Ntorgbo, S A
2016-01-01
Levels of sixteen polycyclic aromatic hydrocarbons (PAHs) in 30 edible tissues of selected frequently-consumed fish and seafood collected from three coastal waters of Niger Delta, namely, Sime, Kporghor and Iko were investigated in 2014. Gas chromatographic analysis were employed for PAHs determination. Observed mean PAHs levels in the samples ranged from below detection limit (BD) of analytical instrument to 22.400 ± 0.050 μg kg -1 wet wt. in Littorina littorea, BD to 87.400 ± 0.030 μg kg -1 wet wt. in Crassostrea virginica and from BD to 171.000 ± 0.430 μg kg -1 wet wt. in Periophthalmus koeleuteri. The highest average concentration of 171.000 ± 0.430 μg kg -1 wet wt. was recorded for Indeno [1,2,3-cd]pyrene from Sime water. High molecular weight PAHs (HMW-PAHs) were generally predominant compared to low molecular weight PAHs (LMW-PAHs). The LMW- PAH/HMW-PAH ratio was <1 for all species, indicating anthropogenic origin of PAHs in the coastal waters of Niger Delta environment. Moreover, the study of the PAHs fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for observed PAHs.
Phytoavailability and mechanism of bound PAH residues in filed contaminated soils.
Gao, Yanzheng; Hu, Xiaojie; Zhou, Ziyuan; Zhang, Wei; Wang, Yize; Sun, Bingqing
2017-03-01
Understanding the phytoavailability of bound residues of polycyclic aromatic hydrocarbons (PAHs) in soils is essential to assessing their environmental fate and risks. This study investigated the release and plant uptake of bound PAH residues (reference to parent compounds) in field contaminated soils after the removal of extractable PAH fractions. Plant pot experiments were performed in a greenhouse using ryegrass (Lolium multiflorum Lam.) to examine the phytoavailablility of bound PAH residues, and microcosm incubation experiments with and without the addition of artificial root exudates (AREs) or oxalic acid were conducted to examine the effect of root exudates on the release of bound PAH residues. PAH accumulation in the ryegrass after a 50-day growth period indicated that bound PAH residues were significantly phytoavailable. The extractable fractions, including the desorbing and non-desorbing fractions, dominated the total PAH concentrations in vegetated soils after 50 days, indicating the transfer of bound PAH residues to the extractable fractions. This transfer was facilitated by root exudates. The addition of AREs and oxalic acid to test soils enhanced the release of bound PAH residues into their extractable fractions, resulting in enhanced phytoavailability of bound PAH residues in soils. This study provided important information regarding environmental fate and risks of bound PAH residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Olson, Paul E; Castro, Ana; Joern, Mark; DuTeau, Nancy M; Pilon-Smits, Elizabeth A H; Reardon, Kenneth F
2007-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants and their associated rhizosphere microbes can promote PAH dissipation, offering an economic and ecologically attractive remediation technique. This study focused on the effects of different types of vegetation on PAH removal and on the interaction between the plants and their associated microorganisms. Aged PAH-polluted soil with a total PAH level of 753 mg kg(-1) soil dry weight was planted with 18 plant species representing eight families. The levels of 17 soil PAHs were monitored over 14 mo. The size of soil microbial populations of PAH degraders was also monitored. Planting significantly enhanced the dissipation rates of all PAHs within the first 7 mo, but this effect was not significant after 14 mo. Although the extent of removal of lower-molecular-weight PAHs was similar for planted and unplanted control soils after 14 mo, the total mass of five- and six-ring PAHs removed was significantly greater in planted soils at the 7- and 14-mo sampling points. Poaceae (grasses) were the most effective of the families tested, and perennial ryegrass was the most effective species; after 14 mo, soils planted with perennial ryegrass contained 30% of the initial total PAH concentration (compared with 51% of the initial concentrations in unplanted control soil). Although the presence of some plant species led to higher populations of PAH degraders, there was no correlation across plant species between PAH dissipation and the size of the PAH-degrading population. Research is needed to understand differences among plant families for stimulating PAH dissipation.
Albers, P.H.; Kennish, Michael J.
2002-01-01
Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.
Yu, Zi-Ling; Lin, Qin; Gu, Yang-Guang; Ke, Chang-Liang; Sun, Run-Xia
2016-09-15
Spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) were investigated in Eastern Guangdong coast, China. Total PAH concentrations in oysters ranged from 231 to 1178ng/g with a mean concentration of 622ng/g dry weight. Compared with other bays and estuaries, PAH levels in oysters were moderate. Spatial distribution of PAHs was site specific, with relatively high PAH concentrations observed in Zhelin Bay and Kaozhouyang Bay. Based on the Spearman test analysis, only PAH concentration in oysters from Jiazi Harbor showed a significant increasing trend (P<0.05). Three-ring PAHs were the most abundant, accounting for 54.2%-88.4% of total PAHs. Diagnostic ratios suggested that PAHs were derived mainly from petroleum origin. BaP and ∑4PAH concentrations were well within the European Union limits (5ng/g and 30ng/g wet weight, respectively). The incremental lifetime cancer risks (ILCR) for PAHs were <10(-5), indicating that the adverse health risks associated with oyster consumption in this area were minimal. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Z.; Guo, Z.
2017-12-01
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three- to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2 to 107.4 ng m-2 d-1, and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure, with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.
Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Qi; Dan, Yang; Zhang, Gan; Raha, Priyankar
2016-02-01
The Indian Himalayan Region (IHR) is one of the important mountain ecosystems among the global mountain system which support wide variety of flora, fauna, human communities and cultural diversities. Surface soil samples (n = 69) collected from IHR were analysed for 16 priority polycyclic aromatic hydrocarbons (PAH) listed by USEPA. The ∑16PAH concentration in surface soil ranged from 15.3 to 4762 ngg(-1) (mean 458 ngg(-1)). The sum total of low molecular weight PAH (∑LMW-PAHs) (mean 74.0 ngg(-1)) were relatively lower than the high molecular weight PAH (∑HMW-PAHs) (mean 384 ngg(-1)). The concentration of eight carcinogenic PAHs (BaA, CHR, BbF, BkF, BaP, DahA, IcdP, BghiP) were detected high in mountain soil from IHR and ranged from 0.73 to 2729 ngg(-1) (mean 272 ngg(-1)). Based on spatial distribution map, high concentration of HMW- and LMW-PAHs were detected at GS1 site in Guwahati (615 and 4071 ngg(-1)), and lowest concentration of HMW-PAHs were found at IS6 in Itanagar (5.80 ngg(-1)) and LMW-PAHs at DS2 (17.3 ngg(-1)) in Dibrugarh. Total organic carbon (TOC) in mountain soil was poorly connected with ∑PAHs (r(2) = 0.072) and Car-PAHs (r(2) = 0.048), suggesting the little role of TOC in adsorption of PAHs. Isomeric ratio of PAHs showed the source of PAH contamination in IHR is mixed of petrogenic and pyrogenic origin and was affirmed by PAHs composition profile. These source apportionment results were further confirmed by principal component analysis (PCA). Eco-toxicological analysis showed the calculated TEQ for most carcinogenic PAH were 2-4 times more than the Dutch allowed limit, while TEQ of BaP was 25 times high, suggesting increasing trend of carcinogenicity of surface soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wakeham, Stuart G; Canuel, Elizabeth A
2016-06-01
Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed.
Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang
2017-11-01
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m -2 d -1 , and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logK p ) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logP L 0 ), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling K p for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logK p and logK oa (logK sa ) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasumba, John; Holmén, Britt A.
2018-02-01
Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity in the matrix that may evolve with reaction progress). Saturated FAMEs were not reactive with ozone (kO 3 range = 0.004 ± 0.003 to 0.012 ± 0.026 hr-1), but compared to PAHs, up to two times higher kO 3 was measured for the unsaturated FAMEs (range 0.087 ± 0.015 to 0.329 ± 0.023 hr-1) during PAH + FAMEs exposures. These changes in substrate composition during atmospheric aging would be expected to affect PAH diffusivity and therefore heterogeneous reactivity over time. The factor of 1.2-8 decreased heterogeneous reactivity of PAHs in the presence of the FAMEs mix and the B20 PM matrix suggests that the presence of FAMEs in the diesel fuel supply may lead to increased PAH atmospheric lifetimes and longer range PAH transport. Predictive methods to quantify changes in PAH reactivity with gas-phase oxidants as a function of substrate composition and characteristics (viscosity, polarity, degree of unsaturation) are needed as biodiesel is increasingly present in our diesel engine fuel supply from a variety of feedstocks at different blend ratios.
Wang, Yan; Tian, Zhongjing; Zhu, Haolin; Cheng, Zhineng; Kang, Meiling; Luo, Chunling; Li, Jun; Zhang, Gan
2012-11-15
This study determined the concentrations of PAHs generated from e-waste recycling activities and their potential impacts on soil, vegetation, and human health. The total PAH concentrations in soils and plants ranged from 127 to 10,600 and 199 to 2420 ng/g, respectively. Samples from an e-waste burning site had higher PAH concentrations than samples from adjacent locations. The PAHs in plants varied with plant species and tissue, and Lactuca sativa L. contained the highest PAHs of all the vegetable species. Various land use types showed different PAH concentrations in soils, with vegetable fields showing higher concentrations than paddy fields. Low molecular weight PAHs, such as phenanthrene, were the predominant congeners in soils, whereas high molecular weight PAHs, such as fluoranthene, pyrene, and benzo[a]anthracene, were enriched in plants relative to soils. Dissimilar PAH profiles in soil and the corresponding vegetation indicated that the uptake of PAHs by plants was selective. A source analysis showed that the contamination by PAHs originated primarily from the open burning of e-waste. The total daily intakes of PAHs and carcinogenic PAHs through vegetables at the e-waste dismantling site were estimated to be 279 and 108 ng/kg/d, respectively, indicating that the consumption of vegetables grown near e-waste recycling sites is risky and should be completely avoided. Copyright © 2012 Elsevier B.V. All rights reserved.
Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes
Andersson, Jan T.; Achten, Christine
2015-01-01
The 16 EPA PAHs have played an exceptionally large role above all in environmental and analytical sciences in the last 40 years, but now there are good reasons to question their utility in many circumstances even though their use is so established and comfortable. Here we review the reasons why the list has been so successful and why sometimes it is seen as less relevant. Three groups of polycyclic aromatic compounds (PAC) are missing: larger and highly relevant PAHs, alkylated PACs, and compounds containing heteroatoms. Attempts to improve the situation for certain matrixes are known and here: (1) an updated list of PAHs (including the 16 EPA PAHs) for the evaluation of the toxicity in the environment (40 EnvPAHs); (2) a list of 23 NSO-heterocyclic compounds and 6 heterocyclic metabolites; and (3) lists of 10 oxy-PAHs and 10 nitro-PAHs are proposed for practical use in the future. A discussion in the scientific community about these lists is invited. Although the state of knowledge has improved dramatically since the introduction of the 16 EPA PAHs in the 1970s, this summary also shows that more research is needed about the toxicity, occurrence in the environment and chemical analysis, particularly of alkylated PAHs, higher molecular weight PAHs and substituted PACs such as amino-PAHs, cyano-PAHs, etc.. We also suggest that a long overdue discussion of an update of regulatory environmental PAH analysis is initiated. PMID:26823645
Sobanski, Vincent; Launay, David; Hachulla, Eric; Humbert, Marc
2016-02-01
Pulmonary arterial hypertension (PAH) is a severe condition causing significant morbidity and mortality in patients with systemic sclerosis (SSc). Despite the use of specific treatments, SSc-PAH survival remains poorer than in idiopathic PAH (IPAH). Recent therapeutic advances in PAH show a lower magnitude of response in SSc-PAH and a higher risk of adverse events, as compared to IPAH. The multifaceted underlying mechanisms and the multisystem nature of SSc probably explain part of the worse outcomes in SSc-PAH compared to IPAH. This review describes the current management of SSc-PAH with an emphasis on the impact of the different organ involvements in the prognosis and treatment response. An earlier detection of PAH and a better characterization of the clinical phenotypes of SSc-PAH are warranted in clinical practice and future trials. Determinants of prognosis, surrogate markers of clinical improvement or worsening, and relevance of the common endpoints used in clinical trials should be evaluated in this specific population. A multidisciplinary approach in expert referral centers is mandatory for SSc-PAH management.
Temporal variability in sediment PAHs accumulation in the northern Gulf of Mexico Shelf
NASA Astrophysics Data System (ADS)
Bam, W.; Maiti, K.; Adhikari, P. L.
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous group of organic pollutants, some of which are known to be toxic, and/or carcinogenic to humans. The major source of these PAHs into the northern Gulf of Mexico (NGOM) are Mississippi River discharge, coastal erosion, atmospheric deposition, and numerous natural oil seeps and spills. In addition to these background source of PAHs, the Deepwater Horizon (DWH) oil spill in 2010 added 21,000 tons of PAHs into the NGOM water. In this study, we measured PAHs distribution and accumulation rates in coastal sediments near the Mississippi River mouth in 2011 and 2015 to understand the effect of DWH oil spill in PAHs accumulation in coastal sediments. Sediment cores were collected and sliced at 1 cm interval to measure PAHs concentration, and to estimate 210Pb-based sedimentation and the PAHs' accumulation rates. The results showed that the sediment deposition rates in this region varied between 0.5 to 0.9 cm/yr. The results also showed that the concentration of total PAHs (ΣPAH43) and their accumulation rates vary between 68 - 100 ng g-1 and 7 - 160 ng cm-2 yr-1, respectively. While the PAHs accumulation rate in coastal sediment varied over the years, there is no significant variation in PAHs accumulation rate before and after the DWH oil spill.
Chen, Y; Du, W; Shen, G; Zhuo, S; Zhu, X; Shen, H; Huang, Y; Su, S; Lin, N; Pei, L; Zheng, X; Wu, J; Duan, Y; Wang, X; Liu, W; Wong, M; Tao, S
2017-01-01
Residential solid fuels are widely consumed in rural China, contributing to severe household air pollution for many products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives. In this study, concentrations of nitrated and oxygenated PAH derivatives (nPAHs and oPAHs) for household and personal air were measured and analyzed for influencing factors like smoking and cooking energy type. Concentrations of nPAHs and oPAHs in kitchens were higher than those in living rooms and in outdoor air. Exposure levels measured by personal samplers were lower than levels in indoor air, but higher than outdoor air levels. With increasing molecular weight, individual compounds tended to be more commonly partitioned to particulate matter (PM); moreover, higher molecular weight nPAHs and oPAHs were preferentially found in finer particles, suggesting a potential for increased health risks. Smoking behavior raised the concentrations of nPAHs and oPAHs in personal air significantly. People who cooked food also had higher personal exposures. Cooking and smoking have a significant interaction effect on personal exposure. Concentrations in kitchens and personal exposure to nPAHs and oPAHs for households using wood and peat were significantly higher than for those using electricity and liquid petroleum gas (LPG). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk
2015-02-15
Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less
Wang, Ning; Li, Hong-Bo; Long, Jin-Lin; Cai, Chao; Dai, Jiu-Lan; Zhang, Juan; Wang, Ren-Qing
2012-12-01
Contamination by polycyclic aromatic hydrocarbons (PAHs) of historic wastewater-irrigated agricultural topsoil (0-5 cm) and the contribution of groundwater irrigation and atmospheric deposition to soil PAHs were studied in a typical agricultural region, i.e. Hunpu region, Liaoning, China. Concentrations of total PAHs ranged from 0.43 to 2.64 mg kg⁻¹ in topsoil, being lower than those found in other wastewater-irrigated areas. The levels of PAHs in soil declined as the distance from a water source increased. Concentrations of individual PAHs were generally higher in upland than in paddy topsoils. The calculated nemerow composite index showed that agricultural soil in the region was "polluted" by PAHs. A human health risk assessment based on the total toxic equivalent concentration showed that the presence of elevated concentrations of PAHs in the soil might pose a great threat to the health of local residents. Ratios of pairs of PAHs and principal component analysis (PCA) showed that pyrogenesis, such as coal combustion, was the main source of PAHs, while petroleum, to some extent, also had a strong influence on PAHs contamination in upland soil. The distribution patterns of individual PAHs and composition of PAHs differed between irrigation groundwater and topsoil, but were similar between atmospheric deposition and topsoil. There were significant linear correlations (r = 0.90; p < 0.01) between atmospheric deposition rates and average concentrations of the 16 individual PAHs in soils, while no significant relationships were observed between irrigation groundwater and topsoil in levels of PAHs. These suggested that PAHs in agricultural soils were mainly introduced from atmospheric deposition, rather than from groundwater irrigation after the phasing out of wastewater irrigation in the region since 2002. This study provides a reference to ensure agricultural product safety, pollution control, and proper soil management.
Doong, Ruey-An; Lin, Yu-Tin
2004-04-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (
Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes
Van Metre, Peter C.; Mahler, Barbara J.
2010-01-01
Contamination of urban lakes and streams by polycyclic aromatic hydrocarbons (PAHs) has increased in the United States during the past 40 years. We evaluated sources of PAHs in post-1990 sediments in cores from 40 lakes in urban areas across the United States using a contaminant mass-balance receptor model and including as a potential source coal-tar-based (CT) sealcoat, a recently recognized source of urban PAH. Other PAH sources considered included several coal- and vehicle-related sources, wood combustion, and fuel-oil combustion. The four best modeling scenarios all indicate CT sealcoat is the largest PAH source when averaged across all 40 lakes, contributing about one-half of PAH in sediment, followed by vehicle-related sources and coal combustion. PAH concentrations in the lakes were highly correlated with PAH loading from CT sealcoat (Spearman's rho=0.98), and the mean proportional PAH profile for the 40 lakes was highly correlated with the PAH profile for dust from CT-sealed pavement (r=0.95). PAH concentrations and mass and fractional loading from CT sealcoat were significantly greater in the central and eastern United States than in the western United States, reflecting regional differences in use of different sealcoat product types. The model was used to calculate temporal trends in PAH source contributions during the last 40 to 100 years to eight of the 40 lakes. In seven of the lakes, CT sealcoat has been the largest source of PAHs since the 1960s, and in six of those lakes PAH trends are upward. Traffic is the largest source to the eighth lake, located in southern California where use of CT sealcoat is rare.
Xiang, Nan; Jiang, Chunxia; Yang, Tinghan; Li, Ping; Wang, Haihua; Xie, Yanli; Li, Sennan; Zhou, Hailong; Diao, Xiaoping
2018-05-15
The levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in corals, ambient seawater and sediments of Hainan Island, China, using gas chromatography - mass spectrometry (GC-MS). The total PAHs (∑PAHs) concentrations ranged from 273.79 to 407.82ng/L in seawater. Besides, the concentrations of ∑PAHs in corals 333.88-727.03ng/g dw) were markedly (P < 0.05) higher than ambient sediments 67.29-196.99ng/g dw), demonstrating the bioaccumulation ability of PAHs by corals. The highest concentration of ∑PAHs was detected at site S2 in Pavona decussate, which also bore the highest ∑PAHs levels in both seawater and sediments. The massive corals were more enriched with PAHs than the branching corals. Although 2 and 3-ring PAHs were predominant and accounted for 69.27-80.46% of the ∑PAHs in corals and ambient environment, the levels of high molecular weight (HMW) PAHs (4-6 ring) in corals also demonstrated their potential dangers for corals and organisms around coral reefs. Biota-sediment accumulation factor (BSAF) refers to an index of the pollutant absorbed by aquatic organisms from the surrounding sediments. The poor correlation between log BSAF and log K ow (hydrophobicity) indicated that PAHs in corals maybe not bioaccumulate from the ambient sediments but through pathways like absorbing from seawater, symbiosis, and feeding. Based on our data, long-term ecological monitoring in typical coral reef ecosystems combined with ecotoxicological tests of PAHs on corals is necessary to determine the impacts of PAHs on coral reefs. Copyright © 2018 Elsevier Inc. All rights reserved.
Nethery, Elizabeth; Wheeler, Amanda J; Fisher, Mandy; Sjödin, Andreas; Li, Zheng; Romanoff, Lovisa C; Foster, Warren; Arbuckle, Tye E
2012-01-01
Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.
NASA Astrophysics Data System (ADS)
Boersma, C.; Bregman, J.; Allamandola, L. J.
2018-05-01
Low-resolution Spitzer-IRS spectral map data of a reflection nebula (NGC 7023), H II region (M17), and planetary nebula (NGC 40), totaling 1417 spectra, are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbon (PAH) emission is broken down into PAH charge and size subclass contributions using a database-fitting approach. The resulting charge breakdown results are combined with those derived using the traditional PAH band strength ratio approach, which interprets particular PAH band strength ratios as proxies for PAH charge. Here the 6.2/11.2 μm PAH band strength ratio is successfully calibrated against its database equivalent: the {n}PAH}+}/{n}PAH}0} ratio. In turn, this ratio is converted into the PAH ionization parameter, which relates it to the strength of the radiation field, gas temperature, and electron density. Population diagrams are used to derive the {{{H}}}2 density and temperature. The bifurcated plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo dissociation region in NGC 7023 is shown to be a robust diagnostic template for the {n}PAH}+}/{n}PAH}0} ratio in all three objects. Template spectra for the PAH charge and size subclasses are determined for each object and shown to favorably compare. Using the determined template spectra from NGC 7023 to fit the emission in all three objects yields, upon inspection of the Structure SIMilarity maps, satisfactory results. The choice of extinction curve proves to be critical. Concluding, the distinctly different astronomical environments of a reflection nebula, H II region, and planetary nebula are reflected in their PAH emission spectra.
Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area.
Han, Xue-Mei; Liu, Yu-Rong; Zheng, Yuan-Ming; Zhang, Xiao-Xia; He, Ji-Zheng
2014-01-01
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is threatening human health and environmental safety. Investigating the relative prevalence of different PAH-degrading genes in PAH-polluted soils and searching for potential bioindicators reflecting the impact of PAH pollution on microbial communities are useful for microbial monitoring, risk evaluation, and potential bioremediation of soils polluted by PAHs. In this study, three functional genes, pdo1, nah, and C12O, which might be involved in the degradation of PAHs from a coke factory, were investigated by real-time quantitative PCR (qPCR) and clone library approaches. The results showed that the pdo1 and C12O genes were more abundant than the nah gene in the soils. There was a significantly positive relationship between the nah or pdo1 gene abundances and PAH content, while there was no correlation between C12O gene abundance and PAH content. Analyses of clone libraries showed that all the pdo1 sequences were grouped into Mycobacterium, while all the nah sequences were classified into three groups: Pseudomonas, Comamonas, and Polaromonas. These results indicated that the abundances of nah and pdo1 genes were positively influenced by levels of PAHs in soil and could be potential microbial indicators reflecting the impact of soil PAH pollution and that Mycobacteria were one of the most prevalent PAHs degraders in these PAH-polluted soils. Principal component analysis (PCA) and correlation analyses between microbial parameters and environmental factors revealed that total carbon (TC), total nitrogen (TN), and dissolved organic carbon (DOC) had positive effects on the abundances of all PAH-degrading genes. It suggests that increasing TC, TN, and DOC inputs could be a useful way to remediate PAH-polluted soils.
PAHs in polystyrene food contact materials: An unintended consequence.
Li, Si-Qi; Ni, Hong-Gang; Zeng, Hui
2017-12-31
Eight low-ring PAHs were detected in 21 polystyrene (PS) food contact materials (FCMs) samples while high-ring PAHs (>4 rings) were not found. This is because the reaction pathway for formation of high-ring PAHs consists of more steps than it does for low-high PAHs. The concentrations of Σ 8 PAH were from 18.9±5.16ng/g for product colorless fruit fork to 476±52.0ng/g for foam instant noodle container. These data were far beyond levels of PAHs in other plastics. Of the eight PAHs detected, Phe had the highest average concentration, followed by Nap. These two PAHs collectively accounted for over 80% of the Σ 8 PAH concentrations in all PS FCMs. Levels of Σ 8 PAH in expanded PS FCMs were higher than those in extruded ones due to utilization of foaming agent. The concentrations of Σ 8 PAH were lower in colorless PS FCMs than in colored ones. Auxochromes and chromophores contributed to the change of short-chain hydrocarbons to aromatic hydrocarbon. Simulated migration values of PAHs from PS FCMs to food varied widely. The migration value of Σ 8 PAH with maximum probability was below 10ng/g, which the maximum tolerated migration level for substance according to the European Union standards. However, higher migration values were possible and the potential health risk should still be concerned because the simulated migration displayed a log-normal distribution. Furthermore, water was used as food simulant would always lead to an underestimate of PAHs migration to real daily food, and then lead to an underestimate of risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Yunker, Mark B; Lachmuth, Cara L; Cretney, Walter J; Fowler, Brian R; Dangerfield, Neil; White, Linda; Ross, Peter S
2011-09-01
The question of polycyclic aromatic hydrocarbon (PAH) bioavailability and its relationship to specific PAH sources with different PAH binding characteristics is an important one, because bioavailability drives PAH accumulation in biota and ultimately the biochemical responses to the PAH contaminants. The industrial harbour at Kitimat (British Columbia, Canada) provides an ideal location to study the bioavailability and bioaccumulation of sediment hydrocarbons to low trophic level biota. Samples of soft shell clams (Mya arenaria) and intertidal sediment collected from multiple sites over six years at various distances from an aluminium smelter and a pulp and paper mill were analysed for 106 PAHs, plant diterpenes and other aromatic fraction hydrocarbons. Interpretation using PAH source ratios and multivariate data analysis reveals six principal hydrocarbon sources: PAHs in coke, pitch and emissions from anode combustion from the aluminium smelter, vascular plant terpenes and aromatised terpenes from the pulp and paper mill, petroleum PAHs from shipping and other anthropogenic activities and PAHs from natural plant detritus. Harbour sediments predominantly contain either pitch or pyrogenic PAHs from the smelter, while clams predominantly contain plant derived PAHs and diterpenes from the adjacent pulp mill. PAHs from the smelter have low bioavailability to clams (Biota-Sediment Accumulation Factors; BSAFs <1 for pitch and coke; <10 for anode combustion, decreasing to ∼0.1 for the mass 300 and 302 PAHs), possibly due to binding to pitch or soot carbon matrices. Decreases in PAH isomer ratios between sediments and clams likely reflect a combination of variation in uptake kinetics of petroleum PAHs and compound specific metabolism, with the importance of petroleum PAHs decreasing with increasing molecular weight. Plant derived compounds exhibit little natural bioaccumulation at reference sites, but unsaturated and aromatised diterpenes released from resins by industrial pulping processes are readily accumulated by the clams (BSAFs >500). Thus while most of the smelter associated PAHs in sediments may not be bioavailable to benthic organisms, the plant terpenes (including retene, totarol, ferruginol, manool, dehydroabietane and other plant terpenes that form the chemical defence mechanism of conifers) released by pulp mills are bioavailable and possess demonstrated toxic properties. The large scale release of plant terpenes by some of the many pulp mills located in British Columbia and elsewhere represents a largely undocumented risk to aquatic biota. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ebrahimi-Sirizi, Zohreh; Riyahi-Bakhtiyari, Alireza
2013-05-01
The concentrations of total polycyclic aromatic hydrocarbons (PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. PAHs concentrations ranged from 259 to 5,376 ng g(-1) dry weight with mean and median values of 1,585 and 1,146 ng g(-1), respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median.
Lu, Yan-Fei; Lu, Mang
2015-03-21
A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.
Zha, Yan; Zhang, Yinlong; Ma, Zilong; Tang, Jie; Sun, Kai
2018-04-01
Polycyclic aromatic hydrocarbons (PAHs) are of concern for both ecosystem and human health due to their potential teratogenic, carcinogenic, and mutagenic properties. The concentration of ∑ 16 PAHs in foliar dust ranged from 49.4 to 19,018.1 µg kg -1 , with a mean value of 7074.5 µg kg -1 . There were significant seasonal variations in the concentration of ∑ 16 PAHs, with the concentration in winter being almost twice as high as in summer. Similarly, the differences between PAH profiles in different seasons indicated that they had common sources, which were attributed to the combined effect of regional transport and local emissions. The diagnostic ratios of indicator compounds indicated that PAHs detected in foliar dust originated from a mixture of gasoline vehicle emissions, biomass, and coal combustion in Nanjing. According to the ecological risk classification of ∑ 16 PAHs, the ecological risk caused by PAHs was high since the value of RQ ∑16PAHs(MPCs) was ≥ 1 and RQ ∑16PAHs(NCs) were ≥ 800. The mean values for RQ∑ 16 PAHs (MPCs) and RQ∑ 16 PAHs (NCs) were 14.8 and 2368.9, which indicated a relatively high ecological risks of PAHs in foliar dust in Nanjing.
Yin, Shanshan; Tang, Mengling; Chen, Fangfang; Li, Tianle; Liu, Weiping
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a type of ubiquitous pollutant with the potential ability to cause endocrine disruption that would have an adverse health impact on the general population. To assess the maternal exposure to PAHs in neonates and evaluate the possible impact of PAHs on reproductive hormone levels, the concentration of PAHs and reproductive hormone levels in the umbilical cord serum of 98 mother-infant pairs in the Shengsi Islands were investigated. The median concentration of total PAHs was determined to be 164 (Inter-Quartile Range, IQR 93.6-267) ng g -1 lipid, and 68% of the PAHs were lower-molecule congeners. The highest level was found for pyrene (PYR) and naphthalene (NAP), which contributed 54.6% of all the PAHs present in the samples. The exposure to PAHs negatively affected estradiol (E2) and Anti-Mullerian hormones (AMH) and positively affected FSH in the umbilical cord serum. The result expanded the database of the human burden of PAHs and suggested that PAHs can act as a type of Endocrine-Disrupting Chemical (EDC). These results may help to understand the complex pathways involved in disorders of human reproductive health associated with prenatal exposure to PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Wanhui; Wei, Chaohai; An, Guanfeng
2015-05-01
In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.
Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J
2017-08-15
Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2017-09-01
Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.
Using slow-release permanganate candles to remediate PAH-contaminated water.
Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve
2012-11-30
Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.
Characteristics of PAHs from deep-frying and frying cooking fumes.
Yao, Zhiliang; Li, Jing; Wu, Bobo; Hao, Xuewei; Yin, Yong; Jiang, Xi
2015-10-01
Cooking fumes are an important indoor source of polycyclic aromatic hydrocarbons (PAHs). Because indoor pollution has a more substantial impact on human health than outdoor pollution, PAHs from cooking fumes have drawn considerable attention. In this study, 16 PAHs emitted through deep-frying and frying methods using rapeseed, soybean, peanut, and olive oil were examined under a laboratory fume hood. Controlled experiments were conducted to collect gas- and particulate-phase PAHs emitted from the cooking oil fumes, and PAH concentrations were quantified via high-performance liquid chromatography (HPLC). The results show that deep-frying methods generate more PAHs and benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) because they consume greater volumes of edible oil and involve higher oil temperatures relative to those of frying methods. In addition, the total B[a]Peq concentration of deep-frying is 2.2-fold larger than that of frying. Regarding the four types of edible oils studied, rapeseed oil produced more PAH emission than the other three oil varieties. For all of the cooking tests, three- and four-ringed PAHs were the main PAH components regardless of the food and oil used. Concerning the PAH partition between gas and particulate phase, the gaseous compounds accounted for 59-96 % of the total. Meanwhile, the particulate fraction was richer of high molecular weight PAHs (five-six rings). Deep-frying and frying were confirmed as important sources of PAH pollution in internal environments. The results of this study provide additional insights into the polluting features of PAHs produced via cooking activities in indoor environments.
Wang, Zhendi; Li, K; Lambert, P; Yang, Chun
2007-01-12
On 15 August 2001, a tire fire took place at the Pneu Lavoie Facility in Gatineau, Quebec, in which 4000 to 6000 new and recycled tires were stored along with other potentially hazardous materials. Comprehensive gas chromatography-mass spectrometry (GC-MS) analyses were performed on the tire fire samples to facilitate detailed chemical composition characterization of toxic polycyclic aromatic hydrocarbons (PAHs) and other organic compounds in samples. It is found that significant amounts of PAHs, particularly the high-ring-number PAHs, were generated during the fire. In total, 165 PAH compounds including 13 isomers of molecular weight (MW) 302, 10 isomers of MW 278, 10 isomers of MW 276, 7 isomers of MW 252, 7 isomers of MW 228, and 8 isomers of MW 216 PAHs were positively identified in the tire fire wipe samples for the first time. Numerous S-, O-, and N-containing PAH compounds were also detected. The identification and characterization of the PAH isomers was mainly based on: (1) a positive match of mass spectral data of the PAH isomers with the NIST authentic mass spectra database; (2) a positive match of the GC retention indices (I) of PAHs with authentic standards and with those reported in the literature; (3) agreement of the PAH elution order with the NIST (US National Institute of Standards and Technology) Standard Reference Material 1597 for complex mixture of PAHs from coal tar; (4) a positive match of the distribution patterns of PAH isomers in the SIM mode between the tire fire samples and the NIST Standard Reference Materials and well-characterized reference oils. Quantitation of target PAHs was done on the GC-MS in the selected ion monitoring (SIM) mode using the internal standard method. The relative response factors (RRF) for target PAHs were obtained from analyses of authentic PAH standard compounds. Alkylated PAH homologues were quantitated using straight baseline integration of each level of alkylation.
Oishi, Yoshitaka
2018-03-01
Atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem, especially in Asia, as PAHs can severely affect ecologically important mountainous areas. Using pine needles and mosses as bio-indicators, this study examined PAH pollution in a mountainous study area and evaluated the influence of transboundary PAHs. PAHs in urban areas were also evaluated for comparison. The study sites were alpine areas and urban areas (inland or coastal cities) across central Japan, in the easternmost part of Asia where atmospheric pollutants are transported from mainland Asia. The mean PAH concentrations of pine needles and mosses were 198.9 ± 184.2 ng g -1 dry weight (dw) and 131.8 ± 60.7 ng g -1 dw (mean ± SD), respectively. Pine needles preferentially accumulated PAHs with low molecular weights (LMW PAHs) and exhibited large differences in both PAH concentration and isomer ratios between alpine and urban sites. These differences can be explained by the strong influence of LMW PAHs emitted from domestic sources, which decreased and changed during transport from urban to alpine sites due to dry/wet deposition and photodegradation. In contrast, mosses accumulated a higher ratio of PAHs with high molecular weight (HMW PAHs). A comparison of isomer ratios showed that the PAH source for alpine moss was similar to that for northern coastal cities, which are typically influenced by long-transported PAHs from East Asia. Thus, these results indicate that alpine moss can also be strongly affected by the transboundary PAHs. It is likely that the uptake characteristics of moss, alpine climate, and alpine locations far from urban areas can strengthen the influence of transboundary pollution. Based on these results, the limitations and most effective use of bioindicators of PAH pollution for preserving alpine ecosystems are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui
2016-04-15
Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.
2014-01-01
Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695
Zhao, Xuesong; Ding, Jing; You, Hong
2014-02-01
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.
Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang
2018-08-15
The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All rights reserved.
Hough, Greg; Hama, Susan; Aboulhosn, Jamil; Belperio, John A.; Saggar, Rajan; Van Lenten, Brian J.; Ardehali, Abbas; Eghbali, Mansoureh; Reddy, Srinivasa; Fogelman, Alan M.; Navab, Mohamad
2015-01-01
Abstract Pulmonary arterial hypertension (PAH) is characterized by abnormal elaboration of vasoactive peptides, endothelial cell dysfunction, vascular remodeling, and inflammation, which collectively contribute to its pathogenesis. We investigated the potential for high-density lipoprotein (HDL) dysfunction (i.e., proinflammatory effects) and abnormal plasma eicosanoid levels to contribute to the pathobiology of PAH and assessed ex vivo the effect of treatment with apolipoprotein A-I mimetic peptide 4F on the observed HDL dysfunction. We determined the “inflammatory indices” HII and LII for HDL and low-density lipoprotein (LDL), respectively, in subjects with idiopathic PAH (IPAH) and associated PAH (APAH) by an in vitro monocyte chemotaxis assay. The 4F was added ex vivo, and repeat LII and HII values were obtained versus a sham treatment. We further determined eicosanoid levels in plasma and HDL fractions from patients with IPAH and APAH relative to controls. The LIIs were significantly higher for IPAH and APAH patients than for controls. Incubation of plasma with 4F before isolation of LDL and HDL significantly reduced the LII values, compared with sham-treated LDL, for IPAH and APAH. The increased LII values reflected increased states of LDL oxidation and thereby increased proinflammatory effects in both cohorts. The HIIs for both PAH cohorts reflected a “dysfunctional HDL phenotype,” that is, proinflammatory HDL effects. In contrast to “normal HDL function,” the determined HIIs were significantly increased for the IPAH and APAH cohorts. Ex vivo 4F treatment significantly improved the HDL function versus the sham treatment. Although there was a significant “salutary effect” of 4F treatment, this did not entirely normalize the HII. Significantly increased levels for both IPAH and APAH versus controls were evident for the eicosanoids 9-HODE, 13-HODE, 5-HETE, 12-HETE, and 15-HETE, while no statistical differences were evident for comparisons of IPAH and APAH for the determined plasma eicosanoid levels in the HDL fractions. Our study has further implicated the putative role of “oxidant stress” and inflammation in the pathobiology of PAH. Our data suggest the influences on the “dysfunctional HDL phenotype” of increased oxidized fatty acids, which are paradoxically proinflammatory. We speculate that therapies that target either the “inflammatory milieu” or the “dysfunctional HDL phenotype,” such as apoA-I mimetic peptides, may be valuable avenues of further research in pulmonary vascular diseases. PMID:26697171
Khan, Sardar; Cao, Qing; Lin, Ai-Jun; Zhu, Yong-Guan
2008-06-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.
Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake
NASA Astrophysics Data System (ADS)
Zhang, Guizhai; Diao, Youjiang
2018-06-01
Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.
Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng
2015-10-01
Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.
Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures
Näslund Andréasson, Sara; Mahteme, Haile; Sahlberg, Bo; Anundi, Helena
2012-01-01
Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed. PMID:22685482
Coal-tar pavement sealants might substantially increase children's PAH exposures
Williams, E. Spencer; Mahler, Barbara J.; Van Metre, Peter C.
2012-01-01
Dietary ingestion has been identified repeatedly as the primary route of human exposure to polycyclic aromatic hydrocarbons (PAHs), seven of which are classified as probable human carcinogens (B2 PAHs) by the U.S. EPA. Humans are exposed to PAHs through ingestion of cooked and uncooked foods, incidental ingestion of soil and dust, inhalation of ambient air, and absorption through skin. Although PAH sources are ubiquitous in the environment, one recently identified PAH source stands out: Coal-tar-based pavement sealant—a product applied to many parking lots, driveways, and even playgrounds primarily in the central, southern, and eastern U.S.—has PAH concentrations 100–1000 times greater than most other PAH sources. It was reported recently that PAH concentrations in house dust in residences adjacent to parking lots with coal-tar-based sealant were 25 times higher than in residences adjacent to unsealed asphalt parking lots.
Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min
2017-01-01
In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins
2018-06-01
The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.
Wang, Shuang; Ni, Hong-Gang; Sun, Jian-Lin; Jing, Xin; He, Jin-Sheng; Zeng, Hui
2013-03-01
Thirty four sampling sites along an elevation transect in the Tibetan Plateau region were chosen. Soil cores were divided into several layers and a total of 175 horizon soil samples were collected from July to September 2011, for determination of polycyclic aromatic hydrocarbons (PAHs). The measured PAHs concentration in surface soils was 56.26 ± 45.84 ng g(-1), and the low molecular weight PAHs (2-3 rings) predominated, accounting for 48% and 35%. We analyzed the spatial (altitudinal and vertical) distribution of PAHs in soil, and explored the influence of related environmental factors. Total organic carbon (TOC) showed a controlling influence on the distribution of PAHs. PAH concentrations declined with soil depth, and the composition patterns of PAHs along soil depth indicated that the heavy PAHs tended to remain in the upper layers (0-10 cm), while the light fractions were transported downward more easily. PAHs inventories (8.77-57.92 mg m(-2)) for soil cores increased with mean annual precipitation, while the topsoil concentrations decreased with it. This implies that an increase in precipitation could transfer more PAHs from the atmosphere to the soil and further transport PAHs from the topsoil to deeper layers.
Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.
Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita
2008-01-01
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.
Wang, Ruwei; Yousaf, Balal; Sun, Ruoyu; Zhang, Hong; Zhang, Jiamei; Liu, Guijian
2016-11-15
The objective of this study was to characterize parent polycyclic aromatic hydrocarbons (pPAHs) and their nitrated derivatives (NPAHs) in coarse (PM2.5-10), intermediate (PM1-2.5) and fine (PM1) particulate matters emitted from coal-fired power plants (CFPPs) in Huainan, China. The diagnostic ratios and the stable carbon isotopic approaches to characterize individual PAHs were applied in order to develop robust tools for tracing the origins of PAHs in different size-segregated particular matters (PMs) emitted CFPP coal combustion. The concentrations of PAH compounds in flue gas emissions varied greatly, depending on boiler types, operation and air pollution control device (APCD) conditions. Both pPAHs and NPAHs were strongly enriched in PM1-2.5 and PM1. In contrary to low molecular weight (LMW) PAHs, high molecular weight (HMW) PAHs were more enriched in finer PMs. The PAH diagnostic ratios in size-segregated PMs are small at most cases, highlighting their potential application in tracing CFPP emitted PAHs attached to different sizes of PMs. Yet, substantial uncertainty still exists to directly apply PAH diagnostic ratios as emission tracers. Although the stable carbon isotopic composition of PAH molecular was useful in differentiating coal combustion emissions from other sources such as biomass combustion and vehicular exhausts, it was not feasible to differentiate isotopic fractionation processes such as low-temperature carbonization, high-temperature carbonization, gasification and combustion. Copyright © 2016 Elsevier B.V. All rights reserved.
[Screening of pulmonary hypertension in a Spanish cohort of patients with systemic sclerosis].
García Hernández, Francisco José; Castillo Palma, María Jesús; Montero Mateos, Enrique; González León, Rocío; López Haldón, José Eduardo; Sánchez Román, Julio
2016-01-01
Pulmonary arterial hypertension (PAH) is an important cause of morbimortality in systemic sclerosis (SSc). Evolution is worse than that of subjects with idiopathic PAH, but prognosis improves when PAH is diagnosed early. The aim of this research is to describe results of a screening program for diagnosis of pulmonary hypertension (PH) carried out in a cohort of Spanish patients with SSc. PH screening was performed by transthoracic doppler echocardiography (TTDE) in 184 patients with SSc. Patients with systolic pulmonary arterial pressure estimated by TTDE>35 mmHg were evaluated per protocol to confirm diagnosis and type of PH. PAH was diagnosed in 25 patients (13.6%). Patients with diffuse and limited SSc developed PAH in a similar degree, 9/60 (15%) vs. 16/100 (16%), with no cases among patients with SSc "sine scleroderma" or "pre-scleroderma" (P<.001). The only clinical or epidemiological data characterizing patients with PAH were older age (mean age 67 years for patients with PAH vs. 56 years for those without PAH, P=.007), limited SSc, a trend toward shorter evolution of the underlying disease (median 8 years for patients with PAH vs. 10 years for those without PAH, P=.73), and a higher frequency of positive anticentromere antibodies (16 patients [64%] with PAH vs. 70 (48,3%) without PAH, P=.19). Prevalence of PAH in SSc was high and supports the implementation of a regular screening program. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Chen, Baoliang; Xuan, Xiaodong; Zhu, Lizhong; Wang, Jing; Gao, Yanzheng; Yang, Kun; Shen, Xueyou; Lou, Baofeng
2004-09-01
Ten polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in 17 surface water samples and 11 sediments of four water bodies, and 3 soils near the water-body bank in Hangzhou, China in December 2002. It was observed that the sum of PAHs concentrations ranged from 0.989 to 9.663 microg/L in surface waters, from 132.7 to 7343 ng/g dry weight in sediments, and from 59.71 to 615.8 ng/g dry weight in soils. The composition pattern of PAHs by ring size in water, sediment and soil were surveyed. Three-ring PAHs were dominated in surface waters and soils, meanwhile sediments were mostly dominated by four-ring PAHs. Furthermore, PAHs apparent distribution coefficients (K(d)) and solid f(oc)-normalized K(d) (e.g. K(oc)= K(d) / f(oc)) were calculated. The relationship between logK(oc) and logK(ow) of PAHs for field data on sediments and predicted values were compared. The sources of PAHs in different water bodies were evaluated by comparison of K (oc) values in sediments of the river downstream with that in soils. Hangzhou section of the Great Canal was heavily polluted by PAHs released from industrial wastewater in the past and now PAHs in sediment may serve as sources of PAHs in surface water. PAHs in Qiantang River were contributed from soil runoff. Municipal road runoff was mostly contributed to West Lake PAHs.
Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone
2017-02-05
This work characterizes levels of eighteen polycyclic aromatic hydrocarbons (PAHs) in the breathing air zone of firefighters during their regular work shift at eight Portuguese fire stations, and the firefighters' total internal dose by six urinary monohydroxyl metabolites (OH-PAHs). Total PAHs (ΣPAHs) concentrations varied widely (46.4-428ng/m 3 ), mainly due to site specificity (urban/rural) and characteristics (age and layout) of buildings. Airborne PAHs with 2-3 rings were the most abundant (63.9-95.7% ΣPAHs). Similarly, urinary 1-hydroxynaphthalene and 1-hydroxyacenaphthene were the predominant metabolites (66-96% ΣOH-PAHs). Naphthalene contributed the most to carcinogenic ΣPAHs (39.4-78.1%) in majority of firehouses; benzo[a]pyrene, the marker of carcinogenic PAHs, accounted with 1.5-10%. Statistically positive significant correlations (r≥0.733, p≤0.025) were observed between ΣPAHs and urinary ΣOH-PAHs for firefighters of four fire stations suggesting that, at these sites, indoor air was their major exposure source of PAHs. Firefighter's personal exposure to PAHs at Portuguese fire stations were well below the existent occupational exposure limits. Also, the quantified concentrations of post-shift urinary 1-hydroxypyrene in all firefighters were clearly lower than the benchmark level (0.5μmol/mol) recommended by the American Conference of Governmental Industrial Hygienists. Copyright © 2016 Elsevier B.V. All rights reserved.
Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique
2013-11-01
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx
2009-06-01
The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.
Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme
2014-12-01
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.
Sun, Zhe; Zhu, Ying; Zhuo, Shaojie; Liu, Weiping; Zeng, Eddy Y; Wang, Xilong; Xing, Baoshan; Tao, Shu
2017-11-01
The quality of agricultural soil is vital to human health, however soil contamination is a severe problem in China. Polycyclic aromatic hydrocarbons (PAHs) have been found to be among the major soil contaminants in China. PAH derivatives could be more toxic but their measurements in soils are extremely limited. This study reports levels, spatial distributions and compositions of 11 nitrated (nPAHs) and 4 oxygenated PAHs (oPAHs) in agricultural soils covering 26 provinces in eastern China to fill the data gap. The excess lifetime cancer risk (ELCR) from the exposure to them in addition to 21 parent PAHs (pPAHs) via soil ingestion has been estimated. The mean concentration of ∑nPAHs and ∑oPAHs in agricultural soils is 50±45μg/kg and 9±8μg/kg respectively. Both ∑nPAHs and ∑oPAHs follow a similar spatial distribution pattern with elevated concentrations found in Liaoning, Shanxi, Henan and Guizhou. However if taking account of pPAHs, the high ELCR by soil ingestion is estimated for Shanxi, Zhejiang, Liaoning, Jiangsu and Hubei. The maximum ELCR is estimated at ca.10 -5 by both deterministic and probabilistic studies with moderate toxic equivalent factors (TEFs). If maximum TEFs available are applied, there is a 0.2% probability that the ELCR will exceed 10 -4 in the areas covered. There is a great chance to underestimate the ELCR via soil ingestion for some regions if only the 16 priority PAHs in agricultural soils are considered. The early life exposure and burden are considered extremely important to ELCR. Emission sources are qualitatively predicted and for areas with higher ELCR such as Shanxi and Liaoning, new loadings of PAHs and derivatives are identified. This is the first large scale study on nPAHs and oPAHs contamination levels in agricultural soils in China. The risk assessment based on this underpins the policy making and is valuable for both scientists and policy makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Minmin; Wang, Yan; Li, Hongli; Li, Tao; Nie, Xiaoling; Cao, Fangfang; Yang, Fengchun; Wang, Zhe; Wang, Tao; Qie, Guanghao; Jin, Tong; Du, Lili; Wang, Wenxing
2018-06-15
A study of PM 2.5 -associated PAHs analysis at Mount Lushan (1165m) was conducted to investigate the distributions of PAHs in PM 2.5 and influences of cloud/fog. The main purpose was to quantify the main emission sources of PAHs and estimate regional transport effects within the boundary layer. Mount Lushan is located between the boundary layer and troposphere, which is an ideal site for atmosphere transport investigation. The concentrations of PAHs in PM 2.5 were analyzed with GC-MS. The results showed that the volume concentration was 6.98ng/m 3 with a range from 1.47 to 25.17ng/m 3 and PAHs mass were 160.24μg/g (from 63.86 to 427.97μg/g) during the sampling time at Mount Lushan. The dominant compounds are BbF, Pyr and BP. In terms of aromatic-ring PAHs distributions, 4-6-ring PAHs are predominant, indicating that the high-ring PAHs tend to contribute more than low-ring PAHs in particulates. Due to frequent cloud/fog days at Mount Lushan, PAHs concentrations in the PM 2.5 were determined before and after cloud/fog weather. The results demonstrated that the cloud/fog and rain conditions cause lower PAHs levels. Regression analysis was used for studying the relationship of PAHs distributions with meteorological conditions like temperature, humidity and wind. The results showed that the temperature and wind speed were inversely related with PAHs concentration but humidity had no significant relationship. Furthermore, backward trajectories and PCA combined with DR (diagnostic ratio analysis) were employed to identify the influences of regional transport and main emission sources. The results revealed that PAHs in PM 2.5 were mainly affected by regional transport with the main emissions by mobile vehicle and steel industry, which contributed about 56.0% to the total PAHs in the area of Mount Lushan. In addition, backward trajectories revealed that the dominant air masses were from the northwest accounting for about one third of total PAHs. Copyright © 2018. Published by Elsevier B.V.
Zhang, Shujuan; Zhao, Qingyan; Jiang, Xuejun; Yang, Bo; Dai, Zixuan; Wang, Xiaozhan; Wang, Xule; Guo, Zongwen; Yu, Shengbo; Tang, Yanhong; Hu, Wei; Huang, Congxin
2015-04-14
To explore the effects of renal sympathetic denervation (RSD) on pulmonary vascular remodeling in a model of pulmonary arterial hypertension (PAH). According to the random number table, 24 beagles were randomized into control, PAH and PAH+RSD groups (n=8 each). The levels of neurohormone, echocardiogram and dynamics parameters were measured. Then 0.1 ml/kg dimethylformamide (control group) or 2 mg/kg dehydromonocrotaline (PAH and PAH+RSD groups) were injected. The PAH+RSD group underwent RSD after injection. At week 8 post-injection, the neurohormone levels, echocardiogram, dynamics parameters and pulmonary tissue morphology were observed. The values of right ventricular systolic pressure (RVSP) and pulmonary arterial systolic pressure (PASP) in PAH and PAH+RSD groups were both significantly higher than those in control group ((42.8±8.7), (30.8±6.8) vs (23.2±5.7) mmHg (1 mmHg=0.133 kPa) and (45.1±11.2), (32.6±7.9) vs (24.7±7.1) mmHg). Meanwhile, the values of RVSP and PASP in PAH group were higher than those in PAH+RSD group (all P<0.01). The levels of serum angiotensin II (Ang II) and endothelin-1 significantly increased after 8 weeks in PAH dogs ((228±41) vs (113±34) pg/ml and (135±15) vs (77±7) pg/ml, all P<0.01). And Ang II and endothelin-1 were higher in lung tissues of PAH group ((65±10) and (96±10) pg/ml) than in those of control group ((38±7) and (54±6) pg/ml) and PAH+RSD group ((46±8) and (67±9) pg/ml) (all P<0.01). Pulmonary tissues had marked collagen hyperplasia and lamellar corpuscles of type 2 alveolar cells were damaged more severely in PAH dogs than in PAH+RSD dogs. RSD suppresses pulmonary vascular remodeling and decreases pulmonary arterial pressure in experimental PAH. And the effect of RSD on PAH may contribute to decreased neurohormone levels.
Saha, Mahua; Togo, Ayako; Mizukawa, Kaoruko; Murakami, Michio; Takada, Hideshige; Zakaria, Mohamad P; Chiem, Nguyen H; Tuyen, Bui Cach; Prudente, Maricar; Boonyatumanond, Ruchaya; Sarkar, Santosh Kumar; Bhattacharya, Badal; Mishra, Pravakar; Tana, Touch Seang
2009-02-01
We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
Dry Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) at a Suburban Site in Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Xincheng; Wang, Weiyu; Zhu, Xianlei
2017-04-01
A great amount of polycyclic aromatic hydrocarbons (PAHs) have been generated by industrial production, waste incineration and landfill, traffic and road dust etc. They are emitted into atmosphere and afterwards enter into water body and soil through deposition, resulting in wide distribution of PAHs in environment. However, the dry deposition of PAHs from atmosphere has not been well studied, especially in the aspects of its characteristics, environmental and health effects, sources and mechanism. This study measured PAHs dry deposition in the northwest suburban area of Beijing. Dry deposition samples (i.e. dustfall samples) were collected at the sampling site located in China University of Petroleum - Beijing in 2012-2016. And PAHs in the samples were determined by GC/MS. The dry deposition flux of 16 US EPA priority PAHs (ΣPAH16) was 2.58 μg/(m^2·d), which was lower than those in other regions of North China. Its seasonal variability was more significant than annual variability (p<0.05) and the seasonal pattern was winter > spring > autumn > summer. The amount of ΣPAH16 removed from the atmosphere by dry deposition process accounted for only 1.2% of their emissions, indicating that the atmosphere self-purification capacity was quite limited and emission reduction measures would play a key role in controlling PAHs air pollution. However, PAHs dry deposition would deteriorate soil quality since the content of ΣPAH16 in dustfall was 1-2 orders of magnitude higher than that in soil in the same area. Dermal exposure resulting from PAHs dry deposition was not the major route. The sources of PAHs dry deposition varied with seasons. The profile and specific ratios of PAHs showed that in winter, domestic coal combustion was the main source of PAHs with the contribution up to 77%; in spring and summer, the impact of coal combustion decreased and the contribution of vehicle exhaust increased to 30% - 45%; in fall, in addition to coal combustion and vehicle exhaust, the impact of biomass burning was observed with the contribution of 20% - 40%. After the implementation of Beijing 2013 Clean Air Action Plan, the proportion of low-ring PAHs, tracers of coal combustion, decreased, reflecting the positive impact of policy. The mechanism of PAHs dry deposition mechanism was different from that of airborne particulate matter (PM). Dry deposition of PAHs in PM with aerodynamic diameter <0.69μm and >10.2μm was responsible for, respectively, 45% and 23% of PAHs in dustfall, and caused seasonal variability of PAHs dry deposition. Key words: dry deposition; PAHs; suburban area; source; environmental effects; health risk Acknowledgments: The study has been supported by Beijing Excellent Talents Project of the year of 2012 (No.2012D009051000001) and by National Science Foundation (No.41175102) *Corresponding author: Xianlei Zhu e-mail: zhuxl@cup.edu.cn)
Li, Yong; Long, Ling; Ge, Jing; Yang, Li-Xuan; Cheng, Jin-Jin; Sun, Ling-Xiang; Lu, Changying; Yu, Xiang-Yang
2017-10-01
Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are likely to threaten human health and ecosystem though the food chain, therefore, it is worth to pay more attention to soil contamination by PAHs. In this study, the presence, distribution and risk assessment of 16 priority PAHs in rice-wheat continuous cropping soils close to industrial parks of Suzhou were firstly investigated. The concentrations of the total PAHs ranged from 125.99 ng/g to 796.65 ng/g with an average of 352.94 ng/g. Phenanthrene (PHE), fluoranthene (FLT), benzo [a] anthracene (BaA) and pyrene (PYR) were the major PAHs in those soil samples. The highest level of PAHs was detected in the soils around Chemical plant and Steelworks, followed by Printed wire board, Electroplate Factory and Paper mill. The composition of PAHs in the soils around Chemical plant was dominated by 3-ring PAHs, however, the predominant compounds were 4, 5-ring PAHs in the soils around other four factories. Meanwhile, the concentration of the total PAHs in the soils close to the factories showed a higher level of PAHs in November (during rice harvest) than that in June (during wheat harvest). Different with other rings of PAHs, 3-ring PAHs in the soils around Chemical plant and Steelworks had a higher concentration in June. The results of principal component analysis and isomeric ratio analysis suggested that PAHs in the studied areas mainly originated from biomass, coal and petroleum combustion. The risk assessment indicated that higher carcinogenic risk was found in those sites closer to the industrial park. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Chuanliang; Lin, Tian; Ye, Siyuan; Ding, Xigui; Li, Yuanyuan; Guo, Zhigang
2017-03-01
The polycyclic aromatic hydrocarbons (PAHs) of a 210 Pb-dated sediment core extracted from the Liaohe River Delta wetland were measured to reconstruct the sediment record of PAHs and its response to human activity for the past 300 years in Northeast China. The concentrations of the 16 U.S. Environmental Protection Agency priority PAHs (∑16PAHs) ranged from 46 to 1167 ng g -1 in this sediment core. The concentrations of the 16 PAHs (especially 4- and 5+6-ring PAHs) after the 1980s (surface sediments 0-6 cm) were one or two orders of magnitudes higher than those of the down-core samples. The exponential growth of 4-ring and 5+6-ring PAH concentrations after the 1980s responded well to the increased energy consumption and number of civil vehicles resulting from the rapid economic development in China. Prior to 1950, relatively low levels of the 16 PAHs and a high proportion of 2+3-ring PAHs was indicative of biomass burning as the main source of the PAHs. A significant increase in the 2 + 3 ring PAH concentration from the 1860s-1920s was observed and could be attributed to a constant influx of population migration into Northeast China. It was suggested that the link between historical trend of PAHs and population or energy use involves two different economic stages. Typically, in an agricultural economy, the greater the population size, the greater the emission of PAHs from biomass burning, while in an industrial economy, the increase in sedimentary PAH concentrations is closely related to increasing energy consumption of fossil fuels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun
2013-09-01
Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.
NASA Astrophysics Data System (ADS)
Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou
2018-03-01
This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.
Xiao, Rong; Bai, Junhong; Wang, Junjing; Lu, Qiongqiong; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui
2014-09-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the soils from industrial, wharf, cropland, milldam and natural wetland sites to characterize their distributions, toxic levels and possible sources in the Pearl River Estuary and identify their relationships with soil organic matter (SOM) and water-stable aggregates (WSAs). Our results indicate that the average concentration of total PAHs in this region reached a moderate pollution level, which was higher than that in other larger estuaries in Asia. The average level of total PAHs in industrial soils was 1.2, 1.5, 1.6 and 2.3 times higher than those in soils from wharf, cropland, milldam and natural wetland sites, respectively. Greater accumulation of PAHs occurred in the middle and/or bottom soil layers where 3-ring PAHs were dominant. Industrial soils also exhibited the highest toxic levels with the highest toxic equivalent concentrations of PAHs, followed by wharf and milldam soils, and the cropland and wetland soils had the lowest toxicity. The diagnostic ratios suggested that PAHs primarily originated from biomass and coal combustion at industrial and milldam sites, and petroleum combustion was determined to be the primary source of PAHs at the wharf, cropland and wetland sites. Both 3-ring and 4-ring PAHs in the milldam and wharf soils were significantly positively correlated with the SOM, whereas the 4,5,6-ring PAHs and total PAHs in industrial soils and the 2-ring PAHs in cropland soils were significantly negatively correlated with the SOM. In addition, large WSAs also exhibited a significant positive correlation with PAHs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yan, Jinxia; Liu, Jingling; Shi, Xuan; You, Xiaoguang; Cao, Zhiguo
2016-08-15
The distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries in Hai River Basin of China, which has been suffering from different anthropogenic pressures, were investigated. In three estuaries, the average concentration of ΣPAHs was the lowest in Luan River estuary, followed by Hai River estuary, and the highest in Zhangweixin River estuary. There were significant seasonal variations in ΣPAHs, the concentrations of ΣPAHs were higher in November than in May and August. The composition profiles of PAHs in different sites were significantly different, and illustrated seasonal variations. Generally, 2-ring (Nap) and 3-ring PAHs (Acp, Fl and Phe) were the most abundant components at most sampling sites in three estuaries. The PAHs in three estuaries were mainly originated from pyrogenic sources. A method based on toxic equivalency factors (TEFs) and risk quotient (RQ) was proposed to assess the ecological risk of ΣPAHs, with the ecological risk of individual PAHs being considered separately. The results showed that the ecological risks caused by ΣPAHs were high in Hai River estuary and Zhangweixin River estuary, and moderate in Luan River estuary. The mean values of ecological risk in August were lower than those in November. The contributions of individual PAHs to ecological risk were different in May, August and November. 3-ring and 4-ring PAHs accounted for much more ecological risk than 2-ring, 5-ring and 6-ring, although the contributions of 5-ring and 6-ring to ecological risk were higher than these to PAHs concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Duan-Zhen; Zhu, Xian-Yang; Lv, Bei; Cui, Chun-Sheng; Han, Xiu-Min; Sheng, Xiao-Tang; Wang, Qi-Guang; Zhang, Po
2014-08-01
No method is available to predict whether patients with patent ductus arteriosus (PDA) and severe pulmonary arterial hypertension (PAH) will show persistent postprocedural PAH (PP-PAH) after PDA closure. This study evaluated the usefulness of trial occlusion for predicting PP-PAH after transcatheter PDA closure in patients with severe PAH. Trial occlusion was performed in 137 patients (age ≥12 years) with PDA and severe PAH. All patients undergoing trial occlusion had a mean pulmonary artery pressure ≥45 mm Hg, pulmonary:systemic flow (Qp/Qs) ratio >1.5, and pulmonary:systemic resistance (Rp/Rs) ratio <0.7. A total of 135 patients (98%) showing stable hemodynamics during occlusion trial underwent successful device closure. Linear correlation analysis revealed weak or moderate relationships between the baseline and post-trial pulmonary artery pressures and pulmonary:systemic pressure (Pp/Ps) ratios. Patients were followed up for 1 to 10 years (median: 5 years). PP-PAH (systolic pulmonary artery pressure >50 mm Hg by Doppler echocardiography) was detected in 17 patients (13%), who displayed no significant differences in sex and age compared with patients without PP-PAH. According to discriminant analysis, the strongest discriminators between patients with and without PP-PAH were the baseline left ventricular end-diastolic volume and the baseline and post-trial systolic Pp/Ps ratios. In particular, a post-trial systolic Pp/Ps ratio >0.5 correctly classified 100% of the PP-PAH and non-PAH patients. Trial occlusion is a feasible method to predict PP-PAH in patients with PDA and severe PAH. A post-trial systolic Pp/Ps ratio >0.5 indicates a high risk of PP-PAH occurrence after device closure. © 2014 American Heart Association, Inc.
Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871
Occupational PAH exposures during prescribed pile burns.
Robinson, M S; Anthony, T R; Littau, S R; Herckes, P; Nelson, X; Poplin, G S; Burgess, J L
2008-08-01
Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 microg m(-3). The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 +/- 0.15) than ignition (0.55 +/- 0.04 microg mg(-1)). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements.
Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo
2005-07-01
Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.
NASA Astrophysics Data System (ADS)
Kan, R.; Kaosol, T.; Tekasakul, P.; Tekasakul, S.
2017-09-01
Determination of particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) emitted from co-pelletization combustion of lignite and rubber wood sawdust in a horizontal tube furnace is investigated using High Performance Liquid Chromatography with coupled Diode Array and Fluorescence Detection (HPLC-DAD/FLD). The particle-bound PAHs based on the mass concentration and the toxicity degree are discussed in the different size ranges of the particulate matters from 0.07-11 μm. In the present study, the particle-bound PAHs are likely abundant in the fine particles. More than 70% of toxicity degree of PAHs falls into PM1.1 while more than 80% of mass concentration of PAHs falls into PM2.5. The addition of lignite amount in the co-pelletization results in the increasing concentration of either 4-6 aromatic ring PAHs or high molecular weight PAHs. The high contribution of 4-6 aromatic ring PAHs or high molecular weight PAHs in the fine particles should be paid much more attention because of high probability of human carcinogenic. Furthermore, the rubber wood sawdust pellets emit high mass concentration of PAHs whereas the lignite pellets emit high toxicity degree of PAHs. By co-pelletized rubber wood sawdust with lignite (50% lignite pellets) has significant effect to reduce the toxicity degree of PAHs by 70%.
Changes in PAH levels during production of rapeseed oil.
Cejpek, K; Hajslová, J; Kocourek, V; Tomaniová, M; Cmolík, J
1998-07-01
The influence of technological operations during rapeseed oil production on polycyclic aromatic hydrocarbon (PAH) concentrations in by-products, intermediate and final oils was evaluated. The decrease of light PAHs, benz(a)anthracene and benzo(a)pyrene during processing of crude oil to the deodorized product was significant at the 95% confidence interval in most batches analysed. Deodorization and alkali-refining were the steps contributing most to the PAH decrease. The relationship between PAH levels in rapeseed (and consequently in refined oil) and the duration of storage period was studied. The contamination of raw material processed a short time after harvesting was significantly higher than that of the rapeseed stored in silos for several months. Analyses of rapeseed samples, which were re-purified in the laboratory, revealed that solid particles, which contaminate rapeseed during harvesting, initial treatment, transport and storage, contributed to PAH contamination to the extent of 36% (light PAHs) to 64% (heavy PAHs) on average. Further experiments demonstrated that PAHs in re-purified rapeseed were concentrated in the cuticular layer, because they were removed well from the whole seeds by simple rinsing with organic solvent in an ultrasonic bath without losses of rapeseed oil. Alternative expressions of total PAH contamination (e.g. various PAH groups and/or differently defined B(a)P toxic equivalents) are discussed and their effect on drawing conclusions about PAH elimination rate has been demonstrated.
Hoh, Eunha; Hunt, Richard N; Quintana, Penelope J E; Zakarian, Joy M; Chatfield, Dale A; Wittry, Beth C; Rodriguez, Edgar; Matt, Georg E
2012-04-03
Environmental tobacco smoke is a major contributor to indoor air pollution. Dust and surfaces may remain contaminated long after active smoking has ceased (called 'thirdhand' smoke). Polycyclic aromatic hydrocarbons (PAHs) are known carcinogenic components of tobacco smoke found in settled house dust (SHD). We investigated whether tobacco smoke is a source of PAHs in SHD. House dust was collected from 132 homes in urban areas of Southern California. Total PAHs were significantly higher in smoker homes than nonsmoker homes (by concentration: 990 ng/g vs 756 ng/g, p = 0.025; by loading: 1650 ng/m(2) vs 796 ng/m(2), p = 0.012). We also found significant linear correlations between nicotine and total PAH levels in SHD (concentration, R(2) = 0.105; loading, R(2) = 0.385). Dust collected per square meter (g/m(2)) was significantly greater in smoker homes and might dilute PAH concentration in SHD inconsistently. Therefore, dust PAH loading (ng PAH/m(2)) is a better indicator of PAH content in SHD. House dust PAH loadings in the bedroom and living room in the same home were significantly correlated (R(2) = 0.468, p < 0.001) suggesting PAHs are distributed by tobacco smoke throughout a home. In conclusion, tobacco smoke is a source of PAHs in SHD, and tobacco smoke generated PAHs are a component of thirdhand smoke.
Karaca, Gizem
2016-02-01
The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.
NASA Astrophysics Data System (ADS)
Padilla, Z. V.; Torres, R.; Ruiz Suarez, L.; Molina, L. T.
2013-05-01
This contribution documents the presence and possible origin of PAHs, their temporal concentration patterns and correlations with other air pollutants in the so-called Puebla-Tlaxcala valley. This valley is located to the east of the Mexico City Metropolitan Area and is a very populated region which suffers of air pollution problems. Emission sources of PAHs include open burning, industrial boilers, automobiles and trucks, but vehicle emissions vary significantly depending on the use of: fuel, engine type and catalytic converter. An important emission source in the Puebla-Tlaxcala region is wood burning for cooking. Therefore, it is expected to have contributions of PAHS from this type of sources. PAHs measurements were performed in an air pollution semi-rural receptor site (Chipilo) southwest the City of Puebla, using an aerosol photoelectric sensor (PAS 2000 CE) to measure the concentration of PAHs and a diffuser charger (DC 2000 CE) to evaluate the active surface (DC) of the particles. The measuring period included March and April of 2012 during the ozne season in central Mexico. The use of these two sensors in parallel has been identified as a fingerprint technique to identify different types of particles from several combustion processes and is a useful tool to identify quantitatively the major source of emissions, as well as to describe thephysical and chemical characteristics of the particles. Correlations between PAHs and DC, with NOx and CO, together with an analysis of atmospheric transport may approximate the possible origin of these particles. The coefficient PAHs / DC associated with backward trajectory analysis represents a tool to identify potential areas of emission. The correlation between PAHs and NOx emissions reflects association with diesel combustion, while the correlation between PAHs and CO, the combustion of gasoline. The results show that vehicle emissions are the major source of PAHs with an associated increase in the concentration of PAHs in the morning, when there is more vehicular traffic. The time series of PAHs also exhibit synchronized peaks of PAHs and DC that correspond to hours of traffic which shows the relationship of PAHs with DC. However, correlations of PAHs with DC show a relatively strong scattering suggesting that aerosols are a mixture of particles of different sources and different ages. Throughout the day is observed the aging of primary combustion particles due to the secondary aerosols coating. This coating may prolong the life time of the PAHs in the atmosphere. Also occurs a decrease in the ratio PAHs / DC during the day. Low ratios indicate the abundance of large particles, whereas high ratios indicate abundance dominated by small particle emissions from diesel engines. The resulting correlations show a significant linear trend evolution of PAHs with NOx, indicating that the PAHs are associated with the combustion of diesel, and a linear trend of PAHs with DC for each type of aerosol combustion, while the correlation of PAHs with CO results in an exponential trend which implies that PAHs are related to the combustion of diesel.
NASA Astrophysics Data System (ADS)
Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira
2016-04-01
Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.
Source apportionment of polycyclic aromatic hydrocarbons in Louisiana
NASA Astrophysics Data System (ADS)
Han, F.; Zhang, H.
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) in the environment are of significant concern due to their high toxicity that may result in adverse health effects. PAHs measurements at the limited air quality monitoring stations alone are insufficient to gain a complete concept of ambient PAH levels. This study simulates the concentrations of PAHs in Louisiana and identifies the major emission sources. Speciation profiles for PAHs were prepared using data assembled from existing emission profile databases. The Sparse Matrix Operator Kernel Emission (SMOKE) model was used to generate the estimated gridded emissions of 16 priority PAH species directly associated with health risks. The estimated emissions were then applied to simulate ambient concentrations of PAHs in Louisiana for January, April, July and October 2011 using the Community Multiscale Air Quality (CMAQ) model (v5.0.1). Through the formation, transport and deposition of PAHs species, the concentrations of PAHs species in gas phase and particulate phase were obtained. The spatial and temporal variations were analyzed and contributions of both local and regional major sources were quantified. This study provides important information for the prevention and treatment of PAHs in Louisiana.
Luo, Wei; Gao, Jiajia; Bi, Xiang; Xu, Lan; Guo, Junming; Zhang, Qianggong; Romesh, Kumar Y; Giesy, John P; Kang, Shichang
2016-05-01
To understand distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Himalayas, 77 soil samples were collected from the northern side of the Himalayas, China (NSHC), and the southern side of the Himalayas, Nepal (SSHN), based on altitude, land use and possible trans-boundary transport of PAHs driven by wind from Nepal to the Tibetan Plateau, China. Soils from the SSHN had mean PAH concentration greater than those from the NSHC. Greater concentrations of PAHs in soils were mainly distributed near main roads and agricultural and urban areas. PAHs with 2-3 rings were the most abundant PAHs in the soils from the Himalayas. Concentrations of volatile PAHs were significantly and positively correlated with altitude. Simulations of trajectories of air masses indicated that distributions of soil PAH concentrations were associated with the cyclic patterns of the monsoon. PAH emissions from traffic and combustion of biomass or coal greatly contributed to concentrations of PAHs in soils from the Himalayas. Copyright © 2015 Elsevier Ltd. All rights reserved.
A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China.
Liu, Guoqing; Tong, Yongpeng; Luong, John H T; Zhang, Hong; Sun, Huibin
2010-04-01
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m( - 3), respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.
Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, p<0.01) and lipophilic properties (KOW, r=0.768, p<0.01), respectively. This annual study therefore showed that atmospheric PAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.
Occurrence of priority organic pollutants in the fertilizers, China.
Mo, Ce-Hui; Cai, Quan-Ying; Li, Yun-Hui; Zeng, Qiao-Yun
2008-04-15
The use of large quantities of chemical fertilizers is usually associated with environmental problems. A lot of work has been done on the concentrations of heavy metals and radionuclides in chemical fertilizers, but little work has focused on the occurrence of semi-volatile organic compounds (SVOCs). In this study the occurrence of 43 SVOCs listed as priority pollutants in 22 widely used-fertilizers of China was determined by gas chromatography coupled with mass spectrometry. Twenty-six SVOCs were detected with different detection frequencies and concentrations. The most abundant compounds were phthalic acid esters (PAEs; ranging from 1.17 to 2795 microg kg(-1) dry weight, d.w.) and nitroaromatics (up to 9765 microg kg(-1) d.w.), followed by polycyclic aromatic hydrocarbons (PAHs; <140 microg kg(-1) d.w.) and halogenated hydrocarbons (<900 microg kg(-1) d.w.). Chlorobenzenes and haloethers occurred generally at low concentrations. There are large variations in concentrations of various compounds in different fertilizers, and the total concentrations of each class of contaminants varied widely, too. The highest levels of sum concentration for 16 PAHs, for 6 PAEs and for nitroaromatics were found in organic fertilizer containing pesticide and soil amendments. Concentrations of SVOCs in coated fertilizers (the controlled release fertilizer with coating) were considerably higher than those in the corresponding fertilizers without coating. The occurrence frequencies of SVOCs in the straight fertilizers (containing only one of the major plant nutrients) were lower than in the other fertilizers.
Pollution level and reusability of the waste soil generated from demolition of a rural railway.
Han, Il; Wee, Gui Nam; No, Jee Hyun; Lee, Tae Kwon
2018-09-01
Railways are typically considered polluted from years of train operation. However, the pollution level of railway in a rural area, which is less exposed to hazardous material from trains and freights, is rarely assessed. This study evaluated common railway pollutants such as heavy metals, total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) and their chemical properties in the waste soil generated from the renovation of an old railway in rural area of Wonju, South Korea. Furthermore, lab-scale cultivation tests of peas (Pisum sativum) were performed to assess reusability of the waste soil as a soil amendment. Carbonaceous materials were found in the upper layer of the railway (0 to -40 cm) and the concentration of common railway pollutants was comparable to those of the agricultural land nearby. Specifically, total aromatic and aliphatic TPHs were below detection limit; and total PAHs < 1.0 mg kg -1 was 1000-times less than railway functional parts. Applying the carbonaceous waste soil improved the water holding capacity of soil by approximately 10% and sprouts formed on the soil with 10% waste soil composition had greater fresh weight, stem length, and root length than the control. Although this investigation was confined to a small length of the railway route, the results confirm environmental safety and the potential value of the waste generated from rural railways for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Occurrence of 16 EPA PAHs in Food – A Review
Zelinkova, Zuzana; Wenzl, Thomas
2015-01-01
Occurrence and toxicity of polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in countries all over the world. PAHs generally occur in complex mixtures which may consist of hundreds of compounds. The U.S. Environmental Protection Agency (EPA) proposed in the 1970 to monitor a set of 16 PAHs which are frequently found in environmental samples. This article reviews the suitability of the 16 EPA PAHs for the assessment of potential health threats to humans stemming from the exposure to PAHs by food ingestion. It presents details on analysis methods, the occurrence of PAHs in food, regulatory aspects, and related risk management approaches. In addition, consideration is given to newer evaluations of the toxicity of PAHs and the requirements for risk assessment and management stemming from them. PMID:26681897
Jo, Yong Suk; Park, Ju-Hee; Lee, Jung Kyu; Heo, Eun Young; Chung, Hee Soon; Kim, Deog Kyeom
2017-01-01
There are limited data on pulmonary arterial hypertension (PAH) in patients with tuberculosis-destroyed lung (TDL), a sequela of pulmonary tuberculosis. We identified the risk factors for PAH and their effects on acute exacerbation and mortality in patients with TDL, as well as the clinical differences in patients with chronic obstructive pulmonary disease (COPD) and PAH. A retrospective cohort study was conducted from 2010 through 2015 in a municipal referral hospital in South Korea. PAH was defined when echocardiographic pulmonary arterial pressure (PAP) was >40 mmHg. The clinical features and course of TDL patients with or without PAH were evaluated and differences between patients with COPD and PAH were analyzed. Among the 195 patients with TDL, echocardiographic data were available in 53 patients, and their mean PAP was 50.72±23.99 mmHg. The PAH group (n=37) had a smaller lung volume (forced vital capacity % predicted, 51.55% vs 72.37%, P <0.001) and more extensively destroyed lungs (3.27 lobes vs 2 lobes, P <0.001) than those in the non-PAH group (n=16). A higher PAP was significantly correlated with a higher frequency of acute exacerbation ( r =0.32, P =0.02). Multivariate analyses did not reveal any significant risk factors contributing to PAH in patients with TDL. Compared to COPD patients with PAH, TDL patients with PAH have smaller lung volume but a less severe airflow limitation. Tricuspid regurgitation and a D-shaped left ventricle during diastole were more frequently observed in TDL patients. The risk of exacerbation was not different between patients with PAH in COPD and TDL. PAH in patients with TDL was associated with severity of lung destruction but risk of exacerbation and mortality did not significantly differ between patients with PAH and without PAH.
Chai, Chao; Cheng, Qiqi; Wu, Juan; Zeng, Lusheng; Chen, Qinghua; Zhu, Xiangwei; Ma, Dong; Ge, Wei
2017-08-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in soil (n=196) and vegetable (n=30) collected from greenhouses, and also in the soil (n=27) collected from agriculture fields close to the greenhouses in Shandong Province, China. The total PAH concentration (∑ 16 PAH) ranged from 152.2µg/kg to 1317.7µg/kg, within the moderate range in agricultural soils of China. Three-ring PAHs were the dominant species, with Phe (16.3%), Ace (13.1%), and Fl (10.5%) as the major compounds. The concentrations of low molecular weight (LMW ≤3 rings) PAHs were high in the east and north of Shandong, while the concentrations of high molecular weight (HMW ≥4 rings) PAHs were high in the south and west of the study area. The PAH level in soils in industrial areas (IN) was higher than those in transport areas (TR) and rural areas (RR). No significant difference in concentration of ∑ 16 PAH and composition was observed in soils of vegetable greenhouses and field soils. PAH concentration exhibited a weakly positive correlation with alkaline nitrogen, available phosphorus in soil, but a weakly negative correlation with soil pH. However, no obvious correlation was observed between PAH concentration and organic matter of soil, or ages of vegetable greenhouses. ∑ 16 PAH in vegetables ranged from 89.9µg/kg to 489.4µg/kg, and LMW PAHs in vegetables positively correlated with those in soils. The sources of PAHs were identified and quantitatively assessed through positive matrix factorization. The main source of PAHs in RR was coal combustion, while the source was traffic in TR and IN. Moreover, petroleum source, coke source, biomass combustion, or mixed sources also contributed to PAH pollution. According to Canadian soil quality guidelines, exposure to greenhouse soils in Shandong posed no risk to human health. Copyright © 2017. Published by Elsevier Inc.
Yamada, Mihoko; Takada, Hideshige; Toyoda, Keita; Yoshida, Akihiro; Shibata, Akira; Nomura, Hideaki; Wada, Minoru; Nishimura, Masahiko; Okamoto, Ken; Ohwada, Kouichi
2003-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.
Birks, S J; Cho, S; Taylor, E; Yi, Y; Gibson, J J
2017-12-15
The composition of polycyclic aromatic hydrocarbons present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) was characterized in order to identify major contributors to the organics detected in rivers and lakes in the region. PAH concentrations, measured by three monitoring programs in 2011, were used to compare the PAH compositions of snow and surface waters across the AOSR. The 2011 dataset includes total (dissolved+particulate) concentrations of thirty-four parent and alkylated PAH compounds in 105 snow, 272 river, and 3 lake samples. The concentration of PAHs in rivers varies seasonally, with the highest values observed in July. The timing of increases in PAH concentrations in rivers coincides with the high river discharge during the spring freshet, indicating that this major hydrological event may play an important role in delivering PAHs to rivers. However, the composition of PAHs present in rivers during this period differs from the composition of PAHs present in snow, suggesting that direct runoff and release of PAHs accumulated on snow may not be the major source of PAHs to the Athabasca River and its tributaries. Instead, snowmelt may contribute indirectly to increases in PAHs due to hydrological processes such as erosion of stream channels, remobilization of PAH-containing sediments, increased catchment runoff, and snowmelt-induced groundwater inputs during this dynamic hydrologic period. Better understanding of transformations of PAH profiles during transport along surface and subsurface flow paths in wetland-dominated boreal catchments would improve identification of potential sources and pathways in the region. The compositional differences highlight the challenges in identifying the origins of PAHs in a region with multiple potential natural and anthropogenic sources particularly when the potential transport pathways include air, soil and water. Copyright © 2017 Elsevier B.V. All rights reserved.
Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi
2002-05-01
This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
PAH volatilization following application of coal-tar-based pavement sealant
Van Metre, Peter C.; Majewski, Michael S.; Mahler, Barbara J.; Foreman, William T.; Braun, Christopher L.; Wilson, Jennifer T.; Burbank, Teresa L.
2012-01-01
Coal-tar-based pavement sealants, a major source of PAHs to urban water bodies, have recently been identified as a source of volatile PAHs to the atmosphere. We tracked the volatilization of PAHs for 1 year after application of a coal-tar-based pavement sealant by measuring gas-phase PAH concentrations above the pavement surface and solid-phase PAH concentrations in sealant scraped from the surface. Gas-phase concentrations at two heights (0.03 and 1.28 m) and wind speed were used to estimate volatilization flux. The sum of the concentrations of eight frequently detected PAHs (ΣPAH8) in the 0.03-m sample 1.6 h after application (297,000 ng m-3) was about 5000 times greater than that previously reported for the same height above unsealed parking lots (66 ng m-3). Flux at 1.6 h after application was estimated at 45,000 μg m-2 h-1 and decreased rapidly during the 45 days after application to 160 μg m-2 h-1. Loss of PAHs from the adhered sealant also was rapid, with about a 50% decrease in solid-phase ΣPAH8 concentration over the 45 days after application. There was general agreement, given the uncertainties, in the estimated mass of ΣPAH8 lost to the atmosphere on the basis of air sampling (2–3 g m-2) and adhered sealant sampling (6 g m-2) during the first 16 days after application, translating to a loss to the atmosphere of one-quarter to one-half of the PAHs in the sealcoat product. Combining the estimated mass of ΣPAH8 released to the atmosphere with a national-use estimate of coal-tar-based sealant suggests that PAH emissions from new coal-tar-based sealcoat applications each year (~1000 Mg) are larger than annual vehicle emissions of PAHs for the United States.
Assessment of the Polycyclic Aromatic Hydrocarbon-Diffuse Interstellar Band Proposal
NASA Technical Reports Server (NTRS)
Salama, Farid; Bakes, F.; Allamandola, L.; Tielens, A. G. G. M.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high energy range of the spectrum, and possess a large oscillator strength), and seems to correlate with strong and broad DIBs. In the case of non-compact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low energy range of the spectrum, and possess a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that: (i) Only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other hand can easily be interpreted in the context of the PAH proposal by a distribution between compact and non-compact PAH ions, respectively. A plausible correlation between PAH charge states and DIB "families" is thus provided by the PAH-DIB proposal. Following this proposal, DIB families would provide tracers of conditions within a cloud which globally determine the relative importance of cations, anions, and neutral species, rather than tracers of a specific species. Observational predictions are given to establish the viability of the PAH hypothesis. It is concluded that small PAH ions are very promising candidates as DIB carriers provided their population is dominated by a finite number (100-200) of species. A key test for the PAH proposal, consisting of laboratory and astronomical investigations of the ultraviolet range, is called for.
Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal
NASA Technical Reports Server (NTRS)
Salama, F.; Bakes, E. L.; Allamandola, L. J.; Tielens, A. G.
1996-01-01
The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high-energy range of the spectrum, and possesses a large oscillator strength), and seems to correlate with strong and broad DIBs. For noncompact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low-energy range of the spectrum, and possesses a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that (i) only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narow bands on the other can easily be interpreted in the context of the PAH proposal by a distribution of compact and noncompact PAH ions, respectively. A plausible correlation between PAH charge states and DIB "families" is thus provided by the PAH-DIB proposal. Following this proposal, DIB families would reflect conditions within a cloud which locally determine the relative importance of cations, anions, and neutral species, rather than tracers of a specific species. Observational predictions are given to establish the viability of the PAH hypothesis. It is concluded that small PAH ions are very promising candidates as DIB carriers provided their population is dominated by a finite number (100-200) of species. A key test for the PAH proposal, consisting of laboratory and astronomical investigations in the ultraviolet range, is called for.
Mapping PAH sizes in NGC 7023 with SOFIA
NASA Astrophysics Data System (ADS)
Croiset, B. A.; Candian, A.; Berné, O.; Tielens, A. G. G. M.
2016-05-01
Context. NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. Aims: Our goal is to map PAH sizes in NGC 7023 with respect to the location of the star. We focus on the north west (NW) photo-dissociation region (PDR) and the south PDR of NGC 7023 to understand the photochemical evolution of PAHs, using size as a proxy. Methods: We use the unique capabilities of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe a 3.2' × 3.4' region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7'') at 3.3 and 11.2 μm. We compare the SOFIA images with existing images of the PAH emission at 8.0 μm (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the extended red emission (Hubble Space Telescope and Canadian French Hawaiian Telescope), and H2 (2.12 μm). We create maps of the 11.2/3.3 μm ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 μm ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAH database to translate the 11.2/3.3 μm ratio to PAH sizes. Results: The 11.2/3.3 μm ratio map shows the smallest PAH concentrate on the PDR surface (H2 and extended red emission) in the NW and south PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (Nc) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. Conclusions: The high-resolution PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C60 by photochemical processing.
Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong
2017-10-01
Coastal upwelling prevails in the coast of Hainan Island, the northern South China Sea (SCS) during summer. We studied the influences of the upwelling on the horizontal and vertical transport of terrigenous polycyclic aromatic hydrocarbons (PAHs). PAHs in dissolved and suspended particulate phase of water samples were determined in the upper (depth < 1 m) and water column (depth > 10 m). PAH levels decreased sharply from inshore to offshore to open sea. The results showed that terrestrial input was the main source of coastal PAHs. Perylene, an important indicator of land plant-derived PAH, showed the significant correlation with PAHs (p < 0.005). This implied that fluvial transport was the primary pathway of terrigenous PAHs into the coast of northern SCS. Variations of the concentrations, compositions and diagnostic ratios of PAHs, accompanied the partition equilibrium in the water column, could indicate the selective degradation of PAHs by the plankton affected by upwelling. Different from the "traditional" transport pathway of PAHs in the water column (surface enrichment-depth depletion distribution), the upwelling could provide the original driver to elevate the upward diffusion of sediment entrained contaminants towards the intermediate even the upper waters. It could also enhance the outward diffusion of terrigenous PAHs accompanied by the offshore transport of the upper waters. Therefore, the transport pathway of PAHs can be summarized by the coastal upwelling rising PAHs with their subsequent transport offshore and settling in the adjacent open sea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Yanping; Liu, Min; Wang, Ruiqi; Khan, Saira Khalil; Gao, Dengzhou; Zhang, Yazhou
2017-10-01
The city-scale land use/land cover change derived by urbanization on the fates of PAHs is of great concerns recently. This study evaluated spatiotemporal variations and sources of PAHs from a highly urbanized river sediments in the Huangpu River, Shanghai. Results indicated that the concentrations of PAHs in the sediments varied greatly across locations and seasons. The concentration of Σ 16 PAHs in the dry season were 6 times higher than that in wet season. The mainstream and midstream of the Huangpu River were identified as the hotspots in both dry and wet seasons. However, 4-ring PAH compounds were dominated, contributing 42.41% ± 6.81% and 44.70 ± 7.73% in the dry and wet seasons, respectively. Multivariate statistical and land use analysis suggested that the main sources of PAHs derived from the cultivation, traffic and commercial activities. Buffer radii (<750 m) area with cultivated land, road/street and transportation and commercial and business facilities contributed significantly the PAHs in the sediment of the Huangpu River. Population density was also an important variable regulating the PAHs concentrations less than 750 m in the wet season. Risk assessment results revealed that the PAHs toxicity in the sediments was higher in dry season than in wet season. Overall, severe land use changes caused by rapid urbanization can contribute more amount of PAHs emission and complicated sources of PAHs, thus provide insights into the importance of land use types in indicating PAHs source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Jian; Fan, Shu-xian; Sun, Yu; Zhang, Yue; Wei, Jin-cheng
2015-04-01
In order to study pollution status and distribution characteristics of PAHs in PM10 during the spring in city and suburban Xiamen. A total of 18 PAHs were analyzed in the aerosol samples collected in daytime and nighttime during 11th to 21st of April, 2013 in city and suburban Xiamen. Results showed diurnal variation of Σ PAHs in suburban was weaker than that in city. In the city, the concentration of PAHs during daytimes was higher than that during nighttimes, close to 1.83 times, and it is still under the national environmental standards. In different times and space scales, PAHs were a bimodal distribution, the components of PAHs gave the priority to low and middle rings in urban and suburban during daytimes and nighttimes. PAHs with high molecular weight decreased gradually by the increase of particle size, and the proportion of low molecular weight PAHs increased gradually in the meantime. In the city, the change of size distribution among 2-4 rings PAHs in PM10 during days and nights was bigger than these among 5-7 rings. The main sources of PAHs were estimated by DR, the main contributions included gasoline and diesel combustion, the smelting furnace exhaust emissions. During sampling periods, the relationship between the concentration of PAHs, temperature and WD is negative, PAHs had a positive correlation with the visibility and WS in suburban. And in urban, the relationship with temperature during the day was negative, and with an opposite correlation between other meteorological elements.
Seno, Masaru; Yoshida, Kentaro; Sato, Katsuhiko; Anzai, Jun-ichi
2016-05-01
Multilayer thin films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PAH), PBA-PAH, with different PBA contents were prepared to study the effect of PBA content on the stability of the films. An alternate deposition of PBA-PAH and poly(vinyl alcohol) (PVA) on the surface of a quartz slide afforded multilayer films through forming boronate ester bonds between PBA-PAH and PVA. The 10-layered (PBA-PAH/PVA)10 films constructed using PBA-PAHs containing 16% and 26% PBA residues were stable in aqueous solutions over the range of pH 4.0-10.0, whereas the multilayer films composed of PBA-PAHs with 5.9% and 8.3% PBA decomposed at pH 8.0 or lower. The pH-sensitive decomposition of the films was rationalized based on the destabilization of the boronate ester bonds in neutral and acidic solutions. In addition, the (PBA-PAH/PVA)10 films decomposed in glucose and fructose solutions as a result of competitive binding of sugars to PBA-PAH in the films. The sugar response of the films depended on the PBA content in PBA-PAH. The (PBA-PAH/PVA)10 films consisting of 16% and 26% PBA-substituted PBA-PAHs are sensitive to physiological relevant level of glucose at pH7.4 while stable in glucose-free solution, suggesting a potential use of the films in constructing glucose-induced delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J.; Shafer, Martin M.; Sioutas, Constantinos; Gillen, Daniel L.; Delfino, Ralph J.
2015-01-01
Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM0.25-2.5 PAH and/or PM0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level. PMID:25564368
Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J; Shafer, Martin M; Sioutas, Constantinos; Gillen, Daniel L; Delfino, Ralph J
2016-01-01
Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤ 12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM 0.25-2.5 PAH and/or PM 0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level.
Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao
2016-09-15
Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal. Copyright © 2016 Elsevier B.V. All rights reserved.
Thai, Phong K; Li, Zheng; Sjödin, Andreas; Fox, Annette; Diep, Nguyen Bich; Binh, Ta Thi; Mueller, Jochen F
2015-11-01
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse health outcomes. Concentrations of urinary PAH metabolites (OH-PAHs) provide an integrated measure of human exposure to PAHs but measurement of urinary OH-PAHs has not been done in Australia and rarely in Vietnam, where air pollution is of concern. In this study, we assessed exposure to PAHs in 16 participants living in Brisbane, Australia and Hanoi, Vietnam, with 4 participants travelling between the two cities during the monitoring period. A total of 312 first morning urine samples were collected over 10weeks and were analysed for nine OH-PAHs. Concentrations of the urinary OH-PAHs were 2-10 times higher in participants from Hanoi than those from Brisbane. For example, the median concentrations of 1-hydroxypyrene were 292pg/mL in Hanoi, compared to 64pg/mL in Brisbane. For participants travelling from Brisbane to Hanoi and back, differences in exposure to PAHs in these two cities resulted in corresponding changes of urinary OH-PAH concentrations, demonstrating that the more polluted environment in Hanoi was likely the source for higher PAH exposure there. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dutta, Kunal; Shityakov, Sergey; Khalifa, Ibrahim; Mal, Arpan; Moulik, Satya Priya; Panda, Amiya Kumar; Ghosh, Chandradipa
2018-05-18
Polycyclic aromatic hydrocarbons (PAHs) belong to a diverse group of environmental pollutants distributed ubiquitously in the environment. The carcinogenic properties of PAHs are the main causes of harm to human health. The green technology, biodegradation have become convenient options to address the environmental pollution. In this study, we analyzed the biodegradation potential of naphthalene with secondary carbon supplements (SCSs) in carbon deficient media (CSM) by Pseudomonas putida strain KD9 isolated from oil refinerary waste. The rigid-flexible molecular docking method revealed that the mutated naphthalene 1,2-dioxygenase had lower affinity for naphthalene than that found in wild type strain. Moreover, analytical methods (HPLC, qRT-PCR) and soft agar chemotaxis suggest sucrose (0.5 wt%) to be the best chemo-attractant and it unequivocally caused enhanced biodegradation of naphthalene (500 mg L -1 ) in both biofilm-mediated and shake-flask biodegradation methods. In addition, the morphological analysis detected from microscopy clearly showed KD9 to change its size and shape (rod to pointed) during biodegradation of naphthalene in CSM as sole source of carbon and energy. The forward versus side light scatter plot of the singlet cells obtained from flow cytometry suggests smaller cell size in CSM and lower florescence intensity of the total DNA content of cells. This study concludes that sucrose may be used as potential bio-stimulation agent. Copyright © 2018 Elsevier B.V. All rights reserved.
Defining the molecular signatures of human right heart failure.
Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A
2018-03-01
Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.
Košnář, Zdeněk; Mercl, Filip; Perná, Ivana; Tlustoš, Pavel
2016-09-01
The use of biomass fuels in incineration power plants is increasing worldwide. The produced ashes may pose a serious threat to the environment due to the presence of polycyclic aromatic hydrocarbons (PAHs), because some PAHs are potent carcinogens, mutagens and teratogens. The objective of this study was to investigate the content of total and individual PAHs in fly and bottom ash derived from incineration of phytomass and dendromass, because the data on PAH content in biomass ashes is limited. Various operating temperatures of incineration were examined and the relationship between total PAH content and unburned carbon in ashes was also considered. The analysis of PAHs was carried out in fly and bottom ash samples collected from various biomass incineration plants. PAH determination was performed using gas chromatography coupled with mass spectrometry. The correlations between the low, medium and high molecular weight PAHs and each other in ashes were conducted. The relationship between PAH content and unburned carbon, determined as a loss on ignition (L.O.I.) in biomass ashes, was performed using regression analysis. The PAH content in biomass ashes varied from 41.1±1.8 to 53,800.9±13,818.4ng/g dw. This variation may be explained by the differences in boiler operating conditions and biomass fuel composition. The correlation coefficients for PAHs in ash ranged from 0.8025 to 0.9790. The regression models were designed and the coefficients of determination varied from 0.908 to 0.980. The PAH content in ash varied widely with fuel type and the effect of operating temperature on PAH content in ash was evident. Fly ashes contained higher amounts of PAHs than bottom ashes. The low molecular weight PAHs prevailed in tested ashes. The exponential relationship between the PAH content and L.O.I. for fly ashes and the linear for bottom ashes was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Weinstein, John E; Crawford, Kevin D; Garner, Thomas R
2010-03-01
The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.
Li, Juan-Ying; Cui, Yu; Su, Lei; Chen, Yiqin; Jin, Ling
2015-08-01
PAHs were analyzed for samples of seawater, sediment, and oyster (Saccostrea cucullata) collected from Yangshan Port, East China between 2012 and 2013. Concentrations of ∑PAHs in seawater (180-7,700 ng/L) and oyster (1,100-29,000 ng/g dry weight (dw)) fell at the higher end of the global concentration range, while sediment concentrations (120-780 ng/g dw) were generally comparable to or lower than those reported elsewhere. PAHs in the particulate phase accounted for 85% (52-93%) of the total PAHs in seawater. Congener profile analysis revealed that PAHs in waters originate mainly from petrogenic sources, while high-temperature combustion processes are the predominant sources for sediment. ∑PAHs in oyster well correlated with ∑PAHs in the particulate phase, suggesting particle ingestion as an important pathway for bioaccumulation of PAHs. Cancer risk assessment of PAHs in oyster indicated high human health risks posed by these chemicals to the coastal population consuming this seafood.
Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng
2014-10-01
Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.
Yu, Huan-Yun; Bao, Lian-Jun; Wong, Charles S; Hu, Yuanan; Zeng, Eddy Y
2012-10-26
Two sediment cores were collected from Hailing Bay located in a typical mariculture zone of Guangdong Province, South China, and analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of the sum of 27 PAHs ranged from 62 to 1200 ng g(-1) dry wt, and sediment in the study area was considered to be moderately polluted by PAHs. Source diagnostics based on PAH composition and principal component analysis suggested that PAHs in the study area were mainly derived from petroleum combustion, with discharge of PAHs from fishing boats as an important source. Ecological risk assessment results indicate that PAHs in sediment of the present study currently have minimal adverse effect on the mariculture environment. Comparison of sedimentary inventory of PAHs in the fish harbor of the study area with those in the Pearl River Estuary and the coastal Bohai Bay indicate that the sediment has become an important reservoir of PAHs.
Coal-tar-based sealcoated pavement: a major PAH source to urban stream sediments.
Witter, Amy E; Nguyen, Minh H; Baidar, Sunil; Sak, Peter B
2014-02-01
We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (~1303 km(2)) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69-0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zielińska, Anna; Oleszczuk, Patryk
2016-06-01
The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Kyung; School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-701; Park, Yong-Keun
2013-11-15
Growing evidence indicates that changes in microRNA (miRNA) expression in cancer induced by chemical carcinogens play an important role in cancer development and progression by regulating related genes. However, the mechanisms underlying miRNA involvement in hepatocarcinogenesis induced by polycyclic aromatic hydrocarbons (PAHs) remain unclear. Thus, the identification of aberrant miRNA expression during PAH-induced cancer cell migration will lead to a better understanding of the substantial role of miRNAs in cancer progression. In the present study, miRNA expression profiling showed significant upregulation of miR-181a, -181b, and -181d in human hepatocellular carcinoma cells (HepG2 line) exposed to benzo[a]anthracene (BA) and benzo[k]fluoranthene (BF).more » MAPK phosphatase-5 (MKP-5), a validated miR-181 target that deactivates MAPKs, was markedly suppressed while phosphorylation of p38 MAPK was increased after BA and BF exposure. The migration of HepG2 cells, observed using the scratch wound-healing assay, also increased in a dose-dependent manner. Depletion of miR-181 family members by miRNA inhibitors enhanced the expression of MKP-5 and suppressed the phosphorylation of p38 MAPK. Furthermore, the depletion of the miR-181 family inhibited cancer cell migration. Based on these results, we conclude that the miR-181 family plays a critical role in PAH-induced hepatocarcinogenesis by targeting MKP-5, resulting in the regulation of p38 MAPK activation. - Highlights: • We found significant upregulation of miR-181 family in HCC exposed to BA and BF. • We identified the MKP-5 as a putative target of miR-181 family. • MKP-5 was suppressed while p-P38 was increased after BA and BF exposure. • The migration of HepG2 cells increased in a dose-dependent manner.« less
Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood
Hertz-Picciotto, Irva; Herr, Caroline E.W.; Yap, Poh-Sin; Dostál, Miroslav; Shumway, Robert H.; Ashwood, Paul; Lipsett, Michael; Joad, Jesse P.; Pinkerton, Kent E.; Šrám, Radim J.
2005-01-01
Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 μm in diameter (PM2.5) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3+ T-lymphocytes and their subsets CD4+ and CD8+, CD19+ B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM2.5 was 24.8 μg/m3 and that of PAHs was 63.5 ng/m3. In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM2.5 levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3+ CD4+, and CD8+), and a clear increase in the B-lymphocyte (CD19+) fraction. For a 100-ng/m3 increase in PAHs, which represented approximately two standard deviations, the percentage decrease was −3.3% [95% confidence interval (CI), −5.6 to −1.0%] for CD3+, −3.1% (95% CI, −4.9 to −1.3%) for CD4+, and −1.0% (95% CI, −1.8 to −0.2%) for CD8+ cells. The corresponding increase in the CD19+ cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM2.5. Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus. PMID:16203253
Sperm DNA oxidative damage and DNA adducts
Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi
2015-01-01
The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm. PMID:26653986
Kim, Yungkul; Powell, Eric N; Wade, Terry L; Presley, Bobby J
2008-03-01
The 1995-1998 database from NOAA's National Status and Trends 'Mussel Watch' Program was used to compare the distributional patterns of parasites and pathologies with contaminant body burdens. Principal components analysis (PCA) resolved five groups of contaminants in both mussels and oysters: one dominated by polycyclic aromatic hydrocarbons (PAHs), one dominated by pesticides, and three dominated by metals. Metals produced a much more complex picture of spatial trends in body burden than did either the pesticides or PAHs. Contrasted to the relative simplicity of the contaminant groupings, PCA exposed a suite of parasite/pathology groups with few similarities between the sentinel bivalve taxa. Thus, the relationship between parasites/pathologies and contaminants differs significantly between taxa despite the similarity in contaminant pattern. Moreover, the combined effects of many contaminants and parasites may be important, leading to complex biological-contaminant interactions with synergies both of biological and chemical origin. Overall, correlations between parasites/pathologies and contaminants were more frequent with metals, frequent with pesticides, and less frequent with PAHs in mussels. In oysters, correlations with pesticides and metals were about equally frequent, but correlations with PAHs were still rare. In mytilids, correlations with metals predominated. Negative and positive correlations with metals occurred with about the same frequency in both taxa. The majority of correlations with pesticides were negative in oysters; not so for mytilids. Of the many significant correlations involving parasites, few involved single-celled eukaryotes or prokaryotes. The vast majority involved multi-cellular eukaryotes and nearly all of them either cestodes, trematode sporocysts, or trematode metacercariae. The few correlations for single-celled parasites all involved proliferating protozoa or protozoa reaching high body burdens through transmission. The tendency for the larger or more numerous parasites to be involved suggests that unequal sequestration of contaminates between host and parasite tissue is a potential mediator. An alternative is that contaminants differentially affect parasites and their hosts by varying host susceptibility or parasite survival.
Allan, Lenka L; Mann, Koren K; Matulka, Raymond A; Ryu, Heui-Young; Schlezinger, Jennifer J; Sherr, David H
2003-12-01
Environmental polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons are immunotoxic in a variety of systems. In a model system of B lymphopoiesis, PAH exposure rapidly induces apoptosis in CD43- pre-B and CD43+ pro/pre-B cells. Apoptosis induction by 7,12-dimethylbenzo[a]anthracene (DMBA) is dependent upon AhR+ bone marrow stromal cells and likely involves DMBA metabolism within the stromal cell. However, it is not known if PAH-treated stromal cells release free metabolites or soluble factors that may directly induce B cell death or if the effector death signal is delivered by stromal cell-B cell contact. Here, we demonstrate that supernatants from DMBA-treated bone marrow stromal cells contain an activity capable of inducing apoptosis in pro/pre-B cells cocultured with stromal cells. This activity (1) is not produced when stromal cells are cotreated with DMBA and alpha-naphthoflavone (alpha-NF), an aryl hydrocarbon receptor (AhR) and cytochrome P-450 inhibitor, (2) is > or = 50 kDa, (3) is trypsin and heat sensitive, and (4) is dependent on AhR+ stromal cells, which in turn deliver the effector death signal to pro/pre-B cells. The results (1) argue against a role for a soluble, stromal cell-derived cytokine as the effector of PAH-induced pro/pre-B cell death, (2) exclude the possibility of a free metabolite acting directly on AhR- pro/pre-B cell targets, and (3) suggest the elaboration by stromal cells of a relatively stable, DMBA metabolite-protein complex capable of acting on other stromal cells at some distance. Collectively, these studies suggest that, while stromal cell products, e.g., metabolite-protein complexes, may affect the function of distant stromal cells, the effector death signal delivered by stromal cells to bone marrow B cells is mediated by cell-cell contact.
Davidsson, Sabina; Andren, Ove; Ohlson, Anna-Lena; Carlsson, Jessica; Andersson, Swen-Olof; Giunchi, Francesca; Rider, Jennifer R; Fiorentino, Michelangelo
2018-01-01
The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (T regs ). In the present study we evaluated the prevalence of T reg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4 + T regs and CD8 + T regs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of T regs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. In men with prostate cancer, similarly high numbers of stromal CD4 + T regs were identified in PAH and tumor, but CD4 + T regs were less common in PIN. Greater numbers of epithelial CD4+ T regs in normal prostatic tissue were positively associated with both Gleason score and pT-stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4 + T regs in the normal prostatic tissue counterpart. Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4 + T regs and indicate that transformation of the anti-tumor immune response may be initiated even before the primary tumor is established. © 2017 The Authors. The Prostate Published by Wiley Periodicals Inc.
Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T
2016-01-01
Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.
2005-01-01
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.
Noth, Elizabeth M.; Lurmann, Fred; Northcross, Amanda; Perrino, Charles; Vaughn, David; Hammond, S. Katharine
2016-01-01
Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap we measured wintertime PAH concentrations during 2010-2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during 4 time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R2=0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010-2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations. PMID:28083077
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaodong Huang; Dixon, D.G.; Greenberg, B.M.
1993-06-01
The toxicity of polycyclic aromatic hydrocarbons (PAHs) can be enhanced by both biotic and abiotic processes. This is exemplified by light, which, by virtue of the extensive [pi]-orbital systems of PAHs, can be a major factor in PAH toxicity. Light activation of PAHs is known to occur via photosensitization reactions and potentially by photomodification of the chemicals to more toxic species. To examine the modes of PAH action in the light and determine if the photomodified compounds are hazardous, the authors investigated the photoinduced toxicity of anthracene, phenanthrene and benzo[a]pyrene to the aquatic higher plant Lemna gibba (a duckweed). Toxicitymore » end points were inhibition of growth and extent of chlorosis. Light did indeed activated the phytotoxicity of PAHs, with UV radiation more effective than visible light. Dose-response curves based on chemical concentration and light intensity revealed the order of phytotoxic strength to be anthracene > phenanthrene > benzo[a]pyrene. To explore whether photomodified PAHs were contributing to toxicity, the chemicals were irradiated before toxicity testing. The rates of photomodification of the three PAHs were rapid, and the relative velocities were coincident with the order of toxic strength. Furthermore, the photomodified PAHs were more hazardous to Lemna than the intact compounds. Because interpretations of the potential impacts of PAHs in the environment are based mostly on measurements of the structurally intact chemicals, the severity of PAH hazards is possibly underestimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Holly M.; Scott, Richard P.; Holmes, Darrell
Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside other PAH exposure assessment methodologies. Wristbands were used within an established Columbia Center for Children’s Environmental Health birth cohort and compared to two traditional personal PAH exposure assessment methods: biological sampling with urine and active air monitoring with samplers (i.e. polyurethane foam (PUF) and filter) housed in backpacks. All samplers were deployed simultaneously on 22 pregnant women for 48-hours. Each woman provided one spot urine sample atmore » the end of the 48-hour period. Sixty-two and 20 PAHs were quantified in the wristbands and PUF/filter, respectively; and eight hydroxy-PAH (OH-PAH) metabolites were quantified in the urine. PAHs in the PUF/filter and OH-PAHs correlate significantly for two of the eight comparisons (rs=0.53 and p=0.01; rs=0.44 and p=0.04). PAHs in the wristband and OH-PAHs correlate significantly for four of the eight comparisons; 1-OH-phenanthrene and 1-OH-pyrene strongly correlate with the parent PAHs in the wristband (rs=0.76 and p=<0.0001; rs=0.66 and p=0.0009). These results suggest wristbands are more closely associated with OH-PAHs in urine than active personal air monitoring methods.« less
Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China.
Mao, Xiaoxuan; Yu, Zhousuo; Ding, Zhongyuan; Huang, Tao; Ma, Jianmin; Zhang, Gan; Li, Jun; Gao, Hong
2016-02-01
Gas phase polycyclic aromatic hydrocarbons (PAHs) in Hexi Corridor, Northwest China were determined during heating and non-heating seasons, respectively, using passive air samplers. Polyurethane foam (PUF) disks were chosen as the sampling medium. Fifteen PAHs out of the 16 PAHs classified by the United States Environmental Protection Agency (U.S. EPA) were detected in this field sampling investigation. The atmospheric levels of sampled PAHs were higher at urban sites than that at rural sites among 14 sampling sites and increased during heating season. The highest concentration (11.34 ng m(-3)) was observed in Lanzhou during the heating season, the capital and largest industrial city of Gansu Province. PAH contamination in air was dominated by three aromatic ring congeners. Possible sources of PAHs were apportioned using PAH species ratios and the principle component analysis (PCA) combined with a multiple linear regression (MLR) method. Fossil fuel consumption was identified to be the predominant source of PAHs over Hexi Corridor, accounting for 43 % of the concentration of total (15) PAHs. Backward and forward trajectory and cluster analysis were also carried out to identify potential origins of PAHs monitored at several urban and rural sites. Lung cancer risk of local residents to gas phase PAHs via inhalation exposure throughout the province was found to be around a critical value of the lung cancer risk level at 10(-6) recommended by the U.S. EPA risk assessment guideline.
Occupational PAH Exposures during Prescribed Pile Burns
Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.
2008-01-01
Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848
Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system.
Liu, K; Han, W; Pan, W P; Riley, J T
2001-06-29
Due to the extensive amount of data suggesting the hazards of these compounds, 16 polycyclic aromatic hydrocarbons (PAHs) are on the Environmental Protection Agency (EPA) Priority Pollutant List. Emissions of these PAHs in the flue gas from the combustion of four coals were measured during four 1000h combustion runs using the 0.1MW heat-input (MWth) bench-scale fluidized bed combustor (FBC). An on-line sampling system was designed for the 16 PAHs, which consisted of a glass wool filter, condenser, glass fiber filter, Teflon filter, and a Tenax trap. The filters and Tenax were extracted by methylene chloride and hexane, respectively, followed by GC/MS analysis using the selective ion monitoring (SIM) mode. In this project, the effects of operating parameters, limestone addition, chlorine content in the coal, and Ca/S molar ratio on the emissions of PAHs were studied. The results indicated that the emissions of PAHs in an FBC system are primarily dependent on the combustion temperature and excess air ratio. The injection of secondary air with high velocity in the freeboard effectively reduces PAH emissions. The addition of extra limestone can promote the formation of PAHs in the FBC system. Chlorine in the coal can possibly lead to large benzene ring PAH formation during combustion. The total PAH emission increases with an increase in the sulfur content of coal. Incomplete combustion results in PAHs with four or more benzene rings. High efficiency combustion results in PAHs with two or three benzene rings.
NASA Astrophysics Data System (ADS)
Adhikari, P. L.; Maiti, K.
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are particle-reactive and get preferentially sorbed on particulate organic carbon (POC), thus, the transport and fate of POC in aquatic systems plays an important role in biogeochemical cycling of PAHs. In this study, we examine POC and PAHs in finer suspended particulate matter collected from the Louisiana coast, shelf and slope - progressively south-west transect along the direction of the Mississippi River plume, and also from a transect of Atchafalaya River. The concentrations of total particulate PAHs (ΣPAH43) varied between 0.92 to 7.04 ng/L, while POC varied between 4 to 131 µg/L. The concentrations of total particulate ΣPAH43 as well as individual PAH analytes were significantly positively correlated to the concentrations of POC which indicates that the concentrations and transport of POC plays an important role in distribution of PAHs in marine systems. The river influence, characterized by the change in salinity, had significant negative correlation with both the concentrations of particulate PAHs and POC. These results show that the Mississippi River derived particle influx can be an important vector in delivering particle-reactive hydrophobic organic pollutants such as PAHs into the river dominated continental ecosystems in the northern Gulf of Mexico. The underlying seafloor sediment PAHs' concentration and accumulation rates were not correlated to the water column particulate PAH and POC concentrations, which is attributed to re-mineralization during vertical transport, sediment resuspension/redistribution and different timescales of comparison.
Xiong, GuanNan; Zhang, YunHui; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin
2017-08-01
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.
Liang, Jing; Fang, Hailan; Zhang, Taolin; Wang, Xingxiang
2017-04-01
Plants, particularly their leaves, play an important role in filtering both gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs). However, many studies have focused on the accumulation and adsorption functions of plant leaves, possibly underestimating the effects that plants have on air quality. Therefore, eight tree species from different locations in Shanghai were selected to assess PAH filtering (via adsorption and capture) using washed and unwashed plant leaves. The differences in the total PAH contents in the washed leaves were constant for the different species across the different sampling sites. The PAH levels decreased in the following order: industrial areas > traffic areas > urban areas > background area. The PAH compositions in the different plant leaves were dominated by fluorene (Fle), phenanthrene (Phe), anthracene (Ant), chrysene (Chr), fluoranthene (Flu), and pyrene (Pyr); notably, Phe accounted for 49.4-76.7% of the total PAHs. By comparing the PAH contents in the washed leaves with the PAH contents in the unwashed leaves, Pittosporum tobira (P. tobira), Ginkgo biloba (G. biloba), and Platanus acerifolia (P. acerifolia) were found to be efficient species for adsorbing PAHs, while Osmanthus fragrans (O. fragrans), Magnolia grandiflora (M. grandiflora), and Prunus cerasifera Ehrh. (P. cerasifera Ehrh.) were efficient species for capturing PAHs. The efficiencies of the plant leaves for the removal of PAHs from air occurred in the order of low molecular weight > medium molecular weight > high molecular weight PAHs.
Distribution and sources of polycyclic aromatic hydrocarbon (PAH) in marine environment of China
NASA Astrophysics Data System (ADS)
Zheng, Jinshu; Richardson, Bruce J.; Shouming, O.; Zheng, Jianhua
2004-06-01
Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and mutagenic compounds that have raised considerable environmental concern. The highest concentrations of PAHs in the coastal sediment samples in China was 5.8 11.0μg/g (dry weight) in the core from the Huangpu River, Shanghai. The second highest concentration of PAHs was 4.42μg/g (dry weight) in surface sediment of Victoria Harbour in Hong Kong, and 5.73μg/g (dry weight) in sediment of Jiaozhou Bay, Qingdao City. The low concentrations of PAHs were always in the sediments far away from industrial zones and cities, and ranged from 0.10 to 0.30μg/g (dry weight). Several environmental parameters are considered for the identification of sources of PAHs in marine environment. High proportion of naphthalene, low molecular weight PAHs and alkylated PAHs, plus high ratio of phenanthrene to anthracene (>15) and low ratio of fluoranthene to pyrene (<1) suggested a petrogenic source. According to these parameters, the Changjiang (Yangtze) River estuary of Shanghai, Jiaozhou Bay of Qingdao City, Zhujiang (Pearl) River mouth, Jiulong River mouth and most of Hong Kong coastal waters were heavily contaminated by PAHs from petrogenic sources. However, PAHs in rural coastal areas were dominated by pyrolytic origin PAHs. This review clearly showed that oil pollution and incomplete combustion of oil, coal and biomass are the main reason for PAHs anormalies in the study areas.
Wang, Lijun; Zhang, Shengwei; Wang, Li; Zhang, Wenjuan; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping; Li, Xiaoyun
2018-03-27
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, presenting potential threats to the ecological environment and human health. Sixty-two urban soil samples were collected in the typical semi-arid city of Xi'an in Northwest China. They were analyzed for concentration, pollution, and ecological and health risk of sixteen U.S. Environmental Protection Agency priority PAHs. The total concentrations of the sixteen PAHs (Σ16PAHs) in the urban soil ranged from 390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. The concentrations of some individual PAHs in the urban soil exceeded Dutch Target Values of Soil Quality and the Σ16PAHs represented heavy pollution. Pyrene and dibenz[a,h]anthracene had high ecological risk to aquatic/soil organisms, while other individual PAHs showed low ecological risk. The total ecological risk of PAHs to aquatic/soil organisms is classified as moderate. Toxic equivalency quantities (TEQs) of the sixteen PAHs varied between 21.16 and 1625.78 µg/kg, with an average of 423.86 µg/kg, indicating a relatively high toxicity potential. Ingestion and dermal adsorption of soil dust were major pathways of human exposure to PAHs from urban soil. Incremental lifetime cancer risks (ILCRs) of human exposure to PAHs were 2.86 × 10 -5 for children and 2.53 × 10 -5 for adults, suggesting that the cancer risk of human exposure to PAHs from urban soil is acceptable.
Wild, S R; Jones, K C
1995-01-01
This paper presents the first attempt to quantify the production, cycling, storage and loss of PAHs in the UK environment. Over 53 000 tonnes of sigmaPAHs (sum of 12 individual compounds) are estimated to reside in the contemporary UK environment, with soil being the major repository. If soils at contaminated sites are included, this estimate increases dramatically. Emission of PAHs to the UK atmosphere from primary combustion sources are estimated to be greater than 1000 tonnes sigmaPAHs per annum, with over 95% coming from domestic coal combustion, unregulated fires and vehicle emissions. It is estimated that approximately 210 tonnes of sigmaPAH are delivered to terrestrial surfaces each year via atmospheric deposition. Therefore, inputs of PAHs to the UK atmosphere outweigh the outputs by a factor of over 4. This may be explained by enhanced particulate deposition near point sources, PAH degradation in the atmosphere and transport away from the UK with prevailing winds. Disposal of waste residues is estimated to contribute a further 1000 tonnes of sigmaPAH per year to the terrestrial environment. It is illustrated that the use of creosote has the potential to release considerable quantities of PAHs to the UK environment. Temporal trends in PAH cycling are then considered. There is good evidence to suggest that air concentrations and fluxes to the UK surface are now lower than at any time throughout this century. Nonetheless, the UK sigmaPAH burden is still increasing at the present time, principally through retention by soils. However, there are marked differences in the behaviour of individual compounds: there is evidence, for example, that phenanthrene concentrations in soils have declined since the 1960s, although soil concentrations of benzo[a]pyrene and other heavier PAHs have continued to increase through this century. Volatilisation of low molecular weight PAHs accumulated in soils over previous decades may be making an important contribution to the current atmospheric burden. The major uncertainties identified by data on this budget are: (1) the lack of PAH concentrations in some environmental matrices; (2) the possible importance of contaminated soils as a major repository and source of PAHs; (3) the lack of emission data (especially vapour phase releases) for some PAH sources; (4) the importance of biodegradation and volatilisation as loss mechanisms for low molecular weight PAHs in soils; and (5) the importance of creosote use in the PAH cycle.
Bioavailability of phenanthrene in the presence of birnessite-mediated catechol polymers.
Russo, Fabio; Rao, Maria A; Gianfreda, Liliana
2005-07-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of aquatic and terrestrial environments. In soil, their fate may be affected by interactions with the soil biological community and soil colloids. This study was conducted to investigate the fate of phenanthrene (Phe), selected as a representative PAH, in simplified model systems, which simulate processes naturally occurring in soil. Phe was interacted with catechol (Cat), an orthodiphenol, and common intermediate in the microbial degradation of PAHs, and birnessite (Bir), an abiotic strong oxidative catalyst abundant in soil. Two experimental conditions were investigated: Cat (5 mM)+Bir (1 mg ml(-1))+Phe (0.05 mg ml(-1)) mixed at the same time and incubated for 24 h at 25 degrees C (Cat-Bir-Phe) and Cat+Bir incubated for 24 h at 25 degrees C before Phe addition and then incubated for a further 24 h (Cat-Bir+Phe). After incubation, the systems were analysed for residual Cat and Phe, supplied with a selected Phe-degrading mixed bacterial culture, and then the microbial degradation of Phe and the growth of cells were monitored. Complex phenomena simultaneously occurred. Cat was completely removed after a 24-h incubation with Bir, and no interference by Phe in the Bir-mediated transformation of Cat was observed. Elemental analysis and UV-Vis and Fourier transfer infrared spectra showed that Cat transformation by Bir produced soluble and insoluble polymeric aggregates involving Phe. The hydrocarbon also interacted with the surfaces of Bir either previously coated (Cat-Bir+Phe sample) or not by Cat polymers. When a Phe-degrading bacterial culture was added to the systems after Bir-mediated Cat polymerisation, a different behaviour was observed in terms of Phe consumption and bacterial growth, thus suggesting differentiated availability of Phe to the microbial cells. The hydrocarbon was completely transformed in the presence of Bir and/or Bir covered by Cat polymers. By contrast a reduced degradation was measured when the Phe was involved in the polymerisation of Cat and entrapped in the Cat polymers (Cat-Bir-Phe). Although Cat showed a toxic, lethal effect on the bacterial cells, microbial growth was observed in the presence of Cat and Cat polymers, as the only C source. The mechanism leading to the different availability of Phe in the presence of Cat and Bir is still not clear. Further investigations are requested to provide more insight into such a complex phenomenon.
Xiao, Yihua; Tong, Fuchun; Kuang, Yuanwen; Chen, Bufeng
2014-01-01
The upper layer of forest soils (0–20 cm depth) were collected from urban, suburban, and rural areas in the Pearl River Delta of Southern China to estimate the distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs). Total concentrations of PAHs in the forest soils decreased significantly along the urban–suburban–rural gradient, indicating the influence of anthropogenic emissions on the PAH distribution in forest soils. High and low molecular weight PAHs dominated in the urban and rural forest soils, respectively, implying the difference in emission sources between the areas. The values of PAH isomeric diagnostic ratios indicated that forest soil PAHs were mainly originated from traffic emissions, mixed sources and coal/wood combustion in the urban, suburban and rural areas, respectively. Principal component analysis revealed that traffic emissions, coal burning and residential biomass combustion were the three primary contributors to forest soil PAHs in the Pearl River Delta. Long range transportation of PAHs via atmosphere from urban area might also impact the PAHs distribution in the forest soils of rural area. PMID:24599040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carman, K.R.; Fleeger, J.W.; Pomarico, S.M.
1994-07-01
The influence of polynuclear aromatic hydrocarbons (PAH) on a sedimentary salt-marsh food web was examined using microcosm and laboratory experiments that simulated natural conditions. Microcosms were dosed with concentrations of PAH-contaminated sediment collected from a produced water site at Pass Fourchon, LA. Bacterial activity and abundance were not influenced by PAH, but microalgal activity and physiological condition were. Grazing by copepods on benthic microalgae was not significantly influenced by PAH concentration, nor was the physiological condition of copepods. Meiofaunal community composition was influenced by PAH, as nematodes became disproportionally abundant, and the nauplius/copepod ratio increased in high-PAH treatments. Overall, sublethalmore » effects of PAH were not pronounced at the concentrations (0.3 to 3.0 ppm) we examined. Fish-predation studies indicated that Leiostomus xanthurus could not detect PAH-contaminated sediments, and continued to feed normally when exposed to them. PAH contamination did not decrease the number of feeding strikes or sediment processing time. This lack of ability to discriminate between contaminated and uncontaminated sediments could have serious implications in terms of bioaccumulation of PAH (or other contaminants) by these bottom-feeding fish.« less
Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe
2011-07-01
The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.
Zha, Yan; Zhang, Yin L; Tang, Jie; Sun, Kai
2018-05-12
The present study was carried out to assess and understand the potential health risk, level of contamination, composition pattern, and sources of urban foliar dust in Nanjing City with respect to polycyclic aromatic hydrocarbons (PAHs). Five urban functional areas of foliar dust were analysed and the contents of 16 priority PAHs were determined. Total PAH concentrations in foliar dust ranged from 1.77 to 19.02 μg·g -1 , with an average value of 6.98 μg·g -1 . The PAH pattern was dominated by four and five-ring PAHs (contributing > 38% of total PAHs) in all of the five functional areas. The results indicated that the combustion of fossil fuel, coal, and biomass, as well as vehicle traffic emissions were the major sources of PAHs. The estimated incremental lifetime cancer risk due to PAHs in foliar dust were 8.19 × 10 -6 , 6.63 × 10 -6 , and 9.65 × 10 -6 for childhood, adolescence and adulthood, respectively, indicating a high risk of cancer from exposure to foliar dust in Nanjing. Our results indicated that foliar dust might be a useful indicator of atmospheric PAH pollution.
Toriba, Akira; Kuramae, Yayoi; Chetiyanukornkul, Thaneeya; Kizu, Ryoichi; Makino, Tsunehisa; Nakazawa, Hiroyuki; Hayakawa, Kazuichi
2003-01-01
A high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair. Fifteen kinds of PAHs classified as priority pollutants by the US EPA were quantified with four perdeuterated PAHs as internal standards. After 50 mg hair samples were washed with n-hexane to remove external contamination of PAHs, the samples were digested in 2.5 M sodium hydroxide. The digests were extracted with n-hexane and then analyzed by HPLC. Eleven kinds of PAHs were identified in hair samples of 20 subjects, and 10 kinds of PAHs were eventually quantified using the internal standards. For anthracene, chrysene and benzo[k]fluoranthene, significant differences were observed between smokers and non-smokers. Although benzo[b]fluoranthene, dibenz[a,h]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were observed in the particulates of indoor and outdoor air, they were not detected in all hair samples. The analysis of PAHs in human hair should be useful as a new biomarker to evaluate the exposure to PAHs.
Wu, Chunfa; Zhu, Hao; Luo, Yongming; Wang, Jun
2016-11-01
A total of 20 shallow groundwater samples were collected from a metal smelting area in southeastern China to determine the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs), calculate their toxic equivalents (TEQs) to benzo[a]pyrene (BaP), and estimate the carcinogenic risk of drinking the shallow groundwater. The total concentrations of the 16PAHs (∑PAHs) in the shallow groundwater ranged from 9.62 to 1663.93ngL(-1), with a mean value of 312.63ngL(-1), and the total concentrations of the 7 potentially carcinogenic PAHs (∑PAHC7) ranged from 3.11 to 33.60ngL(-1), with a mean value of 9.61ngL(-1). Naphthalene and BaP, were the dominant PAH species and potentially carcinogenic PAH species in the shallow groundwater of the study area, and they account for 89.97% of ∑PAHs and 82.62% of ∑PAHC7, respectively. High molecular weight-PAHs (HM-PAHs) accounted for a relatively high proportion in the majority of shallow groundwater samples with lower concentrations of ΣPAHs, indicated that HM-PAHs were mainly from historical residues. The TEQs to BaP of the 16PAHs in the 20 shallow groundwater samples varied greatly from 2.55 to 32.73ngL(-1), with a mean value of 8.61ngL(-1), and BaP was the dominant contributor. The total carcinogenic risk levels caused by the 16PAHs in the shallow groundwater in majority of the area were found to be higher than the limit set by the US EPA, posing a potentially serious health risk to those who depend on shallow groundwater for drinking water. Copyright © 2016. Published by Elsevier B.V.
Chen, She-Jun; Wang, Jing; Wang, Tao; Wang, Ting; Mai, Bi-Xian; Simonich, Staci L Massey
2016-12-15
Complex polycyclic aromatic hydrocarbon (PAH) mixtures including parent PAHs, high molecular weight PAHs (MW 302 PAHs), and halogenated PAHs (HPAHs) were measured in particulate matter (PM) in an urban area and a rural electronic waste area in South China. The concentrations of MW < 302 PAHs at two sites were not significantly different with annual means of 23.2 ± 17.2 and 33.7 ± 29.0 ng/m 3 , respectively. However the concentrations of both MW 302 PAHs (5.35 ± 3.72 ng/m 3 ) and HPAH (49.9 pg/m 3 ) were significantly higher at the e-waste site than the urban site (2.81 ± 2.36 ng/m 3 and 28.2 ± 28.5 pg/m 3 ), suggesting e-waste recycling being a significant source of these PAHs. The majority of PAHs exhibited higher concentrations in winter and spring and lower concentrations in fall and summer. Meteorological conditions and increased emissions of PAHs in northern China due to domestic heating in colder seasons are important factors influencing the PAH seasonal variations. Source apportionment by the chemical mass balance (CMB) model indicated that residential stoves (coal combustion), industrial boilers (coal combustion), biomass burning, and vehicular emission accounted for 38 ± 14%, 30 ± 11%, 22 ± 22%, and 10 ± 7% of the PAHs in the urban PM, respectively. Comparable contributions from these sources were also observed for PM at the e-waste site. PAH emission factors are needed for primitive e-waste recycling to further understand the importance of this source to ambient air. Copyright © 2016 Elsevier B.V. All rights reserved.
Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi
2015-04-01
Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.
Environmental and individual PAH exposures near rural natural gas extraction.
Paulik, L Blair; Hobbie, Kevin A; Rohlman, Diana; Smith, Brian W; Scott, Richard P; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A
2018-05-29
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants' homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment
NASA Astrophysics Data System (ADS)
De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani
2011-03-01
Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.
Suman, Swapnil; Sinha, Alok; Tarafdar, Abhrajyoti
2016-03-01
Present study was carried out to assess and understand potential health risk and to examine the impact of vehicular traffic on the contamination status of urban traffic soils in Dhanbad City with respect to polycyclic aromatic hydrocarbons (PAHs). Eight urban traffic sites and two control/rural site surface soils were analyzed and the contents of 13 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1.019 μg g(-1) to 10.856 μg g(-1) with an average value of 3.488 μg g(-1). At control/rural site, average concentration of total PAHs was found to be 0.640 μg g(-1). PAH pattern was dominated by four- and five-ring PAHs (contributing >50% to the total PAHs) at all the eight traffic sites. On the other hand, rural soil showed a predominance of low molecular weight three-ring PAHs (contributing >30% to the total PAHs). Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. The ratio of Ant/(Ant+Phe) varied from 0.03 to 0.44, averaging 0.10; Fla/(Fla+Pyr) from 0.39 to 0.954, averaging 0.52; BaA/(BaA+Chry) from 0.156 to 0.60, averaging 0.44; and IP/(IP+BgP) from 0.176 to 0.811, averaging 0.286. The results indicated that vehicular emission was the major source for PAHs contamination with moderate effect of coal combustion and biomass combustion. Carcinogenic potency of PAH load in traffic soil was nearly 6.15 times higher as compared to the control/rural soil. Copyright © 2015 Elsevier B.V. All rights reserved.
Ke, L; Wong, Teresa W Y; Wong, Y S; Tam, Nora F Y
2002-01-01
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m x 10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2,135 ng g(-1), and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2,135 (30 days) to 1,196 ng g(-1) (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3-0.4).
Characteristics of polycyclic aromatic hydrocarbons in food oils in Beijing catering services.
Hao, Xuewei; Yin, Yong; Feng, Sijie; Du, Xu; Yu, Jingyi; Yao, Zhiliang
2016-12-01
The concentrations and characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in 48 oil samples randomly collected from 30 catering services that employ six cooking methods were quantified via high-performance liquid chromatography (HPLC). These 16 PAHs were detected in almost all of the samples. The levels of Σ16PAHs, Σ4PAHs, benzo[a]pyrene (BaP), and total BaP equivalents (ΣBaP eq ) for the six cooking methods exceeded the legal limit. The concentrations of Σ4PAHs were approximately 9.5 to 16.4 times the legal limit proposed by the European Commission (Off J Eur Union 215:4-8, 2011), and the level of BaP exceeded the national standard in China by 4.7- to 10.6-fold, particularly in oil from fried foods. Low molecular weight PAHs (LMW PAHs) were predominant in fried food oil from different catering services and accounted for 94.8 % of these oils, and the ΣBaP eq of the high molecular weight PAHs (HMW PAHs) was 11.5-fold higher than that of the LMW PAHs. The concentrations of Σ16PAHs (3751.9-7585.8 μg/kg), Σ4PAHs (144.6-195.7 μg/kg), BaP (79.7-135.8 μg/kg), and ΣBaP eq (231.0-265.4 μg/kg) were highest in the samples from fast food restaurants/buffets (FB), followed by those from fried food stalls (FS) and then cooking restaurants/cafeterias (RC). The results of this study suggest that the government should strengthen control and supervision of PAH contamination in food and edible oils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Tao; Fuliu Xu; Wenxin Liu
Severe contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) occurs in many places in China mainly as a result of coal and biomass combustion. Because ingestion is the main source of human exposure to PAHs and vegetables are basic ingredients for the Chinese diet, it is important to know how and to what extent PAHs are accumulated in vegetables produced in contaminated soils. This study, evaluated the extent to which organic matter contents in soils influence the accumulation of PAHs by the roots of wheat plants and have developed a rapid chemical method for determining the bioavailability of PAH.more » Four PAHs, naphthalene, acenaphthylene, fluorene, and phenanthrene, were added to natural soil samples with different amounts of organic matter for pot experiments to evaluate apparent bioavailability of PAHs to wheat roots (Triticum aestivum L.). The extractabilities of PAHs in the soil were tested by a sequential extraction scheme using accelerated solvent extraction with water, n-hexane, and a mixture of dichloromethane and acetone as solvents. The water or n-hexane-extractable PAHs were positively correlated to dissolved organic matter (DOM) and negatively correlated to total organic matter (TOM), indicating mobilization and immobilization effects of DOM and TOM on soil PAHs, respectively. The apparent accumulation of PAHs by wheat roots was also positively and negatively correlated to DOM and TOM, respectively. As a result, there are positive correlations between the amounts of PAHs extracted by water or n-hexane and the quantities accumulated in plant roots, suggesting the feasibility of using water- or n-hexanes-extractable fractions as indicators of PAH availability to plants. 19 refs., 8 figs., 1 tab.« less
Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars
NASA Astrophysics Data System (ADS)
Seok, Ji Yeon; Li, Aigen
2017-02-01
A distinct set of broad emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm, is often detected in protoplanetary disks (PPDs). These features are commonly attributed to polycyclic aromatic hydrocarbons (PAHs). We model these emission features in the infrared spectra of 69 PPDs around 14 T Tauri and 55 Herbig Ae/Be stars in terms of astronomical PAHs. For each PPD, we derive the size distribution and the charge state of the PAHs. We then examine the correlations of the PAH properties (I.e., sizes and ionization fractions) with the stellar properties (e.g., stellar effective temperature, luminosity, and mass). We find that the characteristic size of the PAHs tends to correlate with the stellar effective temperature ({T}{eff}) and interpret this as the preferential photodissociation of small PAHs in systems with higher {T}{eff} of which the stellar photons are more energetic. In addition, the PAH size shows a moderate correlation with the red-ward wavelength shift of the 7.7 μm PAH feature that is commonly observed in disks around cool stars. The ionization fraction of PAHs does not seem to correlate with any stellar parameters. This is because the charging of PAHs depends on not only the stellar properties (e.g., {T}{eff}, luminosity) but also their spatial distribution in the disks. The marginally negative correlation between PAH size and stellar age suggests that continuous replenishment of PAHs via the outgassing of cometary bodies and/or the collisional grinding of planetesimals and asteroids is required to maintain the abundance of small PAHs against complete destruction by photodissociation.
Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C
2002-11-15
Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.
Borm, Paul J A; Cakmak, Gonca; Jermann, Erich; Weishaupt, Christel; Kempers, Pascal; van Schooten, Frederik Jan; Oberdörster, Günter; Schins, Roel P F
2005-06-01
The current study was designed to test the possible release and bioavailability of polycyclic aromatic hydrocarbons (PAHs) from a set of commercial carbon blacks (CBs) as well as the ability of these PAHs to form bulky DNA adducts. In four commercial CBs (Printex 90, Sterling V, N330, Lampblack 101), leaching of PAH was examined through (1) release of parent PAHs in saline with or without surfactant, and (2) PAH adducts in lung epithelial cells (A549) or in rat lungs after exposure to two CBs (Printex 90, Sterling V) for 13 weeks (50 mg/m(3)). In vitro experiments were done with original and extracted particles, as well as organic extracts of CB in DMSO. As positive controls, B[a]P (0.03 microM) and a mixture of 16 PAHs (0.1 microM) were used. No leaching of PAHs was measured in saline or surfactant-containing saline. In vitro incubations with CB particles (30-300 microg/cm(2)) revealed no adduct spots except for Sterling V. However, the spot was not concentration dependent and remains unidentified. Lung DNA from rats after inhalation of Printex 90 or Sterling V showed no spots related to PAH-DNA adduct formation compared to sham-exposed rats. The results suggest that PAHs are very tightly bound to these CBs. Only using organic extracts or particles of low-surface Sterling V, with high PAH content, PAHs may become available to form PAH-DNA adducts. However, the in vitro conditions showing this effect will not be encountered in vivo and renders this mechanism in particle-induced lung cancer at in vivo exposures highly unlikely.
Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.
Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng
2016-08-09
Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.
Man, Yu Bon; Chow, Ka Lai; Cheng, Zhang; Mo, Wing Yin; Chan, Yung Hau; Lam, James Chung Wah; Lau, Frankie Tat Kwong; Fung, Wing Cheong; Wong, Ming Hung
2017-03-01
Sewage discharge could be a major source of polycyclic aromatic hydrocarbons (PAHs) in the coastal waters. Stonecutters Island and Shatin Sewage Treatment Works (SCISTW and STSTW) in Hong Kong, adopted chemically enhanced primary treatment and biological treatment, respectively. This study aimed at (1) determining the removal efficiencies of PAHs, (2) comparing the capabilities in removing PAHs, and (3) characterizing the profile of each individual PAHs, in the two sewage treatment plants (STPs). Quantification of 16 PAHs was conducted by a Gas Chromatography. The concentrations of total PAHs decreased gradually along the treatment processes (from 301±255 and 307±217ng/L to 14.9±12.1 and 63.3±54.1ng/L in STSTW and SCISTW, respectively). It was noted that STSTW was more capable in removing total PAHs than SCISTW with average total removal efficiency 94.4%±4.12% vs. 79.2%±7.48% (p<0.05). The removal of PAHs was probably due to sorption in particular matter, confirmed by the higher distribution coefficient of individual and total PAHs in solid samples (dewatered sludge contained 92.5% and 74.7% of total PAHs in SCISTW and STSTW, respectively) than liquid samples (final effluent-total contained 7.53% and 25.3% of total PAHs in STSTW and SCISTW, respectively). Despite the impressive capability of STSTW and SCISTW in removing PAHs, there was still a considerable amount of total PAHs (1.85 and 39.3kg/year, respectively for the two STPs) being discharged into Hong Kong coastal waters, which would be an environmental concern. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Xuxu; Kong, Shaofei; Yin, Yan; Li, Li; Yuan, Liang; Li, Qi; Xiao, Hui; Chen, Kui
2016-06-01
Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected near the Nanjing Olympic Sports Center across the Asian Youth Games (AYG) period (from August 2 to August 28, 2013) were analyzed using GC-MS. Their levels, sources and health risks to human were discussed. Results showed that the total concentrations of PAHs in PM2.5 were 9.43, 7.21 and 8.83 ng m- 3 for pre- (August 3-15), during- (August 16-24) and post- (August 25-28) AYG periods, respectively. They were dominated by 5-ring and 6-ring PAHs. Total PAHs concentrations in PM2.5 during AYG period decreased by 24%, when compared with those for pre-AYG period. For combustion-derived PAHs and carcinogenic PAHs, they decreased by 26% and 21%, respectively. It implied that the pollution control measures implemented during the AYG can effectively reduce the emission of PAHs from various sources. The poor correlations between PAHs and meteorological parameters also favored that the variations of PAHs were raised by the changes of emission sources. Diagnostic ratios and principal component analysis revealed that vehicle emission and coal combustion were the predominant contributors, with minimal effects from biomass burning and petroleum. The health risks for human exposed to PAHs in PM2.5 were quantitatively assessed by BaP equivalent concentration (BaPeq) and the incremental lifetime cancer risk (ILCR). The estimated ILCR value of PAHs during the AYG periods decreased by 23% and 27% for children and adults when compared with those for the pre-AYG, respectively. It indicated that the pollution control measures reduced the risks of PAHs to sportsmen or human gathered around the Olympic Sport Center.
Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology.
Liu, Guijian; Niu, Zhiyuan; Van Niekerk, Daniel; Xue, Jian; Zheng, Liugen
2008-01-01
Coal may become more important as an energy source in the 21st century, and coal contains large quantities of organic and inorganic matter. When coal burns chemical and physical changes take place, and many toxic compounds are formed and emitted. Polycyclic aromatic hydrocarbons (PAHs) are among those compounds formed and are considered to pose potential health hazards because some PAHs are known carcinogens. Based on their toxicology, 16 PAHs are considered as priority pollutants by the USEPA. More attention must be given to the various methods of extraction and analysis of PAH from coal or coal products to accurately explain and determine the species of PAHs. The influences of the extraction time, solvents, and methods for PAH identification are important. In the future, more methods and influences will be studied more carefully and widely. PAHs are environmental pollutants, are highly lipid soluble, and can be absorbed by the lungs, gut, and skin of mammals because they are associated with fine particles from coal combustion. More attention is being given to PAHs because of their carcinogenic and mutagenic action. We suggest that when using a coal stove indoors, a chimney should be used; the particles and gas containing PAHs should be released outdoors to reduce the health hazard, especially in Southwest China. During coal utilization processes, such as coal combustion and pyrolysis, PAHs released may be divided into two categories according to their formation pathways: one pathway is derived from complex chemical reactions and the other is from free PAHs transferred from the original coal. The formation and emission of PAHs is a complex physical and chemical process that has received considerable attention in recent years. It is suggested that the formation mechanisms of PAHs will be an increasingly important topic for researchers to find methods for controlling emissions during coal combustion.
Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko
Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wallmore » thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in PAH development.« less
Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu
2013-06-18
Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios.
Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu
2013-01-01
Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios. PMID:23659377
Hong, Lei; Ghosh, Upal; Mahajan, Tania; Zare, Richard N; Luthy, Richard G
2003-08-15
This study assessed polycyclic aromatic hydrocarbon (PAH) association and aqueous partitioning in lampblack-impacted field soils from five sites in California that formerly housed oil-gas process operations. Lampblack is the solid residue resulting from the decomposition of crude oil at high temperatures in the gas-making operation and is coated or impregnated with oil gasification byproducts, among which PAHs are the compounds of the greatest regulatory concern. A suite of complementary measurements investigated the character of lampblack particles and PAH location and the associated effects on PAH partitioning between lampblack and water. PAH analyses on both whole samples and density-separated components demonstrated that 81-100% of PAHs in the lampblack-impacted soils was associated with lampblack particles. FTIR, 13C NMR, and SEM analyses showed that oil-gas lampblack solids comprise primarily aromatic carbon with soot-like structures. A free-phase aromatic oil may be present in some of the lampblack soils containing high PAH concentrations. Comparable long-term aqueous partitioning measurements were obtained with an air-bridge technique and with a centrifugation/alum flocculation procedure. Large solid/water partition coefficient (Kd) values were observed in samples exhibiting lower PAH and oil levels, whereas smaller Kd values were measured in lampblack samples containing high PAH levels. The former result is in agreement with an oil-soot partitioning model, and the latter is in agreement with a coal tar-water partitioning model. Lampblack containing high PAH levels appears to exhaust the sorption capacity of the soot-carbon, creating a free aromatic oil phase that exhibits partitioning behavior similar to PAHs in coal tar. This study improves mechanistic understanding of PAH sorption on aged lampblack residuals at former oil-gas sites and provides a framework for mechanistic assessment of PAH leaching potential and risk from such site materials.
Zhao, Long; Hou, Hong; Shangguan, Yuxian; Cheng, Bin; Xu, Yafei; Zhao, Ruifen; Zhang, Yigong; Hua, Xiaozan; Huo, Xiaolan; Zhao, Xiufeng
2014-10-01
A comprehensive investigation of the levels, distribution patterns, and sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils of the coal production area surrounding Xinzhou, China, was conducted, and the potential human health risks associated with the levels observed were addressed. A total of 247 samples collected from agricultural soils from the area were analyzed for sixteen PAHs, including highly carcinogenic isomers. The PAH concentrations had a range of n.d. to 782ngg(-1), with a mean value of 202ngg(-1). The two-three ring PAHs were the dominant species, making up 60 percent of total PAHs. Compared with the pollution levels and carcinogenic potential risks reported in other studies, the soil PAH concentrations in the study area were in the low to intermediate range. A positive matrix factorization model indicates that coal/biomass combustion, coal and oil combustion, and coke ovens are the primary PAH sources, accounting for 33 percent, 26 percent, and 24 percent of total PAHs, respectively. The benzo[a]pyrene equivalent (BaPeq) concentrations had a range of n.d. to 476ngg(-1) for PAH7c, with a mean value of 34ngg(-1). The BaPeq concentrations of PAH7c accounted for more than 99 percent of the ∑PAH16, which suggests that seven PAHs were major carcinogenic contributors of ∑PAH16. According to the Canadian Soil Quality Guidelines, only six of the soil samples had concentrations above the safe BaPeq value of 600ngg(-1); the elevated concentrations observed at these sites can be attributed to coal combustion and industrial activities. Exposure to these soils through direct contact probably poses a significant risk to human health as a result of the carcinogenic effects of PAHs. Copyright © 2014 Elsevier Inc. All rights reserved.
Generation and distribution of PAHs in the process of medical waste incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi
Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less
Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.
Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng
2010-03-01
In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastiaens, L.; Springael, D.; Wattiau, P.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp.more » Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Tu, Xingchen; Wang, Hao
The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency ofmore » the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.« less
Bacosa, Hernando Pactao; Inoue, Chihiro
2015-01-01
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo
2000-01-01
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347
The hydrogen coverage of interstellar PAHs
NASA Technical Reports Server (NTRS)
Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.
1986-01-01
The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.
Wang, Yujie; He, Jiexin; Wang, Shaorui; Luo, Chunling; Yin, Hua; Zhang, Gan
2017-10-01
Environmental pollution due to primitive e-waste dismantling activities has been intensively investigated over the last decade in the south-eastern coastal region of China. In the present study, we investigated the distribution and composition of polycyclic aromatic hydrocarbons (PAHs) in soils and plants around e-waste recycling sites in Longtang, Guangdong province, South China. The results indicated that PAH concentrations in rhizosphere soil and non-rhizosphere soil were in the range of 133 to 626 ng/g and 60 to 816 ng/g, respectively, while PAH levels in plant tissue were 96 to 388 ng/g in shoots and 143 to 605 ng/g in roots. PAHs were enriched in rhizosphere soils in comparison with non-rhizosphere soils. The concentrations of PAHs in plant tissues varied greatly among plant cultivars, indicating that the uptake of PAHs by plants is species-dependent. Different profiles of PAHs in the soil and the corresponding plant tissue implied that PAH uptake and translocation by plants were selective.The total daily intakes of PAHs and carcinogenic PAHs through vegetables at the e-waste recycling site were estimated to be 99 and 22 ng/kg/day, respectively, suggesting that potential health risks associated with the consumption of contaminated vegetables should not be ignored.
Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin
2018-04-08
To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.
Fang, Guor-Cheng; Chang, Kuan-Foo; Lu, Chungsying; Bai, Hsunling
2004-05-01
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.
[The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].
Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi
2014-12-01
To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.
The effect of sewage sludge fertilization on the concentration of PAHs in urban soils.
Wołejko, Elżbieta; Wydro, Urszula; Jabłońska-Trypuć, Agata; Butarewicz, Andrzej; Łoboda, Tadeusz
2018-01-01
This paper analyses sources of sixteen PAHs - polycyclic aromatic hydrocarbons in urbanized areas by using selected diagnostic ratios. Simultaneously, an attempt was made to determine how sewage sludge changes PAHs content in urbanized areas soils. In the experiment three lawns along the main roads in Bialystok with different traffic intensity, three doses of sewage sludge and two years of study were considered. There was no effect of fertilization with sewage sludge on the sum of 16 PAHs in urban soil samples, nevertheless, the sum of 16 PAHs was reduced from 2.6 in 2011 to 2.3 mg/kg in 2012. Among 16 tested PAHs compounds, benzo[a]pyrene was the most dominant compound in samples collected in both years - about 15% of all PAHs. The results suggest that application of sludge into the soil did not influence the concentration of 2-3-ring, 4-ring and 5-6-ring PAHs. For the objects fertilized with a dose 150.0 Mg/ha, of sludge the total sum of potentially carcinogenic PAHs in the urban soil lowered by approximately 68% in comparison with the control plots. PAHs contamination of the urban soil samples resulted from the influence of coal, petroleum and biomass combustion. Moreover, PAHs can enter soil via at mospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S.; Werner, D.; Luthy, R.G.
Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/smore » for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.« less
Ke, Chang-Liang; Gu, Yang-Guang; Liu, Qi; Li, Liu-Dong; Huang, Hong-Hui; Cai, Nan; Sun, Zhi-Wei
2017-04-15
Concentrations of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were measured in 15 marine wild organism species from South China Sea. The concentration (dry weight) of 16 PAHs ranged from 94.88 to 557.87ng/g, with a mean of 289.86ng/g. The concentrations of BaP in marine species were no detectable. The composition of PAHs was characterized by the 2- and 3-ring PAHs in marine species, and NA, PHE and FA were the dominant constituents. PAHs isomeric ratios indicated PAHs mainly originated from grass, wood and coal combustion, and petroleum. The human health risk assessment based on the excess cancer risk (ECR) suggested the probability of PAHs posing carcinogenic risk to human beings with consumption of marine organisms were negligible (probability<1×10 -6 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey
2016-10-15
In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with NO3/N2O5
NASA Astrophysics Data System (ADS)
Zimmermann, K.; Jariyasopit, N.; Simonich, S. L.; Atkinson, R.; Arey, J.
2012-12-01
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (nitro-PAHs) have been shown to be mutagenic in bacterial and mammalian assays and are classified as probable human carcinogens. Semi-volatile PAHs partition between the gas and particulate phases, depending on their liquid-phase vapor pressures and ambient temperatures. These PAHs have been extensively measured in ambient particulate matter and can ultimately undergo long-range transport from source regions (e.g., China to the western USA) (1). During transport these particle-bound PAHs may undergo reaction with NO3/N2O5 to form nitro-PAH derivatives. Previous studies of heterogeneous nitration of PAHs have used particles composed of graphite, diesel soot, and wood smoke (2-4). This study investigates the heterogeneous formation of nitro-PAHs from ambient particle-bound PAHs from Beijing, China and sites located within the Los Angeles air basin. These ambient particle samples, along with filters coated with isotopically labeled PAHs, were exposed to a mix of NO2/NO3/N2O5 in a 7000 L Teflon chamber, with analysis focused on the heterogeneous formation of molecular weight 247 and 273 nitro-PAHs. The heterogeneous formation of certain nitro-PAHs (including1-nitropyrene and 1- and 2-nitrotriphenylene) was observed for some, but not all, ambient samples. Formation of nitro-PAHs typically formed through gas-phase reactions (2-nitrofluoranthene and 2-nitropyrene) was not observed. The effect of particle age and local photochemical conditions during sampling on the degree of nitration in environmental chamber reactions, as well as ambient implications, will be presented. 1. Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Environ. Sci. Technol. 2007, 41, 3551-3558. 2. Esteve, W.; Budzinski, H.; Villenave, E. Atmospheric Environment 2004, 38, 6063-6072. 3. Nguyen, M.; Bedjanian, Y.; Guilloteau, A. Journal of Atmospheric Chemistry 2009, 62, 139-150. 4. Kamens, R. M.; Zhi-Hua, F.; Yao, Y.; Chen, D.; Chen, S.; Vartiainen, M. Chemosphere 1994, 28, 1623-1632.
Sarker, Subhodeep; Vashistha, Deepti; Saha Sarker, Munmun; Sarkar, A
2018-04-30
Molecular biomarkers are used world wide for quick assessment of the immediate effect of environmental pollution on marine ecosystems. Recently, we evaluated oxidative stress responses of marine rock oyster, Saccostrea cucullata impacted due to polycyclic aromatic hydrocarbons (PAHs) accumulated in their tissues at a few sampling sites along the coast of Goa around the region of the Arabian sea coast, India (Sarkar et al., 2017). Using a combination of partial alkaline unwinding and comet assays, we now report a comprehensive study on the impairment of DNA integrity (DI) in S. cucullata due to exposure to environmentally available PAHs and also heavy metals (Pb, Cd, Cu, Fe and Mn) along the Arabian Sea coast, Goa, India exclusively around the entire coast of Goa. First, we determined significant correlation between DI in S. cucullata and the extent of exposure to and bioaccumulation of different PAH compounds including 2-3 aromatic ring PAHs (R 2 , 0.95), 4-6 aromatic ring PAHs (R 2 , 0.85), oxygenated-PAHs (oxy-PAHs, R 2 , 0.84) and total PAHs (t-PAHs, R 2 , 0.98). Second, we observed dose-dependent decrease in DI in S. cucullata with increasing concentrations of different PAH components in oyster tissues. We substantiated our field observations with appropriate laboratory controls using benzo[a]pyrene (BaP). Third, we performed stepwise multiple regression analyses of different water quality parameters including pH, salinity, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrite (NO 2 ), nitrate (NO 3 ), phosphate (PO 4 ), turbidity and also t-PAH-biota, t-PAH-water with DI as the dependent variable. Among all these parameters, only four parameters such as t-PAH-biota in combination with DO, BOD and NO 2 showed significant correlation (R¯ 2 = 0.95) with loss in DI in S. cucullata. Based on these results, we created a map indicating the percentage of DNA damage in S. cucullata exposed to PAHs and heavy metals at each sampling location along the west coast of India around Goa, India. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan
2014-06-01
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.
Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang
2010-05-01
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.
Jacher, Joseph E.; Martin, Lisa J.; Chung, Wendy K.; Loyd, James E.; Nichols, William C.
2017-01-01
Pulmonary arterial hypertension (PAH) is characterized by obstruction of pre-capillary pulmonary arteries, which leads to sustained elevation of pulmonary arterial pressure. Identifying those at risk through early interventions, such as genetic testing, may mitigate disease course. Current practice guidelines recommend genetic counseling and offering genetic testing to individuals with heritable PAH, idiopathic PAH, and their family members. However, it is unclear if PAH specialists follow these recommendations. Thus, our research objective was to determine PAH specialists’ knowledge, utilization, and perceptions about genetic counseling and genetic testing. A survey was designed and distributed to PAH specialists who primarily work in the USA to assess their knowledge, practices, and attitudes about the genetics of PAH. Participants’ responses were analyzed using parametric and non-parametric statistics and groups were compared using the Wilcoxon rank sum test. PAH specialists had low perceived and actual knowledge of the genetics of PAH, with 13.2% perceiving themselves as knowledgeable and 27% actually being knowledgeable. Although these specialists had positive or ambivalent attitudes about genetic testing and genetic counseling, they had poor utilization of these genetic services, with almost 80% of participants never or rarely ordering genetic testing or referring their patients with PAH for genetic counseling. Physicians were more knowledgeable, but had lower perceptions of the value of genetic testing and genetic counseling compared to non-physicians (P < 0.05). The results suggest that increased education and awareness is needed about the genetics of PAH as well as the benefits of genetic testing and genetic counseling for individuals who treat patients with PAH. PMID:28597770
Wang, Lijun; Zhang, Shengwei; Wang, Li; Zhang, Wenjuan; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping; Li, Xiaoyun
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, presenting potential threats to the ecological environment and human health. Sixty-two urban soil samples were collected in the typical semi-arid city of Xi’an in Northwest China. They were analyzed for concentration, pollution, and ecological and health risk of sixteen U.S. Environmental Protection Agency priority PAHs. The total concentrations of the sixteen PAHs (Σ16PAHs) in the urban soil ranged from 390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. The concentrations of some individual PAHs in the urban soil exceeded Dutch Target Values of Soil Quality and the Σ16PAHs represented heavy pollution. Pyrene and dibenz[a,h]anthracene had high ecological risk to aquatic/soil organisms, while other individual PAHs showed low ecological risk. The total ecological risk of PAHs to aquatic/soil organisms is classified as moderate. Toxic equivalency quantities (TEQs) of the sixteen PAHs varied between 21.16 and 1625.78 µg/kg, with an average of 423.86 µg/kg, indicating a relatively high toxicity potential. Ingestion and dermal adsorption of soil dust were major pathways of human exposure to PAHs from urban soil. Incremental lifetime cancer risks (ILCRs) of human exposure to PAHs were 2.86 × 10−5 for children and 2.53 × 10−5 for adults, suggesting that the cancer risk of human exposure to PAHs from urban soil is acceptable. PMID:29584654
Wang, Chunhui; Wu, Shaohua; Zhou, Sheng Lu; Wang, Hui; Li, Baojie; Chen, Hao; Yu, Yanna; Shi, Yaxing
2015-09-15
Polycyclic aromatic hydrocarbons (PAHs) have become a major type of pollutant in urban areas and their degree of pollution and characteristics of spatial distribution differ between various regions. We conducted a comprehensive study about the concentration, source, spatial distribution, and health risk of 16 PAHs from urban to rural soils in Nanjing. The mean total concentrations of 16 PAHs (∑16PAHs) were 3330 ng g(-1) for urban soils, 1680 ng g(-1) for suburban soils, and 1060 ng g(-1) for rural soils. Five sources in urban, suburban, and rural areas of Nanjing were identified by positive matrix factorization. Their relative contributions of sources to the total soil PAH burden in descending order was coal combustion, vehicle emissions, biomass burning, coke tar, and oil in urban areas; in suburban areas the main sources of soil PAHs were gasoline engine and diesel engine, whereas in rural areas the main sources were creosote and biomass burning. The spatial distribution of soil PAH concentrations shows that old urban districts and commercial centers were the most contaminated of all areas in Nanjing. The distribution pattern of heavier PAHs was in accordance with ∑16PAHs, whereas lighter PAHs show some special characteristics. Health risk assessment based on toxic equivalency factors of benzo[a]pyrene indicated a low concentration of PAHs in most areas in Nanjing, but some sensitive sites should draw considerable attention. We conclude that urbanization has accelerated the accumulation of soil PAHs and increased the environmental risk for urban residents. Copyright © 2015. Published by Elsevier B.V.
Li, Jing; Li, Fadong; Liu, Qiang
2017-07-01
Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping
2018-05-11
Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.
The PAH Emission Characteristics of the Reflection Nebula NGC 2023
NASA Astrophysics Data System (ADS)
Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.
2017-02-01
We present 5-20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7-9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7-9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7-9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.
Zong, Yanan; Liu, Ning; Ma, Shanshan; Bai, Ying; Guan, Fangxia; Kong, Xiangdong
2018-08-20
Phenylketonuria (PKU) is the most common inherited metabolic disease, an autosomal recessive disorder affecting >10,000 newborns each year globally. It can be caused by over 1000 different naturally occurring mutations in the phenylalanine hydroxylase (PAH) gene. We analyzed three novel naturally occurring PAH gene variants: p.Glu178Lys (c.532G>A), p.Val245Met (c.733G>A) and p.Ser250Phe (c.749C>T). The mutant effect on the PAH enzyme structure and function was predicted by bioinformatics software. Vectors expressing the corresponding PAH variants were generated for expression in E. coli and in HEK293T cells. The RNA expression of the three PAH variants was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The mutant PAH protein levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA). All three variants were predicted to be pathogenic by bioinformatics analysis. The transcription of the three PAH variants was similar to the wild type PAH gene in HEK293T cells. In contrast, the levels of mutant PAH proteins decreased significantly compared to the wild type control, in both E. coli and HEK293T cells. Our results indicate that the three novel PAH gene variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) impair PAH protein expression and function in prokaryotic and eukaryotic cells. Copyright © 2018. Published by Elsevier B.V.
Deyerling, Dominik; Wang, Jingxian; Hu, Wei; Westrich, Bernhard; Peng, Chengrong; Bi, Yonghong; Henkelmann, Bernhard; Schramm, Karl-Werner
2014-09-01
Mass fluxes of polycyclic aromatic hydrocarbons (PAHs) were calculated for the Three Gorges Reservoir (TGR) in China, based on concentration and discharge data from the Yangtze River. Virtual Organisms (VOs) have been applied during four campaigns in 2008, 2009 (twice) and 2011 at sampling sites distributed from Chongqing to Maoping. The total PAH mass fluxes ranged from 110 to 2,160 mg s(-1). Highest loads were determined at Chongqing with a decreasing trend towards Maoping in all four sampling campaigns. PAH remediation capacity of the TGR was found to be high as the mass flux reduced by more than half from upstream to downstream. Responsible processes are thought to be adsorption of PAH to suspended particles, dilution and degradation. Furthermore, the dependence of PAH concentration upon water depth was investigated at Maoping in front of the Three Gorges Dam. Although considerable differences could be revealed, there was no trend observable. Sampling of water with self-packed filter cartridges confirmed more homogenous PAH depth distribution. Moreover, PAH content of suspended particles was estimated from water concentrations gathered by VOs based on a water-particle separation model and subsequently compared to PAH concentration measured in water and in filter cartridges. It could be shown that the modeled data predicts the concentration caused by particle-bound PAHs to be about 6 times lower than PAHs dissolved in water. Besides, the model estimates the proportions of 5- and 6-ring PAHs being higher than in water phase. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Ruwei; Liu, Guijian; Zhang, Jiamei
2015-12-15
Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. Copyright © 2015. Published by Elsevier B.V.
Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T
2018-03-01
Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.
NASA Astrophysics Data System (ADS)
Dong, D.; Guo, Z.; Liu, X.; Hua, X.; Liang, D.
2013-12-01
Polycyclic aromatic hydrocarbons (PAHs), a class of typical persistent organic pollutants, widely exist in the environment and are potentially harmful to human health. They can enter the waters through atmospheric deposition, soil leaching, shipping, sewage discharges and surface runoff. In recent years, many studies on the distributions of PAHs in major rivers, lakes and bays around the world have been carried out. In this study, 9 surface sediments (0-10cm) were sampled from the Songhua River in Jilin and Heilongjiang provinces. The contents of 16 PAHs in the US Environmental Protection Agency list of priority pollutants were determined and their spatial distributions were discussed. Sediment cores (50cm length) in three oxbow lakes in this area were also collected and cut into 2 cm thickness sub-samples. PAHs concentrations in these samples were determined and the cores were dated using a 210Pb geochronology technique. Finally, the sedimentary history of PAHs in the Songhua River since the 1920s was revealed. Results indicated that total concentration of the 16 PAHs analyzed in the surface sediments was 187-2079 ng/g (dry weight), and the mean was 1029 ng/g. Sediments collected from near urban areas (Jilin and Harbin City) contained higher PAHs content. Compared with the domestic and international rivers, the PAHs content in this river sediments is at a medium level. The PAHs profiles showed that 2-3 ring PAHs, especially naphthalene, were dominant in all of the samples. Sedimentary flux can reflect the accumulating history of pollutants better. The PAHs fluxes were low and varied little from the 1920s to 1970s, but higher PAH fluxes were found since the 1980s in each core (Fig. 1). The PAHs sedimentary flux near Harbin City (Shuangcheng) was found changed remarkably. We inferred that the PAHs might be influenced by hydrological conditions, population mobility and economic activity in this area. PAHs sedimentary record in the Songhua River revealed that the economic development in large cities in this area lagged behind the environmental protection. Acknowledgments: This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100061110041), and the Major Science and Technology Program for Water Pollution Control and Treatment, China (No. 2009ZX0707-001-03). Fig. 1 PAHs fluxes vs. year in sediment cores from Songyuan, Shuangcheng (Harbin) and Mulan
Witter, Amy E; Nguyen, Minh H
2016-02-01
Recent studies indicate that PAH transformation products such as ketone or quinone-substituted PAHs (OPAHs) are potent aryl hydrocarbon receptor (AhR) activators that elicit toxicological effects independent of those observed for PAHs. Here, we measured eight OPAHs, two sulfur-containing (SPAH), one oxygen-containing (DBF), and one nitrogen-containing (CARB) heterocyclic PAHs (i.e. ΣONS-PAHs = OPAH8 + SPAH + DBF + CARB) in 35 stream sediments collected from a small (∼1303 km(2)) urban watershed located in south-central Pennsylvania, USA. Combined ΣONS-PAH concentrations ranged from 59 to 1897 μg kg(-1) (mean = 568 μg kg(-1); median = 425 μg kg(-1)) and were 2.4 times higher in urban versus rural areas, suggesting that activities taking place on urban land serve as a source of ΣONS-PAHs to sediments. To evaluate urban land use metrics that might explain these data, Spearman rank correlation analyses was used to evaluate the degree of association between ΣONS-PAH concentrations and urban land-use/land-cover metrics along an urban-rural transect at two spatial scales (500-m and 1000-m upstream). Combined ΣONS-PAH concentrations showed highly significant (p < 0.0001) correlations with ΣPAH19, residential and commercial/industrial land use (RESCI), and combined state and local road miles (MILES), suggesting that ΣONS-PAHs originate from similar sources as PAHs. To evaluate OPAH sources, a subset of ΣONS-PAHs for which reference assemblages exist, an average OPAH fractional assemblage for urban sediments was derived using agglomerative hierarchal cluster (AHC) analysis, and compared to published OPAH source profiles. Urban sediments from the Condoguinet Creek (n = 21) showed highly significant correlations with urban particulate matter (X(2) = 0.05, r = 0.91, p = 0.0047), suggesting that urban particulate matter is an important OPAH source to sediments in this watershed. Results suggest the inclusion of ΣONS-PAH measurements adds value to traditional PAH analyses, and may help elucidate and refine pollutant source identification in urban watersheds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bernstein, Elana J; Bathon, Joan M; Lederer, David J
2018-05-01
Pulmonary arterial hypertension (PAH) is a major cause of morbidity and mortality in adults with systemic autoimmune rheumatic diseases (ARDs). The aim of this study was to determine whether adults with ARDs and PAH on right-sided heart catheterization (ARD-PAH) have increased mortality following lung transplantation compared with those with PAH not due to an ARD. We conducted a retrospective cohort study of 93 adults with ARD-PAH and 222 adults with PAH who underwent lung transplantation in the USA between 4 May 2005 and 9 March 2015 using data from the United Network for Organ Sharing. We examined associations between diagnosis and survival after lung transplantation using stratified Cox models adjusted for potential confounding recipient factors. Among adults undergoing lung transplantation in the USA, we did not detect a difference in the multivariable-adjusted mortality rate between those with ARD-PAH and those with PAH [hazard ratio 0.75 (95% CI 0.47, 1.19)]. The presence of an ARD was not associated with increased mortality after lung transplantation in adults with PAH.
Tao, Shi-Yang; Zhong, Bu-Qing; Lin, Yan; Ma, Jin; Zhou, Yongzhang; Hou, Hong; Zhao, Long; Sun, Zaijin; Qin, Xiaopeng; Shi, Huading
2017-07-01
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 128 surface soil samples from Xiangfen County, northern China. The total mass concentration of these PAHs ranged from 52 to 10,524ng/g, with a mean of 723ng/g. Four-ring PAHs contributed almost 50% of the total PAH burden. A self-organizing map and positive matrix factorization were applied to investigate the spatial distribution and source apportionment of PAHs. Three emission sources of PAHs were identified, namely, coking ovens (21.9%), coal/biomass combustion (60.1%), and anthracene oil (18.0%). High concentrations of low-molecular-weight PAHs were particularly apparent in the coking plant zone in the region around Gucheng Town. High-molecular-weight PAHs mainly originated from coal/biomass combustion around Gucheng Town, Xincheng Town, and Taosi Town. PAHs in the soil of Xiangfen County are unlikely to pose a significant cancer risk for the population. Copyright © 2017 Elsevier Inc. All rights reserved.
[Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].
Ciemniak, Artur; Witczak, Agata
2010-01-01
Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2015-07-01
The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.
Hong, Yongseok; Wetzel, Dana; Pulster, Erin L; Hull, Pete; Reible, Danny; Hwang, Hyun-Min; Ji, Pan; Rifkin, Erik; Bouwer, Edward
2015-10-01
One year after the Deepwater Horizon oil spill accident, semipermeable membrane devices (SPMDs) and polyethylene devices (PEDs) were deployed in wetland areas and coastal areas of the Gulf of Mexico (GOM) to monitor polycyclic aromatic hydrocarbons (PAHs). The measured PAH levels with the PEDs in coastal areas were 0.05-1.9 ng/L in water and 0.03-9.7 ng/L in sediment porewater. With the SPMDs, the measured PAH levels in wetlands (Barataria Bay) were 1.4-73 ng/L in water and 3.3-107 ng/L in porewater. The total PAH concentrations in the coastal areas were close to the reported baseline PAH concentrations in GOM; however, the total PAH concentrations in the wetland areas were one or two orders of magnitude higher than those reported in the coastal areas. In light of the significant spatial variability of PAHs in the Gulf's environments, baseline information on PAHs should be obtained in specific areas periodically.
Li, Fenglan; Zeng, Xiaokang; Yang, Junda; Zhou, Kai; Zan, Qijie; Lei, Anping; Tam, Nora F Y
2014-08-30
The concentrations of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) in sediments, roots and leaves of three mangrove swamps in Shenzhen, China, namely Futian, Baguang and Waterlands, were determined. The mean concentration of ∑PAHs in Futian (4480 ng g(-1)) was significantly higher than that in Baguang (1262 ng g(-1)) and Waterlands (2711 ng g(-1)). Among the 16 PAHs, the concentration of naphthalene was the highest. Based on the ratios of phenanthrene/anthracene and fluoranthene/pyrene, PAHs in Futian and Waterlands came from petrogenic and pyrolytic sources, while Baguang was mainly from pyrolytic. More PAHs were accumulated in leaves, as reflected by its higher mean concentration of ∑PAHs (3697 ng g(-1)) and bioconcentration factor of PAHs (BCF) (>1.5) than that in roots. The BCF values in plants collected from Futian were significantly higher than that from Waterlands. These results indicated that more attention should be paid to the PAH contamination in Futian. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre
2015-04-09
Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François
2016-03-01
We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.
Kee, Kehkooi; Flores, Martha; Cedars, Marcelle I; Reijo Pera, Renee A
2010-09-01
Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.
NASA Astrophysics Data System (ADS)
Boersma, Christiaan
We propose to quantitatively calibrate the PAH band strength ratios that have been traditionally used as qualitative proxies of PAH properties and linking PAH observables with local astrophysical conditions, thus developing PAHs into quantitative probes of astronomical environments. This will culminate in a toolbox (calibration charts) that can be used by PAH experts and non-PAH experts alike to unlock the information hidden in PAH emission sources that are part of the Spitzer and ISO archives. Furthermore, the proposed work is critical to mine the treasure trove of information JWST will return as it will capture, for the first time, the complete mid-infrared (IR) PAH spectrum with fully resolved features, through a single aperture, and along single lines-of-sight; making it possible to fully extract the information contained in the PAH spectra. In short, the work proposed here represents a major step in enabling the astronomical PAH model to reach its full potential as a diagnostic of the physical and chemical conditions in objects spanning the Universe. Polycyclic aromatic hydrocarbons (PAHs), a common and important reservoir of accessible carbon across the Universe, play an intrinsic part in the formation of stars, planets and possibly even life itself. While most PAH spectra appear quite similar, they differ in detail and contain a wealth of untapped information. Thanks to recent advances in laboratory studies and computer-based calculations of PAH spectra, the majority of which have been made at NASA Ames, coupled with the astronomical modeling tools we have developed, we can interpret the spectral details at levels never before possible. This enables us to extract local physical conditions and track subtle changes in these conditions at levels previously impossible. Building upon the tools and paradigms developed as part of the publicly available NASA Ames PAH IR Spectroscopic Database (PAHdb; www.astrochem.org/pahdb/), the purpose of our proposed research is to extend and test the applicability of the PAH proxy (band strength ratio) calibrations we have developed that are based on a single object, the reflection nebula (RN) NGC7023, to, and within, a variety of objects, each representing different types of astronomical environments. Starting with the results for NGC7023, our initial focus will be placed on other RNe for which high-quality Spitzer spectral maps are available. After this, the focus will shift to Spitzer and ISO catalogs holding PAH spectra from different object types and extragalactic sources at different quality levels. We will first fit the astronomical spectra using the PAH spectra and tools in PAHdb, a database and toolset developed by the proposers and perfectly suited for dealing with large spectral data sets. This approach quantitatively breaks down the emission into the different subclasses, of, PAH size, charge, structure and composition. Following this, the data will be analyzed using the traditional, qualitative, proxy approach in which the PAH bands are isolated and their strengths measured. Combining the results of these two approaches enables us to test the validity of, and to quantitatively calibrate, the PAH proxies that have been traditionally used to probe astronomical environments, and make a quantitative link between PAH observables and local astrophysical conditions. Previous work on NGC7023 demonstrated the potential of this approach, and applying it to different object types at varying quality levels will establish whether his approach holds in general or if adjustments must be made to tackle the full range of PAH-emitting astronomical environments. In parallel, we will perform stability analysis on the fits; establish quality requirements for spectral resolution, spectral range, and signal-to-noise; and make uncertainty estimates for the derived parameters. This is of particular importance for extragalactic sources, as it will establish a data quality threshold.
Gomes, Rui B; Nogueira, Regina; Oliveira, José M; Peixoto, João; Brito, António G
2009-09-01
Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs-anthracene, fluorene, phenanthrene, and pyrene-were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated with wastewater from a fuel station spill retention basin. The SPME kinetic parameters-k (1) (uptake rate), k (2) (desorption rate), and K (SPME) (partition coefficient)-were determined from experimental data modeling. The determination of the free fraction required 15-min sampling to ensure that PAH depletion from sample was below 1%. For total PAH, a 30-min extraction at 100 degrees C ensured the maximum signal response in the GC-MS. For the determination of free and total PAHs, extractions were performed before reaching the SPME equilibrium. The wastewater used in this study had no free fraction of the analyzed PAHs. However, the four studied PAHs were found when the method for total PAH was used. The addition of NOM and NAPL dramatically decreased the efficiency of the SPME. This decrease was the result of a greater partition of the PAHs to the NAPL and NOM phases. This fact was also observed in the analysis of the fuel station spill retention basin, where no free PAH was measured. However, using the method of standard addition for the determination of total PAH, it was possible to quantify all four PAHs. The method developed in the present study was found to be adequate to differentiate between free and total PAH present in oily wastewater. It was determined that the presence of NOM and NAPL had a negative effect on SPME efficiency. The presence of binding substances had a great influence on SPME kinetics. Therefore, it is of extreme importance to determine their degree of interference when analyzing oily wastewaters or results can otherwise be erroneous. Other factors influencing the total PAH determinations should be considered in further studies.
Li, Chun-The; Lin, Yuan-Chung; Lee, Wen-Jhy; Tsai, Perng-Jy
2003-01-01
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) concentrations. However, this does not consider the contribution of cooking sources of PAHs. This study set out, first, to assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent (B[a]Peq) emissions from cooking sources to the urban atmosphere. To illustrate the importance of cooking sources, PAH emissions from traffic sources were then calculated and compared. The entire study was conducted on a city located in southern Taiwan. PAH samples were collected from the exhaust stacks of four types of restaurant: Chinese, Western, fast food, and Japanese. For total PAHs, results show that the fractions of gaseous PAHs (range, 75.9-89.9%) were consistently higher than the fractions of particulate PAHs (range, 10.1-24.1%) in emissions from the four types of restaurant. But for total B[a]Peq, we found that the contributions of gaseous PAHs (range, 15.7-21.9%) were consistently lower than the contributions of particulate PAHs (range, 78.1-84.3%). For emission rates of both total PAHs and total B[a]Peq, a consistent trend was found for the four types of restaurant: Chinese (2,038 and 154 kg/year, respectively) > Western (258 and 20.4 kg/year, respectively) > fast food (31.4 and 0.104 kg/year, respectively) > Japanese (5.11 and 0.014 kg/year, respectively). By directly adapting the emission data obtained from Chinese restaurants, we found that emission rates on total PAHs and total B[a]Peq for home kitchen sources were 6,639 and 501 kg/year, respectively. By combining both restaurant sources and home kitchen sources, this study yielded emission rates of total PAHs and total B[a]Peq from cooking sources of the studied city of 8,973 and 675 kg/year, respectively. Compared with PAH emissions from traffic sources in the same city, we found that although the emission rates of total PAHs for cooking sources were significantly less than those for traffic sources (13,500 kg/year), the emission rates of total B[a]Peq for cooking sources were much higher than those for traffic sources (61.4 kg/year). The above results clearly indicate that although cooking sources are less important than traffic sources in contributing to total PAH emissions, PAH emissions from cooking sources might cause much more serious problems than traffic sources, from the perspective of carcinogenic potency. PMID:12676603
Ma, Yuning; Harrad, Stuart
2015-11-01
This review summarizes the published literature on the presence of polycyclic aromatic hydrocarbons (PAH) in indoor air, settled house dust, and food, and highlights geographical and temporal trends in indoor PAH contamination. In both indoor air and dust, ΣPAH concentrations in North America have decreased over the past 30 years with a halving time of 6.7±1.9years in indoor air and 5.0±2.3 years in indoor dust. In contrast, indoor PAH concentrations in Asia have remained steady. Concentrations of ΣPAH in indoor air are significantly (p<0.01) higher in Asia than North America. In studies recording both vapor and particulate phases, the global average concentration in indoor air of ΣPAH excluding naphthalene is between 7 and 14,300 ng/m(3). Over a similar period, the average ΣPAH concentration in house dust ranges between 127 to 115,817ng/g. Indoor/outdoor ratios of atmospheric concentrations of ΣPAH have declined globally with a half-life of 6.3±2.3 years. While indoor/outdoor ratios for benzo[a]pyrene toxicity equivalents (BaPeq) declined in North America with a half-life of 12.2±3.2 years, no significant decline was observed when data from all regions were considered. Comparison of the global database, revealed that I/O ratios for ΣPAH (average=4.3±1.3), exceeded significantly those of BaPeq (average=1.7±0.4) in the same samples. The significant decline in global I/O ratios suggests that indoor sources of PAH have been controlled more effectively than outdoor sources. Moreover, the significantly higher I/O ratios for ΣPAH compared to BaPeq, imply that indoor sources of PAH emit proportionally more of the less carcinogenic PAH than outdoor sources. Dietary exposure to PAH ranges from 137 to 55,000 ng/day. Definitive spatiotemporal trends in dietary exposure were precluded due to relatively small number of relevant studies. However, although reported in only one study, PAH concentrations in Chinese diets exceeded those in diet from other parts of the world, a pattern consistent with the spatial trends observed for concentrations of PAH in indoor air. Evaluation of human exposure to ΣPAH via inhalation, dust and diet ingestion, suggests that while intake via diet and inhalation exceeds that via dust ingestion; all three pathways contribute and merit continued assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
BIOAVAILABILITY OF PAHS FROM PYROGENIC AND PETROGENIC SOURCES MEASURED USING GLASS FISH
Geochemical evidence indicates PAHs associated with pyrogenic sources behave differently than PAHs from petrogenic sources. There is also some evidence and supposition that PAHs from pyrogenic and petrogenic sources demonstrate differing bioavailability. In this study, we evaluat...
NASA Astrophysics Data System (ADS)
Yan, Yulong; He, Qiusheng; Guo, Lili; Li, Hongyan; Zhang, Hefeng; Shao, Min; Wang, Yuhang
2017-09-01
Atmospheric polycyclic aromatic hydrocarbons (PAHs) were analyzed in the gas phase and total suspended particulate (TSP) from summer 2014 to spring 2015 in Taiyuan, northern China. Taiyuan is an area with some of the highest atmospheric PAH levels in the world, and the total PAHs was highest in winter, followed by autumn, spring and summer. Low air temperature and a southern wind with low speed often led to higher PAH levels in Taiyuan. Although less than a half fraction, the benzo[a]pyrene equivalent concentration (BEQ) of particulate PAHs was almost equal to that of the total PAHs. Four sources, coal combustion, vehicle emissions, coke processing and biomass burning, were determined by positive matrix factorization (PMF), with contributions of 41.36%, 24.74%, 19.71% and 14.18% to the total PAHs in Taiyuan, respectively. Compared with the total PAHs, the particulate PAH solution underestimated the contribution of the coke processing, especially in winter, and overestimated vehicle emissions. The coke processing had a greater contribution to atmospheric PAHs with a southern wind at low speeds in winter in Taiyuan. Ultimately, the coke plants distributed in the Taiyuan-Linfen-Yuncheng basin should receive greater attention for air quality improvement in Taiyuan.
Sun, Lu; Liao, Xiaoyong; Yan, Xiulan; Zhu, Ganghui; Ma, Dong
2014-11-01
The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, Abhijeet; Sander, Markus; Janardhanan, Vinod
2010-03-15
This paper presents a theoretical study on the physical interaction between polycyclic aromatic hydrocarbons (PAHs) and their clusters of different sizes in laminar premixed flames. Two models are employed for this study: a detailed PAH growth model, referred to as the kinetic Monte Carlo - aromatic site (KMC-ARS) model [Raj et al., Combust. Flame 156 (2009) 896-913]; and a multivariate PAH population balance model, referred to as the PAH - primary particle (PAH-PP) model. Both the models are solved by kinetic Monte Carlo methods. PAH mass spectra are generated using the PAH-PP model, and compared to the experimentally observed spectramore » for a laminar premixed ethylene flame. The position of the maxima of PAH dimers in the spectra and their concentrations are found to depend strongly on the collision efficiency of PAH coagulation. The variation in the collision efficiency with various flame and PAH parameters is studied to determine the factors on which it may depend. A correlation for the collision efficiency is proposed by comparing the computed and the observed spectra for an ethylene flame. With this correlation, a good agreement between the computed and the observed spectra for a number of laminar premixed ethylene flames is found. (author)« less
2015-01-01
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water–air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m3 and 0.3 and 27 ng/m3, respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air–water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10 000 ng/m2/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m2/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air–water chemical flux determinations with passive sampling technology. PMID:25412353
Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Murakami, Michio; Abe, Maho; Kakumoto, Yoriko; Kawano, Hiromi; Fukasawa, Hiroko; Saha, Mahua; Takada, Hideshige
2012-07-01
The utility of ginkgo leaves as biomonitors of airborne polycyclic aromatic hydrocarbons (PAHs) was evaluated. We investigated PAH concentrations among tree species, the effect of variations in leaf position in a tree, tissue distributions, correlations between ginkgo leaves and air, and seasonal variations. Among the five species examined (Ginkgo biloba L., Zelkova serrata Makino, Liriodendron tulipifera L., Prunus yedoensis Matsum, and Magnolia kobus DC.), ginkgo accumulated the greatest amount of PAHs from roadside air. Most PAHs (˜80%) were accumulated in the wax fraction, and most of the remainder (17%) penetrated the inner tissues of the leaves. PAH concentrations in ginkgo leaves decreased with increasing height and distance from the road, reflecting the derivation of PAHs from vehicle emissions. Seasonal time-series sampling showed that PAH concentrations in ginkgo leaves increased with time, attributable to the effects of temperature and accumulation through long-term exposure. Concentrations in ginkgo leaves collected from various roads showed a strong and significant correlation with those in air collected by a high-volume air sampler (r2 = 0.68, P < 0.01). Ginkgo leaf data clearly showed a dramatic decrease in the ratio of low-molecular-weight (LMW) PAHs to high-molecular-weight PAHs from 2001 or 2002 to 2006, indicating that on-road diesel emission regulations effectively reduced LMW PAH concentrations in air.
Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2014-07-01
As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.
Characteristics and survival of adult Swedish PAH and CTEPH patients 2000-2014.
Rådegran, Göran; Kjellström, Barbro; Ekmehag, Björn; Larsen, Flemming; Rundqvist, Bengt; Blomquist, Sofia Berg; Gustafsson, Carola; Hesselstrand, Roger; Karlsson, Monica; Kornhall, Björn; Nisell, Magnus; Persson, Liselotte; Ryftenius, Henrik; Selin, Maria; Ullman, Bengt; Wall, Kent; Wikström, Gerhard; Willehadson, Maria; Jansson, Kjell
2016-08-01
The Swedish Pulmonary Arterial Hypertension Register (SPAHR) is an open continuous register, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients from 2000 and onwards. We hereby launch the first data from SPAHR, defining baseline characteristics and survival of Swedish PAH and CTEPH patients. Incident PAH and CTEPH patients 2008-2014 from all seven Swedish PAH-centres were specifically reviewed. There were 457 PAH (median age: 67 years, 64% female) and 183 CTEPH (median age: 70 years, 50% female) patients, whereof 77 and 81%, respectively, were in functional class III-IV at diagnosis. Systemic hypertension, diabetes, ischaemic heart disease and atrial fibrillation were common comorbidities, particularly in those >65 years. One-, 3- and 5-year survival was 85%, 71% and 59% for PAH patients. Corresponding numbers for CTEPH patients with versus without pulmonary endarterectomy were 96%, 89% and 86% versus 91%, 75% and 69%, respectively. In 2014, the incidence of IPAH/HPAH, associated PAH and CTEPH was 5, 3 and 2 per million inhabitants and year, and the prevalence was 25, 24 and 19 per million inhabitants. The majority of the PAH and CTEPH patients were diagnosed at age >65 years, in functional class III-IV, and exhibiting several comorbidities. PAH survival in SPAHR was similar to other registers.
Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A
2015-01-06
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Swearingen, J W; Fuentes, D E; Araya, M A; Plishker, M F; Saavedra, C P; Chasteen, T G; Vásquez, C C
2006-01-01
The ubiE gene of Geobacillus stearothermophilus V, with its own promoter, was cloned and introduced into Escherichia coli. The cloned gene complemented the ubiE gene deficiency of E. coli AN70. In addition, the expression of this gene in E. coli JM109 resulted in the evolution of volatile selenium compounds when these cells were grown in selenite- or selenate-amended media. These compounds were dimethyl selenide and dimethyl diselenide.
Wang, Jing; Chen, Shejun; Tian, Mi; Zheng, Xiaobo; Gonzales, Leah; Ohura, Takeshi; Mai, Bixian; Simonich, Staci L. Massey
2012-01-01
Atmospheric particulate matter samples were collected from May 2010 to April 2011 in a rural e-waste area and in Guangzhou, South China, to estimate the lifetime inhalation cancer risk from exposure to parent polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs (MW 302 PAHs), and halogenated PAHs (HPAHs). Seasonal variations in the PAH concentrations and profile within and between the e-waste and urban areas indicated different PAH sources in the two areas. Benzo[b]fluoranthene, BaP, dibenz[ah]anthracene, and dibenzo[al]pyrene made the most significant contribution to the inhalation cancer risk. MW 302 PAHs accounting for 18.0% of the total cancer risk in the e-waste area and 13.6% in the urban area, while HPAHs made a minor contribution (< 0.1%) in both the areas. The number of lifetime excess lung cancers due to exposure to parent PAHs, MW 302 PAHs, and HPAHs ranged from 15.1 to 1198 per million people in the e-waste area and from 9.3 to 737 per million people in Guangzhou. PAH exposure accounted for 0.02 to 1.94% of the total lung cancer cases in Guangzhou. On average, the inhalation cancer risk in the e-waste area was 1.6 times higher than in the urban area. The e-waste dismantling activities in South China led to higher inhalation cancer risk due to PAH exposure than the urban area. PMID:22913732
Evidence for the Presence of Hn-PAHs in Post AGB Stars
NASA Technical Reports Server (NTRS)
Materese, Christopher K.; Bregman, Jesse D.; Sandford, Scott A.
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are believed to be ubiquitous in space therefore represent an important class of molecules for the field of astrochemistry. PAHs are relatively stable under interstellar conditions, account for a significant fraction of the known Universe's molecular carbon inventory, and are believed responsible for numerous telltale interstellar infrared emission bands. PAHs can be subdivided into numerous classes, one of which is Hydrogenated PAHs (Hn-PAHs). Hn-PAHs are multi-ringed partially aromatic compounds with excess hydrogenation, leading to a partial disruption of the aromatic system. The infrared spectra of these compounds produce telltale signatures that make them distinct from ordinary aromatic or aliphatic molecules (or a mixture of both). Hn-PAHs may be an important subclass of PAHs that could explain the spectra of some astronomical objects with anomalously large 3.4 micron features. The 3.4 micron feature observed in these objects may be associated with the aliphatic C-H stretching vibrations of the excess hydrogen. If this presumption is correct, we also expect to observe methylene scissoring modes at 6.9 microns. We have recently conducted a series of follow-up observations to compliment our laboratory experiments into the properties of Hn-PAHs. Here we present our laboratory and observational results in support of the hypothesis that Hn-PAHs are a viable candidate molecule as the emission source for numerous post-asymptotic giant branch objects with abnormally large 3.4 micron features.