Science.gov

Sample records for pah metabolizing enzyme

  1. Hydroxylated PAHs in bile of deep-sea fish. Relationship with xenobiotic metabolizing enzymes

    SciTech Connect

    Escartin, E.; Porte, C.

    1999-08-15

    Polycyclic aromatic hydrocarbon (PAH) pollution in deep-sea environments has been assessed by measuring bile PAH metabolites in deep-sea fish. Five species from the NW Mediterranean were selected for the study: Coryphaenoides guentheri, Lepidion lepidion, Mora moro, Bathypterois mediterraneus, and Alepocephalus rostratus. Bile crude samples were directly analyzed by HPLC-fluorescence at the excitation/emission wavelengths of benzo[a]pyrene. Differences among sampling sites were recorded, which suggests that coastal discharges of contaminants may reach these remote areas. Subsequently, a number of bile samples were hydrolyzed and analyzed by gas chromatography--mass spectrometry (GC-MS) for the determination of individual PAHs. 1-Pyrenol and 2-phenylphenol were among the most abundant compounds detected. The results obtained confirm the long-range transport of PAHs to deep-sea environments, subsequent exposure of fish inhabiting those remote areas, and its ability to metabolize and excrete them through the bile. The data also describe hepatic enzymes (cytochrome P450 and glutathione S-transferases) that appear to be as catalytically efficient as those in shallow water species.

  2. Drug-metabolizing enzymes: mechanisms and functions.

    PubMed

    Sheweita, S A

    2000-09-01

    Drug-metabolizing enzymes are called mixed-function oxidase or monooxygenase and containing many enzymes including cytochrome P450, cytochrome b5, and NADPH-cytochrome P450 reductase and other components. The hepatic cytochrome P450s (Cyp) are a multigene family of enzymes that play a critical role in the metabolism of many drugs and xenobiotics with each cytochrome isozyme responding differently to exogenous chemicals in terms of its induction and inhibition. For example, Cyp 1A1 is particularly active towards polycyclic aromatic hydrocarbons (PAHs), activating them into reactive intermediates those covalently bind to DNA, a key event in the initiation of carcinogenesis. Likewise, Cyp 1A2 activates a variety of bladder carcinogens, such as aromatic amines and amides. Also, some forms of cytochrome P450 isozymes such as Cyp 3A and 2E1 activate the naturally occurring carcinogens (e.g. aflatoxin B1) and N-nitrosamines respectively into highly mutagenic and carcinogenic agents. The carcinogenic potency of PAHs, and other carcinogens and the extent of binding of their ultimate metabolites to DNA and proteins are correlated with the induction of cytochrome P450 isozymes. Phase II drug-metabolizing enzymes such as glutathione S-transferase, aryl sulfatase and UDP-glucuronyl transferase inactivate chemical carcinogens into less toxic or inactive metabolites. Many drugs change the rate of activation or detoxification of carcinogens by changing the activities of phases I and II drug-metabolizing enzymes. The balance of detoxification and activation reactions depends on the chemical structure of the agents, and is subjected to many variables that are a function of this structure, or genetic background, sex, endocrine status, age, diet, and the presence of other chemicals. It is important to realize that the enzymes involved in carcinogen metabolism are also involved in the metabolism of a variety of substrates, and thus the introduction of specific xenobiotics may change

  3. Synthetic metabolism: metabolic engineering meets enzyme design.

    PubMed

    Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

    2017-01-30

    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future.

  4. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  5. Depth Profile of Bacterial Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments

    DTIC Science & Technology

    2007-11-02

    organisms and the resultant changes in PAH metabolism by bacteria can complicate interpretation of sedimentation and biodegradation rates based on analytical...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Washington, DC 20375-5320 MICHAEL T. MONTGOMERY CHRISTOPHER L...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Unclassified 5a. CONTRACT NUMBER N0001499WX20525 5b. GRANT NUMBER 61-7800

  6. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  7. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review.

    PubMed

    Kadri, Tayssir; Rouissi, Tarek; Kaur Brar, Satinder; Cledon, Maximiliano; Sarma, Saurabhjyoti; Verma, Mausam

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.

  8. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation.

    PubMed

    Ely, Cairn S; Smets, Barth F

    2017-03-20

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of plant species with varied biological traits, however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds - morin, caffeic acid, and protocatechuic acid - appear to be linked to bacterial degradation of 3- and 4- ring PAHs in the rhizosphere.

  9. Degradation tests with PAH-metabolizing soil bacteria for in situ bioremediation

    SciTech Connect

    Maue, G.; Dott, W.

    1995-12-31

    A rapid screening test for PAH degradation was used to evaluate the metabolizing potential of a bacterial community from a contaminated soil. The test was performed on a small scale within a few days using direct fluorometric quantitative analysis of selected PAHs. Therefore, a wide range of isolates and mixed cultures could be investigated under various substrate conditions with little time and material expenditure. Furthermore, the composition of the bacterial community after growth on different carbon sources was observed. The tests accompanied PAH degradation experiments in a bioreactor for the detection of suitable soil bacteria for in situ bioremediation. A mixed culture consisting of at least five different bacterial species was found in samples of the bioreactor. Different precultivation substrates (PAH) did not influence the stability of the bacterial community. Although only a few isolates metabolized single PAHs (acenaphthene, anthracene, phenanthrene) as sole substrates, the mixed culture metabolized these PAHs within a few days regardless of the precultivation. The stability of the mixed culture indicates its resistance to substrate changes that may occur during in situ bioremediation processes. Enhanced degradation rates occurred following the growth on acenaphthene and phenanthrene.

  10. Orphan enzymes in ether lipid metabolism.

    PubMed

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  11. Contributions of human enzymes in carcinogen metabolism.

    PubMed

    Rendic, Slobodan; Guengerich, F Peter

    2012-07-16

    Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.

  12. Contributions of Human Enzymes in Carcinogen Metabolism

    PubMed Central

    Rendic, Slobodan; Guengerich, F. Peter

    2012-01-01

    Considerable support exists for roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are procarcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, inter-individual variations, and risk assessment. PMID:22531028

  13. Fetal translocation and metabolism of PAH obtained from coal fly ash given intratracheally to pregnant rats

    SciTech Connect

    Srivastava, V.K.; Chauhan, S.S.; Srivastava, P.K.; Kumar, V.; Misra, U.K.

    1986-01-01

    Polycyclic aromatic hydrocarbons (PAH) were extracted from coal fly ash collected from the electrostatic precipitator of a thermal power plant. The PAH extract was given intratracheally daily to pregnant rats (2 mg/100 g body weight) on d 18 and 19 of gestation. In addition of d 19 of gestation rats were also given (/sup 4/H)benzo(a)pyrene intratracheally. Rats were sacrificed on d 20 of gestation, and the distribution of (/sup 3/H)benzo(a)pyrene radioactivity and PAH of coal fly ash was studied in maternal lung, liver, and placenta, as well as in the liver and lung of the fetus. The radioactivity of intratracheally given benzo(a)pyrene was found in liver (68%), placenta (4%), fetal lung (1.9%), and fetal liver (1.4%) of maternal lung. Intratracheally administered PAH of coal fly ash were translocated to maternal liver and placenta, as well as to the liver and lung of the fetus. PAH of coal fly ash were also metabolized to several minor and major metabolites by maternal lung, liver, and placenta, as well as by the maternal fetal liver and lung. Some of the PAH metabolites in lung and liver were common; however, the major metabolite of liver, M-16, was different from the major metabolite M-16 of lung. The major PAH metabolite of placenta, M-15, and fetal liver, F-12, were common PAH metabolites. M-2 and M-6 of the placenta and F-5 and F-10 of the fetal lung were also common.

  14. Microbial metabolism of polycyclic aromatic hydrocarbons (PAH) in creosote contaminated soils

    SciTech Connect

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    Creosote contaminated sites are of environmental significance due to the high concentrations of toxic and/or mutagenic PAH usually found at these sites. Microbial degradation of PAH can be seen as a novel form of contaminant detoxification. This paper describes the microbial degradation of PAH in creosote contaminated soils using (9-{sup 14}C) phenanthrene as a model PAH. Microbial metabolism was assessed with a mass balance approach as well as identification of PAH metabolites by GC/MS/FTIR. The mass balance accounted for the amount portion of the added phenanthrene. To confirm the effectiveness of microbial degradation to decrease soil toxicity, the Microtox{reg_sign} and Mutatox{reg_sign} assays were used to monitor toxicity of the creosote soils throughout the experiments. Mass balance results indicated that phenanthrene was readily mineralized in the contaminated soils, while metabolite production accounted for only a minor portion of the added phenanthrene. Toxicity of contaminated soils increased slightly early in the incubation and then decreased over longer time periods. Mutagenicity of soils, however, did not decrease appreciably over a 3-month time period. The identity of metabolic products found in the soils will be discussed.

  15. Imaging enzymes at work: metabolic mapping by enzyme histochemistry.

    PubMed

    Van Noorden, Cornelis J F

    2010-06-01

    For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.

  16. Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species

    PubMed Central

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil. PMID:25822167

  17. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection.

    PubMed

    Marden, James H

    2013-12-01

    Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.

  18. Biotransformation of cobicistat: metabolic pathways and enzymes

    PubMed Central

    Wang, Pengcheng; Shehu, Amina I.; Liu, Ke; Lu, Jie; Ma, Xiaochao

    2017-01-01

    Background Cobicistat (COBI) is a pharmacoenhancer for antiretroviral therapy. Objective The current study was designed to profile the metabolic pathways of COBI and to determine the enzymes that contribute to COBI metabolism. Method We screened COBI metabolites in mice and human liver microsomes. We also used cDNA-expressed human cytochromes P450 (CYPs) to explore the role of human enzymes in COBI metabolism. Results Twenty new and three known metabolites of COBI were identified in mouse urine and feces. These new metabolic pathways of COBI include glycine conjugation, N-acetyl cysteine conjugation, morpholine ring-opening, and thiazole ring-opening. Twelve of COBI metabolites were further confirmed in mouse and human liver microsomes, including nine new metabolites. Consistent with the previous report, CYP3A4 and CYP2D6 were determined as the major enzymes that contribute to COBI metabolism. Conclusion This study provided a full map of COBI metabolism. These results can be used to manage CYP-mediated drug-drug interactions and adverse drug reactions that are associated with COBI-containing regimens in human. PMID:26935921

  19. P450 enzymes of estrogen metabolism.

    PubMed

    Martucci, C P; Fishman, J

    1993-01-01

    Endogenous and exogenous estrogens undergo extensive oxidative metabolism by specific cytochrome P450 enzymes. Certain drugs and xenobiotics have been found to be potent inducers of estrogen hydroxylating enzymes with C-2 hydroxylase induction being greater than that of C-16 hydroxylase. Oxygenated estrogen metabolites have different biological activities, with C-2 metabolites having limited or no activity and C-4 and C-16 metabolites having similar potency to estradiol. Pathophysiological roles for some of the oxygenated estrogen metabolites have been proposed, e.g. 16 alpha-hydroxyestrone and 4-hydroxyestrone. These reactive estrogens are capable of damaging cellular proteins and DNA and may be carcinogenic in specific cells.

  20. Expression of Enzymes that Metabolize Medications

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Peters, C. P.

    2012-01-01

    Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

  1. Genes Encoding Enzymes Involved in Ethanol Metabolism

    PubMed Central

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  2. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  3. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  4. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  5. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  6. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  7. Associations between Smoking, Polymorphisms in Polycyclic Aromatic Hydrocarbon (PAH) Metabolism and Conjugation Genes and PAH-DNA Adducts in Prostate Tumors Differ by Race

    PubMed Central

    Nock, Nora L.; Tang, Deliang; Rundle, Andrew; Neslund-Dudas, Christine; Savera, Adnan T.; Bock, Cathryn H.; Monaghan, Kristin G.; Koprowski, Allison; Mitrache, Nicoleta; Yang, James J.; Rybicki, Benjamin A.

    2007-01-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts may induce mutations that contribute to carcinogenesis. We evaluated potential associations between smoking and polymorphisms in PAH metabolism [CYP1A1 Ile462Val, CYP1B1 Ala119Ser and Leu432Val, microsomal epoxide hydrolase (mEH) Tyr113His and His139Arg, CYP3A4 A(−392)G] and conjugation [glutathione S-transferase (GST) M1 null deletion, GSTP1 Ile105Val] genes and PAH-DNA adduct levels (measured by immunohistochemistry) in tumor and nontumor prostate cells in 400 prostate cancer cases. Although no statistically significant associations were observed in the total sample, stratification by ethnicity revealed that Caucasian ever smokers compared with nonsmokers had higher adduct levels in tumor cells (mean staining intensity in absorbance units ± SE, 0.1748 ± 0.0052 versus 0.1507 ± 0.0070; P = 0.006), and Caucasians carrying two mEH 139Arg compared with two 139His alleles had lower adducts in tumor (0.1320 ± 0.0129 versus 0.1714 ± 0.0059; P = 0.006) and nontumor (0.1856 ± 0.0184 versus 0.2291 ± 0.0085; P = 0.03) cells. African Americans with two CYP1B1 432Val compared with two 432Ile alleles had lower adducts in tumor cells (0.1600 ± 0.0060 versus 0.1970 ± 0.0153; P = 0.03). After adjusting for smoking status, carrying the putative “high-risk” genotype combination, the faster metabolism of PAH-epoxides to PAH-diol-epoxides (CYP1B1 432Val/Val and mEH 139Arg/Arg) with lower PAH-diol-epoxide conjugation (GSTP1 105Ile/Ile), was associated with increased adducts only in Caucasian nontumor cells (0.2363 ± 0.0132 versus 0.1920 ± 0.0157; P = 0.05). We present evidence, for the first time in human prostate that the association between smoking and PAH-DNA adducts differs by race and is modified by common genetic variants. PMID:17548691

  8. Truffles contain endocannabinoid metabolic enzymes and anandamide.

    PubMed

    Pacioni, Giovanni; Rapino, Cinzia; Zarivi, Osvaldo; Falconi, Anastasia; Leonardi, Marco; Battista, Natalia; Colafarina, Sabrina; Sergi, Manuel; Bonfigli, Antonella; Miranda, Michele; Barsacchi, Daniela; Maccarrone, Mauro

    2015-02-01

    Truffles are the fruiting body of fungi, members of the Ascomycota phylum endowed with major gastronomic and commercial value. The development and maturation of their reproductive structure are dependent on melanin synthesis. Since anandamide, a prominent member of the endocannabinoid system (ECS), is responsible for melanin synthesis in normal human epidermal melanocytes, we thought that ECS might be present also in truffles. Here, we show the expression, at the transcriptional and translational levels, of most ECS components in the black truffle Tuber melanosporum Vittad. at maturation stage VI. Indeed, by means of molecular biology and immunochemical techniques, we found that truffles contain the major metabolic enzymes of the ECS, while they do not express the most relevant endocannabinoid-binding receptors. In addition, we measured anandamide content in truffles, at different maturation stages (from III to VI), through liquid chromatography-mass spectrometric analysis, whereas the other relevant endocannabinoid 2-arachidonoylglycerol was below the detection limit. Overall, our unprecedented results suggest that anandamide and ECS metabolic enzymes have evolved earlier than endocannabinoid-binding receptors, and that anandamide might be an ancient attractant to truffle eaters, that are well-equipped with endocannabinoid-binding receptors.

  9. Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar

    SciTech Connect

    Mahadevan, B.; Marston, C.P.; Luch, A.; Dashwood, W.M.; Brooks, E.; Pereira, C.; Doehmer, J.; Baird, W.M.

    2007-03-15

    A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo(a)pyrene (BP) and dibenzo(a,l)pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7. The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. The data obtained from biochemical experiments revealed that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K-M) was {lt} 0.4 {mu}M in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 {mu}M (CYP1B1) in the presence of 0.1 {mu} g/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1 Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAR mixtures are discussed.

  10. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  11. Expression of Enzymes that Metabolize Medications

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Peters, C. P.

    2011-01-01

    INTRODUCTION: Increased exposure to radiation is one physiological stressor associated with spaceflight and it is feasible to conduct ground experiments using known radiation exposures. The health of the liver, especially the activity rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. While radiation is known to alter normal physiological function, how radiation affects liver metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. This study is an effort to identify liver metabolic enzymes whose expression is altered by spaceflight or by radiation exposures that mimic features of the spaceflight environment. METHODS: Using procedures approved by the Animal Care and Use Committee, mice were exposed to either 137Cs (controls, 50 mGy, 6Gy, or 50 mGy + 6Gy separated by 24 hours) or 13 days of spaceflight on STS 135. Animals were anesthetized and sacrificed at several time points (4 hours, 24 hours or 7 days) after their last radiation exposure, or within 6 hours of return to Earth for the STS 135 animals. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted, purified and quality-tested. Complementary DNA was prepared from high-quality RNA samples, and used in RT-qPCR experiments to determine relative expression of a wide variety of genes involved in general metabolism and drug metabolism. RESULTS: Results of the ground radiation exposure experiments indicated 65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post

  12. PAH nomenclature guide. First edition

    SciTech Connect

    Loening, K.; Merritt, J.; Later, D.; Wright, W.

    1990-01-01

    Research relating to polynuclear aromatic hydrocarbons (PAH) is a multidisciplinary activity carried out by scientists not familiar with the intricacies of chemical nomenclature. The PAH nomenclature Guide is designed to promote good communication in this field by giving instruction on how to name relevant compounds properly, by alerting the reader to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Biochemistry (IUB), by noting the practices of Chemical Abstracts Service, and by identifying other names in use. This book concentrates on the PAH themselves, their nitrogen, oxygen and sulfur analogs, including functional derivatives, the metabolic products of PAH, and enzymes. For each topic references are provided to the original nomenclature recommendations to enable the reader to check out further details.

  13. Enzymes of fructose metabolism in human liver

    PubMed Central

    Heinz, Fritz; Lamprecht, Walther; Kirsch, Joachim

    1968-01-01

    The enzyme activities involved in fructose metabolism were measured in samples of human liver. On the basis of U/g of wet-weight the following results were found: ketohexokinase, 1.23; aldolase (substrate, fructose-1-phosphate), 2.08; aldolase (substrate, fructose-1,6-diphosphate), 3.46; triokinase, 2.07; aldehyde dehydrogenase (substrate, D-glyceraldehyde), 1.04; D-glycerate kinase, 0.13; alcohol dehydrogenase (nicotinamide adenine dinucleotide [NAD]) substrate, D-glyceraldehyde), 3.1; alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate [NADP]) (substrate, D-glyceraldehyde), 3.6; and glycerol kinase, 0.62. Sorbitol dehydrogenases (25.0 U/g), hexosediphosphatase (4.06 U/g), hexokinase (0.23 U/g), and glucokinase (0.08 U/g) were also measured. Comparing these results with those of the rat liver it becomes clear that the activities of alcohol dehydrogenases (NAD and NADP) in rat liver are higher than those in human liver, and that the values of ketohexokinase, sorbitol dehydrogenases, and hexosediphosphatase in human liver are lower than those values found in rat liver. Human liver contains only traces of glycerate kinase. The rate of fructose uptake from the blood, as described by other investigators, can be based on the activity of ketohexokinase reported in the present paper. In human liver, ketohexokinase is present in a four-fold activity of glucokinase and hexokinase. This result may explain the well-known fact that fructose is metabolized faster than glucose. PMID:4385849

  14. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862.3360 Section 862.3360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... drug metabolizing enzyme. This device is used as an aid in determining treatment choice...

  15. Evolution of enzymes in metabolism: a network perspective.

    PubMed

    Alves, Rui; Chaleil, Raphael A G; Sternberg, Michael J E

    2002-07-19

    Several models have been proposed to explain the origin and evolution of enzymes in metabolic pathways. Initially, the retro-evolution model proposed that, as enzymes at the end of pathways depleted their substrates in the primordial soup, there was a pressure for earlier enzymes in pathways to be created, using the later ones as initial template, in order to replenish the pools of depleted metabolites. Later, the recruitment model proposed that initial templates from other pathways could be used as long as those enzymes were similar in chemistry or substrate specificity. These two models have dominated recent studies of enzyme evolution. These studies are constrained by either the small scale of the study or the artificial restrictions imposed by pathway definitions. Here, a network approach is used to study enzyme evolution in fully sequenced genomes, thus removing both constraints. We find that homologous pairs of enzymes are roughly twice as likely to have evolved from enzymes that are less than three steps away from each other in the reaction network than pairs of non-homologous enzymes. These results, together with the conservation of the type of chemical reaction catalyzed by evolutionarily related enzymes, suggest that functional blocks of similar chemistry have evolved within metabolic networks. One possible explanation for these observations is that this local evolution phenomenon is likely to cause less global physiological disruptions in metabolism than evolution of enzymes from other enzymes that are distant from them in the metabolic network.

  16. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    DTIC Science & Technology

    2015-12-01

    and cellular energy homeostasis . Analysis of patient data indicated that higher OXCT1 levels are associated with docetaxel chemotherapy resistance...knock down induced metabolic inefficiency upon docetaxel treatment Since OXCT1 is a metabolic enzyme involved in energy homeostasis , next, to...ketone body metabolism and cellular energy homeostasis . Analysis of our previous data from patient needle biopsy samples indicated that higher

  17. Biomarkers of Microbial Metabolism for Monitoring in-situ Anaerobic PAH Degradation

    NASA Astrophysics Data System (ADS)

    Young, L.; Phelps, C.; Battistelli, J.

    2002-12-01

    Monoaromatic and polycyclic aromatic compounds found in petroleum and its products are subject to biodegradation in the absence of oxygen. These anaerobic pathways reveal novel mechanism of microbial transformation through a series of metabolites and intermediates which are unique to the anaerobic degradation process. The presence of these compounds in-situ, then conceptually can serve as indicators that anaerobic degradation is taking place. We have laboratory studies and field samples which support this concept for BTX and PAH compounds. Environments in which these anaerobic degradation processes have been observed include freshwater and estuarine sediments, groundwater from impacted aquifers at a former manufactured gas plant and gasoline station, and a creosote-contaminated aquifer. Analytical protocols were developed to detect nanomolar concentrations from soil slurries and groundwater samples and microcosm studies verified their formation from field samples and use as biomarkers of activity. Recent studies on the mechanisms of anaerobic naphthalene and methylnaphthalene metabolism have identified several unusual compounds that can serve as biomarkers for monitoring in situ PAH biodegradation. For naphthalene these include 2-naphthoic acid (2-NA), tetrahydro-2-naphthoic acid (TH-2-NA), hexahydro-2-naphthoic acid (HH-2-NA) and methylnaphthoic acid (MNA) generated by sulfate-reducing bacteria degrading naphthalene or methylnaphthalene. Groundwater samples were analyzed from wells distributed throughout an anaerobic, creosote-contaminated aquifer and also from a leaking underground storage site. Samples were extracted, derivatized and analyzed by GC/MS. The concentration of 2-NA at each monitoring well was quantified and correlated to the zones of naphthalene contamination. Taken together with measurements of the aquifer's physical characteristics, these biomarker data can be used to describe the extent of naphthalene biodegradation at these site.

  18. Biological effects of polycyclic aromatic hydrocarbons (PAH) and their first metabolic products in in vivo exposed Atlantic cod (Gadus morhua).

    PubMed

    Pampanin, Daniela M; Le Goff, Jeremie; Skogland, Karianne; Marcucci, Cristian R; Øysæd, Kjell Birger; Lorentzen, Marianne; Jørgensen, Kåre B; Sydnes, Magne O

    2016-01-01

    The monitoring of the presence of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment is a worldwide activity since some of these compounds are well-established carcinogens and mutagens. Contaminants in this class are in fact regarded as priority hazardous substances for environmental pollution (Water Framework Directive 2000/60/EC). In this study, Atlantic cod (Gadus morhua) was selected to assess in vivo effects of two PAH and their first metabolic products, namely, the corresponding trans-dihydrodiols, using biological markers. Fish were exposed for 1 wk to a single PAH (naphthalene or chrysene) and its synthetic metabolites ((1R,2R)-1,2-dihydronaphthalene-1,2-diol and (1R,2R)-1,2-dihydrochrysene-1,2-diol) by intraperitoneal injection in a continuous seawater flow system. After exposure, PAH metabolism including PAH metabolites in bile and ethoxyresorufin O-deethylase (EROD) activity, oxidative stress glutathione S-transferases (GST) and catalase (CAT) activities, and genotoxicity such as DNA adducts were evaluated, as well as general health conditions including condition index (CI), hepatosomatic index (HSI), and gonadosomatic index (GSI). PAH metabolite values were low and not significantly different when measured with the fixed-wavelength fluorescence screening method, while the gas chromatography-mass spectroscopy (GC-MS) method showed an apparent dose response in fish exposed to naphthalene. DNA adduct levels ≥0.16 × 10(-8) relative adduct level (RAL) were detected. It should be noted that 0.16 × 10(-8) RAL is considered the maximal acceptable background level for this species. The other biomarkers activities of catalase, GST, and EROD did not display a particular compound- or dose-related response. The GSI values were significantly lower in some chrysene- and in both naphthalene- and naphthalene diol-exposed groups compared to control.

  19. Interplay of drug metabolizing enzymes with cellular transporters.

    PubMed

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  20. Analysis of serum PAH`s and PAH adducts by LC/MS

    SciTech Connect

    McClure, P.C.; Barr, J.R.; Maggio, V.L.

    1995-12-31

    Polycyclic aromatic hydrocarbons are an important class of chemical carcinogens. Benzo[a]pyrene is the most extensively studied and best understood carcinogenic PAH It is believed that Benzo[a]pyrene is metabolized in vitro to the diol epoxide, Benzo[a]pyrene-7,8-dihydrodiol-9, 10-epoxide which then can react with various nucleophilic centers on DNA. The major alkylation product appears to be the reaction of the Benzo[a]pyrene diol epoxide with the N{sup 2} position of guanine sites on DNA. Methods that can measure exposure and biological response to carcinogens such as PAH`s are needed. Human Blood can be separated into plasma, lymphocytes, and red blood cells. The plasma should contain native PAH`s which may yield some useful information about recent exposure. The red blood cells contain hemoglobin and adducts of PAH`s. Hemoglobin has an average lifetime of 120 days so quantification of hemoglobin adducts should give an average of a persons exposure over four months. Also, the electrophilic metabolites that react with hemoglobin to form adducts are the same metabolites that form DNA adducts which can lead to mutations and cancer. Lymphocytes contain DNA and therefore DNA adducts. DNA adducts can be repaired by a series of enzymes so quantification of these adducts will only yield information about recent or non-repairable adducts. DNA adduct formation is believed to be the first important step in chemical carcinogenesis so quantification of these adducts should yield some information on exposure and a great deal of important data on biological response and risk from specific PAH`s.

  1. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  2. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    PubMed

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects.

  3. Undercover: gene control by metabolites and metabolic enzymes

    PubMed Central

    van der Knaap, Jan A.; Verrijzer, C. Peter

    2016-01-01

    To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease. PMID:27881599

  4. Polyhalogenated biphenyls and phenobarbital: evaluation as inducers of drug metabolizing enzymes in the sheepshead, Archosargus probatocephalus.

    PubMed

    James, M O; Little, P J

    1981-08-01

    Several doses of Aroclor 1254 (polychlorinated biphenyl (PCB) mixture), Firemaster FF1 (polybrominated biphenyl (PBB) mixture), 2,2',4,4',5,5'-hexabromobiphenyl (HBB), 3,3',4,4',5,5'-hexachlorobiphenyl (HCB) and phenobarbital (PB) were administered to the marine fish sheepshead (Archosargus probatocephalus). The PCB and PBB mixtures caused induction of hepatic microsomal benzo[a]pyrene hydroxylase (AHH), 7-ethoxycoumarin O-deethylase (7-EC) and 7-ethoxyresorufin O-deethylase (ERF) activities, but not benzphetamine N-demethylase (BND), epoxide hydrolase (EH) or glutathione S-transferase (GSH-T) activities. This induction pattern is typical of that caused by polycyclic aromatic hydrocarbons (PAH) in fish and mammals or by tetrachlorodibenzo-p-dioxin (TCDD) in mammals. The extent of induction of AHH-activity and cytochrome P-450 content was higher when experiments were carried out in summer (water temperature 25 +/- 4 degrees C) than in winter (water temperature 11 +/- 3 degrees C). Firemaster FF1 (15 mg/kg) induced fish for at least 56 days in both summer and winter at which time the liver concentrations of PBB were in the ppm range. PCB concentrations in the ppm range have been found in fish from polluted lakes and seas, thus we may expect that environmental exposure to PCB is sufficient to induce hepatic mixed function oxidase (MFO) activities. The PCB isomer 3,3'4,4'5,5'-HCB, which induces the same spectrum of hepatic drug-metabolizing activities as TCDD and PAH in rats, had a broadly similar effect in the sheepshead. Another purified isomer, 2,2',4,4',5,5'-HBB, which induces the same enzymes as PB in rats, had no effect on drug-metabolizing activities in sheepshead. PB was also without effect on sheepshead hepatic drug-metabolizing enzymes, although a typical narcotic effect was produced in PB-treated sheepshead. Our studies provide further evidence that drug-metabolizing activities in fish liver are readily induced by chemicals like TCDD or PAH, but we fail to

  5. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    SciTech Connect

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  6. Metabolism and Excretion Rates of Parent and Hydroxy-PAHs in Urine Collected after Consumption of Traditionally Smoked Salmon for Native American Volunteers

    PubMed Central

    Motorykin, Oleksii; Santiago-Delgado, Lisandra; Rohlman, Diana; Schrlau, Jill E.; Harper, Barbara; Harris, Stuart; Harding, Anna; Kile, Molly L.; Massey Simonich, Staci L.

    2015-01-01

    Few studies have been published on the excretion rates of parent polycyclic aromatic hydrocarbons (PAHs) and hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) following oral exposure. This study investigated metabolism and excretion rates of 4 parent PAHs and 10 OH-PAHs after the consumption of smoked salmon. Nine members of the Confederated Tribes of the Umatilla Indian Reservation consumed 50 g of traditionally smoked salmon with breakfast and five urine samples were collected during the following 24 hours. The concentrations of OH-PAHs increased from 43.9 μg/g creatinine for 2-OH-Nap to 349 ng/g creatinine for 1-OH-Pyr, 3 to 6 hr post-consumption. Despite volunteers following a restricted diet, there appeared to be a secondary source of naphthalene and fluorene, which led to excretion efficiencies greater than 100%. For the parent PAHs that were detected in urine, the excretion efficiencies ranged from 13% for phenanthrene (and its metabolite) to 240% for naphthalene (and its metabolites). The half-lives for PAHs ranged from 1.4 hr for retene to 3.3 hr for pyrene. The half-lives for OH-PAHs were higher and ranged from 1.7 hr for 9-OH-fluorene to 7.0 hr for 3-OH-fluorene. The concentrations of most parent PAHs, and their metabolites, returned to the background levels 24 hr post-consumption. PMID:25659315

  7. Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers.

    PubMed

    Motorykin, Oleksii; Santiago-Delgado, Lisandra; Rohlman, Diana; Schrlau, Jill E; Harper, Barbara; Harris, Stuart; Harding, Anna; Kile, Molly L; Massey Simonich, Staci L

    2015-05-01

    Few studies have been published on the excretion rates of parent polycyclic aromatic hydrocarbons (PAHs) and hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) following oral exposure. This study investigated the metabolism and excretion rates of 4 parent PAHs and 10 OH-PAHs after the consumption of smoked salmon. Nine members of the Confederated Tribes of the Umatilla Indian Reservation consumed 50 g of traditionally smoked salmon with breakfast and five urine samples were collected during the following 24 h. The concentrations of OH-PAHs increased from 43.9 μg/g creatinine for 2-OH-Nap to 349 ng/g creatinine for 1-OH-Pyr, 3 to 6 h post-consumption. Despite volunteers following a restricted diet, there appeared to be a secondary source of naphthalene and fluorene, which led to excretion efficiencies greater than 100%. For the parent PAHs that were detected in urine, the excretion efficiencies ranged from 13% for phenanthrene (and its metabolite) to 240% for naphthalene (and its metabolites). The half-lives for PAHs ranged from 1.4 h for retene to 3.3h for pyrene. The half-lives for OH-PAHs were higher and ranged from 1.7 h for 9-OH-fluorene to 7.0 h for 3-OH-fluorene. The concentrations of most parent PAHs, and their metabolites, returned to the background levels 24 h post-consumption.

  8. Bedaquiline metabolism: enzymes and novel metabolites.

    PubMed

    Liu, Ke; Li, Feng; Lu, Jie; Liu, Shinlan; Dorko, Kenneth; Xie, Wen; Ma, Xiaochao

    2014-05-01

    Bedaquiline is a recently approved drug for the treatment of multidrug-resistant tuberculosis. Adverse cardiac and hepatic drug reactions to bedaquiline have been noted in clinical practice. The current study investigated bedaquiline metabolism in human hepatocytes using a metabolomic approach. Bedaquiline N-demethylation via CYP3A4 was confirmed as the major pathway in bedaquiline metabolism. In addition to CYP3A4, we found that both CYP2C8 and CYP2C19 contributed to bedaquiline N-demethylation. The Km values of CYP2C8, CYP2C19, and CYP3A4 in bedaquiline N-demethylation were 13.1, 21.3, and 8.5 µM, respectively. We also identified a novel metabolic pathway of bedaquiline that produced an aldehyde intermediate. In summary, this study extended our knowledge of bedaquiline metabolism, which can be applied to predict and prevent drug-drug interactions and adverse drug reactions associated with bedaquiline.

  9. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

    PubMed

    Ueda, Haruki; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanaka-Ueno, Tomoko; Ishizuka, Mayumi

    2011-10-01

    The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

  10. Targeting protozoan parasite metabolism: glycolytic enzymes in the therapeutic crosshairs.

    PubMed

    Harris, M T; Mitchell, W G; Morris, J C

    2014-01-01

    Glycolysis is an important metabolic pathway for most organisms, including protozoan parasites. Many of these primitive eukaryotes have streamlined their metabolism, favoring glycolysis for generating ATP in the glucose-rich environments in which they reside. Therefore, the enzymes involved in hexose metabolism could prove to be attractive targets for therapeutic development. This hypothesis is supported by a number of chemical and genetic validation studies. Additionally, the peculiar biochemistry of many of the components, along with limited protein sequence identity emphasizes the likelihood of developing compounds that selectively inhibit the parasite enzymes. In this review, we examine the status of target validation at the genetic and/or chemical levels from the protozoan parasites. While the proteins from some species have been interrogated to the point that well-defined lead compounds have been identified with activities against both enzyme and parasite growth, progress in other systems has to date been limited.

  11. Renal fructose-metabolizing enzymes: significance in hereditary fructose intolerance.

    PubMed

    Kranhold, J F; Loh, D; Morris, R C

    1969-07-25

    In patients with hereditary fructose intolerance, which is characterized by deficient aldolase activity toward fructose-1-phosphate, fructose induces a renal tubular dysfunction that implicates only the proximal convoluted tubule. Because normal metabolism of fructose by way of fructose-1-phosphate requires fructokinase, aldolase "B," and triokinase, the exclusively cortical location of these enzymes indicates that the medulla is not involved in the metabolic abnormality presumably causal of the renal dysfunction.

  12. Inhibition of metabolism and DNA binding of polycyclic aromatic hydrocarbons (PAHs) by plant phenols in epidermis of SENCAR mice

    SciTech Connect

    Das, M.; Bik, D.P.; Bickers, D.R.; Mukhtar, H.

    1986-03-05

    Naturally occurring plant phenols such as tannic acid (TA), quercetin (QT), myricetin (MY) and anthraflavic acid (AA) have been shown to inhibit the mutagenicity of several bay-region diolepoxides of PAHs. Since skin is a target for PAH carcinogenesis, they investigated the effect of these plant phenols on epidermal aryl hydrocarbon hydroxylase (AHH) activity and the binding of PAHs to DNA in SENCAR mice. Each of the plant phenols tested was found to be an in vitro and in vivo inhibitor of epidermal AHH activity with I/sub 50/ values ranging from 4.4 x 10/sup -5/ - 12.4 x 10/sup -5/M in control and 3-methylcholanthrene (MCA) pretreated skin. On an equimolar basis TA was the most potent inhibitor with a Ki of 81 ..mu..M. Incubation of TA, QT, MY and AA with epidermal microsomes resulted in varying degrees of inhibition of enzyme mediated covalent binding of benzo(a)pyrene (BP) to calf thymus DNA. TA (25 ..mu..M) showed maximum inhibition (64%). A single topical application (12 ..mu..mol) of TA, QT, MY and AA resulted in significant decrease in the binding of BP, BP-7,8-diol and 7,12-dimethylbenz(a)anthracene to epidermal DNA. The formation of (+)-7..beta..,8..cap alpha..-dihydroxy-9..cap alpha..,10..cap alpha..-epoxy-7,8,9,10-tetrahydro-BP-deoxyguanine adduct in epidermis was significantly reduced (62-86%) following topical application of the plant phenols. Their results suggest that some of these plant phenols have substantial though variable potential to modify the risk of PAHs induced skin carcinogenicity.

  13. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants.

    PubMed

    Zhang, Qingwei; Song, Xiaomin; Bartels, Dorothea

    2016-12-15

    Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.

  14. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants

    PubMed Central

    Zhang, Qingwei; Song, Xiaomin; Bartels, Dorothea

    2016-01-01

    Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed. PMID:28248249

  15. Enzyme kinetics in drug metabolism: fundamentals and applications.

    PubMed

    Nagar, Swati; Argikar, Upendra A; Tweedie, Donald J

    2014-01-01

    Enzymes are protein catalysts that lower the energy barrier for a reaction and speed the rate of a chemical change. The kinetics of reactions catalyzed by enzymes, as well as several mechanisms underlying the kinetics, have been comprehensively studied and written in textbooks (1, 2). The importance of quantitative evaluation of enzymatic processes has been recognized in many fields of study, including biochemistry, molecular biology, and pharmaceutical sciences to name a few. In pharmaceutical sciences, the applications of enzyme kinetics range from hit finding efforts for new chemical entities on a pharmacological target to concentration effect relationships to large-scale biosynthesis. The study of the science of drug metabolism has two principal concepts-rate and extent. While understanding disposition pathways and identification of metabolites provides an insight into the extent of metabolism, kinetics of depletion of substrates (endogenous or exogenous) and formation of metabolites deals with the rate of metabolism. The current textbook specifically focuses on kinetics of drug-metabolizing enzymes, detailing specific enzyme classes, and discusses kinetics as they apply to drug transporters. This textbook also outlines additional factors that contribute to the kinetics of reactions catalyzed by these proteins such as variability in isoforms (pharmacogenomics) and experimental factors including key concepts such as alterations of substrate concentrations due to binding. Applications of these approaches in predicting kinetic parameters and alternative approaches for enzymes (systems biology) and transporters are also discussed. The final section focuses on real-life examples (case studies) to try and exemplify the applications of enzyme kinetic principles. This chapter provides a brief overview outlining some key concepts within each of the sections and the chapters within this textbook.

  16. Enzyme Regulation& Catalysis in Carbon Fixation Metabolism

    SciTech Connect

    Miziorko, Henry M

    2004-12-14

    The overall long term goal of this program is the elucidation of molecular events in carbon assimilation. It has become axiomatic that control of flux through metabolic pathways is effectively imposed at irreversible reactions situated early in those pathways. The current focal point of this project is phosphoribulokinase (PRK), which catalyzes formation of the carbon dioxide acceptor, ribulose 1,5-bisphosphate. This reaction represents an early irreversible step unique to Calvin's reductive pentose phosphate pathway. Predictably, the PRK reaction represents an important control point in carbon fixation, regulated by a light dependent thiol/disulfide exchange in eukaryotes and by allosteric effectors in prokaryotes. Characterization of naturally occurring mutants as well as gene knockout experiments substantiate the importance of PRK to in vivo control of carbon assimilation in both prokaryotes and eukaryotes. Thus, given the potential impact of enhancement or inhibition of PRK activity on energy (biomass/biofuel) production, elucidation of the molecular events that account for PRK activity is a significant scientific goal.

  17. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion.

    PubMed

    Brown, Neil Andrew; Ries, Laure Nicolas Annick; Goldman, Gustavo Henrique

    2014-11-01

    The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi.

  18. Engineering of Metabolic Pathways by Artificial Enzyme Channels

    PubMed Central

    Pröschel, Marlene; Detsch, Rainer; Boccaccini, Aldo R.; Sonnewald, Uwe

    2015-01-01

    Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products. PMID:26557643

  19. Optimal control of metabolic networks with saturable enzyme kinetics.

    PubMed

    Oyarzuun, D A

    2011-03-01

    This note addresses the optimal control of non-linear metabolic networks by means of time-dependent enzyme synthesis rates. The authors consider networks with general topologies described by a control-affine dynamical system coupled with a linear model for enzyme synthesis and degradation. The problem formulation accounts for transitions between two metabolic equilibria, which typically arise in metabolic adaptations to environmental changes, and the minimisation of a quadratic functional that weights the cost/benefit relation between the transcriptional effort required for enzyme synthesis and the transition to the new phenotype. Using a linear time-variant approximation of the non-linear dynamics, the problem is recast as a sequence of linear-quadratic problems, the solution of which involves a sequence of differential Lyapunov equations. The authors provide conditions for convergence to an approximate solution of the original problem, which are naturally satisfied by a wide class of models for saturable enzyme kinetics. As a case study the authors use the method to examine the robustness of an optimal just-in-time gene expression pattern with respect to heterogeneity in the biosynthetic costs of individual proteins.

  20. Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies

    PubMed Central

    O’Connell, Jeremy D.; Zhao, Alice; Ellington, Andrew D.; Marcotte, Edward M.

    2013-01-01

    Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci—such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis—to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality—and dysfunctionality—of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable. PMID:23057741

  1. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  2. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  3. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  4. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  5. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    PubMed

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens.

  6. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    PubMed Central

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  7. Activity of anandamide (AEA) metabolic enzymes in rat placental bed.

    PubMed

    Fonseca, B M; Battista, N; Correia-da-Silva, G; Rapino, C; Maccarrone, M; Teixeira, N A

    2014-11-01

    Endocannabinoids are endogenous lipid mediators, with anandamide (AEA) being the first member identified. It is now widely accepted that AEA influences early pregnancy events and its levels, which primarily depend on its synthesis by an N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and degradation by a fatty acid amide hydrolase (FAAH), must be tightly regulated. Previous studies demonstrated that AEA levels require in situ regulation of these respective metabolic enzymes, and thus, any disturbance in AEA levels may impact maternal remodeling processes occurring during placental development. In this study, the activities of the AEA-metabolic enzymes that result in the establishment of proper local AEA levels during rat gestation were examined. Here, we demonstrate that during placentation NAPE-PLD and FAAH activities change in a temporal manner. Our findings suggest that NAPE-PLD and FAAH create the appropriate AEA levels required for tissue remodeling in the placental bed, a process essential to pregnancy maintenance.

  8. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  9. Enzyme Recruitment and Its Role in Metabolic Expansion

    PubMed Central

    2015-01-01

    Although more than 109 years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology. PMID:24483367

  10. Enzyme recruitment and its role in metabolic expansion.

    PubMed

    Schulenburg, Cindy; Miller, Brian G

    2014-02-11

    Although more than 10(9) years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology.

  11. Clinically Relevant Genetic Variations in Drug Metabolizing Enzymes

    PubMed Central

    Pinto, Navin; Dolan, M. Eileen

    2011-01-01

    In the field of pharmacogenetics, we currently have a few markers to guide physicians as to the best course of therapy for patients. For the most part, these genetic variants are within a drug metabolizing enzyme that has a large effect on the degree or rate at which a drug is converted to its metabolites. For many drugs, response and toxicity are multi-genic traits and understanding relationships between a patient's genetic variation in drug metabolizing enzymes and the efficacy and/or toxicity of a medication offers the potential to optimize therapies. This review will focus on variants in drug metabolizing enzymes with predictable and relatively large impacts on drug efficacy and/or toxicity; some of these drug/gene variant pairs have impacted drug labels by the United States Food and Drug Administration. The challenges in identifying genetic markers and implementing clinical changes based on known markers will be discussed. In addition, the impact of next generation sequencing in identifying rare variants will be addressed. PMID:21453273

  12. Role of CYP1B1 in PAH-DNA Adduct Formation and Breast Cancer Risk

    DTIC Science & Technology

    2004-09-01

    The cytochrome P450 enzyme CYP1B1 is a major enzyme involved in metabolizing polycyclic aromatic hydrocarbons (PAHs) to reactive intermediates. Given...that certain exposure to PAHs may be a breast cancer risk factor, we have set out to examine CYP1B1 gene expression in breast tissue. After...hired Research Coordinators and interviewers have been trained and recruitment of participants has begun. The method to measure CYP1B1 expression has

  13. Enzyme kinetics of oxidative metabolism: cytochromes P450.

    PubMed

    Korzekwa, Ken

    2014-01-01

    The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis-Menten or "atypical" saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 3 ). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapter 4 ). Models and equations that can result in these kinetic profiles will be presented and discussed.

  14. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    PubMed Central

    Yang, Ming; Su, Huizhong; Soga, Tomoyoshi; Kranc, Kamil R; Pollard, Patrick J

    2014-01-01

    The hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes (PHDs) regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2) availability enables its association with the von Hippel-Lindau (VHL) tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites) that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. PMID:27774472

  15. Enzymes To Die For: Exploiting Nucleotide Metabolizing Enzymes for Cancer Gene Therapy

    PubMed Central

    Ardiani, Andressa; Johnson, Adam J.; Ruan, Hongmei; Sanchez-Bonilla, Marilyn; Serve, Kinta; Black, Margaret E.

    2012-01-01

    Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects. PMID:22384805

  16. CYP450 Enzyme-Mediated Metabolism of TCAS and Its Inhibitory and Induced Effects on Metabolized Enzymes in Vitro.

    PubMed

    Shen, Guolin; Wang, Cheng; Zhou, Lili; Li, Lei; Chen, Huiming; Yu, Wenlian; Li, Haishan

    2015-09-02

    In this study, we investigated the enzymes catalyzing the phase I metabolism of thiacalixarene (TCAS) based on in vitro system including cDNA-expressed P450 enzymes, human liver microsomes plus inhibitors and monoclonal antibodies. In addition, the inhibitory potential of TCAS on major CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2B6, CYP2D6 and CYP3A4) was assessed. The results showed that CYP1A2 and CYP2C9 mediated TCAS hydroxylation. IC50 values for TCAS in rat and human liver microsomes were greater than 50 µM, and it demonstrated a weak inhibition of rat and human CYP450 enzymes. Finally, sandwiched hepatocytes were used to evaluate the induction of CYP1A and CYP3A to define the function of TCAS in vivo. The results showed that incubation of TCAS at different concentrations for 72 h failed to induce CYP1A and CYP3A. However, incubation of the cells with 50 and 100 µM TCAS caused a profound decrease in the activities of CYP1A and CYP3A, which was probably due to cytotoxic effects, suggesting that exposure to TCAS might be a health concern.

  17. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis.

    PubMed

    Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao

    2014-12-01

    Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.

  18. In vivo enzyme activity in inborn errors of metabolism

    SciTech Connect

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. )

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  19. Regulation of amino acid metabolic enzymes and transporters in plants.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2014-10-01

    Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.

  20. Alteration of drug metabolizing enzymes in sulphite oxidase deficiency

    PubMed Central

    Tutuncu, Begum; Kuçukatay, Vural; Arslan, Sevki; Sahin, Barbaros; Semiz, Asli; Sen, Alaattin

    2012-01-01

    The aim of this study was to investigate the possible effects of sulphite oxidase (SOX, E.C. 1.8.3.1) deficiency on xenobiotic metabolism. For this purpose, SOX deficiency was produced in rats by the administration of a low molybdenum diet with concurrent addition of 200 ppm tungsten to their drinking water. First, hepatic SOX activity in deficient groups was measured to confirm SOX deficiency. Then, aminopyrine N-demethylase, aniline 4-hydroxylase, aromatase, caffeine N-demethylase, cytochrome b5 reductase, erythromycin N-demethylase, ethoxyresorufin O-deethylase, glutathione S-transferase, N-nitrosodimethylamine N-demethylase and penthoxyresorufin O-deethylase activities were determined to follow changes in the activity of drug metabolizing enzymes in SOX-deficient rats. Our results clearly demonstrated that SOX deficiency significantly elevated A4H, caffeine N-demethylase, erythromycin N-demethylase and N-nitrosodimethylamine N-demethylase activities while decreasing ethoxyresorufin O-deethylase and aromatase activities. These alterations in drug metabolizing enzymes can contribute to the varying susceptibility and response of sulphite-sensitive individuals to different drugs and/or therapeutics used for treatments. PMID:22798713

  1. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.

    PubMed

    Gerasimaitė, Rūta; Mayer, Andreas

    2016-02-01

    Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

  2. Drug metabolizing enzyme systems in the houbara bustard (Chlamydotis undulata).

    PubMed

    Bailey, T A; John, A; Mensah-Brown, E P; Garner, A; Samour, J; Raza, H

    1998-10-01

    This study compared catalytic and immunochemical properties of drug metabolizing phase I and II enzyme systems in houbara bustard (Chlamydotis undulata) liver and kidney and rat liver. P450 content in bustard liver (0.34 +/- 0.03 nmol mg-1 protein) was 50% lower than that of rat liver (0.70 +/- 0.02 nmol mg-1 protein). With the exception of aniline hydroxylase activity, monooxygenase activities using aminopyrine, ethoxyresorufin and ethoxycoumarin as substrates were all significantly lower than corresponding rat liver enzymes. As found in mammalian systems the P450 activities in the bird liver were higher than in the kidney. Immunohistochemical analysis of microsomes using antibodies to rat hepatic P450 demonstrated that bustard liver and kidney express P4502C11 homologous protein; no appreciable cross-reactivity was observed in bustards using antibodies to P4502E1, 1A1 or 1A2 isoenzymes. Glutathione content and glutathione S-transferase (GST) activity in bustard liver were comparable with those of rat liver. GST activity in the kidney was 65% lower than the liver. Western blotting of liver and kidney cytosol with human GST isoenzyme-specific antibodies revealed that the expression of alpha-class of antibodies exceeds mu in the bustard. In contrast, the pi-class of GST was not detected in the bustard liver. This data demonstrates that hepatic and renal microsomes from the bustard have multiple forms of phase I and phase II enzymes. The multiplicity and tissue specific expression of xenobiotic metabolizing enzymes in bustards may play a significant role in determining the pharmacokinetics of drugs and susceptibility of the birds to various environmental pollutants and toxic insults.

  3. The RNA world and the origin of metabolic enzymes

    PubMed Central

    Ralser, Markus

    2014-01-01

    An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve. PMID:25109990

  4. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics

    PubMed Central

    Duconge, Jorge; Cadilla, Carmen L.; Ruaño, Gualberto

    2015-01-01

    Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies. This review addresses the need for compiling available pharmacogenetic data in US Hispanics, discussing the prevalence of clinically relevant polymorphisms in pharmacogenes encoding for drug-metabolizing enzymes. CYP3A5*3 (0.245–0.867) showed the largest frequency in a US Hispanic population. A higher prevalence of CYP2C9*3, CYP2C19*4, and UGT2B7 IVS1+985 A>Gwas observed in US Hispanic vs. non-Hispanic populations. We found interethnic and intraethnic variability in frequencies of genetic polymorphisms for metabolizing enzymes, which highlights the need to define the ancestries of participants in pharmacogenetic studies. New approaches should be integrated in experimental designs to gain knowledge about the clinical relevance of the unique combination of genetic variants occurring in this admixed population. Ethnic subgroups in the US Hispanic population may harbor variants that might be part of multiple causative loci or in linkage-disequilibrium with functional variants. Pharmacogenetic studies in Hispanics should not be limited to ascertain commonly studied polymorphisms that were originally identified in their parental populations. The success of the Personalized Medicine paradigm will depend on recognizing genetic diversity between and within US Hispanics and the uniqueness of their genetic backgrounds. PMID:25431893

  5. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  6. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    PubMed

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  7. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    PubMed

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database (https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database (Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct.

  8. The Estrogen Metabolite 16αOHE Exacerbates BMPR2-Associated PAH Through miR-29-Mediated Modulation of Cellular Metabolism

    PubMed Central

    Chen, Xinping; Talati, Megha; Fessel, Joshua P.; Hemnes, Anna R.; Gladson, Santhi; French, Jaketa; Shay, Sheila; Trammel, Aaron; Phillips, John A.; Hamid, Rizwan; Cogan, Joy D.; Dawson, Elliott P.; Womble, Kristie E.; Hedges, Lora K.; Martinez, Elizabeth G.; Wheeler, Lisa A.; Loyd, James E.; Majka, Susan J.; West, James; Austin, Eric D.

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature which preferentially affects females. Estrogens, such as the metabolite 16α-hydroxyestrone (16αOHE), may contribute to PAH pathogenesis; and, alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via miR-29 family upregulation, and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. Methods and Results MicroRNA (miR) array profiling of human lung tissue found elevation of miRs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared to controls, and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/hr for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in PPARγ and CD36 in those mice exposed to 16αOHE, as well as from protein derived from HPAH lungs compared to controls. Bmpr2 mice treated with anti-miR-29 (α-miR29) (20mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared to controls. PASMCs derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with α-miR29 transfection in vitro; endothelial-like cells derived from HPAH patient iPS cell lines were similar, and improved with α-miR29 treatment. Conclusions 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indices of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH, and reveals a possible novel therapeutic target. PMID:26487756

  9. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism.

    PubMed

    Moghe, Gaurav D; Last, Robert L

    2015-11-01

    Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.

  10. Cortisol-Metabolizing Enzymes in Polycystic Ovary Syndrome

    PubMed Central

    Blumenfeld, Zeev; Kaidar, Gabi; Zuckerman-Levin, Nehama; Dumin, Elena; Knopf, Carlos; Hochberg, Ze’ev

    2016-01-01

    OBJECTIVE The aim of this study was to assess the activity of cortisol-metabolizing enzymes in women with polycystic ovary syndrome (PCOS), using a fully quantitative gas chromatography/mass spectrometry (GCMS) method. DESIGN We investigated the glucocorticoid degradation pathways that include 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1, 5α-reductase (5α-R) and 5β-reductase (5β-R), 3α-hydroxysteroid dehydrogenase, and 20α- and 20β-hydroxysteroid dehydrogenase (20α-HSD and 20β-HSD, respectively) in young nonobese women with PCOS, using a fully quantitative GCMS method. SETTING This study was conducted in a tertiary referral hospital in Israel. PATIENTS This study group consisted of 13 young women, aged 20.1 ± 2.8 years (mean ± SD), with the body mass index (BMI) of 22.6 ± 3.7 kg/m2, diagnosed with PCOS according to the Rotterdam criteria. The control group consisted of 14 healthy young women matched for weight, height, and BMI. INTERVENTIONS Urine samples were analyzed using GCMS. We measured urinary steroid metabolites that represent the products and substrates of the study enzymes and calculated the product/substrate ratios to represent enzyme activity. MAIN OUTCOME MEASURES The calculation of enzymatic activity, based on glucocorticoid degradation metabolites, was done by GCMS in PCOS vs. controls. RESULTS All glucocorticoid degradation metabolites were higher in the PCOS group than in controls. Of the adrenal enzymes, the activities of 21-hydroxylase and 17α-hydroxylase were reduced, whereas the activity of 17,20-lyase was enhanced in PCOS. Of the degradation enzymes, the activity of 11β-HSD type 1 was reduced in women with PCOS only when calculated from cortoles and cortolones ratios. The activities of 5α-R/5β-R were increased only when calculating the 11-hydroxy metabolites of androgens. The activity of 20α-HSD was elevated in the patients with PCOS and its relation with the substrate levels was lost. CONCLUSIONS We confirm PCOS

  11. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  12. Metabolism of a representative oxygenated polycyclic aromatic hydrocarbon (PAH) phenanthrene-9,10-quinone in human hepatoma (HepG2) cells.

    PubMed

    Huang, Meng; Zhang, Li; Mesaros, Clementina; Zhang, Suhong; Blaha, Michael A; Blair, Ian A; Penning, Trevor M

    2014-05-19

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH.

  13. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  14. Engineering specialized metabolic pathways--is there a room for enzyme improvements?

    PubMed

    Bar-Even, Arren; Salah Tawfik, Dan

    2013-04-01

    Recent advances in enzyme engineering enable dramatic improvements in catalytic efficiency and/or selectivity, as well as de novo engineering of enzymes to catalyze reactions where natural enzymes are not available. Can these capabilities be utilized to transform biosynthesis pathways? Metabolic engineering is traditionally based on combining existing enzymes to give new, or modified, pathways, within a new context and/or organism. How efficient, however, are the individual enzyme components? Is there room to improve pathway performance by enzyme engineering? We discuss the differences between enzymes in central versus specialized, or secondary metabolism and highlight unique features of specialized metabolism enzymes participating in the synthesis of natural products. We argue that, for the purpose of metabolic engineering, the catalytic efficiency and selectivity of many enzymes can be improved with the aim of achieving higher rates, yields and product purities. We also note the relative abundance of spontaneous reactions in specialized metabolism, and the potential advantage of engineering enzymes that will catalyze these steps. Specialized metabolism therefore offers new opportunities to integrate enzyme and pathway engineering, thereby achieving higher metabolic efficiencies, enhanced production rates and improved product purities.

  15. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    SciTech Connect

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  16. Placental biomarkers of PAH exposure and glutathione-S-transferase biotransformation enzymes in an obstetric population from Tijuana, Baja California, Mexico.

    PubMed

    Dodd-Butera, Teresa; Quintana, Penelope J E; Ramirez-Zetina, Martha; Batista-Castro, Ana C; Sierra, Maria M; Shaputnic, Carolyn; Garcia-Castillo, Maura; Ingmanson, Sonja; Hull, Stacy

    2017-01-01

    Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=-0.375, p=0.007); adduct #1 (rho=-0.388, p=0.005); and adduct #3 (rho =-0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted.

  17. Urinary 1-hydroxypyrene level relative to vehicle exhaust exposure mediated by metabolic enzyme polymorphisms.

    PubMed

    Chuang, Chun-Yu; Chang, Chen-Chen

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAH) are common air pollutants generated from incomplete combustion. The inhalation of exhaust fumes in urban areas has been suggested to be an additional contributing factor. This study investigated the influence of urban traffic exposure, personal lifestyle factors and metabolic enzyme polymorphisms on the urinary 1-hydroxypyrene (1-OHP) level, approximating exposure to PAH. With consents, 95 male taxi drivers exposed to vehicle exhaust in traffic and 75 male office employees received health interviews and provided urine samples. The results showed taxi drivers had higher urinary 1-OHP than the office employees (mean +/- standard deviation were 0.17 +/- 0.10 vs. 0.10 +/- 0.07 mol/mol creatinine, p<0.001). The average urinary 1-OHP level increased from 0.07 micromol/mol creatinine for non-smoking office employees to 0.17 micromol/mol creatinine for those who smoked more than 20 cigarettes daily. The values for taxi drivers with similar smoking statuses were 0.12 and 0.25 micromol/mol creatinine, respectively. Among non-smokers, taxi drivers still had higher 1-OHP level than office employees (0.12 +/- 0.05 vs. 0.07 +/- 0.03 micromol/mol creatinine). The subjects with the m1/m2 or m2/m2 genotype of CYP1A1 MspI or GSTM1 deficiency had significantly higher urinary 1-OHP levels than those with other CYP1A1 MspI and GSTM1 genotypes. Multivariate logistic regression analysis showed that taxi drivers (adjusted odds ratio (OR)=5.1, 95% confidence interval (CI)=1.1-13.6), smokers (OR=5.5, 95% CI=1.6-18.4) and subjects with the m1/m2 or m2/m2 genotype of CYP1A1 MspI (OR=9.7, 95% CI=2.7-35.0) had elevated urinary 1-OHP (greater than the overall median value, 0.11 micromol/mol creatinine). The results of this study suggest smoking contributes to the elevated urinary 1-OHP levels in taxi drivers in addition to taxi driving, and the excess level contributed from traffic exhaust and smoke was regulated by the CYP1A1 MspI genotype. Traffic exhaust

  18. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.

    PubMed

    Huthmacher, Carola; Gille, Christoph; Holzhütter, Hermann-Georg

    2008-06-07

    Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.

  19. Evaluation of glutathione S-transferase activity as a biomarker of PAH pollution in mudskipper, Boleophthalmus dussumieri, Persian Gulf.

    PubMed

    Sinaei, Mahmood; Rahmanpour, Shirin

    2013-03-01

    As an attempt to study on the biomarkers types to assess the specification of the pollutants and health status of marine ecosystems, sediments and biota (i.e., Boleophthalmus dussumieri) were collected from the Persian Gulf. The liver glutathione S-transferase (GST) activity in mudskipper was higher as compared with that in blood which could be illustrated by high metabolic rate in this organ, its key role in the metabolism of PAHs detoxification and specificity of enzymes composition. The results suggest that the liver GST activity in B. dussumieri was PAH inducible and could be extended as a biomarker of PAH pollution.

  20. Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.

    PubMed

    Subbalakshmi, G Y; Murthy, C R

    1983-01-01

    Enzymes of glutamate metabolism were studied in the astrocytes isolated from rats injected with a large dose of ammonium acetate and compared with those isolated from controls. The activities of glutamate dehydrogenase (GDH) and glutaminase decreased while those of glutamine synthetase (GS) and aspartate aminotransferase (AAT) increased both in convulsive and comatose states. The activity of alanine aminotransferase (A1AT) increased only in convulsive state. The results suggested that glutamate required for the formation of glutamine in astrocytes might have its origin in nerve endings and the depletion of citric acid cycle intermediates might occur in nerve endings at least in acute ammonia toxicity.

  1. Effect of Fe(2)O(3) on the capacity of benzo(a)pyrene to induce polycyclic aromatic hydrocarbon-metabolizing enzymes in the respiratory tract of Sprague-Dawley rats.

    PubMed

    Garçon, Guillaume; Gosset, Pierre; Zerimech, Farid; Grave-Descampiaux, Béatrice; Shirali, Pirouz

    2004-04-21

    In this work, the question that needs to be answered was whether concurrent exposure to iron oxides and polycyclic aromatic hydrocarbons (PAHs) could affect the induction of PAH-metabolizing enzymes. Male Sprague-Dawley rats were intratracheally instilled with hematite (Fe(2)O(3); 3mg), benzo(a)pyrene (B(a)P; 3mg), or B(a)P (3mg)-coated onto Fe(2)O(3) particles (3mg). Forty-eight hours later, we investigated mRNA expressions of cytochrome p4501a1 (cyp1a1), microsomal epoxide hydrolase (meh), and glutathione-S-transferase-ya and -yc (gst-ya and gst-yc, respectively), protein concentrations of CYP1A1, and 7-ethoxyresorufin O-deethylase (EROD) activities in lungs. Exposure to B(a)P alone or coated-onto Fe(2)O(3) particles induced cyp1a1 gene transcription (P < 0.01) and increased both the CYP1A1 protein levels (P < 0.01) and the EROD activities (P < 0.001). However, in this work, we focused our attention on the potential of Fe(2)O(3) in B(a)P/Fe(2)O(3) mixtures to affect the capacity of B(a)P to induce PAH-metabolizing enzymes. Exposure to B(a)P-coated onto Fe(2)O(3) particles increased meh mRNA expressions (1.15-fold, P < 0.05), CYP1A1 protein concentrations (1.85-fold, P < 0.05), and EROD activities (1.95-fold, P < 0.01), versus exposure to B(a)P alone. Hence, animal short-term exposure to B(a)P-coated onto Fe(2)O(3) particles favored dramatically the induction of PAH-bioactivating enzymes to the detriment of PAH-inactivating enzymes in lungs. Taken together, these results support the hypothesis that the Fe(2)O(3)-induced increase of the metabolic activation of B(a)P might rely on several properties of Fe(2)O(3), including its capacity to enhance the rate of CYP1A1 hemoprotein elaboration. The influence of Fe(2)O(3) in B(a)P/Fe(2)O(3) mixtures on the ability of B(a)P to induce PAH-metabolizing enzymes will also be one of the fundamental ways that Fe(2)O(3) can affect B(a)P carcinogenicity in lungs.

  2. [Effect of T-activin on enzymes in the metabolism of xenobiotics].

    PubMed

    Arion, V Ia; Khromenkov, Iu I; Tagirova, A K; Karaulov, A V; Breusov, Iu N

    1987-01-01

    Effect of T-activin on some xenobiotic metabolizing enzymes and several immunity parametres in secondary immune deficiency (subacute and chronic benzene intoxication) were investigated. T-activin was shown to regulate the xenobiotic metabolizing enzyme system. The compound decreased the enzymatic activity in subacute benzene intoxication, approaching their values up to the control level. In chronic benzene intoxications, which were accompanied by decrease in xenobiotic metabolizing enzymes activity, except of glutathione-S-transferase, T-activin stimulated these enzymes. At the same time, T-activin increased some immunological parameters in these models. Thymus-tropic peptides appear to be the bioregulators of some in vivo systems.

  3. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN

    PubMed Central

    Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas

    2017-01-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535

  4. The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells.

    PubMed

    Vondrácek, Jan; Krcmár, Pavel; Procházková, Jirina; Trilecová, Lenka; Gavelová, Martina; Skálová, Lenka; Szotáková, Barbora; Buncek, Martin; Radilová, Hana; Kozubík, Alois; Machala, Miroslav

    2009-07-15

    In contrast to hepatocytes, there is only limited information about the expression and activities of enzymes participating in metabolic activation of environmental mutagens, including polycyclic aromatic hydrocarbons (PAHs), in liver progenitor cells. In rat liver "stem-like" WB-F344 cell line, sharing many characteristics with rat liver progenitor cells, PAHs are efficiently activated to their ultimate genotoxic metabolites forming DNA adducts. The present study aimed to characterize expression/activities of enzymes of two major pathways involved in the metabolism of benzo[a]pyrene (BaP): cytochrome P450 (CYP) family 1 enzymes and cytosolic aldo-keto reductases (AKRs). We report here that, apart from induction of CYP1A1 and CYP1B1 expression and the corresponding enzymatic activity, both BaP and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced rat 3alpha-hydroxysteroid dehydrogenase (AKR1C9) expression and activity. In contrast, the aldehyde reductase AKR1A1 was not induced by either treatment. Thus, both CYP1 and AKR metabolic pathways were inducible in the model of liver progenitor cells. BaP and TCDD were efficient inducers of NAD(P)H:quinone oxidoreductase 1 (NQO1) expression and activity in WB-F344 cells, a principal enzyme of cellular antioxidant defense. Both compounds also induced expression of transcription factor NRF2, involved in control of enzymes protecting cells from oxidative stress. However, although BaP induced a significant formation of reactive oxygen species, it did not induce expression of heme oxygenase-1, suggesting that induction of oxidative stress by BaP was limited. Using shRNA against the aryl hydrocarbon receptor (AhR), we found that similar to CYP1A1 and CYP1B1, the AKR1C9 induction was AhR-dependent. Moreover, constitutive AKR1C9 levels in AhR-deficient rat BP8 hepatoma cells were significantly lower than in their AhR-positive 5L variant, thus supporting possible role of AhR in regulation of AKR1C9 expression. Taken together, both

  5. Effects of microsomal enzyme induction on paracetamol metabolism in man.

    PubMed Central

    Prescott, L F; Critchley, J A; Balali-Mood, M; Pentland, B

    1981-01-01

    1 The metabolism of paracetamol after a single oral dose of 20 mg/kg was compared in fifteen patients with microsomal enzyme induction taking anticonvulsants or rifampicin and twelve healthy volunteers. 2 Induction was confirmed by measurement of the plasma antipyrine half-life (mean 6.4 h in the patients compared with 12.8 h in the volunteers). 3 The glucuronide conjugation of paracetamol was enhanced in the induced patients as shown by lower plasma paracetamol concentrations, a shorter paracetamol half-life, higher paracetamol glucuronide concentrations and an increased ratio of the area under the plasma concentration time curves of the glucuronide to the unchanged drug. There were no significant differences in sulphate conjugation. 4 There was a corresponding change in the pattern of urinary metabolite excretion. The induced patients excreted significantly less unchanged drug and sulphate conjugate and more glucuronide conjugate than the healthy volunteers. 5 The urinary excretion of the mercapturic acid and cysteine conjugated of paracetamol was the same in both groups. 6 Conversion of paracetamol to its potentially hepatotoxic metabolite does not seem to be increased in patients induced with anticonvulsants or rifampicin. There would seem to be no contraindication to the use of these drugs in combination. PMID:7306429

  6. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-An in vitro study

    SciTech Connect

    Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima

    2010-09-01

    PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement around the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 {mu}M) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.

  7. Freeze-thaw effects on metabolic enzymes in wood frog organs.

    PubMed

    Cowan, K J; Storey, K B

    2001-08-01

    To determine whether episodes of natural freezing and thawing altered the metabolic makeup of wood frog (Rana sylvatica) organs, the maximal activities of 28 enzymes of intermediary metabolism were assessed in six organs (brain, heart, kidney, liver, skeletal muscle, gut) of control (5 degrees C acclimated), frozen (24 h at -3 degrees C), and thawed (24 h back at 5 degrees C) frogs. The enzymes assessed represented pathways including glycolysis, gluconeo-genesis, amino acid metabolism, fatty acid metabolism, the TCA cycle, and adenylate metabolism. Organ-specific responses seen included (a) the number of enzymes affected by freeze-thaw (1 in gut ranging to 17 in heart), (b) the magnitude and direction of response (most often enzyme activities decreased during freezing and rebounded with thawing but, liver showed freeze-specific increases in several enzymes), and (c) the response to freezing versus thawing (enzyme activities in gut and kidney changed during freezing, whereas most enzymes in skeletal muscle responded to thawing). Overall, the data show that freeze-thaw implements selected changes to the maximal activities of various enzymes of intermediary metabolism and that these may aid organ-specific responses that alter fuel use during freeze-thaw, support cryoprotectant metabolism, and aid organ endurance of freeze-induced ischemia.

  8. A QUANTITATIVE MODEL FOR XENOBIOTIC METABOLIZING ENZYME (XME) INDUCTION REGULATED BY THE PREGNANE X RECEPTOR (PXR)

    EPA Science Inventory

    The nuclear receptor, PXR, is an integral part of the regulation of hepatic metabolism. It has been shown to regulate specific CYPs (phase I drug-metabolizing enzymes) as well as certain phase II drug metabolism activities, including UDP-glucuronosyl transferase (UGT), sulfotran...

  9. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction

    PubMed Central

    Tabei, Yasuo; Yamanishi, Yoshihiro; Kotera, Masaaki

    2016-01-01

    Motivation: Metabolic pathways are an important class of molecular networks consisting of compounds, enzymes and their interactions. The understanding of global metabolic pathways is extremely important for various applications in ecology and pharmacology. However, large parts of metabolic pathways remain unknown, and most organism-specific pathways contain many missing enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reactions of the substrate–product pairs in the joint learning framework. The originality of the method lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We demonstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic compounds, and analyze the extracted chemical transformation patterns that provide insights into the characteristics and specificities of enzymes. The proposed method will open the door to both primary (central) and secondary metabolism in genomics research, increasing research productivity to tackle a wide variety of environmental and public health matters. Availability and Implementation: Contact: maskot@bio.titech.ac.jp PMID:27307627

  10. Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer

    PubMed Central

    Stern, Mariana C.

    2012-01-01

    Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case–Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene–diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies. Abbreviations: AA African American; BMI body mass index; CI confidence interval; CNV copy number variant; EPIC European Prospective Investigation into Cancer and Nutrition; HCA heterocyclic amine; HCFA Health Care Financing Administration; LAC Los Angeles county; MAF minor allele frequency; NHW non-Hispanic White; OR odds ratio; PAH polycyclic aromatic hydrocarbon; PCA prostate cancer; PTGS2 prostaglandin- endoperoxide synthase 2; PUFA polyunsaturated fatty acids; RDD

  11. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption.

    PubMed

    Bergen, Andrew W; Michel, Martha; Nishita, Denise; Krasnow, Ruth; Javitz, Harold S; Conneely, Karen N; Lessov-Schlaggar, Christina N; Hops, Hyman; Zhu, Andy Z X; Baurley, James W; McClure, Jennifer B; Hall, Sharon M; Baker, Timothy B; Conti, David V; Benowitz, Neal L; Lerman, Caryn; Tyndale, Rachel F; Swan, Gary E

    2015-01-01

    The Nicotine Metabolite Ratio (NMR, ratio of trans-3'-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis.

  12. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme

    PubMed Central

    Ahmad, Sarfaraz; Varagic, Jasmina; VonCannon, Jessica L.; Groban, Leanne; Collawn, James F.; Dell'Italia, Louis J.; Ferrario, Carlos M.

    2016-01-01

    We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled 125I-Ang-(1-12) or 125I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of 125I-Ang II formation from 125I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to 125I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of 125I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0–250 µM). The rate of 125I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 µM vs 142 ± 17 µM), higher Vmax (13.2 ± 1.3 µM/min/mg vs 1.9 ± 0.2 µM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of 125I-Ang-(1-12) and 125I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in 125I-Ang II formation by ACE was detected using either substrate, 125I-Ang-(1-12) or 125I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower

  13. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    PubMed Central

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  14. PAH metabolites, GST and EROD in European eel (Anguilla anguilla) as possible indicators for eel habitat quality in German rivers.

    PubMed

    Kammann, Ulrike; Brinkmann, Markus; Freese, Marko; Pohlmann, Jan-Dag; Stoffels, Sandra; Hollert, Henner; Hanel, Reinhold

    2014-02-01

    The stock of the European eel (Anguilla anguilla L.) continues to decline and has reached a new minimum in 2011. Poor health status of the spawners due to organic contaminants is one of the possible causes for this dramatic situation. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants, which are rapidly metabolized in vertebrates. EROD (ethoxyresorufin-O-deethylase) and GST (glutathione-S-transferase) are two enzymes involved in PAH detoxification in fish. In this study, PAH metabolites as well as EROD and GST activity in a large, comprising dataset of more than 260 migratory and pre-migratory eels from five large German river basin districts were used to describe PAH exposure and its metabolism as possible indicators for the habitat quality for eels. Eel from the river Elbe appear to be moderately contaminated with PAH. Highest mean values of PAH metabolites were analysed in fish from the river Rhine. However, the results suggest that contaminants such as PAH are metabolized in the fish and may have contributed to EROD activity in eels caught from the Elbe estuary to 600 km upstream. Since the eel's onset of cessation of feeding is closely linked to maturation and migration, we propose bile pigments as new indicators contributing to identify the proportion of migratory eel, which is crucial information for eel management plans. We showed that PAH metabolites normalized to bile pigments as well as EROD could be used to describe the habitat quality and might be suitable parameters in search for suitable stocking habitats.

  15. Temperature Features of Enzymes Affecting Crassulacean acid Metabolism

    PubMed Central

    Brandon, P. C.

    1967-01-01

    Enzymes involved in malic acid production via a pathway with 2 carboxylation reactions and in malic acid conversion via total oxidation have been demonstrated in mitochondria of Bryophyllum tubiflorum Harv. Activation of the mitochondria by Tween 40 was necessary to reveal part of the enzyme activities. The temperature behavior of the enzymes has been investigated, revealing optimal activity of acid-producing enzymes at 35°. Even at 53° the optimum for acid-converting enzymes was not yet reached. From the simultaneous action of acid-producing and acid-converting enzyme systems the overall result at different temperatures was established. Up to 15° the net result was a malic acid production. Moderate temperatures brought about a decrease in this accumulation, which was partly accompanied by a shift to isocitrate production, while at higher temperatures total oxidation of the acids exceeded the production. PMID:16656606

  16. Potent inhibition of retinoic acid metabolism enzyme(s) by novel azolyl retinoids.

    PubMed

    Njar, V C; Nnane, I P; Brodie, A M

    2000-09-04

    Novel (+/-)-4-azolyl retinoic acid analogues 4, 5, 7 and 8 have been designed and synthesized and have been shown to be powerful inhibitors of hamster microsomal all-trans-retinoic acid 4-hydroxylase enzyme(s). (+/-)-4-(1H-Imidazol-1-yl)retinoic acid (4) is the most potent inhibitor of this enzyme reported to date.

  17. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor

    PubMed Central

    2013-01-01

    Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642

  18. Expression and Regulation of Drug Transporters and Metabolizing Enzymes in the Human Gastrointestinal Tract.

    PubMed

    Drozdzik, M; Oswald, S

    2016-01-01

    Orally administered drugs must pass through the intestinal wall and then through the liver before reaching systemic circulation. During this process drugs are subjected to different processes that may determine the therapeutic value. The intestinal barrier with active drug metabolizing enzymes and drug transporters in enterocytes plays an important role in the determination of drug bioavailability. Accumulating information demonstrates variable distribution of drug metabolizing enzymes and transporters along the human gastrointestinal tract (GI), that creates specific barrier characteristics in different segments of the GI. In this review, expression of drug metabolizing enzymes and transporters in the healthy and diseased human GI as well as their regulatory aspects: genetic, miRNA, DNA methylation are outlined. The knowledge of unique interplay between drug metabolizing enzymes and transporters in specific segments of the GI tract allows more precise definition of drug release sites within the GI in order to assure more complete bioavailability and prediction of drug interactions.

  19. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  20. Xenobiotic metabolizing enzyme (XME) expression in aging humans.

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  1. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  2. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  3. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment

    SciTech Connect

    Varanasi, U.

    1989-01-01

    During the past decade, knowledge of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment has advanced substantially to encompass studies of bioavailability, metabolism, subsequent toxic effects, and their ecological consequences. In this book, recent advances in the areas of PAH biogeochemistry and bioaccumulation, microbial degradation, enzymes of activation and detoxication, metabolism of PAH, and laboratory and field studies on carcinogenic/toxic effects, are presented. Additionally, important similarities and differences in metabolism of PAH by aquatic and terrestrial organisms are discussed. These chapters also illustrate that although considerable progress has been made in certain areas of PAH metabolism in the aquatic environment, the field is relatively unexplored and many exciting possibilities exist for future investigations. Separate abstracts are included for 9 chapters in this book for inclusion in the appropriate data bases.

  4. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    NASA Technical Reports Server (NTRS)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  5. Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins.

    PubMed

    Gao, Yu-Fei; Chen, Lei; Cai, Yu-Dong; Feng, Kai-Yan; Huang, Tao; Jiang, Yang

    2012-01-01

    Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.

  6. Role of cytochrome P-450 and related enzymes in the pulmonary metabolism of xenobiotics.

    PubMed Central

    Philpot, R M; Smith, B R

    1984-01-01

    The lung metabolizes a wide variety of xenobiotics and, in the process, forms products that may be more or less toxic than the parent compound. The consequence of metabolism, activation or detoxication, is a function of the nature of the substrate and of the characteristics and concentrations of the enzymes involved. As a result, the biotransformation of xenobiotics can lead to their excretion or to the formation of reactive products that produce deleterious effects by binding covalently to tissue macromolecules. Among the enzymes that metabolize xenobiotics, those associated with the cytochrome P-450-dependent monooxygenase system are probably the most important. The route by which a given substrate is metabolized in a tissue or cell is, to a great extent, determined by the types and concentrations of cytochrome P-450 isozymes present. We are just beginning to understand the distribution of these enzymes in lung and to appreciate the species and cellular differences that exist. PMID:6376107

  7. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for

  8. Polymorphisms of xenobiotic-metabolizing enzymes and susceptibility to cancer.

    PubMed Central

    Hirvonen, A

    1999-01-01

    The variation in individual responses to exogenous agents is exceptionally wide. It is because of this large diversity of responsiveness that risk factors to environmentally induced diseases have been difficult to pinpoint, particularly at low exposure levels. Opportunities now exist for studies of host factors in cancer or other diseases in which an environmental component can be presumed. Many of the studies have shown an elevated disease proneness for individuals carrying the potential at-risk alleles of metabolic genes, but a number of controversial results have also been reported. This article is an overview of the data published to date on metabolic genotypes related to individual susceptibility to cancer. PMID:10229705

  9. Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, shockingly large molecules by early interstellar chemistry standards, is very strong.

  10. Interaction of 3,4-methylenedioxymethamphetamine and methamphetamine during metabolism by in vitro human metabolic enzymes and in rats.

    PubMed

    Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2012-07-01

    Illicit amphetamine-type stimulant (ATS) tablets commonly contain one or more active ingredients, which have hallucinogenic and/or stimulant effects. Because components such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (MA) in ATS tablets have similar chemical structures, they could be metabolized by common metabolic enzymes. To investigate potential metabolic interactions of ATS tablet components, we studied the in vitro metabolism of MDMA and MA using human metabolic enzymes. MDMA and MA were mainly metabolized by cytochrome P450 2D6 (CYP2D6) and mutually inhibited the production of their main metabolites. In vivo experiments were also performed using intravenous administration of MDMA, MA, or their mixture to rats. The plasma concentrations of MDMA and MA after co-administration were higher than those after administration of MDMA or MA alone. The results in this study imply that multiple components in ATS tablets can interact to mutually inhibit their metabolism and potentially enhance the toxicity of each component.

  11. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance.

    PubMed

    Casida, John E

    2011-04-13

    Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.

  12. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme.

    PubMed

    White, Craig R; Alton, Lesley A; Frappell, Peter B

    2012-05-07

    Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.

  13. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    PubMed

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  14. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    DTIC Science & Technology

    2014-10-01

    was upregulated in a subset of patients and the upregulation was associated with chemotherapy resistance. In vitro analysis showed that OXCT1 was...hypothesis that OXCT1 plays important role prostate cancer chemotherapy sensitivity. 15. SUBJECT TERMS chemosensitivity, OXCT1, docetaxel...prostate cancer resistance to docetaxel-based chemotherapy has never been tested. OXCT1 encodes the rate limiting enzyme converting ketone bodies to

  15. Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications

    PubMed Central

    PARK, B. K.; KITTERINGHAM, N. R.; PIRMOHAMED, M.; TUCKER, G. T.

    1996-01-01

    1Human drug-metabolizing systems can be induced, or activated, by a large number of exogenous agents including drugs, alcohol, components in the diet and cigarette smoke, as well as by endogenous factors. 2Such perturbation of enzyme activity undoubtedly contributes to both intra- and inter-individual variation both with respect to the rate and route of metabolism for a particular drug. Induction may, in theory, either attenuate the pharmacological response or exacerbate the toxicity of a particular drug, or both. 3The clinical impact of enzyme induction will depend upon the number of different enzyme isoforms affected and the magnitude of the inductive response within an individual, and also on the therapeutic indices of the affected substrates. 4The toxicological implications will be determined either by any change in the route of metabolism, or by a disturbance of the balance between activation and detoxication processes, which may be isozyme selective. PMID:8799511

  16. CO2 Metabolism in Corn Roots. II. Intracellular Distribution of Enzymes 1

    PubMed Central

    Danner, Jean; Ting, Irwin P.

    1967-01-01

    Three enzymes assumed to mediate CO2 metabolism in corn root tips, P-enolpyruvate carboxylase, malic dehydrogenase, and the malic enzyme, were extracted to determine their relative specific activities and their partitioning between soluble and particulate fractions. The data indicated that the intracellular location of these 3 enzymes is nonparticulate and thus these enzymatic reactions of CO2 metabolism are apparently nonparticulate. The soluble malic dehydrogenase fraction differed from the particulate fraction in several kinetic properties, viz., response to the thionicotinamide analog of nicotinamide-adenine dinucleotide, oxaloacetate substrate inhibition at pH 8.3, and Km's for nicotinamide-adenine dinucleotide and l-malate. It was concluded that the soluble-malic dehydrogenase differed from the particulate forms in both structure and function. The soluble malic dehydrogenase is apparently involved in CO2 metabolism. PMID:16656561

  17. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    PubMed

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  18. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.

  19. New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.

    PubMed

    Selmer, Thorsten; Pierik, Antonio J; Heider, Johann

    2005-10-01

    During the last decade, an increasing number of new enzymes containing glycyl radicals in their active sites have been identified and biochemically characterised. These include benzylsuccinate synthase (Bss), 4-hydroxyphenylacetate decarboxylase (Hpd) and the coenzyme B12-independent glycerol dehydratase (Gdh). These are involved in metabolic pathways as different as anaerobic toluene metabolism, fermentative production of p-cresol and glycerol fermentation. Some features of these newly discovered enzymes are described and compared with those of the previously known glycyl radical enzymes pyruvate formate-lyase (Pfl) and anaerobic ribonucleotide reductase (Nrd). Among the new enzymes, Bss and Hpd share the presence of small subunits, the function of which in the catalytic mechanisms is still enigmatic, and both enzymes contain metal centres in addition to the glycyl radical prosthetic group. The activating enzymes of the novel systems also deviate from the standard type, containing at least one additional Fe-S cluster. Finally, the available whole-genome sequences of an increasing number of strictly or facultative anaerobic bacteria revealed the presence of many more hitherto unknown glycyl radical enzyme (GRE) systems. Recent studies suggest that the particular types of these enzymes represent the ends of different evolutionary lines, which emerged early in evolution and diversified to yield remarkably versatile biocatalysts for chemical reactions that are otherwise difficult to perform in anoxic environments.

  20. Dietary n-6 PUFA deprivation downregulates arachidonate but upregulates docosahexaenoate metabolizing enzymes in rat brain

    PubMed Central

    Kim, Hyung-Wook; Rao, Jagadeesh S; Rapoport, Stanley I.; Igarashi, Miki

    2010-01-01

    Background Dietary n-3 polyunsaturated fatty acid (PUFA) deprivation increases expression of arachidonic acid (AA 20:4n-6)-selective cytosolic phospholipase A2 (cPLA2) IVA and cyclooxygenase (COX)-2 in rat brain, while decreasing expression of docosahexaenoic acid (DHA 22:6n-3)-selective calcium-independent iPLA2 VIA. Assuming that these enzyme changes represented brain homeostatic responses to deprivation, we hypothesized that dietary n-6 PUFA deprivation would produce changes in the opposite directions. Methods Brain expression of PUFA-metabolizing enzymes and their transcription factors was quantified in male rats fed an n-6 PUFA adequate or deficient diet for 15 weeks post-weaning. Results The deficient compared with adequate diet increased brain mRNA, protein and activity of iPLA2 VIA and 15-lipoxygenase (LOX), but decreased cPLA2 IVA and COX-2 expression. The brain protein level of the iPLA2 transcription factor SREBP-1 was elevated, while protein levels were decreased for AP-2α and NF-κB p65, cPLA2 and COX-2 transcription factors, respectively. Conclusions With dietary n-6 PUFA deprivation, rat brain PUFA metabolizing enzymes and some of their transcription factors change in a way that would homeostatically dampen reductions in brain n-6 PUFA concentrations and metabolism, while n-3 PUFA metabolizing enzyme expression is increased. The changes correspond to reported in vitro enzyme selectivities for AA compared with DHA. (198 words) PMID:21070866

  1. Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa.

    PubMed

    Prchal, Lukáš; Bártíková, Hana; Bečanová, Aneta; Jirásko, Robert; Vokřál, Ivan; Stuchlíková, Lucie; Skálová, Lenka; Kubíček, Vladimír; Lamka, Jiří; Trejtnar, František; Szotáková, Barbora

    2015-04-01

    The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.

  2. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  3. Increments and Duplication Events of Enzymes and Transcription Factors Influence Metabolic and Regulatory Diversity in Prokaryotes

    PubMed Central

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  4. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets--"Sand Out and Gold Stays".

    PubMed

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T; Wang, Hong; Yang, Xiao-feng

    2016-02-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.

  5. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA.

    PubMed

    Mueller, Edith E; Mayr, Johannes A; Zimmermann, Franz A; Feichtinger, René G; Stanger, Olaf; Sperl, Wolfgang; Kofler, Barbara

    2012-01-20

    Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 ρ(0) cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in ρ(0) cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

  6. Case study 3. Application of basic enzyme kinetics to metabolism studies: real-life examples.

    PubMed

    Li, Yongmei; McCabe, Michelle; Podila, Lalitha; Tracy, Timothy S; Tweedie, Donald J

    2014-01-01

    An appreciation of the principles of enzyme kinetics can be applied in a number of drug metabolism applications. The concept for this chapter arose from a simple discussion on selecting appropriate time points to most efficiently assess metabolite profiles in a human Phase 1a clinical study (Subheading 4). By considering enzyme kinetics, a logical approach to the issue was derived. The dialog was an important learning opportunity for the participants in the discussion, and we have endeavored to capture this experience with other questions related to determination of K m and V max parameters, a consideration of the value of hepatocytes versus liver microsomes and enzyme inhibition parameters.

  7. Enzymes involved in crotonate metabolism in Syntrophomonas wolfei

    SciTech Connect

    McInerney, M.J.; Wofford, N.Q.

    1992-12-31

    Cell-free extracts of Syntrophomonas wolfei subsp. wolfei grown with crotonate in pure culture or in coculture with Methanospirillum hungatei contained crotonyl-coenzyme A (CoA):acetate CoA-transferase activity. This activity was not detected in cell-free extracts from the butyrate-grown coculture which suggests that the long lag times observed before S. wolfei grew with crotonate were initially due to the inability to activate crotonate. Cell-free extracts of S. wolfei grown in pure culture contained high specific activities of hydrogenase and very low levels of formate dehydrogenase. The low levels suggest a biosynthetic rather than a catabolic role for the latter enzyme when S. wolfei is grown in pure culture. CO dehydrogenase activity was not detected. S. wolfei can form butyrate using a CoA transferase activity, but not by a phosphotransbutyrylase or enoate reductase activity. A c-type cytochrome was detected in S. wolfei grown in pure culture or in coculture indicating the presence of an electron transport system. This is a characteristic which separates S. wolfei from other known crotonate-using bacteria.

  8. Subcellular Distribution of Enzymes of Glycolate Metabolism in the Alga Cyanidium caldarium1

    PubMed Central

    Gross, Wolfgang; Beevers, Harry

    1989-01-01

    The intracellular distribution of enzymes capable of catalyzing the reactions from phosphoglycolate to glycerate in the bluegreen colored eucaryotic alga Cyanidium caldarium has been studied. After separating the organelles from a crude homogenate on a linear flotation gradient, the enzymes glycolate oxidase and glutamate-glyoxylate aminotransferase along with catalase were present in the peroxisomal fraction (density: 1.23 grams per cubic centimeter). Serine hydroxymethyltransferase was found in the mitochondrial fraction (density: 1.18 grams per cubic centimeter). In contrast to the observations in green leaves of higher plants, the enzymes for the conversion of serine to glycerate (serine-glyoxylate aminotransferase and hydroxypyruvate reductase) were found only in the soluble fraction of the gradient. The partial characterization of enzymes from Cyanidium participating in glycolate metabolism revealed only slight differences from the corresponding enzymes from higher plants. The phylogenetic implications of the observed similarities between the enigmatic alga Cyanidium and higher plants are discussed. PMID:16666880

  9. Elasticity analysis and design for large metabolic responses produced by changes in enzyme activities.

    PubMed Central

    Ortega, Fernando; Acerenza, Luis

    2002-01-01

    Metabolic control analysis has been extensively used to describe how the sensitivity properties of the component enzymes in a metabolic pathway (represented by the elasticity coefficients) determine the way in which metabolic variables respond (described by the control coefficients). Similarly, metabolic control design addresses the inverse problem of obtaining the sensitivity properties of the component enzymes that are required for the system to show a pre-established pattern of responses. These formalisms, including what is called elasticity analysis and design, were developed for small, strictly speaking infinitesimal, changes. Here we extend them to large metabolic responses. The new approach can be applied to simple two-step pathways or to any arbitrary metabolic system divided into two groups linked by one intermediate. General expressions that relate control and elasticity coefficients for large changes are derived. Concentration and flux connectivity relationships are obtained. The relationships for large changes indicate that the pattern of responses is not necessarily the same as the one obtained with the traditional infinitesimal approach, in some cases the patterns being qualitatively different. The general analysis is used to study the control of ketogenesis in rat liver mitochondria, starting from data available in the literature. The control profile of the pathway subject to large changes shows both quantitative and qualitative differences from the one obtained from an analysis that is performed with infinitesimal coefficients. This exemplifies the type of errors that may be introduced when drawing conclusions about large metabolic responses from results obtained with an infinitesimal treatment. PMID:12084013

  10. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    PubMed

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.

  11. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro.

    PubMed

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; van Ravenzwaay, Bennard

    2016-06-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To determine their relative contribution, these activities were compared to those of untreated adult male rat liver, using commonly accepted assays. The enzymes comprised cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), esterase, UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). In contrast to liver, no activities were measurable for 7-ethylresorufin-O-dealkylase (CYP1A), 7-pentylresorufin-O-dealkylase (CYP2B), 7-benzylresorufin-O-dealkylase (CYP2B, 2C and 3 A), UGT1, UGT2 and GST in placenta, indicating that the placental activity of these enzymes was well below their hepatic activity. Low activities in placenta were determined for FMO (4%), and esterase (8%), whereas the activity of placental ADH and ALDH accounted for 35% and 40% of the hepatic activities, respectively. In support of the negligible placental CYP activity, testosterone and six model azole fungicides, which were readily metabolized by rat hepatic microsomes, failed to exhibit any metabolic turnover with rat placental microsomes. Hence, with the possible exception of ADH and ALDH, the activities of xenobiotic-metabolizing enzymes in rat placenta are too low to warrant consideration in PBTK modelling.

  12. Phylogenetic and biological investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and eukaryotic organisms. The role of NATs in fungal biology has only recently been investigated. The NAT1 (FDB2) gene of Fusarium verticillioides was the first NAT cloned and character...

  13. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  14. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  15. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    PubMed

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes.

  16. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  17. IDENTIFICATION OF CHANGES IN XENOBIOTIC METABOLISM ENZYME EXPRESSION DURING AGING USING COMPREHENSIVE TRANSCRIPT PROFILING

    EPA Science Inventory

    Aging leads to changes in the expression of enzymes and transporters important in the metabolism and fate of xenobiotics in liver, kidney and intestine. Most notable are the changes in a number of CYP and xenobiotic transporter genes regulated by the nuclear receptors PXR, CAR an...

  18. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism

    PubMed Central

    Kinoshita, Syohei; Nishino, Shunsuke; Tomita, Atsumi; Shimizu, Hiroshi

    2017-01-01

    Central carbon metabolism is controlled by modulating the protein abundance profiles of enzymes that maintain the essential systems in living organisms. In this study, metabolic adaptation mechanisms in the model organism Saccharomyces cerevisiae were investigated by direct determination of enzyme abundance levels in 30 wild type and mutant strains. We performed a targeted proteome analysis using S. cerevisiae strains that lack genes encoding the enzymes responsible for central carbon metabolism. Our analysis revealed that at least 30% of the observed variations in enzyme abundance levels could be explained by global regulatory mechanisms. A enzyme-enzyme co-abundance analysis revealed that the abundances of enzyme proteins involved in the trehalose metabolism and glycolysis changed in a coordinated manner under the control of the transcription factors for global regulation. The remaining variations were derived from local mechanisms such as a mutant-specific increase in the abundances of remote enzymes. The proteome data also suggested that, although the functional compensation of the deficient enzyme was attained by using more resources for protein biosynthesis, available resources for the biosynthesis of the enzymes responsible for central metabolism were not abundant in S. cerevisiae cells. These results showed that global and local regulation of enzyme abundance levels shape central carbon metabolism in S. cerevisiae by using a limited resource for protein biosynthesis. PMID:28241048

  19. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response.

    PubMed

    Staudigl, Michael; Gersting, Søren W; Danecka, Marta K; Messing, Dunja D; Woidy, Mathias; Pinkas, Daniel; Kemter, Kristina F; Blau, Nenad; Muntau, Ania C

    2011-07-01

    The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH(4) cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH(4) concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH(4) loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH(4) ratio. Finally, evaluation of data from BH(4) loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH(4)-responsive PAH deficiency.

  20. Regional variation in muscle metabolic enzymes in individual American shad (Alosa sapidissima)

    USGS Publications Warehouse

    Leonard, J.B.K.

    1999-01-01

    Evaluation of the activity of metabolic enzymes is often used to asses metabolic capacity at the tissue level, but the amount of regional variability within a tissue in an individual fish of a given species is frequently unknown. The activities of four enzymes (citrate synthase (CS), phosphofructokinase, lactate dehydrogenase (LDH), and ??-hydroxyacyl coenzyme A dehydrogenase (HOAD) were assayed in red and white muscle at 10 sites along the body of adult American shad (Alosa sapidissima). Red and white muscle HOAD and white muscle CS and LDH varied significantly, generally increasing posteriorly. Maximal variation occurs in red muscle HOAD (~450%) and white muscle LDH (~60%) activity. Differences between the sexes also vary with sampling location. This study suggests that the variability in enzyme activity may be linked to functional differences in the muscle at different locations, and also provides guidelines for sample collection in this species.

  1. Colon cancer chemopreventive efficacy of silibinin through perturbation of xenobiotic metabolizing enzymes in experimental rats.

    PubMed

    Sangeetha, Nagarajan; Viswanathan, Periyaswamy; Balasubramanian, Thangavel; Nalini, Namasivayam

    2012-01-15

    Our findings reported so far demonstrate that silibinin modulates gut microbial enzymes, colonic oxidative stress and Wnt/β-catenin signaling, to exert its antiproliferative effect against 1,2 di-methylhydrazine (DMH) induced colon carcinogenesis. Since xenobiotic metabolizing enzymes play a crucial role in carcinogen activation and metabolism, we aimed to explore the effect of silibinin on xenobiotic metabolizing enzymes during DMH induced colon carcinogenesis. Male albino rats were randomly divided into six groups. Group 1 served as control and group 2 rats received 50mg/kg body weight of silibinin p.o. every day. Groups 3-6 rats were given DMH at a dose of (20mg/kg body weight subcutaneously) once a week for 15 weeks to induce colonic tumors. In addition to DMH, group 4 (initiation), group 5 (post-initiation) and group 6 (entire period) rats received silibinin (50mg/kg body weight, p.o., everyday) at different time points during the experimental period of 32 weeks. Rats exposed to DMH alone showed increased activities of phase I enzymes (cytochrome b5, cytochrome b5 reductase, cytochromeP450, cytochromeP450 reductase, cytochromP4502E1) and decreased activities of phase II enzymes (Uridine diphospho glucuronyl transferase, Glutathione-S-transferase and DT-Diaphorase) in the liver and colonic mucosa as compared to control rats. Silibinin supplementation modulates the xenobiotic metabolizing enzymes favoring carcinogen detoxification. Evaluation of lipid peroxidation and antioxidants status showed that silibinin supplementation counteracts DMH induced hepatic and circulatory oxidative stress. Tumor burden in experimental animals was assessed both macroscopically and microscopically in the colon tissues. Our findings emphasize the potential chemopreventive action of silibinin against DMH induced colon carcinogenesis.

  2. Hepatic xenobiotic metabolizing enzymes in two species of benthic fish showing different prevalences of contaminant-associated liver neoplasms

    SciTech Connect

    Collier, T.K.; Singh, S.V.; Awasthi, Y.C.; Varanasi, U. )

    1992-04-01

    English sole (Parophrys vetulus) and starry flounder (Platichthys stellatus) are closely related benthic fish which show substantial differences in prevalences of contaminant-associated hepatic neoplasms and putatively preneoplastic foci of cellular alteration when captured from estuaries containing a variety of organic chemical contaminants, including polycyclic aromatic hydrocarbons (PAH) and chlorinated hydrocarbons. Because PAH are strongly implicated as causative agents in the etiology of these lesions, several of the hepatic enzymes involved in activation and detoxication of PAH were studied in these two species. Hepatic aryl hydrocarbon hydroxylase (AHH), epoxide hydrolase (EH), and glutathione S-transferase (GST) activities were measured in animals sampled from both contaminated and reference areas. English sole, the species showing higher prevalences of contaminant-associated hepatic lesions, had higher (1- to 2-fold) hepatic activities of AHH and lower activities of EH (0.8-fold) and GST (1.8-fold) than those of starry flounder, regardless of site of capture. These results are largely consistent with increased activation and decreased detoxication of PAH by English sole in comparison to starry flounder. Both laboratory and field data suggested that the observed species differences in enzyme activities were constitutive and not related to differential exposure to contaminants. There were also substantial differences between these species with respect to expression of GST isoenzymes, in that starry flounder expressed two highly anionic GST isoenzymes which did not correspond to any GST isoenzymes expressed in English sole liver; a previous study in an elasmobranch fish showed that an anionic GST was most active toward PAH oxides.

  3. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  4. Metabolic Pathways of Inhaled Glucocorticoids by the CYP3A Enzymes

    PubMed Central

    Moore, Chad D.; Roberts, Jessica K.; Orton, Christopher R.; Murai, Takahiro; Fidler, Trevor P.; Reilly, Christopher A.; Ward, Robert M.

    2013-01-01

    Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6β-hydroxylation and Δ6-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Δ6-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography–mass spectrometry and NMR analysis. PMID:23143891

  5. Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk.

    PubMed Central

    Agúndez, J. A.; Martínez, C.; Olivera, M.; Gallardo, L.; Ladero, J. M.; Rosado, C.; Prados, J.; Rodriguez-Molina, J.; Resel, L.; Benítez, J.

    1998-01-01

    The role of two common polymorphisms of enzymes involved in the metabolism of drugs and carcinogens was studied in relation to prostate cancer. The gene encoding one of these enzymes (NAT2) is located in an area where frequent allelic loss occurs in prostate cancer. Mutations at the genes CYP2D6 and NAT2 were analysed by allele-specific polymerase chain reaction and restriction mapping in DNA from 94 subjects with prostate cancer and 160 male healthy control subjects. Eleven prostate specimens were analysed for genotype and enzymatic activities NAT2, CYP2D6 and CYP3A by using the enzyme-specific substrates sulphamethazine and dextromethorphan. Enzyme activities with substrate specificities corresponding to NAT2, CYP2D6 and CYP3A are present in human prostate tissue, with mean +/-s.d. activities of 4.8+/-4.4 pmol min(-1) mg(-1) protein, 156+/-91 and 112+/-72 nmol min(-1) mg(-1) protein respectively. The Km values for the prostate CYP2D6 and CYP3A enzyme activities corresponded to that of liver CYP2D6 and CYP3A activities, and the CYP2D6 enzyme activity is related to the CYP2D6 genotype. The N-acetyltransferase, in contrast, had a higher Km than NAT2 and was independent of the NAT2 genotype. The CYP2D6 and CYP3A enzymes, and an N-acetyltransferase activity that is independent of the regulation of the NAT2 gene, are expressed in human prostate tissue. The presence of carcinogen-metabolizing enzymes in human prostate with a high interindividual variability may be involved in the regulation of local levels of carcinogens and mutagens and may underlie interindividual differences in cancer susceptibility. Images Figure 1 PMID:9823980

  6. Lactate dehydrogenase is the key enzyme for pneumococcal pyruvate metabolism and pneumococcal survival in blood.

    PubMed

    Gaspar, Paula; Al-Bayati, Firas A Y; Andrew, Peter W; Neves, Ana Rute; Yesilkaya, Hasan

    2014-12-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression.

  7. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism.

    PubMed

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-06-08

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus.

  8. The Effects of Pharmaceutical Excipients on Gastrointestinal Tract Metabolic Enzymes and Transporters-an Update.

    PubMed

    Zhang, Wenpeng; Li, Yanyan; Zou, Peng; Wu, Man; Zhang, Zhenqing; Zhang, Tao

    2016-07-01

    Accumulating evidence from the last decade has shown that many pharmaceutical excipients are not pharmacologically inert but instead have effects on metabolic enzymes and/or drug transporters. Hence, the absorption, distribution, metabolism, and elimination (ADME) of active pharmaceutical ingredients (APIs) may be altered due to the modulation of their metabolism and transport by excipients. The impact of excipients is a potential concern for Biopharmaceutics Classification System (BCS)-based biowaivers, particularly as the BCS-based biowaivers have been extended to class 3 drugs in certain dosage forms. The presence of different excipients or varying amounts of excipients between formulations may result in bio-inequivalence. The excipient impact may lead to significant variations in clinical outcomes as well. The aim of this paper is to review the recent findings of excipient effects on gastrointestinal (GI) absorption, focusing on their interactions with the metabolic enzymes and transporters in the GI tract. A wide range of commonly used excipients such as binders, diluents, fillers, solvents, and surfactants are discussed here. We summarized the reported effects of those excipients on GI tract phase I and phase II enzymes, uptake and efflux transporters, and relevant clinical significance. This information can enhance our understanding of excipient influence on drug absorption and is useful in designing pharmacokinetic studies and evaluating the resultant data.

  9. Xanthine Oxidoreductase in Drug Metabolism: Beyond a Role as a 
Detoxifying Enzyme

    PubMed Central

    Battelli, Maria Giulia; Polito, Letizia; Bortolotti, Massimo; Bolognesi, Andrea

    2016-01-01

    The enzyme xanthine oxidoreductase (XOR) catalyzes the last two steps of purine catabolism in the highest uricotelic primates. XOR is an enzyme with dehydrogenase activity that, in mammals, may be converted into oxidase activity under a variety of pathophysiologic conditions. XOR activity is highly regulated at the transcriptional and post-translational levels and may generate reactive oxygen and nitrogen species, which trigger different consequences, ranging from cytotoxicity to inflammation. The low specificity for substrates allows XOR to metabolize a number of endogenous metabolites and a variety of exogenous compounds, including drugs. The present review focuses on the role of XOR as a drug-metabolizing enzyme, specifically for drugs with anticancer, antimicrobial, antiviral, immunosuppressive or vasodilator activities, as well as drugs acting on metabolism or inducing XOR expression. XOR has an activating role that is essential to the pharmacological action of quinone drugs, cyadox, antiviral nucleoside analogues, allopurinol, nitrate and nitrite. XOR activity has a degradation function toward thiopurine nucleotides, pyrazinoic acid, methylxanthines and tolbutamide, whose half-life may be prolonged by the use of XOR inhibitors. In conclusion, to avoid potential drug interaction risks, such as a toxic excess of drug bioavailability or a loss of drug efficacy, caution is suggested in the use of XOR inhibitors, as in the case of hyperuricemic patients affected by gout or tumor lysis syndrome, when it is necessary to simultaneously administer therapeutic substances that are activated or degraded by the drug-metabolizing activity of XOR. PMID:27458036

  10. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

    PubMed Central

    Petrovska, Ivana; Nüske, Elisabeth; Munder, Matthias C; Kulasegaran, Gayathrie; Malinovska, Liliana; Kroschwald, Sonja; Richter, Doris; Fahmy, Karim; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2014-01-01

    One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell. DOI: http://dx.doi.org/10.7554/eLife.02409.001 PMID:24771766

  11. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  12. Spore Germination and Carbon Metabolism in Fusarium solani V. Changes in Anaerobic Metabolism and Related Enzyme Activities during Development 1

    PubMed Central

    Cochrane, Vincent W.; Cochrane, Jean C.

    1966-01-01

    Macroconidia of Fusarium solani f. phascoli have no detectable capacity to respire glucose anaerobically; germinated spores and mycelium, on the other hand, ferment glucose, although slowly. Extracts of ungerminated spores contain hexokinase, phosphohexoisomerase, phosphofructokinase, aldolase, triose phosphate dehydrogenase, triose phosphate isomerase, phosphoglyceric kinase, enolase, phosphoglyceric mutase, pyruvate kinase, and pyruvate decarboxylase. It follows, therefore, that the appearance of fermentative capacity during spore germination cannot be ascribed to the de novo synthesis of any of these enzymes. During germination and mycelial development the specific activity of all of the enzymes named except phosphohexoisomerase and aldolase increases 2- to 8-fold. Specific activity of all of the enzymes is substantially higher than the fermentative capacity of intact cells, i.e., none is limiting to anaerobic respiration. The enzymatic assay data are consistent with a conclusion reached earlier on the basis of studies of aerobic glucose metabolism, that the process of germination involves an acceleration of pre-existing metabolic systems rather than an appearance of new pathways. PMID:16656324

  13. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption

    SciTech Connect

    Dicker, E.; Cederbaum, A.I. )

    1988-10-01

    Enzymatic and nonenzymatic mixed-function oxidase systems have been shown to generate an oxidant that catalyzes the inactivation of glutamine synthetase and other metabolic enzymes. Recent studies have shown that microsomes isolated from rats chronically fed ethanol generate reactive oxygen intermediates at elevated rates compared with controls. Microsomes from rats fed ethanol were found to be more effective than control microsomes in catalyzing the inactivation of enzymes added to the incubation system. The enzymes studied were alcohol dehydrogenase, lactic dehydrogenase, and pyruvate kinase. The inactivation process by both types of microsomal preparations was sensitive to catalase and glutathione plus glutathione peroxidase, but was not affected by superoxide dismutase or hydroxyl radical scavengers. Iron was required for the inactivation of added enzymes; microsomes from the rats fed ethanol remained more effective than control microsomes in catalyzing the inactivation of enzymes in the absence or presence of several ferric complexes. The inactivation of enzymes was enhanced by the addition of menadione or paraquat to the microsomes, and rates of inactivation were higher with the microsomes from the ethanol-fed rats. The enhanced generation of reactive oxygen intermediates and increased inactivation of enzymes by microsomes may contribute toward the hepatotoxic effects associated with ethanol consumption.

  14. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism

    PubMed Central

    Bourquin, Florence; Capitani, Guido; Grütter, Markus Gerhard

    2011-01-01

    Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5′-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure–function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes. PMID:21710479

  15. Stereochemical course, isotope effects, and enzyme inhibitor studies of glaucine metabolism in fungi

    SciTech Connect

    Kerr, K.M.

    1986-01-01

    The microbial transformation of the aporphine alkaloid glaucine by the fungi Fusarium solani (ATCC 12823) and Aspergillus flavipes (ATCC 1030) proceeds with complete substrate stereoselectivity. The fungus F. solani metabolizes only S-(+)-glaucine (1) to dehydroglaucine (3), and A. flavipes metabolizes only R-(-)-glaucine (2) to dehydroglaucine. This facile microbiological reaction is useful in the destructive resolution of racemic mixtures of glaucine, and may provide a model for producing pure enantiomers (either R or S) of other aporphines from racemic mixtures. In order to extend the reaction to other aporphines and related alkaloids, the overall stereochemical course and enzyme(s) involved in the reaction, and the substrate requirements of the enzyme were investigated. The overall stereochemical course of the transformation was examined using C-7 methyl-blocked analogs of glaucine, cis- and trans-7-methylglaucine, as substrates for the fungi. Isolation and examination of residual substrates from semi-preparative scale incubations by MS, PMR, PMR with a chiral shift reagent, OR and ORD indicated that the transformation was enantioselective in the case of A. flavipes. However, only a 10% enrichment of 6aR,7R-cis-7-methylglaucine was observed in F. solani cultures. The oxidation of glaucine can be envisioned as proceeding through one of several mechanisms, each involving a different enzyme system. Deuterium isotope, induction and enzyme inhibitor experiments helped to distinguish between the three mechanisms.

  16. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences.

    PubMed

    Dohnal, Vlastimil; Wu, Qinghua; Kuča, Kamil

    2014-09-01

    Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species.

  17. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  18. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways

    PubMed Central

    Ginguay, Antonin; Cynober, Luc; Curis, Emmanuel; Nicolis, Ioannis

    2017-01-01

    Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme. PMID:28272331

  19. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    PubMed

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  20. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    PubMed

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  1. Quantification of phase I / II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate

    PubMed Central

    John, Kaarthik; Ragavan, Narasimhan; Pratt, M. Margaret; Singh, Paras B.; Al-Buheissi, Salah; Matanhelia, Shyam S.; Phillips, David H.; Poirier, Miriam C.; Martin, Francis L.

    2008-01-01

    BACKGROUND Studies of migrant populations suggest that dietary and/or environmental factors play a crucial role in the aetiology of prostatic adenocarcinoma (CaP). The human prostate consists of the peripheral zone (PZ), transition zone (TZ) and central zone (CZ); CaP occurs most often in the PZ. METHODS To investigate the notion that an underlying differential expression of phase I/II genes, and/or the presence of polycyclic aromatic hydrocarbon (PAH)-DNA adducts might explain the elevated PZ susceptibility, we examined prostate tissues (matched tissue sets consisting of PZ and TZ) from men undergoing radical retropubic prostatectomy for CaP (n=26) or cystoprostatectomy (n=1). Quantitative gene expression analysis was employed for cytochrome P450 (CYP) isoforms CYP1A1, CYP1B1 and CYP1A2, as well as N-acetyltransferase 1 and 2 (NAT1 and NAT2) and catechol-O-methyl transferase (COMT). RESULTS CYP1B1, NAT1 and COMT were expressed in all tissue sets; levels of CYP1B1 and NAT1 were consistently higher in the PZ compared to TZ. Immunohistochemistry confirmed the presence of CYP1B1 (nuclear-associated and primarily in basal epithelial cells) and NAT1. Tissue sections from 23 of these aforementioned 27 matched tissue sets were analyzed for PAH-DNA adduct levels using antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE). PAH-DNA adduct levels were highest in glandular epithelial cells, but a comparison of PZ and TZ showed no significant differences. CONCLUSION Although expression of activating and/or detoxifying enzymes may be higher in the PZ, PAH-DNA adduct levels appear to be similar in both zones. Therefore, factors other than PAH-DNA adducts may be responsible for promotion of tumour formation in the human prostate. PMID:19143007

  2. Preparation of Metabolically Active Staphylococcus aureus Protoplasts by Use of the Aeromonas hydrophila Lytic Enzyme

    PubMed Central

    Coles, N. W.; Gross, R.

    1973-01-01

    Stable, metabolically active protoplasts of Staphylococcus aureus have been prepared by the use of a staphylolytic enzyme produced by Aeromonas hydrophila. Respiratory and glycolytic rates and synthesis of nucleic acids, protein, and lipid in these protoplasts, stabilized variously in 1.1 M sucrose, 0.37 M sodium succinate, or 0.37 M sodium sulfate, have been shown to be comparable with the same parameters in intact cells under the same conditions. Images PMID:4728270

  3. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.

    PubMed

    Zafra, German; Taylor, Todd D; Absalón, Angel E; Cortés-Espinosa, Diana V

    2016-11-15

    In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation.

  4. Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents.

    PubMed

    Rochat, B

    2009-08-01

    In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.

  5. Dynamic expression of retinoic acid synthesizing and metabolizing enzymes in the developing mouse inner ear

    PubMed Central

    Romand, Raymond; Kondo, Takako; Fraulob, Valérie; Petkovich, Martin; Dollé, Pascal; Hashino, Eri

    2008-01-01

    Retinoic acid signaling plays essential roles in morphogenesis and neural development through transcriptional regulation of downstream target genes. It is believed that the balance between the activities of synthesizing and metabolizing enzymes determines the amount of active retinoic acid to which a developing tissue is exposed. In this study, we investigated spatio-temporal expression patterns of four synthesizing enzymes, the retinaldehyde dehydrogenases 1, 2, 3 and 4 (Raldh1, Raldh2, Raldh3 and Raldh4) and two metabolizing enzymes (Cyp26A1 and Cyp26B1) in the embryonic and postnatal mouse inner ear using quantitative RT-PCR, in situ hybridization and Western blot analysis. Quantitative RT-PCR analysis and Western blot data revealed that the expression of CYP26s was much higher than that of Raldhs at early embryonic ages, but that Cyp26 expression was down-regulated during embryonic development. Conversely, the expression levels of Raldh2 and -3 increased during development and were significantly higher than the Cyp26 levels at postnatal day 20. At this age, Raldh3 was expressed predominantly in the cochlea, while Raldh2 was present in the vestibular end organ. At early embryonic stages as observed by in situ hybridization, the synthesizing enzymes were expressed only in the dorsoventral epithelium of the otocyst, while the metabolizing enzymes were present mainly in mesenchymal cells surrounding the otic epithelium. At later stages, Raldh2, Raldh3 and Cyp26B1 were confined to the stria vascularis, spiral ganglion and supporting cells in the cochlear and vestibular epithelia, respectively. The downregulation of Cyp26s and the upregulation of Raldhs after birth during inner ear maturation suggests tissue changes in the sensitivity to retinoic acid concentrations. PMID:16615129

  6. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes.

    PubMed Central

    Spaldin, V; Madden, S; Pool, W F; Woolf, T F; Park, B K

    1994-01-01

    1. Tacrine (1,2,3,4-tetrahydro-9-aminoacridine-hydrochloride: THA) underwent metabolism in vitro by a panel (n = 12) of human liver microsomes genotyped for CYP2D6, in the presence of NADPH, to both protein-reactive and stable metabolites. 2. There was considerable variation in the extent of THA metabolism amongst human livers. Protein-reactive metabolite formation showed a 10-fold variation (0.6 +/- 0.1%-5.2 +/- 0.8% of incubated radioactivity mg-1 protein) whilst stable metabolites showed a 3-fold variation (24.3 +/- 1.7%-78.6 +/- 2.6% of incubated radioactivity). 3. Using cytochrome P450 isoform specific inhibitors CYP1A2 was identified as the major enzyme involved in all routes of THA metabolism. 4. There was a high correlation between aromatic and alicyclic hydroxylation (r = 0.92, P < 0.0001) consistent with these biotransformations being catalysed by the same enzymes. 5. Enoxacin (ENOX), cimetidine (CIM) and chloroquine (CQ) inhibited THA metabolism by a preferential decrease in the bioactivation to protein-reactive, and hence potentially toxic, species. The inhibitory potency of ENOX and CIM was increased significantly upon pre-incubation with microsomes and NADPH. 6. Covalent binding correlated with 7-OH-THA formation before (r = 0.792, P < 0.0001) and after (r = 0.73, P < 0.0001) inhibition by CIM, consistent with a two-step mechanism in the formation of protein-reactive metabolite(s) via a 7-OH intermediate. 7. The use of enzyme inhibitors may provide a useful tool for examining the relationship between the metabolism and toxicity of THA in vivo. PMID:7946932

  7. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans.

    PubMed

    Anaganti, Narasimha; Basu, Bhakti; Gupta, Alka; Joseph, Daisy; Apte, Shree Kumar

    2015-01-01

    Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 μM tellurite, 40 min exposure). The organism reduced 70% of 40 μM potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF-Ts, and PPIase) displayed increased abundance in tellurite-stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3-hydroxy acyl-CoA dehydrogenase, acyl-CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans.

  8. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  9. Enzyme activities of D-glucose metabolism in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Tsai, C S; Shi, J L; Beehler, B W; Beck, B

    1992-12-01

    The activities of key enzymes that are members of D-glucose metabolic pathways in Schizosaccharomyces pombe undergoing respirative, respirofermentative, and fermentative metabolisms are monitored. The steady-state activities of glycolytic enzymes, except phosphofructokinase, decrease with a reduced efficiency in D-glucose utilization by yeast continuous culture. On the other hand, the enzymic activities of pentose monophosphate pathway reach the maximum when the cell mass production of the cultures is optimum. Enzymes of tricarboxylate cycle exhibit the maximum activities at approximately the washout rate. The steady-state activity of pyruvate dehydrogenase complex increases rapidly when D-glucose is efficiently utilized. By comparison, the activity of pyruvate decarboxylase begins to increase only when ethanol production occurs. Depletion of dissolved oxygen suppresses the activity of pyruvate dehydrogenase complex but facilitates that of pyruvate decarboxylase. Acetate greatly enhances the acetyl CoA synthetase activity. Similarly, ethanol stimulates alcohol dehydrogenase and aldehyde dehydrogenase activities. Evidence for the existence of alcohol dehydrogenase isozymes in the fission yeast is presented.

  10. Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1.

    PubMed

    Kweon, Ohgew; Kim, Seong-Jae; Kim, Dae-Wi; Kim, Jeong Myeong; Kim, Hyun-lee; Ahn, Youngbeom; Sutherland, John B; Cerniglia, Carl E

    2014-10-01

    Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN.

  11. Pleiotropic and Epistatic Behavior of a Ring-Hydroxylating Oxygenase System in the Polycyclic Aromatic Hydrocarbon Metabolic Network from Mycobacterium vanbaalenii PYR-1

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Kim, Dae-Wi; Kim, Jeong Myeong; Kim, Hyun-lee; Ahn, Youngbeom; Sutherland, John B.

    2014-01-01

    Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN. PMID:25070740

  12. Metabolic stability: main enzymes involved and best tools to assess it.

    PubMed

    Laine, Romuald

    2008-11-01

    The introduction of in vitro tools to predict clearance in the early discovery process has led to new ways of working. Combined with metabolite identification, such tools have allowed design of compounds with low clearance. Encouraged by the success of such an approach and by the better knowledge of the enzyme involved in the metabolism, in vitro teams have begun to develop a plethora of assays to assess the metabolic clearance, understand the route of metabolism, and predict the human clearance. Although the diversity of assays may have allowed a more thorough approach to addressing specific issues, in the time of budget constrictions, limited access to resources and materials in vitro teams have now to decide what are the 'must have' and 'nice to have' assays to enable them to help as efficiently as possible projects at the discovery stage. Reducing the number of assays and focusing on the most relevant ones is an option to consider. Knowledge of the main enzymes involved in the drug metabolism should help to select the most relevant in vitro tools. Although the systems presented here have their merits, the author proposes that hepatocytes should be considered as the in vitro tool of choice.

  13. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis

    PubMed Central

    Nilsson, Lisa M.; Kreutzer, Christiane; Pretsch, Walter; Bornkamm, Georg W.; Nilsson, Jonas A.

    2012-01-01

    c-Myc (hereafter called Myc) belongs to a family of transcription factors that regulates cell growth, cell proliferation, and differentiation. Myc initiates the transcription of a large cast of genes involved in cell growth by stimulating metabolism and protein synthesis. Some of these, like those involved in glycolysis, may be part of the Warburg effect, which is defined as increased glucose uptake and lactate production in the presence of adequate oxygen supply. In this study, we have taken a mouse-genetics approach to challenge the role of select Myc-regulated metabolic enzymes in tumorigenesis in vivo. By breeding λ-Myc transgenic mice, Apc Min mice, and p53 knockout mice with mouse models carrying inactivating alleles of Lactate dehydrogenase A (Ldha), 3-Phosphoglycerate dehydrogenase (Phgdh) and Serine hydroxymethyltransferase 1 (Shmt1), we obtained offspring that were monitored for tumor development. Very surprisingly, we found that these genes are dispensable for tumorigenesis in these genetic settings. However, experiments in fibroblasts and colon carcinoma cells expressing oncogenic Ras show that these cells are sensitive to Ldha knockdown. Our genetic models reveal cell context dependency and a remarkable ability of tumor cells to adapt to alterations in critical metabolic pathways. Thus, to achieve clinical success, it will be of importance to correctly stratify patients and to find synthetic lethal combinations of inhibitors targeting metabolic enzymes. PMID:22438825

  14. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways

    PubMed Central

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-01-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources. PMID:24829223

  15. DMET™ (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine

    PubMed Central

    Arbitrio, Mariamena; Martino, Maria Teresa Di; Scionti, Francesca; Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-01-01

    In the era of personalized medicine, high-throughput technologies have allowed the investigation of genetic variations underlying the inter-individual variability in drug pharmacokinetics/pharmacodynamics. Several studies have recently moved from a candidate gene-based pharmacogenetic approach to genome-wide pharmacogenomic analyses to identify biomarkers for selection of patient-tailored therapies. In this aim, the identification of genetic variants affecting the individual drug metabolism is relevant for the definition of more active and less toxic treatments. This review focuses on the potentiality, reliability and limitations of the DMET™ (Drug Metabolism Enzymes and Transporters) Plus as pharmacogenomic drug metabolism multi-gene panel platform for selecting biomarkers in the final aim to optimize drugs use and characterize the individual genetic background. PMID:27304055

  16. Differences in activities of the enzymes of nucleotide metabolism and its implications for cardiac xenotransplantation.

    PubMed

    Yuen, A H Y; Khalpey, Z; Lavitrano, M; McGregor, C G A; Kalsi, K K; Yacoub, M H; Smolenski, R T

    2006-01-01

    Xenotransplantation is one be possible solution for a severe shortage of human organs available for transplantation. However, only a few studies addressed metabolic compatibility of transplanted animal organs. Our aim was to compare activities of adenosine metabolizing enzymes in the heart of different species that are relevant to clinical or experimental xenotransplantation. We noted fundamental differences: ecto-5' nucleotidease (E5' N) activity was 4-fold lower in pig and baboon hearts compared to the human hearts while mouse activity was compatible with human and rat activity was three times higher than human. There also were significant differences in AMP-deaminase (AMPD), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) activities. We conclude that differences in nucleotide metabolism may contribute to organ dysfunction after xenotransplantation.

  17. Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics.

    PubMed

    Schrenk, D

    1998-04-15

    The induction of a number of drug-metabolizing enzymes is among the best-understood biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related agonists of the aryl hydrocarbon receptor (AhR). Among the cytochrome P450s (CYPs), the genes encoding CYP1A1, 1A2, and 1B1 are responsive to AhR agonists, i.e. their expression is inducible in various mammalian tissues and organs as well as in many types of cell lines and primary cells in culture. In addition, an aldehyde dehydrogenase, an NADPH-quinone-oxidoreductase, and the phase II conjugating enzymes glutathione-S-transferase (GST) Ya and UDP-glucuronosyltransferase 1A1 have been identified as responsive to AhR agonists. Induced expression of these members of the AhR gene battery is thought to be aimed at an improved elimination of the inducing agent and its metabolites. However, the identity of the physiological ligand(s) of the AhR is still obscure. The consequences of induced expression of AhR-regulated genes encoding drug-metabolizing enzymes have been investigated in human populations, e.g. in smokers, and in various experimental models. A prominent example of increased adverse effects due to the induction of CYP1A isozymes is the metabolic activation of carcinogenic aromatic amines and polycyclic aromatic hydrocarbons. An increasing amount of data is also available on the impact of dioxin-type induction on the metabolism of drugs, food constituents, and endogenous substrates. For example, the hepatic clearance of the drug theophylline, which is widely used in asthma therapy, is enhanced significantly in smokers. Increased glucuronidation of thyroxine in rats treated with TCDD or other potent AhR agonists is thought to result in hypothyroxinemia and its biological consequences, such as sustained hyperplasia of the thyroid, bearing a higher risk of thyroid cancer. The relevance of these observations for humans exposed to dioxin-type inducers is discussed.

  18. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.

    PubMed

    Hutson, Susan M; Islam, Mohammad Mainul; Zaganas, Ioannis

    2011-09-01

    Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5'-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5'-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.

  19. Gestational Age-Dependent Changes in Gene Expression of Metabolic Enzymes and Transporters in Pregnant Mice

    PubMed Central

    Shuster, Diana L.; Bammler, Theo K.; Beyer, Richard P.; MacDonald, James W.; Tsai, Jesse M.; Farin, Frederico M.; Hebert, Mary F.; Thummel, Kenneth E.

    2013-01-01

    Pregnancy-induced changes in drug pharmacokinetics can be explained by changes in expression of drug-metabolizing enzymes and transporters and/or normal physiology. In this study, we determined gestational age-dependent expression profiles for all metabolic enzyme and transporter genes in the maternal liver, kidney, small intestine, and placenta of pregnant mice by microarray analysis. We specifically examined the expression of genes important for xenobiotic, bile acid, and steroid hormone metabolism and disposition, namely, cytochrome P450s (Cyp), UDP-glucuronosyltranserases (Ugt), sulfotransferases (Sult), and ATP-binding cassette (Abc), solute carrier (Slc), and solute carrier organic anion (Slco) transporters. Few Ugt and Sult genes were affected by pregnancy. Cyp17a1 expression in the maternal liver increased 3- to 10-fold during pregnancy, which was the largest observed change in the maternal tissues. Cyp1a2, most Cyp2 isoforms, Cyp3a11, and Cyp3a13 expression in the liver decreased on gestation days (gd) 15 and 19 compared with nonpregnant controls (gd 0). In contrast, Cyp2d40, Cyp3a16, Cyp3a41a, Cyp3a41b, and Cyp3a44 in the liver were induced throughout pregnancy. In the placenta, Cyp expression on gd 10 and 15 was upregulated compared with gd 19. Notable changes were also observed in Abc and Slc transporters. Abcc3 expression in the liver and Abcb1a, Abcc4, and Slco4c1 expression in the kidney were downregulated on gd 15 and 19. In the placenta, Slc22a3 (Oct3) expression on gd 10 was 90% lower than that on gd 15 and 19. This study demonstrates important gestational age-dependent expression of metabolic enzyme and transporter genes, which may have mechanistic relevance to drug disposition in human pregnancy. PMID:23175668

  20. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    SciTech Connect

    Spink, David C. Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.

  1. CO2-fixing enzymes and phosphoenolpyruvate metabolism in the fish parasite Hysterothylacium aduncum (Ascaridoidea, Anisakidae).

    PubMed

    Malagón, David; Benítez, Rocio; Valero, Adela; Adroher, Francisco Javier

    2009-07-23

    CO2 stimulates the development of many of the intestinal helminths that are able to fix CO2 by means of phosphoenolpyruvate carboxykinase (PEPCK), such as Hysterothylacium aduncum. We determined the activity of CO2-fixing enzymes such as PEPCK and phosphoenolpyruvate carboxylase (PEPC), although no significant activity was detected for pyruvate carboxylase or carboxylating-malic enzyme. The former act on phosphoenolpyruvate (PEP) to yield oxalacetate. In the helminths studied, PEP has a vital role in glucidic metabolism. Consequently, we determined the activity of other enzymes involved in the crossroad of PEP, such as pyruvate kinase (PK), lactate dehydrogenase and malate dehydrogenase. All enzymes detected showed significant variations in activity during the in vitro development of the parasite from the third larval stage to mature adult. Fixing of CO2 by PEPCK decreased during development (from 228 to 115 nmol min(-1) mg(-1) protein), while that by PEPC increased (from 19 to 46 nmol min(-1) mg(-1) protein). This enzyme, which is rare in animals, could play a part in detecting levels of free phosphate, releasing it from PEP when required for processes such as glycogenolysis, glycolysis and adenosine 5'-triphosphate (ATP) synthesis. PK, which showed increasing activity during development up to immature adult (from 56 to 82 nmol min(-1) mg(-1) protein), could act in combination with PEPC to obtain energy in the cytosol (in the form of ATP) and in the mitochondria (possible destination of the pyruvate formed), compensating for the decrease in activity of PEPCK.

  2. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions

    PubMed Central

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-01-01

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network. PMID:26378592

  3. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions.

    PubMed

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-09-10

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease-age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.

  4. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.

    PubMed

    Skarydová, Lucie; Wsól, Vladimír

    2012-05-01

    The best known, most widely studied enzyme system in phase I biotransformation is cytochrome P450 (CYP), which participates in the metabolism of roughly 9 of 10 drugs in use today. The main biotransformation isoforms of CYP are associated with the membrane of the endoplasmatic reticulum (ER). Other enzymes that are also active in phase I biotransformation are carbonyl reducing enzymes. Much is known about the role of cytosolic forms of carbonyl reducing enzymes in the metabolism of xenobiotics, but their microsomal forms have been mostly poorly studied. The only well-known microsomal carbonyl reducing enzyme taking part in the biotransformation of xenobiotics is 11β-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase superfamily. Physiological roles of microsomal carbonyl reducing enzymes are better known than their participation in the metabolism of xenobiotics. This review is a summary of the fragmentary information known about the roles of the microsomal forms. Besides 11β-hydroxysteroid dehydrogenase 1, it has been reported, so far, that retinol dehydrogenase 12 participates only in the detoxification of unsaturated aldehydes formed upon oxidative stress. Another promising group of microsomal biotransformation carbonyl reducing enzymes are some members of 17β-hydroxysteroid dehydrogenases. Generally, it is clear that this area is, overall, quite unexplored, but carbonyl reducing enzymes located in the ER have proven very interesting. The study of these enzymes could shed new light on the metabolism of several clinically used drugs or they could become an important target in connection with some diseases.

  5. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes.

    PubMed

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2016-12-04

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood. In the present study we have addressed the potential impact of oxidatively modified proteins on the altered metabolism of senescent human satellite cells. By using a modified proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during the replicative senescence of satellite cells. Inactivation of the proteasome appeared to be a likely contributor to the accumulation of such damaged proteins. Metabolic and functional analyses revealed an impaired glucose metabolism in senescent cells. A metabolic shift leading to increased mobilization of non-carbohydrate substrates such as branched chain amino acids or long chain fatty acids was observed. Increased levels of acyl-carnitines indicated an increased turnover of storage and membrane lipids for energy production. Taken together, these results support a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts.

  6. Disturbances to neurotransmitter levels and their metabolic enzyme activity in a freshwater planarian exposed to cadmium.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui; Chen, Jhih-Sheng; Chung, Szu-Yao; Lee, Hui-Ling

    2015-03-01

    Using specific neurobehaviors as endpoints, previous studies suggested that planarian neurotransmission systems could be targets of Cd neurotoxicity. However, direct evidence for disturbed neurotransmission systems by Cd in treated planarians is still lacking. In planarians, dopamine (DA) and serotonin (5-HT) play critical roles in neuromuscular function, but little is known about their metabolic degradation. Therefore, in this study, we attempted to determine the appearances of DA, 5-HT, and their metabolic products in the freshwater planarian Dugesia japonica, characterize the activity of enzymes involved in their metabolism, and investigate the effects of Cd on planarian 5-HTergic and DAergic neurotransmission systems. Only DA, 5-HT, and 5-hydroxyindole-3-acetic acid (5-HIAA) were found in planarian tissues. Further enzymatic study revealed the activity of planarian monoamine oxidase (MAO) but not catechol-O-methyl transferase (COMT). These findings suggest that planarian MAO catalyzes the metabolism of 5-HT into 5-HIAA. However, DA metabolites from the MAO-involved metabolic pathway were not found, which might be due to a lack of COMT activity. Finally, in Cd-treated planarians, tissue levels of 5-HT and DA were decreased and MAO activity altered, suggesting that planarian neurotransmission systems are disturbed following Cd treatment.

  7. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.

    PubMed

    Bräsen, Christopher; Esser, Dominik; Rauch, Bernadette; Siebers, Bettina

    2014-03-01

    The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.

  8. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    PubMed Central

    Baraibar, Martín A.; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood. In the present study we have addressed the potential impact of oxidatively modified proteins on the altered metabolism of senescent human satellite cells. By using a modified proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during the replicative senescence of satellite cells. Inactivation of the proteasome appeared to be a likely contributor to the accumulation of such damaged proteins. Metabolic and functional analyses revealed an impaired glucose metabolism in senescent cells. A metabolic shift leading to increased mobilization of non-carbohydrate substrates such as branched chain amino acids or long chain fatty acids was observed. Increased levels of acyl-carnitines indicated an increased turnover of storage and membrane lipids for energy production. Taken together, these results support a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts. PMID:27922824

  9. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    PubMed

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2(T) was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  10. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  11. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  12. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  13. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    PubMed

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  14. Seasonal changes in thermal environment and metabolic enzyme activity in the diamondback terrapin (Malaclemys terrapin).

    PubMed

    Williard, Amanda Southwood; Harden, Leigh Anne

    2011-04-01

    Diamondback terrapins experience broad fluctuations in temperature on both a daily and seasonal basis in their estuarine environment. We measured metabolic enzyme activity in terrapin muscle tissue to assess thermal dependence and the role of temperature in seasonal metabolic downregulation in this species. Activity of lactate dehydrogenase (LDH), pyruvate kinase (PK), citrate synthase (CS), and cytochrome c oxidase (CCO) was assayed at 10, 20, 30, and 40 °C for tissue collected during summer and winter. The Q(10) for enzyme activity varied between 1.31 and 2.11 within the temperature range at which terrapins were active (20-40 °C). The Q(10) for LDH, CS, and CCO varied between 1.39 and 1.76 and between 10 and 20 °C, but PK exhibited heightened thermal sensitivity within this lower temperature range, with a Q(10) of 2.90 for summer-collected tissue and 5.55 for winter-collected tissue. There was no significant effect of season on activity of LDH or PK, but activity of CS and CCO was significantly lower in winter-collected tissue compared with summer-collected tissue. Results indicate that temperature effects contribute to seasonal metabolic downregulation and dormancy in terrapins, but other environmental factors (i.e. oxygen availability), as well as seasonal shifts in blood biochemistry and circulating hormones may also play an important role.

  15. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  16. Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Haigou, Risa; Miyazawa, Mitsuo

    2012-01-01

    We examined the in vitro metabolism of (+)-terpinen-4-ol by human liver microsomes and recombinant enzymes. The biotransformation of (+)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Terpinen-4-ol was found to be oxidized to (+)-(1R,2S,4S)-1,2-epoxy-p-menthan-4-ol, (+)-(1S,2R,4S)-1,2-epoxy-p-menthan-4-ol, and (4S)-p-menth-1-en-4,8-diol by human liver microsomal P450 enzymes. The identities of (+)-terpinen-4-ol metabolites were determined through the relative abundance of mass fragments and retention times on GC-MS. Of 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6, and CYP3A4 were found to catalyze the oxidation of (+)-terpinen-4-ol. Based on several lines of evidence, CYP2A6 and CYP3A4 were determined to be major enzymes involved in the oxidation of (+)-terpinen-4-ol by human liver microsomes. First, of the 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6 and CYP3A4 catalyzed oxidation of (+)-terpinen-4-ol. Second, oxidation of (+)-terpinen-4-ol was inhibited by (+)-menthofuran and ketoconazole, inhibitors known to be specific for these enzymes. Finally, there was a good correlation between CYP2A6 and CYP3A4 activities and (+)-terpinen-4-ol oxidation activities in the 10 human liver microsomes.

  17. Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs.

    PubMed

    Guo, J; Shan, T; Wu, T; Zhu, L N; Ren, Y; An, S; Wang, Y

    2011-01-01

    Western and indigenous Chinese pig breeds show obvious differences in muscle growth and meat quality, however, the underlying molecular mechanism remains unclear. The main objective of this study was to evaluate the breed-specific mechanisms controlling meat quality and postmortem muscle metabolism. The specific purpose was to investigate the variations in meat quality, muscle fiber type, and enzyme activity between local Jinhua and exotic Landrace pigs at the same age (180 d of age), as well as the same BW of 64 kg, respectively. We compared differentially expressed muscle fiber types such as types I and IIa (oxidative), type IIb (glycolytic), as well as type IIx (intermediate) fibers in LM and soleus muscles of Jinhua and Landrace pigs using real-time reverse-transcription PCR. Furthermore, the metabolic enzyme activities of lactate dehydrogenase, as well as succinic dehydrogenase and malate dehydrogenase, were used as markers of glycolytic and oxidative capacities, respectively. Results showed that Jinhua pigs exhibited greater intramuscular fat content and less drip loss compared with the Landrace (P < 0.01). Meanwhile, the mRNA abundance of oxidative and intermediate fibers was increased in Jinhua pigs, whereas the glycolytic fibers were more highly expressed in the Landrace (P < 0.01). In addition, Jinhua pigs possessed greater oxidative capacity than that of the Landrace (P < 0.05). These results suggested that the increased expression of the oxidative and intermediate fibers and greater activities of oxidative enzymes in Jinhua pigs were related to meat quality as indicated by a greater intramuscular fat and reduced drip loss. Based on these results, we conclude that muscle fiber composition and postmortem muscle metabolism can explain, in part, the variation of meat quality in Jinhua and Landrace pigs. These results may provide valuable information for understanding the molecular mechanism responsible for breed specific differences in growth performance

  18. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    PubMed

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  19. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  20. In vivo cytochrome P450 drug metabolizing enzyme characterization using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yanfang; Bachmann, Kenneth A.; Cameron, Brent D.

    2003-07-01

    The development of a rapid, inexpensive, and accurate in vivo phenotyping methodology for characterizing drug-metabolizing phenotypes with reference to the cytochrome P450 (CYP450) enzymes would be very beneficial. In terms of application, in the wake of the human genome project, considerable interest is focused on the development of new drugs whose uses will be tailored to specific genetic polymorphisms, and on the individualization of dosing regimens that are also tailored to meet individual patient needs depending upon genotype. In this investigation, chemical probes for CYP450 enzymes were characterized and identified with Raman spectroscopy. Furthermore, gold-based metal colloid clusters were utilized to generate surface enhanced Raman spectra for each of the chemical probes. Results will be presented demonstrating the ability of SERS to identify minute quantities of these probes on the order needed for in vivo application.

  1. A metabolic node in action: chorismate-utilizing enzymes in microorganisms.

    PubMed

    Dosselaere, F; Vanderleyden, J

    2001-01-01

    The shikimate pathway has been described as a metabolic tree with many branches that led to the synthesis of an extensive range of products. This pathway is present only in bacteria, fungi, and plants. While there is only little difference in the sequence of the chemical reactions of the pathway, significant differences exist in terms of organization and regulation. In the main trunk of the shikimate pathway, D-erythrose 4-phosphate and phosphoenolpyruvate are converted via shikimate to chorismate. Chorismate is the common precursor for the biosynthesis of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan, but also for other products as diverse as folate cofactors, benzoid and naphthoid coenzymes, phenazines, and siderophores. Five chorismate-utilizing enzymes have been characterized in microorganisms: chorismate mutase, anthranilate synthase, aminodeoxychorismate synthase, isochorismate synthase, and chorismate pyruvate-lyase. In this review these enzymes are discussed in terms of the corresponding gene structures and regulation, nucleotide and protein sequences, protein structures, and reaction mechanisms. The main emphasis is on transcriptional and posttranslational regulatory mechanisms, in view of how a microbial cell exploits its chorismate pool in diverse anabolic pathways. Comparison of the chorismate-utilizing enzymes has shown that some of them share sequence similarity, suggesting divergent evolution and commonality in reaction mechanisms. However, other chorismate-utilizing enzymes are examples of convergent evolution toward similar reaction capabilities.

  2. Effect of Chromium(VI) Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.)

    PubMed Central

    Sangwan, Punesh; Joshi, U. N.

    2014-01-01

    Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment) was conducted to determine the affects of varying chromium(VI) levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI) kg−1 soil in the form of potassium dichromate) on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI) levels from 0 to 2.0 mg chromium(VI) kg−1 soil and 4.0 mg chromium(VI) kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage. PMID:24744916

  3. Systems biology approaches to enzyme kinetics: analyzing network models of drug metabolism.

    PubMed

    Finn, Nnenna A; Kemp, Melissa L

    2014-01-01

    Intracellular drug metabolism involves transport, bioactivation, conjugation, and other biochemical steps. The dynamics of these steps are each dependent on a number of other cellular factors that can ultimately lead to unexpected behavior. In this review, we discuss the confounding processes and coupled reactions within bioactivation networks that require a systems-level perspective in order to fully understand the time-varying behavior. When converting known in vitro characteristics of drug-enzyme interactions into descriptions of cellular systems, features such as substrate availability, cell-to-cell variability, and intracellular redox state deserve special focus. An example of doxorubicin bioactivation is used for discussing points of consideration when constructing and analyzing network models of drug metabolism.

  4. Characterization of benidipine and its enantiomers' metabolism by human liver cytochrome P450 enzymes.

    PubMed

    Yoon, Yune-Jung; Kim, Kwon-Bok; Kim, Hyunmi; Seo, Kyung-Ah; Kim, Ho-Sook; Cha, In-June; Kim, Eun-Young; Liu, Kwang-Hyeon; Shin, Jae-Gook

    2007-09-01

    Benidipine is a dihydropyridine calcium antagonist that has been used clinically as an antihypertensive and antianginal agent. It is used clinically as a racemate, containing the (-)-alpha and (+)-alpha isomers of benidipine. This study was performed to elucidate the metabolism of benidipine and its enantiomers in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of benidipine. Human liver microsomal incubation of benidipine in the presence of NADPH resulted in the formation of two metabolites, N-desbenzylbenidipine and dehydrobenidipine. The intrinsic clearance (CL(int)) of the formation of N-desbenzylbenidipine and dehydrobenidipine metabolites from (-)-alpha isomer was similar to those from the (+)-alpha isomer (1.9 +/- 0.1 versus 2.3 +/- 2.3 microl/min/pmol P450 and 0.5 +/- 0.2 versus 0.6 +/- 0.6 microl/min/pmol P450, respectively). Correlation analysis between the known P450 enzyme activities and the rate of the formation of benidipine metabolites in the 15 HLMs showed that benidipine metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in liver microsomes and the incubation study of cDNA-expressed enzymes also showed that theN-debenzylation and dehydrogenation of benidipine are mainly mediated by CYP3A4 and CYP3A5. The total CL(int) values of CYP3A4-mediated metabolite formation from (-)-alpha isomer were similar to those from (+)-alpha isomer (17.7 versus 14.4 microl/min/pmol P450, respectively). The total CL(int) values of CYP3A5-mediated metabolite formation from (-)-alpha isomer were also similar to those from (+)-alpha isomer (8.3 versus 11.0 microl/min/pmol P450, respectively). These findings suggest that CYP3A4 and CYP3A5 isoforms are major enzymes contributing to the disposition of benidipine, but stereoselective disposition of benidipine in vivo may be influenced not by stereoselective metabolism but by other factors.

  5. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses. For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, α-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.

  6. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  7. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.

    PubMed

    Bera, Soumen; Wallimann, Theo; Ray, Subhankar; Ray, Manju

    2008-12-01

    The creatine/creatine kinase system decreases drastically in sarcoma. In the present study, an investigation of catalytic activities, western blot and mRNA expression unambiguously demonstrates the prominent expression of the creatine-synthesizing enzymes l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase in sarcoma, Ehrlich ascites carcinoma and Sarcoma 180 cells, whereas both enzymes were virtually undetectable in normal muscle. Compared to that of normal animals, these enzymes remained unaffected in the kidney or liver of sarcoma-bearing mice. High activity and expression of mitochondrial arginase II in sarcoma indicated increased ornithine formation. Slightly or moderately higher levels of ornithine, guanidinoacetate and creatinine were observed in sarcoma compared to muscle. Despite the intrinsically low level of creatine in Ehrlich ascites carcinoma and Sarcoma 180 cells, these cells could significantly take up and release creatine, suggesting a functional creatine transport, as verified by measuring mRNA levels of creatine transporter. Transcript levels of arginase II, ornithine-decarboxylase, S-adenosyl-homocysteine hydrolase and methionine-synthase were significantly upregulated in sarcoma and in Ehrlich ascites carcinoma and Sarcoma 180 cells. Overall, the enzymes related to creatine and arginine/methionine metabolism were found to be significantly upregulated in malignant cells. However, the low levels of creatine kinase in the same malignant cells do not appear to be sufficient for the building up of an effective creatine/phosphocreatine pool. Instead of supporting creatine biosynthesis, l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase appear to be geared to support cancer cell metabolism in the direction of polyamine and methionine synthesis because both these compounds are in high demand in proliferating cancer cells.

  8. Impact of androgenic/antiandrogenic compounds (AAC) on human sex steroid metabolizing key enzymes.

    PubMed

    Alléra, A; Lo, S; King, I; Steglich, F; Klingmüller, D

    2004-12-01

    Various pesticides, industrial pollutants and synthetic compounds, to which human populations are exposed, are known or suspected to interfere with endogenous sex hormone functions. Such interference potentially affect the development and expression of the male and female reproductive system or both. Chemicals in this class are thus referred to as endocrine disruptors (ED). This emphazises on the relevance of screening ED for a wide range of sex hormone-mimicking effects. These compounds are believed to exert influence on hormonal actions predominantly by (i) interfering with endogenous steroids in that they functionally interact with plasma membrane-located receptors as well as with nuclear receptors both for estrogens and androgens or (ii) affecting the levels of sex hormones as a result of their impact on steroid metabolizing key enzymes. Essential sex hormone-related enzymes within the endocrine system of humans are aromatase, 5alpha-reductase 2 as well as specific sulfotransferases and sulfatases (so-called phase I and phase II enzymes, respectively). Using suitable human tissues and human cancer cell lines (placenta, prostate, liver and JEG-3, lymph node carcinoma of prostate (LnCaP) cells) we investigated the impact of 10 widely used chemicals suspected of acting as ED with androgenic or antiandrogenic activity (so-called AAC) on the activity of these sex hormone metabolizing key enzymes in humans. In addition, the respective effects of six substances were also studied as positive controls due to their well-known specific hormonal agonistic/antagonistic activities. The aim of this report and subsequent investigations is to improve human health risk assessment for AAC and other ED.

  9. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data

    PubMed Central

    Barker, Brandon E.; Smallbone, Kieran; Myers, Christopher R.; Xi, Hongwei; Locasale, Jason W.; Gu, Zhenglong

    2015-01-01

    A major theme in constraint-based modeling is unifying experimental data, such as biochemical information about the reactions that can occur in a system or the composition and localization of enzyme complexes, with high-throughput data including expression data, metabolomics, or DNA sequencing. The desired result is to increase predictive capability and improve our understanding of metabolism. The approach typically employed when only gene (or protein) intensities are available is the creation of tissue-specific models, which reduces the available reactions in an organism model, and does not provide an objective function for the estimation of fluxes. We develop a method, flux assignment with LAD (least absolute deviation) convex objectives and normalization (FALCON), that employs metabolic network reconstructions along with expression data to estimate fluxes. In order to use such a method, accurate measures of enzyme complex abundance are needed, so we first present an algorithm that addresses quantification of complex abundance. Our extensions to prior techniques include the capability to work with large models and significantly improved run-time performance even for smaller models, an improved analysis of enzyme complex formation, the ability to handle large enzyme complex rules that may incorporate multiple isoforms, and either maintained or significantly improved correlation with experimentally measured fluxes. FALCON has been implemented in MATLAB and ATS, and can be downloaded from: https://github.com/bbarker/FALCON. ATS is not required to compile the software, as intermediate C source code is available. FALCON requires use of the COBRA Toolbox, also implemented in MATLAB. PMID:26381164

  10. Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice

    SciTech Connect

    Kleiner, Heather E. Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni, John

    2008-10-15

    Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have

  11. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  12. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    PubMed

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  13. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes.

    PubMed

    Zientek, Michael A; Youdim, Kuresh

    2015-01-01

    During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.

  14. Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic Costs of Enzyme Production[W

    PubMed Central

    Arnold, Anne; Nikoloski, Zoran

    2014-01-01

    Large-scale modeling of plant metabolism provides the possibility to compare and contrast different cellular and environmental scenarios with the ultimate aim of identifying the components underlying the respective plant behavior. The existing models of Arabidopsis (Arabidopsis thaliana) are top-down assembled, whereby the starting point is the annotated genome, in particular, the metabolic genes. Hence, dead-end metabolites and blocked reactions can arise that are subsequently addressed by using gap-filling algorithms in combination with species-unspecific genes. Here, we present a bottom-up-assembled, large-scale model that relies solely on Arabidopsis-specific annotations and results in the inclusion of only manually curated reactions. While the existing models are largely condition unspecific by employing a single biomass reaction, we provide three biomass compositions that pertain to realistic and frequently examined scenarios: carbon-limiting, nitrogen-limiting, and optimal growth conditions. The comparative analysis indicates that the proposed Arabidopsis core model exhibits comparable efficiency in carbon utilization and flexibility to the existing network alternatives. Moreover, the model is utilized to quantify the energy demand of amino acid and enzyme de novo synthesis in photoautotrophic growth conditions. Illustrated by the case of the most abundant protein in the world, Rubisco, we determine its synthesis cost in terms of ATP requirements. This, in turn, allows us to explore the tradeoff between protein synthesis and growth in Arabidopsis. Altogether, the model provides a solid basis for completely species-specific integration of high-throughput data, such as gene expression levels, and for condition-specific investigations of in silico metabolic engineering strategies. PMID:24808102

  15. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses.

    PubMed

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments.

  16. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  17. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes

    PubMed Central

    Savaraj, Niramol; Feun, Lynn G.

    2010-01-01

    It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombinant Arg-degrading enzymes, e.g. arginine deiminase (ADI) or arginase, they die because of Arg starvation; whereas normal cells which express ASS are able to survive. A pegylated ADI (ADI-PEG20) has been developed for clinical trials for advanced melanoma and HCC; and favorable results have been obtained. ADI-PEG20 treatment induces autophagy in auxotrophic cancer cells leading to cell death. Clinical studies in melanoma patients show that re-expression of ASS is associated with ADI-PEG20 resistance. ADI-PEG20 treatment down-regulates the expression of HIF-1α but up-regulates c-Myc in culture melanoma cells. Induction of ASS by ADI-PEG20 involves positive regulators c-Myc and Sp4 and negative regulator HIF1α. Since both HIF-1α and c-Myc play important roles in cancer cell energy metabolism, together these results suggest that targeted cancer cell metabolism through modulation of HIF-1α and c-Myc expression may improve the efficacy of ADI-PEG20 in treating Arg auxotrophic tumors. PMID:21152246

  18. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.

    PubMed

    Ito, Hisashi; Tanaka, Ayumi

    2014-03-01

    Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.

  19. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism

    PubMed Central

    Miners, John O; Birkett, Donald J

    1998-01-01

    Accumulating evidence indicates that CYP2C9 ranks amongst the most important drug metabolizing enzymes in humans. Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs. CYP2C9 activity in vivo is inducible by rifampicin. Evidence suggests that CYP2C9 substrates may also be induced variably by carbamazepine, ethanol and phenobarbitone. Apart from the mutual competitive inhibition which may occur between alternate substrates, numerous other drugs have been shown to inhibit CYP2C9 activity in vivo and/or in vitro. Clinically significant inhibition may occur with coadministration of amiodarone, fluconazole, phenylbutazone, sulphinpyrazone, sulphaphenazole and certain other sulphonamides. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino acid residues 144 (Arg144Cys) and 359 (Ile359Leu) of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, although the frequency of this allele is relatively low. Consistent with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. Individualisation of dose is essential for those CYP2C9 substrates with a narrow therapeutic index. PMID:9663807

  20. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy

    PubMed Central

    Saruwatari, Junji; Ishitsu, Takateru; Nakagawa, Kazuko

    2010-01-01

    Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed. PMID:27713373

  1. Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula.

    PubMed

    Estelmann, Sebastian; Hügler, Michael; Eisenreich, Wolfgang; Werner, Katharina; Berg, Ivan A; Ramos-Vera, W Hugo; Say, Rafael F; Kockelkorn, Daniel; Gad'on, Nasser; Fuchs, Georg

    2011-03-01

    Metallosphaera sedula (Sulfolobales, Crenarchaeota) uses the 3-hydroxypropionate/4-hydroxybutyrate cycle for autotrophic carbon fixation. In this pathway, acetyl-coenzyme A (CoA) and succinyl-CoA are the only intermediates that can be considered common to the central carbon metabolism. We addressed the question of which intermediate of the cycle most biosynthetic routes branch off. We labeled autotrophically growing cells by using 4-hydroxy[1-¹⁴C]butyrate and [1,4-¹³C₁]succinate, respectively, as precursors for biosynthesis. The labeling patterns of protein-derived amino acids verified the operation of the proposed carbon fixation cycle, in which 4-hydroxybutyrate is converted to two molecules of acetyl-CoA. The results also showed that major biosynthetic flux does not occur via acetyl-CoA, except for the formation of building blocks that are directly derived from acetyl-CoA. Notably, acetyl-CoA is not assimilated via reductive carboxylation to pyruvate. Rather, our data suggest that the majority of anabolic precursors are derived from succinyl-CoA, which is removed from the cycle via oxidation to malate and oxaloacetate. These C₄intermediates yield pyruvate and phosphoenolpyruvate (PEP). Enzyme activities that are required for forming intermediates from succinyl-CoA were detected, including enzymes catalyzing gluconeogenesis from PEP. This study completes the picture of the central carbon metabolism in autotrophic Sulfolobales by connecting the autotrophic carbon fixation cycle to the formation of central carbon precursor metabolites.

  2. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes.

    PubMed

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2014-10-01

    Accumulation of damaged macromolecules, including irreversibly oxidized proteins, is a hallmark of cellular and organismal ageing. Failure of protein homesotasis is a major contributor to the age-related accumulation of damaged proteins. In skeletal muscle, tissue maintenance and regeneration is assured by resident adult stem cells known as satellite cells. During senescence their replication and differentiation is compromised contributing to sarcopenia. In this study we have addressed the impact of oxidatively modified proteins in the impaired metabolism of senescent human satellite cells. By using a targeted proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during replicative senescence of satellite cells. Inactivation of the proteasome in aged cells appeared as a key contributor to the accumulation of such damaged proteins. Untargeted metabolomic profiling and functional analyses indicated glucose metabolism impairment in senescent cells, although mitochondrial respiration remained unaffected. A metabolic shift leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane lipids for energy production. Such changes reflect alterations in membrane composition and dysregulation of sphingolipids signaling during senescence. This study establishes a new concept connecting oxidative protein modifications with the altered cellular metabolism associated with the senescent phenotype. In addition, these findings highlight the molecular mechanisms implicated in satellite cells dysfunction during ageing, paving the road for future therapeutic interventions

  3. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes

    PubMed Central

    Liu, Xuan; Du, Yang; Trakooljul, Nares; Brand, Bodo; Muráni, Eduard; Krischek, Carsten; Wicke, Michael; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers. PMID:26681915

  4. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    PubMed Central

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  5. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  6. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish

    PubMed Central

    Elie, Marc R.; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M.; Gonnerman, Gregory D.; Stevens, Jan F.; Tanguay, Robert L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7, 12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 62 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  7. Oxidation of PAH trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10

    PubMed Central

    Quinn, Amy M.; Harvey, Ronald G.; Penning, Trevor M.

    2009-01-01

    AKR1B10 has been identified as a potential biomarker for human non-small cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro, and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (−)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols. PMID:18788756

  8. Cytochrome P450 Drug Metabolizing Enzymes in Roma Population Samples: Systematic Review of the Literature.

    PubMed

    Szalai, Renata; Hadzsiev, Kinga; Melegh, Bela

    2016-01-01

    The cytochrome P450 drug metabolizing enzymes are highly polymorphic and show inter-individual differences in variability in drug response, which varies widely also with ethnicity. This study aims to summarize the available data on genetic polymorphisms associated with cytochrome enzymes conducted on Roma populations. Our goal was to compare the frequency of the variant alleles, genotypes and predicted phenotypes with corresponding rates from other populations. We carried out a systematic review including the papers published on the pharmacogenetically relevant variants of cytochrome P450 genes related to Roma population. The study was performed using several articles, websites and databases, including PubMed, Ensembl, dbSNP, HapMap and 1000 Genomes Project. This review attempts to summarize and discuss our current knowledge about the frequency distribution of the ever investigated 20 allelic variants of 9 cytochrome genes (CYP1A2, CYP1B1, CYP2B6, CYP2C9, CYP2C19, CYP2C8, CYP2D6, CYP3A5, CYP4F2) in Roma DNA samples and compare them with other populations. Differences between Roma and Hungarian samples are reported for 7 variant genotypes. CYP2C9 *2/*3 and CYP2C19 *2/*2 genotypes showed more than 3-fold differences. Additional differences are displayed for allele frequency of 7 variants (rs762551, rs3745274, rs1058930, rs1065852, rs3892097, rs1057910 and rs4244285) in Roma population samples. The interethnic variability in clinically relevant genetic polymorphisms of drug metabolizing enzymes, which may explain distinct drug response, highlights the need to allow for the ancestry of participants in pharmacogenetic studies.

  9. Discovery of new enzymes and metabolic pathways by using structure and genome context.

    PubMed

    Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W; Wood, B McKay; Brown, Shoshana; Bonanno, Jeffery B; Hillerich, Brandan S; Seidel, Ronald D; Babbitt, Patricia C; Almo, Steven C; Sweedler, Jonathan V; Gerlt, John A; Cronan, John E; Jacobson, Matthew P

    2013-10-31

    Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns. We and others are developing computation-guided strategies for functional discovery with 'metabolite docking' to experimentally derived or homology-based three-dimensional structures. Bacterial metabolic pathways often are encoded by 'genome neighbourhoods' (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by 'predicting' the intermediates in the glycolytic pathway in Escherichia coli. Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.

  10. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  11. Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression.

    PubMed

    Tetreau, Guillaume; Cao, Xiaolong; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Jiang, Haobo; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    Chitin is one of the most abundant biomaterials in nature. The biosynthesis and degradation of chitin in insects are complex and dynamically regulated to cope with insect growth and development. Chitin metabolism in insects is known to involve numerous enzymes, including chitin synthases (synthesis of chitin), chitin deacetylases (modification of chitin by deacetylation) and chitinases (degradation of chitin by hydrolysis). In this study, we conducted a genome-wide search and analysis of genes encoding these chitin metabolism enzymes in Manduca sexta. Our analysis confirmed that only two chitin synthases are present in M. sexta as in most other arthropods. Eleven chitin deacetylases (encoded by nine genes) were identified, with at least one representative in each of the five phylogenetic groups that have been described for chitin deacetylases to date. Eleven genes encoding for family 18 chitinases (GH18) were found in the M. sexta genome. Based on the presence of conserved sequence motifs in the catalytic sequences and phylogenetic relationships, two of the M. sexta chitinases did not cluster with any of the current eight phylogenetic groups of chitinases: two new groups were created (groups IX and X) and their characteristics are described. The result of the analysis of the Lepidoptera-specific chitinase-h (group h) is consistent with its proposed bacterial origin. By analyzing chitinases from fourteen species that belong to seven different phylogenetic groups, we reveal that the chitinase genes appear to have evolved sequentially in the arthropod lineage to achieve the current high level of diversity observed in M. sexta. Based on the sequence conservation of the catalytic domains and on their developmental stage- and tissue-specific expression, we propose putative functions for each group in each category of enzymes.

  12. Discovery of a sesamin-metabolizing microorganism and a new enzyme

    PubMed Central

    Kumano, Takuto; Fujiki, Etsuko; Hashimoto, Yoshiteru; Kobayashi, Michihiko

    2016-01-01

    Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min−1⋅mg−1), and kcat = 7.9 ± 0.3 s−1. Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (−)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins. PMID:27444012

  13. Human DHRS7, promising enzyme in metabolism of steroids and retinoids?

    PubMed

    Štambergová, Hana; Zemanová, Lucie; Lundová, Tereza; Malčeková, Beata; Skarka, Adam; Šafr, Miroslav; Wsól, Vladimír

    2016-01-01

    The metabolism of steroids and retinoids has been studied in detail for a long time, as these compounds are involved in a broad spectrum of physiological processes. Many enzymes participating in the conversion of such compounds are members of the short-chain dehydrogenase/reductase (SDR) superfamily. Despite great effort, there still remain a number of poorly characterized SDR proteins. According to various bioinformatics predictions, many of these proteins may play a role in the metabolism of steroids and retinoids. Dehydrogenase/reductase (SDR family) member 7 (DHRS7) is one such protein. In a previous study, we determined DHRS7 to be an integral membrane protein of the endoplasmic reticulum facing the lumen which has shown at least in vitro NADPH-dependent reducing activity toward several eobiotics and xenobiotics bearing a carbonyl moiety. In the present paper pure DHRS7 was used for a more detailed study of both substrate screening and an analysis of kinetics parameters of the physiologically important substrates androstene-3,17-dione, cortisone and all-trans-retinal. Expression patterns of DHRS7 at the mRNA as well as protein level were determined in a panel of various human tissue samples, a procedure that has enabled the first estimation of the possible biological function of this enzyme. DHRS7 is expressed in tissues such as prostate, adrenal glands, liver or intestine, where its activity could be well exploited. Preliminary indications show that DHRS7 exhibits dual substrate specificity recognizing not only steroids but also retinoids as potential substrates and could be important in the metabolism of these signalling molecules.

  14. Discovery of a sesamin-metabolizing microorganism and a new enzyme.

    PubMed

    Kumano, Takuto; Fujiki, Etsuko; Hashimoto, Yoshiteru; Kobayashi, Michihiko

    2016-08-09

    Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.

  15. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol.

    PubMed

    Tamrakar, P; Shrestha, P K; Briski, K P

    2015-04-30

    The brain astrocyte glycogen reservoir is a vital energy reserve and, in the cerebral cortex, subject among other factors to noradrenergic control. The ovarian steroid estradiol potently stimulates nerve cell aerobic respiration, but its role in glial glycogen metabolism during energy homeostasis or mismatched substrate supply/demand is unclear. This study examined the premise that estradiol regulates hypothalamic astrocyte glycogen metabolic enzyme protein expression during normo- and hypoglycemia in vivo through dorsomedial hindbrain catecholamine (CA)-dependent mechanisms. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial hypothalamic (VMH), arcuate hypothalamic (ARH), and paraventricular hypothalamic (PVH) nuclei and the lateral hypothalamic area (LHA) of estradiol (E)- or oil (O)-implanted ovariectomized (OVX) rats after insulin or vehicle injection, and pooled within each site. Stimulation [VMH, LHA] or suppression [PVH, ARH] of basal glycogen synthase (GS) protein expression by E was reversed in the former three sites by caudal fourth ventricular pretreatment with the CA neurotoxin 6-hydroxydopamine (6-OHDA). E diminished glycogen phosphorylase (GP) protein profiles by CA-dependent [VMH, PVH] or -independent mechanisms [LHA]. Insulin-induced hypoglycemia (IIH) increased GS expression in the PVH in OVX+E, but reduced this protein in the PVH, ARH, and LHA in OVX+O. Moreover, IIH augmented GP expression in the VMH, LHA, and ARH in OVX+E and in the ARH in OVX+O, responses that normalized by 6-OHDA. Results demonstrate site-specific effects of E on astrocyte glycogen metabolic enzyme expression in the female rat hypothalamus, and identify locations where dorsomedial hindbrain CA input is required for such action. Evidence that E correspondingly increases and reduces basal GS and GP in the VMH and LHA, but augments the latter protein during IIH suggests that E regulates

  16. Correlating structure and function of drug-metabolizing enzymes: progress and ongoing challenges.

    PubMed

    Johnson, Eric F; Connick, J Patrick; Reed, James R; Backes, Wayne L; Desai, Manoj C; Xu, Lianhong; Estrada, D Fernando; Laurence, Jennifer S; Scott, Emily E

    2014-01-01

    This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH-cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches.

  17. Correlation of Homocysteine Metabolic Enzymes Gene Polymorphism and Mild Cognitive Impairment in the Xinjiang Uygur Population

    PubMed Central

    Luo, Mei; Ji, Huihui; Zhou, Xiaohui; Liang, Jie; Zou, Ting

    2015-01-01

    Background The aim of this study was to investigate the genetic polymorphisms in the homocysteine (HCY) metabolic enzymes in the Xinjiang Uygur population who have mild cognitive impairment (MCI). Material/Methods Based on the epidemiological investigation, 129 cases of diagnosed Uygur MCI patients and a matched control group with 131 cases were enrolled for analyzing the association between the polymorphisms in the HCY metabolism related genes (C677T, A1298C, and G1968A polymorphisms in MTHFR, as well as the A2756G polymorphism in MS) and MCI by using the SNaPshot method. We then determined the homocysteine level in patients. Results In Xinjiang Uygur subjects, the A1298C polymorphisms in MTHFR and the A2756G polymorphisms in the MS gene in the MCI group were different from those in the control group. However, the C677T and G1968A polymorphisms in the MTHFR gene in MCI patients were not different from those in the control group. Multivariate logistic regression showed that, in addition to the well-known risk factors, such as low education level, high cholesterol level, high level of low-density lipoprotein, and high homocysteine levels, the A>G mutation in the MS gene at the rs1805087 locus was another independent risk factor for MCI in the Uyghur MCI population. The risk of MCI in G allele carriers was 2.265 times higher than that in matched control individuals (95% CI: 1.205~4.256, P<0.05). Conclusions The genetic polymorphism of HCY metabolizing enzymes is correlated to the occurrence of MCI in the Xinjiang Uygur population. The A2756G polymorphism in the MS gene could be an independent risk factor for MCI in the Xinjiang Uygur population. PMID:25625218

  18. Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges

    PubMed Central

    Johnson, Eric F.; Connick, J. Patrick; Reed, James R.; Backes, Wayne L.; Desai, Manoj C.; Xu, Lianhong; Estrada, D. Fernando; Laurence, Jennifer S.

    2014-01-01

    This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH–cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches. PMID:24130370

  19. Effect of oxytocin on serum biochemistry, liver enzymes, and metabolic hormones in lactating Nili Ravi buffaloes.

    PubMed

    Iqbal, Zafar; ur Rahman, Zia; Muhammad, Faqir; Akhtar, Masood; Awais, Mian Muhammad; Khaliq, Tanweer; Nasir, Amar; Nadeem, Muhammad; Khan, Kinza; Arshad, Hafiz Muhammad; Basit, Muhammad Abdul

    2015-01-01

    Studies reporting the effects of oxytocin on the health of lactating animals are lacking and still no such data is available on Nili Ravi buffalo, the most prominent Asian buffalo breed. The present study was conducted to investigate the effect of oxytocin on physiological and metabolic parameters of lactating Nili Ravi buffaloes. Healthy lactating buffaloes (n = 40) of recent calving were selected from a commercial dairy farm situated in the peri-urban area of district Faisalabad, Pakistan. These buffaloes were randomly allocated to two equal groups viz experimental and control, comprising 20 animals each. Twice-a-day (morning and evening) milking practice was followed. The experimental and control buffaloes were administered subcutaneously with 3 mL of oxytocin (10 IU/mL) and normal saline respectively, prior to each milking. Serum biochemical profile including glucose, total cholesterol (tChol), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), total proteins (TP), C-reactive protein (CRP), liver enzymes aspartate transaminase (AST), alanine transaminase (ALT), and metabolic hormones triiodothyronine (T₃) and thyroxine (T₄) were studied. Results revealed significantly higher (P ≤ 0.01) levels of glucose, total cholesterol, LDL-C, triglycerides, total proteins, and C-reactive protein in experimental (oxytocin-injected) lactating buffaloes compared to control group. Liver enzymes AST and ALT as well as serum T₄ concentration was significantly higher (P ≤ 0.01) in oxytocin-injected lactating buffaloes as compared to control animals. It was concluded that oxytocin had the key role in increasing the metabolic parameters and hormones, resulting in the optimization of production. But, at the same time, it may pose a threat to the animal health.

  20. Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    PubMed

    van Arkel, Jeroen; Vergauwen, Rudy; Sévenier, Robert; Hakkert, Johanna C; van Laere, André; Bouwmeester, Harro J; Koops, Andries J; van der Meer, Ingrid M

    2012-10-15

    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed in the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve

  1. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  2. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism.

    PubMed

    Bourquin, Florence; Riezman, Howard; Capitani, Guido; Grütter, Markus G

    2010-08-11

    Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.

  3. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef.

    PubMed

    Li, C B; Li, J; Zhou, G H; Lametsch, R; Ertbjerg, P; Brüggemann, D A; Huang, H G; Karlsson, A H; Hviid, M; Lundström, K

    2012-05-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine LM to low-voltage electrical stimulation (ES; 80 V, 35 s) after dressing and its contribution to meat tenderization at an early postmortem time. Proteome analysis showed that ES resulted in decreased (P < 0.05) phosphorylation of creatine kinase M chain, fructose bisphosphate aldolase C-A, β-enolase, and pyruvate kinase at 3 h postmortem. Zymography indicated an earlier (P < 0.05) activation of μ-calpain in ES muscles. Free lysosomal cathepsin B and L activity increased faster (P < 0.05) in ES muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at an early postmortem time. Electrical stimulation also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P < 0.05) the depletion of ATP, creatine phosphate, and glycogen, as well as a pH decline and the more preferred pH/temperature decline mode. Finally, ES accelerated meat tenderization, resulting in lesser (P < 0.05) shear force values than the control over the testing time. A possible relationship was suggested between a change in the phosphorylation of energy metabolic enzymes and the postmortem tenderization of beef. Our results suggested the possible importance of the activation of μ-calpain, phosphorylation of sarcoplasmic proteins, and release of lysosomal enzymes for ES-induced tenderization of beef muscle.

  4. Effect of a PCB-based transformer oil on testicular steroidogenesis and xenobiotic-metabolizing enzymes.

    PubMed

    Andric, Nebojsa L; Kostic, Tatjana S; Zoric, Sonja N; Stanic, Bojana D; Andric, Silvana A; Kovacevic, Radmila Z

    2006-07-01

    Pyralene is a PCB-based transformer oil with a unique PCB congener profile when compared to other mixtures. We studied the influence of Pyralene on testicular steroidogenesis and the status of xenobiotic-metabolizing enzymes in the testis and liver of rats during oral exposure (10 and 50 mg/kg body weight, p.o. daily for 1 week) and a 3-week post-treatment recovery period. As expected, Pyralene induced a rapid and sustained increase in mRNA transcripts for CYP1A1 and CYP2B1 in hepatocytes that was associated with a dramatic increase in ethoxyresorufin-O-deethylase (EROD) and pentoxyresorufin-O-deethylase (PROD) activities. Testicular androgenesis and the conversion of progesterone to testosterone in testicular microsomes were bidirectionally affected. An increase in these parameters was observed 24h after the initial administration of Pyralene, followed by inhibition that lasted until the fourth post-treatment day. Expression PCR analysis revealed a significant decrease in 17beta-hydroxysteroid dehydrogenase (17betaHSD) transcript abundance at 48 h after Pyralene administration. In contrast, transcripts for several other steroidogenic enzymes and for testicular CYP1A1, CYP1B1, and CYP2B1 were unaffected under the same conditions. These results in the rat indicate that a sub-chronic exposure to Pyralene disrupted testicular steroidogenesis and suggest the mechanism may involve direct action on the regulation of specific steroidogenic enzymes such as 17betaHSD.

  5. Comprehensive Structural Characterization of the Bacterial Homospermidine Synthase–an Essential Enzyme of the Polyamine Metabolism

    PubMed Central

    Krossa, Sebastian; Faust, Annette; Ober, Dietrich; Scheidig, Axel J.

    2016-01-01

    The highly conserved bacterial homospermidine synthase (HSS) is a key enzyme of the polyamine metabolism of many proteobacteria including pathogenic strains such as Legionella pneumophila and Pseudomonas aeruginosa; The unique usage of NAD(H) as a prosthetic group is a common feature of bacterial HSS, eukaryotic HSS and deoxyhypusine synthase (DHS). The structure of the bacterial enzyme does not possess a lysine residue in the active center and thus does not form an enzyme-substrate Schiff base intermediate as observed for the DHS. In contrast to the DHS the active site is not formed by the interface of two subunits but resides within one subunit of the bacterial HSS. Crystal structures of Blastochloris viridis HSS (BvHSS) reveal two distinct substrate binding sites, one of which is highly specific for putrescine. BvHSS features a side pocket in the direct vicinity of the active site formed by conserved amino acids and a potential substrate discrimination, guiding, and sensing mechanism. The proposed reaction steps for the catalysis of BvHSS emphasize cation-π interaction through a conserved Trp residue as a key stabilizer of high energetic transition states. PMID:26776105

  6. Altered expression of fatty acid–metabolizing enzymes in aromatase-deficient mice

    PubMed Central

    Nemoto, Yoshihisa; Toda, Katsumi; Ono, Masafumi; Fujikawa-Adachi, Kiyomi; Saibara, Toshiji; Onishi, Saburo; Enzan, Hideaki; Okada, Teruhiko; Shizuta, Yutaka

    2000-01-01

    Hepatic steatosis is a frequent complication in nonobese patients with breast cancer treated with tamoxifen, a potent antagonist of estrogen. In addition, hepatic steatosis became evident spontaneously in the aromatase-deficient (ArKO) mouse, which lacks intrinsic estrogen production. These clinical and laboratory observations suggest that estrogen helps to maintain constitutive lipid metabolism. To clarify this hypothesis, we characterized the expression and activity in ArKO mouse liver of enzymes involved in peroxisomal and mitochondrial fatty acid β-oxidation. Northern analysis showed reduced expression of mRNAs for very long fatty acyl-CoA synthetase, peroxisomal fatty acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase, enzymes required in fatty acid β-oxidation. In vitro assays of fatty acid β-oxidation activity using very long (C24:0), long (C16:0), or medium (C12:0) chain fatty acids as the substrates confirmed that the corresponding activities are also diminished. Impaired gene expression and enzyme activities of fatty acid β-oxidation were restored to the wild-type levels, and hepatic steatosis was substantially diminished in animals treated with 17β-estradiol. Wild-type and ArKO mice showed no difference in the binding activities of the hepatic nuclear extracts to a peroxisome proliferator response element. These findings demonstrate the pivotal role of estrogen in supporting constitutive hepatic expression of genes involved in lipid β-oxidation and in maintaining hepatic lipid homeostasis. PMID:10862797

  7. Comprehensive Structural Characterization of the Bacterial Homospermidine Synthase-an Essential Enzyme of the Polyamine Metabolism.

    PubMed

    Krossa, Sebastian; Faust, Annette; Ober, Dietrich; Scheidig, Axel J

    2016-01-18

    The highly conserved bacterial homospermidine synthase (HSS) is a key enzyme of the polyamine metabolism of many proteobacteria including pathogenic strains such as Legionella pneumophila and Pseudomonas aeruginosa; The unique usage of NAD(H) as a prosthetic group is a common feature of bacterial HSS, eukaryotic HSS and deoxyhypusine synthase (DHS). The structure of the bacterial enzyme does not possess a lysine residue in the active center and thus does not form an enzyme-substrate Schiff base intermediate as observed for the DHS. In contrast to the DHS the active site is not formed by the interface of two subunits but resides within one subunit of the bacterial HSS. Crystal structures of Blastochloris viridis HSS (BvHSS) reveal two distinct substrate binding sites, one of which is highly specific for putrescine. BvHSS features a side pocket in the direct vicinity of the active site formed by conserved amino acids and a potential substrate discrimination, guiding, and sensing mechanism. The proposed reaction steps for the catalysis of BvHSS emphasize cation-π interaction through a conserved Trp residue as a key stabilizer of high energetic transition states.

  8. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage.

    PubMed

    Hernández, Antonio F; Gil, Fernando; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Tsatsakis, Aristidis M; Requena, Mar; Parrón, Tesifón; Alarcón, Raquel

    2013-11-01

    Metabolic activation of pesticides in the liver may result in highly reactive intermediates capable of impairing various cellular functions. Nevertheless, the knowledge about the effect of pesticide exposure on liver function is still limited. This study assessed whether exposure to pesticides elicits early biochemical changes in biomarkers of liver function and looked for potential gene-environmental interactions between pesticide exposure and polymorphisms of pesticide-metabolizing genes. A longitudinal study was conducted in farm-workers from Andalusia (South Spain), during two periods of the same crop season with different degree of pesticide exposure. Blood samples were taken for the measurement of serum and erythrocyte cholinesterase activities as well as for determining clinical chemistry parameters as biomarkers of liver function. Serum lipid levels were also measured as they may help to monitor the progress of toxic liver damage. A reduction in serum cholinesterase was associated with decreased levels of all clinical chemistry parameters studied except HDL-cholesterol. Conversely, a decreased erythrocyte cholinesterase (indicating long-term pesticide exposure) was associated with increased levels of aspartate aminotransferase and alkaline phosphatase and increased levels of triglycerides, total cholesterol and LDL-cholesterol, but reduced levels of HDL-cholesterol. Changes in liver biomarkers were particularly associated with the PON155M/192R haplotype. The obtained results therefore support the hypothesis that pesticide exposure results in subtle biochemical liver toxicity and highlight the role of genetic polymorphisms in pesticide-metabolizing enzymes as biomarkers of susceptibility for developing adverse health effects.

  9. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  10. Lead (Pb)-inhibited radicle emergence in Brassica campestris involves alterations in starch-metabolizing enzymes.

    PubMed

    Singh, Harminder Pal; Kaur, Gurpreet; Batish, Daizy R; Kohli, Ravinder K

    2011-12-01

    Lead (Pb) is a toxic heavy metal released into the natural environment and known to cause oxidative damage and alter antioxidant mechanism in plants. However, not much is known about the interference of Pb with the biochemical processes and carbohydrate metabolism during seed germination. We, therefore, investigated the effect of Pb (50-500 μM) upon biochemical alterations in germinating seeds (at 24-h stage) of Brassica campestris L. Pb treatment significantly enhanced protein and carbohydrate contents that increased by ~43% and 200%, respectively, at 500-μM Pb over control. In contrast, the activities of starch/carbohydrate-metabolizing enzymes--α-amylases, β-amylases, acid invertases, and acid phosphatases--decreased by ~54%, 60%, 74%, and 52%, respectively, over control. Activities of peroxidases and polyphenol oxidases, involved in stress acclimation, however, increased by ~1.2- to 3.9-folds and 0.4- to 1.4-folds upon 50-500-μM Pb treatment. Pb enhanced oxidizing ability by 10 to 16.7 times over control suggesting interference with emerging root's oxidizing capacity. The study concludes that Pb exposure inhibits radicle emergence from B. campestris by interfering with the biochemical processes linked to protein and starch metabolism.

  11. Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils.

    PubMed

    Di Gennaro, Patrizia; Moreno, Beatriz; Annoni, Emanuele; García-Rodríguez, Sonia; Bestetti, Giuseppina; Benitez, Emilio

    2009-12-30

    The aim of the present study was to explore the potential for using vermicompost from olive-mill waste as an organic amendment for enhanced bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. The focus was to analyse the genetic potential and the naphthalene dioxygenase (NDO) expression of the bacterial communities involved in the degradation of naphthalene, as chemical model for the degradation of PAH. The structure of the metabolically active bacterial population was evidenced in the RNA-based denaturing gradient gel electrophoresis (DGGE) profiles. The relative expression of NDO was determined with real-time PCR in both the soil and the vermicompost cDNA. Naphthalene changed the structure of the metabolically active bacterial community in the vermicompost when this was artificially contaminated. When used as amendment, naphthalene-free vermicompost modified the bacterial population in the PAH-contaminated soil, evidenced in the DGGE gels after 1 month of incubation. In the amended soil, the vermicompost enhanced the NDO enzyme expression with a concomitant biodegradation of naphthalene. The effect of the vermicompost was to induce the expression of biodegradation indicator genes in the autochthonous bacterial community and/or incorporate new bacterial species capable of degrading PAH. The results indicated that vermicompost from olive-mill wastes could be considered a suitable technology to be used in PAH bioremediation.

  12. Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes.

    PubMed

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2013-01-01

    Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase Ⅰ enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase Ⅱ enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes.

  13. Garlic Oil Attenuated Nitrosodiethylamine-Induced Hepatocarcinogenesis by Modulating the Metabolic Activation and Detoxification Enzymes

    PubMed Central

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2013-01-01

    Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase Ⅰ enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase Ⅱ enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes. PMID:23494807

  14. Structure and Function of Human Xylulokinase, an Enzyme with Important Roles in Carbohydrate Metabolism*

    PubMed Central

    Bunker, Richard D.; Bulloch, Esther M. M.; Dickson, James M. J.; Loomes, Kerry M.; Baker, Edward N.

    2013-01-01

    d-Xylulokinase (XK; EC 2.7.1.17) catalyzes the ATP-dependent phosphorylation of d-xylulose (Xu) to produce xylulose 5-phosphate (Xu5P). In mammals, XK is the last enzyme in the glucuronate-xylulose pathway, active in the liver and kidneys, and is linked through its product Xu5P to the pentose-phosphate pathway. XK may play an important role in metabolic disease, given that Xu5P is a key regulator of glucose metabolism and lipogenesis. We have expressed the product of a putative human XK gene and identified it as the authentic human d-xylulokinase (hXK). NMR studies with a variety of sugars showed that hXK acts only on d-xylulose, and a coupled photometric assay established its key kinetic parameters as Km(Xu) = 24 ± 3 μm and kcat = 35 ± 5 s−1. Crystal structures were determined for hXK, on its own and in complexes with Xu, ADP, and a fluorinated inhibitor. These reveal that hXK has a two-domain fold characteristic of the sugar kinase/hsp70/actin superfamily, with glycerol kinase as its closest relative. Xu binds to domain-I and ADP to domain-II, but in this open form of hXK they are 10 Å apart, implying that a large scale conformational change is required for catalysis. Xu binds in its linear keto-form, sandwiched between a Trp side chain and polar side chains that provide exquisite hydrogen bonding recognition. The hXK structure provides a basis for the design of specific inhibitors with which to probe its roles in sugar metabolism and metabolic disease. PMID:23179721

  15. Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Mao, Wenfu; Rupasinghe, Sanjeewa G; Johnson, Reed M; Zangerl, Arthur R; Schuler, Mary A; Berenbaum, May R

    2009-12-01

    Although the honey bee (Apis mellifera) genome contains far fewer cytochrome P450 genes associated with xenobiotic metabolism than other insect genomes sequenced to date, the CYP6AS subfamily, apparently unique to hymenopterans, has undergone an expansion relative to the genome of the jewel wasp (Nasonia vitripennis). The relative dominance of this family in the honey bee genome is suggestive of a role in processing phytochemicals encountered by honey bees in their relatively unusual diet of honey (comprising concentrated processed nectar of many plant species) and bee bread (a mixture of honey and pollen from many plant species). In this study, quercetin was initially suggested as a shared substrate for CYP6AS1, CYP6AS3, and CYP6AS4, by its presence in honey, extracts of which induce transcription of these three genes, and by in silico substrate predictions based on a molecular model of CYP6AS3. Biochemical assays with heterologously expressed CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 enzymes subsequently confirmed their activity toward this substrate. CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 metabolize quercetin at rates of 0.5+/-0.1, 0.5+/-0.1, 0.2+/-0.1, and 0.2+/-0.1 pmol quercetin/ pmol P450/min, respectively. Substrate dockings and sequence alignments revealed that the positively charged amino acids His107 and Lys217 and the carbonyl group of the backbone between Leu302 and Ala303 are essential for quercetin orientation in the CYP6AS3 catalytic site and its efficient metabolism. Multiple replacements in the catalytic site of CYP6AS4 and CYP6AS10 and repositioning of the quercetin molecule likely account for the lower metabolic activities of CYP6AS4 and CYP6AS10 compared to CYP6AS1 and CYP6AS3.

  16. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols.

    PubMed

    Zhang, Li; Jin, Yi; Chen, Mo; Huang, Meng; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2011-07-22

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.

  17. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    PubMed

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  18. Complete Proteomic-Based Enzyme Reaction and Inhibition Kinetics Reveal How Monolignol Biosynthetic Enzyme Families Affect Metabolic Flux and Lignin in Populus trichocarpa[W

    PubMed Central

    Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.

    2014-01-01

    We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611

  19. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium.

    PubMed

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  20. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    PubMed

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  1. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    PubMed Central

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y.

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique. PMID:26500619

  2. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    NASA Astrophysics Data System (ADS)

    Kidd, Philip B.; Wingreen, Ned S.

    2010-03-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times.

  3. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme.

    PubMed

    Bencharit, Sompop; Morton, Christopher L; Xue, Yu; Potter, Philip M; Redinbo, Matthew R

    2003-05-01

    We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.

  4. Fungal colonization and enzyme-mediated metabolism of waste coal by Neosartorya fischeri strain ECCN 84.

    PubMed

    Sekhohola, Lerato Mary; Isaacs, Michelle Louise; Cowan, Ashton Keith

    2014-01-01

    Colonization and oxidative metabolism of South African low-rank discard coal by the fungal strain ECCN 84 previously isolated from a coal environment and identified as Neosartorya fischeri was investigated. Results show that waste coal supported fungal growth. Colonization of waste coal particles by N. fischeri ECCN 84 was associated with the formation of compact spherical pellets or sclerotia-like structures. Dissection of the pellets from liquid cultures revealed a nucleus of "engulfed" coal which when analyzed by energy dispersive X-ray spectroscopy showed a time-dependent decline in weight percentage of elemental carbon and an increase in elemental oxygen. Proliferation of peroxisomes in hyphae attached to coal particles and increased extracellular laccase activity occurred after addition of waste coal to cultures of N. fischeri ECCN 84. These results support a role for oxidative enzyme action in the biodegradation of coal and suggest that extracellular laccase is a key component in this process.

  5. Diesel Exhaust Influences Carcinogenic PAH-Induced Genotoxicity and Gene Expression in Human Breast Epithelial Cells in Culture

    PubMed Central

    Courter, Lauren A.; Pereira, Cliff; Baird, William M.

    2009-01-01

    The carcinogenic polycyclic aromatic hydrocarbon ns (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are widespread environmental pollutants, however their toxicological effects within a mixture is not established. We investigated the influence of diesel exhaust (DE) on B[a]P and DB[a,l]P-induced PAH-DNA adduct formation, metabolic activation, gene expression and 8-oxo-dG adduct levels in human breast epithelial cells (MCF-10A) in culture. Following 24 and 48 h, cells co-exposed to DE plus B[a]P exhibited a significant decrease in PAH-DNA adduct levels, compared with B[a]P alone, as determined by 33P-postlabeling combined with reversed-phase high performance liquid chromatography (HPLC). Cytochrome P450 (CYP) enzyme activity, as measured by the ethoxyresorufin O-deethylase (EROD) assay and CYP1B1 expression, significantly increased with co-exposure of DE plus DB[a,l]P, compared with DB[a,l]P alone. Aldo keto-reductase (AKR)1C1, AKR1C2,and AKR1C3 expression also significantly increased in cells exposed to DE plus PAH, compared with PAH exposure alone. Cell populations exhibiting 8-oxo-dG adducts significantly increased in response to exposure to B[a]P or DE plus B[a]P for 24 h, compared with vehicle control, as quantified by flow cytometry. These results suggest that complex mixtures may modify the carcinogenic potency of PAH by shifting the metabolic activation pathway from the production of PAH diol-epoxides to AKR pathway-derived metabolites. PMID:17612574

  6. FireMaster BP-6: fractionation, metabolic and enzyme induction studies.

    PubMed

    Safe, S; Kohli, J; Crawford, A

    1978-04-01

    FireMaster BP-6 is a commercial polybrominated biphenyl (PBB) preparation containing a complex mixture of isomers with the major component being identified as 2,2',4,4',5,5'-hexabromobiphenyl. Column chromatographic techniques have been developed in which the crude FireMaster is separated into three fractions, F1, F2, and F3, in increasing order of polarity. F1 consists of highly purified 2,2',4,4',5,5'-hexabromobiphenyl (94%) whereas F2-F3 contain less of this isomer and correspondingly more of the other bromobiphenyl components. Previously we have shown that crude FireMaster BP-6 is metabolized in mammals to give hydroxylated degradation products and the metabolism of F1, not unexpectedly, gives comparable results. It is well known that PBBs are effective inducers of diverse microsomal enzymes including including the aryl hydrocarbon hydroxylase (AHH) system. The effects of FireMaster BP-6 and F1-F3 as AHH inducers have been investigated by using the following approach: the substrates used to monitor AHH activity are model halogenated aromatic compounds; the levels of metabolites and metabolite conjugates formed have been quantitated for control and induced enzymes; the levels of macromolecular adducts have also been quantitated for the inducers. This approach thus not only measures the rate of increase of detoxification products (metabolites and metabolite conjugates) but also monitors the macromolecule adduct formation which represents a toxification route. The effects of the PBBs as AHH inducers will be discussed in terms of the above approach.

  7. [Involvement of microRNA in the induction of drug-metabolizing enzymes].

    PubMed

    Shizu, Ryota; Numazawa, Satoshi; Yoshida, Takemi

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs of about 20 nucleotides in length and participate in the post-transcriptional regulation of gene expression. Accumulating evidence indicates that miRNA binds to 3'-UTR of its target mRNAs and thereby destabilizes the transcripts or suppresses the translation. It is expected that miRNAs could have diverse functions and therefore play a role in the gene expression caused by the drug treatment, which have yet to be determined. Demonstration of the participation of specific miRNA in the drug-mediated gene expression would make it a biomarker for the toxicological assessment and help an understanding of molecular machinery of the drug-drug interaction. Under these backgrounds, we investigated the change of miRNAs in the liver of mice treated with phenobarbital, a typical inducer for drug-metabolizing enzymes, and demonstrate the participation of miRNAs in the phenobarbital-regulated gene expression. We investigated the relationship between phenobarbital-mediated changes in miRNA and mRNA by using Agilent miRNA microarray and DNA microarray, followed by real time RT-PCR. From these experiments, it was suggested that the phenobarbital-induced changes in cyp2c29 and mrp3 are regulated by miR-30a and miR-29b, respectively. In addition, we obtained evidence that indicates a phenobarbital-mediated decrease in miR-122, a highly abundant liver-specific miRNA, leads to the activation of the transcription factor CAR and thereby induces drug-metabolizing enzymes.

  8. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems.

    PubMed

    Hylland, Ketil

    2006-01-08

    Low levels of oil and hence polycyclic aromatic hydrocarbons (PAHs) are naturally present in the marine environment, although levels have increased significantly following human extraction and use of oil and gas. Other major anthropogenic sources of PAHs include smelters, the use of fossil fuels in general, and various methods of waste disposal, especially incineration. There are two major sources for PAHs to marine ecosystems in Norway: the inshore smelter industry, and offshore oil and gas production activities. A distinction is generally made between petrogenic (oil-derived) and pyrogenic (combustion-derived) PAHs. Although petrogenic PAHs appear to be bioavailable to a large extent, pyrogenic PAHs are often associated with soot particles and less available for uptake into organisms. There is extensive evidence linking sediment-associated PAHs to induction of phase-I enzymes, development of DNA adducts, and eventually neoplastic lesions in fish. Most studies have focused on high-molecular-weight, carcinogenic PAHs such as benzo[a]pyrene. It is less clear how two- and three-ring PAHs affect fish, and there is even experimental evidence to indicate that these chemicals may inhibit some components of the phase I system rather than produce induction. There is a need for increased research efforts to clarify biological effects of two- and three-ring PAHs, PAH mixtures, and adaptation processes in marine ecosystems.

  9. Protective effect of p-methoxycinnamic acid, an active phenolic acid against 1,2-dimethylhydrazine-induced colon carcinogenesis: modulating biotransforming bacterial enzymes and xenobiotic metabolizing enzymes.

    PubMed

    Gunasekaran, Sivagami; Venkatachalam, Karthikkumar; Jeyavel, Kabalimoorthy; Namasivayam, Nalini

    2014-09-01

    Objective of the study is to evaluate the modifying potential of p-methoxycinnamic acid (p-MCA), an active rice bran phenolic acid on biotransforming bacterial enzymes and xenobiotic metabolizing enzymes in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. 48 male albino wistar rats were divided into six groups. Group1 (control) received modified pellet diet and 0.1 % carboxymethylcellulose; group2 received modified pellet diet along with p-MCA (80 mg/kg b.wt. p.o.) everyday for 16 weeks; groups 3-6 received 1,2-dimethylhydrazine (DMH) (20 mg/kg b.wt.) subcutaneous injection once a week for the first 4 weeks, while groups 4-6 received p-MCA at three different doses of 20, 40 and 80 mg/kg b.wt. p.o. everyday for 16 weeks. A significant increase in carcinogen-activating enzymes (cytochrome P450, cytochrome b5, cytochrome P4502E1, NADH-cytochrome-b5-reductase and NADPH-cytochrome-P450 reductase) with concomitant decrease in phaseII enzymes, DT-Diaphorase, glutathione S-transferase, UDP-glucuronyl-transferase and gamma glutamyltransferase were observed in group3 compared to control. DMH treatment significantly increased the activities of feacal and colonic bacterial enzymes (β-glucosidase, β-galactosidase, β-glucuronidase, nitroreductase, sulphatase and mucinase). p-MCA supplementation (40 mg/kg b.wt) to carcinogen exposed rats inhibited these enzymes, which were near those of control rats. The formation of dysplastic aberrant crypt foci in the colon and the histopathological observations of the liver also supports our biochemical findings. p-MCA (40 mg/kg b.wt.) offers remarkable modulating efficacy of biotransforming bacterial and xenobiotic metabolizing enzymes in colon carcinogenesis.

  10. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

    NASA Astrophysics Data System (ADS)

    Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

    2014-01-01

    Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

  11. Can bioactive compounds of Crocus sativus L. influence the metabolic activity of selected CYP enzymes in the rat?

    PubMed

    Dovrtělová, G; Nosková, K; Juřica, J; Turjap, M; Zendulka, O

    2015-01-01

    Safranal and crocin are biologically active compounds isolated from Crocus sativus L., commonly known as saffron. Clinical trials confirm that saffron has antidepressant effect, thus being a potential valuable alternative in the treatment of depression. The aim of the present study was to determine, whether systemic administration of safranal and crocin can influence the metabolic activity of CYP3A, CYP2C11, CYP2B, and CYP2A in rat liver microsomes (RLM). The experiments were carried out on male Wistar albino rats intragastrically administered with safranal (4, 20, and 100 mg/kg/day) or with intraperitoneal injections of crocin (4, 20, and 100 mg/kg/day). Our results demonstrate the ability of safranal and crocin to increase the total protein content and to change the metabolic activity of several CYP enzymes assessed as CYP specific hydroxylations of testosterone in RLM. Crocin significantly decreased the metabolic activity of all selected CYP enzymes, while safranal significantly increased the metabolic activity of CYP2B, CYP2C11 and CYP3A enzymes. Therefore, both substances could increase the risk of interactions with co-administered substances metabolized by cytochrome P450 enzymes.

  12. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases.

    PubMed

    Berezin, Vladimir; Walmod, Peter S; Filippov, Mikhail; Dityatev, Alexander

    2014-01-01

    Extracellular matrix (ECM) molecules, their receptors at the cell surface, and cell adhesion molecules (CAMs) involved in cell-cell or cell-ECM interactions are implicated in processes related to major diseases of the central nervous system including Alzheimer's disease (AD), epilepsy, schizophrenia, addiction, multiple sclerosis, Parkinson's disease, and cancer. There are multiple strategies for targeting the ECM molecules and their metabolizing enzymes and receptors with antibodies, peptides, glycosaminoglycans, and other natural and synthetic compounds. ECM-targeting treatments include chondroitinase ABC, heparin/heparan sulfate-mimicking oligosaccharides, ECM cross-linking antibodies, and drugs stimulating expression of ECM molecules. The amount or activity of ECM-degrading enzymes like matrix metalloproteinases can be modulated indirectly via the regulation of endogenous inhibitors like TIMPs and RECK or at the transcriptional and translational levels using, e.g., histone deacetylase inhibitors, synthetic inhibitors like Periostat, microRNA-interfering drugs like AC1MMYR2, and natural compounds like flavonoids, epigallocatechin-3-gallate, anacardic acid, and erythropoietin. Among drugs targeting the major ECM receptors, integrins, are the anticancer peptide cilengitide and anti-integrin antibodies, which have a potential for treatment of stroke, multiple sclerosis, and AD. The latter can be also potentially treated with modulators of CAMs, such as peptide mimetics derived from L1-CAM and NCAM1.

  13. Enzymes Involved in Pyrophosphate and Calcium Metabolism as Targets for Anti-scuticociliate Chemotherapy.

    PubMed

    Mallo, Natalia; Lamas, Jesús; DeFelipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-07-01

    Inorganic pyrophosphate (PPi) is a key metabolite in cellular bioenergetics under chronic stress conditions in prokaryotes, protists and plants. Inorganic pyrophosphatases (PPases) are essential enzymes controlling the cellular concentration of PPi and mediating intracellular pH and Ca(2+) homeostasis. We report the effects of the antimalarial drugs chloroquine (CQ) and artemisinin (ART) on the in vitro growth of Philasterides dicentrarchi, a scuticociliate parasite of turbot; we also evaluated the action of these drugs on soluble (sPPases) and vacuolar H+-PPases (H+-PPases). CQ and ART inhibited the in vitro growth of ciliates with IC50 values of respectively 74 ± 9 μM and 80 ± 8 μM. CQ inhibits the H+ translocation (with an IC50 of 13.4 ± 0.2 μM), while ART increased translocation of H+ and acidification. However, both drugs caused a decrease in gene expression of H+-PPases. CQ significantly inhibited the enzymatic activity of sPPases, decreasing the consumption of intracellular PPi. ART inhibited intracellular accumulation of Ca(2+) induced by ATP, indicating an effect on the Ca(2+) -ATPase. The results suggest that CQ and ART deregulate enzymes associated with PPi and Ca(2+) metabolism, altering the intracellular pH homeostasis vital for parasite survival and providing a target for the development of new drugs against scuticociliatosis.

  14. Polymorphisms in drug-metabolizing enzymes: What is their clinical relevance and why do they exist?

    SciTech Connect

    Nebert, D.W.

    1997-02-01

    The beautiful report by Sachse in this issue of the journal represents the culmination of 2 decades of increasingly exciting work on the {open_quotes}debrisoquine oxidation polymorphism,{close_quotes} one of dozens of pharmacogenetic or ecogenetic polymorphisms that have been shown to have an important impact on innumerable clinical diseases. Pharmacogenetics is the study of the hereditary basis of the differences in responses to drugs. Ecogenetics is the broader field of interindividual differences in response to all environmental chemical and physical agents (e.g., heavy metals, insecticides, compounds formed during combustion, and UV radiation). It is now clear that each of us has his or her own {open_quotes}individual fingerprint{close_quotes} of unique alleles encoding the so-called drug-metabolizing enzymes (DMEs) and the receptors that regulate these enzymes. In this invited editorial, I first introduce the current thinking in the field of DME (and DME-receptor) research and how DMEs have evolved from animal-plant interactions. I then describe the debrisoquine oxidation polymorphism, as well as two other relevant DME polymorphisms; show the relationship between these polymorphisms and human disease; provide examples of synergistic effects caused by the combination of two DME polymorphisms; and discuss the ethical considerations of such research. Last, I speculate on why these allelic frequencies of the DME genes might exist in human populations in the first place. 35 refs.

  15. Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer.

    PubMed

    Catsburg, Chelsea; Joshi, Amit D; Corral, Román; Lewinger, Juan Pablo; Koo, Jocelyn; John, Esther M; Ingles, Sue A; Stern, Mariana C

    2012-07-01

    Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case-Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene-diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies.

  16. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma.

    PubMed

    Lee, Derek; Xu, Iris Ming-Jing; Chiu, David Kung-Chun; Lai, Robin Kit-Ho; Tse, Aki Pui-Wah; Lan Li, Lynna; Law, Cheuk-Ting; Tsang, Felice Ho-Ching; Wei, Larry Lai; Chan, Cerise Yuen-Ki; Wong, Chun-Ming; Ng, Irene Oi-Lin; Wong, Carmen Chak-Lui

    2017-04-10

    Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.

  17. Levels of Key Enzymes of Methionine-Homocysteine Metabolism in Preeclampsia

    PubMed Central

    Pérez-Sepúlveda, Alejandra; España-Perrot, Pedro P.; Fernández B, Ximena; Ahumada, Verónica; Bustos, Vicente; Arraztoa, José Antonio; Dobierzewska, Aneta; Figueroa-Diesel, Horacio; Rice, Gregory E.; Illanes, Sebastián E.

    2013-01-01

    Objective. To evaluate the role of key enzymes in the methionine-homocysteine metabolism (MHM) in the physiopathology of preeclampsia (PE). Methods. Plasma and placenta from pregnant women (32 controls and 16 PE patients) were analyzed after informed consent. Protein was quantified by western blot. RNA was obtained with RNA purification kit and was quantified by reverse transcritase followed by real-time PCR (RT-qPCR). Identification of the C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) single-nucleotide polymorphisms (SNPs) and A2756G methionine synthase (MTR) SNP was performed using PCR followed by a high-resolution melting (HRM) analysis. S-adenosyl methionine (SAM) and S-adenosyl homocysteine (SAH) were measured in plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). The SNP association analysis was carried out using Fisher's exact test. Statistical analysis was performed using a Mann-Whitney test. Results. RNA expression of MTHFR and MTR was significantly higher in patients with PE as compared with controls. Protein, SAM, and SAH levels showed no significant difference between preeclamptic patients and controls. No statistical differences between controls and PE patients were observed with the different SNPs studied. Conclusion. The RNA expression of MTHFR and MTR is elevated in placentas of PE patients, highlighting a potential compensation mechanism of the methionine-homocysteine metabolism in the physiopathology of this disease. PMID:24024209

  18. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR☆

    PubMed Central

    Tolson, Antonia H.; Wang, Hongbing

    2010-01-01

    Drug-metabolizing enzymes (DMEs) and transporters play pivotal roles in the disposition and detoxification of numerous foreign and endogenous chemicals. To accommodate chemical challenges, the expression of many DMEs and transporters is up-regulated by a group of ligand-activated transcription factors namely nuclear receptors (NRs). The importance of NRs in xenobiotic metabolism and clearance is best exemplified by the most promiscuous xenobiotic receptors: pregnane X receptor (PXR, NR1I2) and constitutive androstane/activated receptor (CAR, NR1I3). Together, these two receptors govern the inductive expression of a largely overlapping array of target genes encoding phase I and II DMEs, and drug transporters. Moreover, PXR and CAR also represent two distinctive mechanisms of NR activation, whereby CAR demonstrates both constitutive and ligand-independent activation. In this review, recent advances in our understanding of PXR and CAR as xenosensors are discussed with emphasis placed on the differences rather than similarities of these two xenobiotic receptors in ligand recognition and target gene regulation. PMID:20727377

  19. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism

    PubMed Central

    Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.; Svensson, Birte; Smith, Alison M.; Field, Robert A.

    2016-01-01

    Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se. PMID:26862201

  20. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism.

    PubMed

    Andriotis, Vasilios M E; Rejzek, Martin; Rugen, Michael D; Svensson, Birte; Smith, Alison M; Field, Robert A

    2016-02-01

    Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se.

  1. Two chitin metabolic enzyme genes from Hyriopsis cumingii: cloning, characterization, and potential functions.

    PubMed

    Wang, G-L; Xu, B; Bai, Z-Y; Li, J-L

    2012-12-19

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan are found in a wide variety of organisms. These versatile biopolymers are associated with a broad range of biological functions. This article is the first to report the potential functions of 2 chitin metabolic enzyme genes from Hyriopsis cumingii. A chitinase-3 gene (Chi-3) and a chitin deacetylase gene (Cda) were cloned from H. cumingii and characterized. Semi-quantitative reverse transcription polymerase chain reaction analysis revealed that the Cda gene was expressed in blood, mantle, liver, stomach, kidney, intestine, gill, and foot, whereas Chi-3 was also expressed in those tissues but not in blood. The tissue-specific expression of H. cumingii Chi-3 indicated that other Chi genes may be involved in the H. cumingii immune system. Real-time quantitative polymerase chain reaction analysis showed that the expression of Chi-3 was significantly (P < 0.05) upregulated 12 h after shell damage, suggesting that Chi-3 might hydrolyze superfluous chitin after shell recovery and play a role in shell formation. Conversely, Cda expression did not change significantly (P > 0.05) to maintain a certain degree of acetylation in chitin/chitosan. This study enriches the basic research on chitin metabolic genes and lays foundations for further research of shell regeneration in mussels.

  2. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    PubMed Central

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  3. Rice Debranching Enzyme Isoamylase3 Facilitates Starch Metabolism and Affects Plastid Morphogenesis

    PubMed Central

    Yun, Min-Soo; Umemoto, Takayuki; Kawagoe, Yasushi

    2011-01-01

    Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3–green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice. PMID:21551159

  4. Oxidative metabolism in guinea pig ventricular myocytes protected from proteolytic enzyme activity.

    PubMed

    Bailey, L E; Carlos, H; Amian, A; Moon, K E

    1987-07-01

    Surface structures on guinea pig ventricular myocytes were protected from proteolytic enzyme activity with 100 KIU.ml-2 aprotinin during mechanical disaggregation. Intact myocytes, approximately 7.5 X 10(6) cells.g-1 ventricular wet weight, were separated from debris and damaged cells using Cytodex I tissue culture supports. Cellular ultrastructure did not differ from that observed in intact tissue. Neither spontaneous contractions nor contracture were ever observed in these myocytes in calcium concentrations of 10 mmol.litre-1. Dinitrophenol (0.2 mmol. litre-1) uncoupled respiration in the myocytes but only after the sarcolemma had been disrupted with Triton X100. The adenosine diphosphate to oxygen ratio of mitochondria isolated from the myocytes was 2.4(0.2) and the respiratory control index 2.6(0.3). Calcium (1.8 mmol.litre-1) increased oxygen uptake in the presence of 10 mmol.litre-1 pyruvate or 11 mmol.litre-1 glucose but not 17 mmol. litre-1 succinate. Succinate dependent oxygen consumption was greater than pyruvate dependent oxygen consumption (1090.0(190.0) and 40.1(0.8) nl.min-1.mg-1 protein respectively). The Crabtree effect was present. Oxidative metabolism was normal in cells stored at 10 degrees C for seven days but deteriorated rapidly thereafter. The results indicate that myocytes disaggregated by this procedure retain many of the morphological and metabolic characteristics of intact cardiac muscle cells and are relatively homogeneous with respect to calcium tolerance and metabolic function.

  5. Vasomotor symptom prevalence is associated with polymorphisms in sex steroid-metabolizing enzymes and receptors.

    PubMed

    Crandall, Carolyn J; Crawford, Sybil L; Gold, Ellen B

    2006-09-01

    The relation of single nucleotide polymorphisms (SNPs) of genes involved in estrogen function to vasomotor symptoms (VMS) has been inadequately explored. We evaluated SNPs in sex steroid-metabolizing genes and estrogen receptors (ERs) for their association with VMS (hot flashes, night sweats, and/or cold sweats) reported by women who were premenopausal or in early perimenopause at baseline. The study population was drawn from participants in the Study of Women's Health Across the Nation (SWAN). African American, Caucasian, Chinese, and Japanese women, 42 to 52 years of age at baseline, who were enrolled in the longitudinal, community-based cohort of SWAN provided questionnaire, interview, weight and height measurements, and serum samples through the sixth annual visit. SNPs associated with the sex steroid hormone pathway were genotyped and available for 1,538 participants. These SNPs were associated with reporting VMS > or =6 days compared with <6 days in the past 2 weeks using race/ethnicity-specific repeated measures logistic regression models. Participants were on average 46 years old at baseline. The prevalence of VMS reporting increased in all racial/ethnic groups from baseline to the sixth annual follow-up visit. After adjustment for covariates, several SNPs encoding genes responsible for estrogen metabolism and ERs were associated with decreased odds of reporting VMS, including the CYP1B1 rs1056836 GC genotype in African American women; 17HSD rs615942 TG, 17HSD rs592389 TG, and 17HSD rs2830 AG genotypes in Caucasian women; and the CYP1A1 rs2606345 AC genotype in Chinese women. We identified race/ethnicity-specific associations between VMS reporting and specific polymorphisms for sex steroid-metabolizing enzymes and sex steroid receptors. Clarification of the mechanisms of the associations and confirmation in other populations is warranted.

  6. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.

    PubMed

    Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R

    2013-09-01

    For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities.

  7. Cigarette Smoking, Genetic Variants in Carcinogen-metabolizing Enzymes, and Colorectal Cancer Risk

    PubMed Central

    Cleary, Sean P.; Cotterchio, Michelle; Shi, Ellen; Gallinger, Steven; Harper, Patricia

    2010-01-01

    The risk of colorectal cancer associated with smoking is unclear and may be influenced by genetic variation in enzymes that metabolize cigarette carcinogens. The authors examined the colorectal cancer risk associated with smoking and 26 variants in carcinogen metabolism genes in 1,174 colorectal cancer cases and 1,293 population-based controls recruited in Canada by the Ontario Familial Colorectal Cancer Registry from 1997 to 2001. Adjusted odds ratios were calculated by multivariable logistic regression. Smoking for >27 years was associated with a statistically significant increased colorectal cancer risk (adjusted odds ratio (AOR) = 1.25, 95% confidence interval (CI): 1.02, 1.53) in all subjects. Colorectal cancer risk associated with smoking was higher in males for smoking status, duration, and intensity. The CYP1A1-3801-CC (AOR = 0.47, 95% CI: 0.23, 0.94) and CYP2C9-430-CT (AOR = 0.82, 95% CI: 0.68, 0.99) genotypes were associated with decreased risk, and the GSTM1-K173N-CG (AOR = 1.99, 95% CI: 1.21, 3.25) genotype was associated with an increased risk of colorectal cancer. Statistical interactions between smoking and genetic variants were assessed by comparing logistic regression models with and without a multiplicative interaction term. Significant interactions were observed between smoking status and SULT1A1-638 (P = 0.02), NAT2-857 (P = 0.01), and CYP1B1-4390 (P = 0.04) variants and between smoking duration and NAT1-1088 (P = 0.02), SULT1A1-638 (P = 0.04), and NAT1-acetylator (P = 0.03) status. These findings support the hypothesis that prolonged cigarette smoking is associated with increased risk of colorectal cancer and that this risk may be modified by variation in carcinogen metabolism genes. PMID:20937634

  8. Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas.

    PubMed

    Haas, Susanne; Pierl, Christiane; Harth, Volker; Pesch, Beate; Rabstein, Sylvia; Brüning, Thomas; Ko, Yon; Hamann, Ute; Justenhoven, Christina; Brauch, Hiltrud; Fischer, Hans-Peter

    2006-10-15

    The potential to metabolize endogenous and exogenous substances may influence breast cancer development and tumor growth. Therefore, the authors investigated the protein expression of Glutathione S-transferase (GST) isoforms and cytochrome P450 (CYP) known to be involved in the metabolism of steroid hormones and endogenous as well as exogenous carcinogens in breast cancer tissue to obtain new information on their possible role in tumor progression. Expression of GST pi, mu, alpha and CYP1A1/2, 1A2, 3A4/5, 1B1, 2E1 was assessed by immunohistochemistry for primary breast carcinomas of 393 patients from the German GENICA breast cancer collection. The percentages of positive tumors were 50.1 and 44.5% for GST mu and CYP2E1, and ranged from 13 to 24.7% for CYP1A2, GST pi, CYP1A1/2, CYP3A4/5, CYP1B1. GST alpha was expressed in 1.8% of tumors. The authors observed the following associations between strong protein expression and histopathological characteristics: GST expression was associated with a better tumor differentiation (GST mu, p = 0.018) and with reduced lymph node metastasis (GST pi, p = 0.02). In addition, GST mu expression was associated with a positive estrogen receptor and progesterone receptor status (p < 0.001). CYP3A4/5 expression was associated with a positive nodal status (p = 0.018). Expression of CYP1B1 was associated with poor tumor differentiation (p = 0.049). Our results demonstrate that the majority of breast carcinomas expressed xenobiotic and drug metabolizing enzymes. They particularly suggest that GST mu and pi expression may indicate a better prognosis and that strong CYP3A4/5 and CYP1B1 expression may be key features of nonfavourable prognosis.

  9. Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla).

    PubMed

    Boldsen, Martin Maagaard; Norin, Tommy; Malte, Hans

    2013-05-01

    Intraspecific variation in metabolic rate of fish can be pronounced and have been linked to various fitness-related behavioural and physiological traits, but the underlying causes for this variation have received far less attention than the consequences of it. In the present study we investigated whether European eels (Anguilla anguilla) displayed temporal repeatability of body-mass-corrected (residual) metabolic rate over a two-month period and if variations in organ mass and enzyme activity between individual fish could be the cause for the observed variation in metabolic rate. Both standard metabolic rate (SMR; Pearson's r=0.743) and routine metabolic rate (RMR; r=0.496) were repeatable over the two-month period. Repeatability of RMR is an interesting finding as it indicates that the level of spontaneous activity in respirometer-confined fish is not random. Cumulative organ mass (liver, heart, spleen and intestine; mean 1.6% total body mass) was found to explain 38% of the variation in SMR (r=0.613) with the liver (one of the metabolically most active organs) being the driver for the correlation between organ mass and metabolic rate. No relationships were found for either liver citrate synthase or cytochrome oxidase activity and metabolic rate in the European eels. Reasons for, and contributions to, the observed variation in metabolic rate are discussed.

  10. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  11. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes.

    PubMed

    Dalmadi, Balázs; Leibinger, János; Szeberényi, Szabolcs; Borbás, Tímea; Farkas, Sándor; Szombathelyi, Zsolt; Tihanyi, Károly

    2003-05-01

    The in vitro metabolism of tolperisone, 1-(4-methyl-phenyl)-2-methyl-3-(1-piperidino)-1-propanone-hydrochloride, a centrally acting muscle relaxant, was examined in human liver microsomes (HLM) and recombinant enzymes. Liquid chromatography-mass spectrometry measurements revealed methyl-hydroxylation (metabolite at m/z 261; M1) as the main metabolic route in HLM, however, metabolites of two mass units greater than the parent compound and the hydroxy-metabolite were also detected (m/z 247 and m/z 263, respectively). The latter was identified as carbonyl-reduced M1, the former was assumed to be the carbonyl-reduced parent compound. Isoform-specific cytochrome P450 (P450) inhibitors, inhibitory antibodies, and experiments with recombinant P450s pointed to CYP2D6 as the prominent enzyme in tolperisone metabolism. CYP2C19, CYP2B6, and CYP1A2 are also involved to a smaller extent. Hydroxymethyl-tolperisone formation was mediated by CYP2D6, CYP2C19, CYP1A2, but not by CYP2B6. Tolperisone competitively inhibited dextromethorphan O-demethylation and bufuralol hydroxylation (K(i) = 17 and 30 microM, respectively). Tolperisone inhibited methyl p-tolyl sulfide oxidation (K(i) = 1200 microM) in recombinant flavin-containing monooxygenase 3 (FMO3) and resulted in a 3-fold (p < 0.01) higher turnover number using rFMO3 than that of control microsomes. Experiments using nonspecific P450 inhibitors-SKF-525A, 1-aminobenzotriazole, 1-benzylimidazole, and anti-NADPH-P450-reductase antibodies-resulted in 61, 47, 49, and 43% inhibition of intrinsic clearance in HLM, respectively, whereas hydroxymethyl-metabolite formation was inhibited completely by nonspecific chemical inhibitors and by 80% with antibodies. Therefore, it was concluded that tolperisone undergoes P450-dependent and P450-independent microsomal biotransformations to the same extent. On the basis of metabolites formed and indirect evidences of inhibition studies, a considerable involvement of a microsomal reductase is

  12. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  13. Simultaneous modulation of transport and metabolism of acyclovir prodrugs across rabbit cornea: An approach involving enzyme inhibitors.

    PubMed

    Katragadda, Suresh; Talluri, Ravi S; Mitra, Ashim K

    2006-08-31

    The aim of this study is to identify the class of enzymes responsible for the hydrolysis of amino acid and dipeptide prodrugs of acyclovir (ACV) and to modulate transport and metabolism of amino acid and dipeptide prodrugs of acyclovir by enzyme inhibitors across rabbit cornea. l-Valine ester of acyclovir, valacyclovir (VACV) and l-glycine-valine ester of acyclovir, gly-val-acyclovir (GVACV) were used as model compounds. Hydrolysis studies of VACV and GVACV in corneal homogenate were conducted in presence of various enzyme inhibitors. IC(50) values were determined for the enzyme inhibitors. Transport studies were conducted with isolated rabbit corneas at 34 degrees C. Complete inhibition of VACV hydrolysis was observed in the presence of Pefabloc SC (4-(2-aminoethyl)-benzenesulfonyl-fluoride) and PCMB (p-chloromercuribenzoic acid). Similar trend was also observed with GVACV in the presence of bestatin. IC(50) values of PCMB and bestatin for VACV and GVACV were found to be 3.81+/-0.94 and 0.34+/-0.08muM respectively. Eserine, tetraethyl pyrophosphate (TEPP) and diisopropyl fluorophosphate (DFP) also produced significant inhibition of VACV hydrolysis. Transport of VACV and GVACV across cornea showed decreased metabolic rate and modulation of transport in presence of PCMB and bestain respectively. The principle enzyme classes responsible for the hydrolysis of VACV and GVACV were carboxylesterases and aminopeptidases respectively. Enzyme inhibitors modulated the transport and metabolism of prodrugs simultaneously even though their affinity towards prodrugs was distinct. In conclusion, utility of enzyme inhibitors to modulate transport and metabolism of prodrugs appears to be promising strategy for enhancing drug transport across cornea.

  14. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes

    PubMed Central

    2012-01-01

    Background More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Most bioactive compounds from sponges were classified into anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling. Evaluation of in vitro inhibitory effects of different extracts from four marine sponges versus some antioxidants indices and carbohydrate hydrolyzing enzymes concerned with diabetes mellitus was studied. The chemical characterizations for the extracts of the predominating sponges; SP1 and SP3 were discussed. Methods All chemicals served in the biological study were of analytical grade and purchased from Sigma, Merck and Aldrich. All kits were the products of Biosystems (Spain), Sigma Chemical Company (USA), Biodiagnostic (Egypt). Carbohydrate metabolizing enzymes; α-amylase, α-glucosidase, and β-galactosidase (EC3.2.1.1, EC3.2.1.20, and EC3.2.1.23, respectively) were obtained from Sigma Chemical Company (USA). Results Four marine sponges; Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4), were collected from the Red Sea at Egyptian coasts, and taxonomically characterized. The sponges' extracts exhibited diverse inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Purification and Chemical characterization of sponge 1 using NMR and mass spectroscopy, recognized the existence of di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), β-sitosterol (4), and cholesterol (5). Sponge 3 produced bis-[2-ethyl]-hexyl-phthylester (6) and triglyceride fatty acid ester (7). Conclusion Marine sponges are promising sources for delivering of bioactive compounds. Four marine sponges, collected from

  15. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism*

    PubMed Central

    Daniel, Bastian; Pavkov-Keller, Tea; Steiner, Barbara; Dordic, Andela; Gutmann, Alexander; Nidetzky, Bernd; Sensen, Christoph W.; van der Graaff, Eric; Wallner, Silvia; Gruber, Karl; Macheroux, Peter

    2015-01-01

    Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family. PMID:26037923

  16. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  17. Characterization of the Impact of Life Stage on Xenobiotic Metabolizing Enzyme Expression and Gene -Chemical Interactions in the Liver

    EPA Science Inventory

    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). We have carried out a comprehensive analysis of the mRNA expression of XMETs thro...

  18. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  19. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  20. Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos.

    PubMed Central

    Lorenzen, A; Moon, T W; Kennedy, S W; Glen, G A

    1999-01-01

    Experiments were conducted to survey and detect differences in plasma corticosterone concentrations and intermediary metabolic enzyme activities in herring gull (Larus argentatus) embryos environmentally exposed to organochlorine contaminants in ovo. Unincubated fertile herring gull eggs were collected from an Atlantic coast control site and various Great Lakes sites in 1997 and artificially incubated in the laboratory. Liver and/or kidney tissues from approximately half of the late-stage embryos were analyzed for the activities of various intermediary metabolic enzymes known to be regulated, at least in part, by corticosteroids. Basal plasma corticosterone concentrations were determined for the remaining embryos. Yolk sacs were collected from each embryo and a subset was analyzed for organochlorine contaminants. Regression analysis of individual yolk sac organochlorine residue concentrations, or 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), with individual basal plasma corticosterone concentrations indicated statistically significant inverse relationships for polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), total polychlorinated biphenyls (PCBs), non-ortho PCBs, and TEQs. Similarly, inverse relationships were observed for the activities of two intermediary metabolic enzymes (phosphoenolpyruvate carboxykinase and malic enzyme) when regressed against PCDDs/PCDFs. Overall, these data suggest that current levels of organochlorine contamination may be affecting the hypothalamo-pituitary-adrenal axis and associated intermediary metabolic pathways in environmentally exposed herring gull embryos in the Great Lakes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10064546

  1. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  2. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major.

    PubMed

    Lye, Lon-Fye; Kang, Song Ok; Nosanchuk, Joshua D; Casadevall, Arturo; Beverley, Stephen M

    2011-01-01

    Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.

  3. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes.

    PubMed

    Uno, Yasuhiro; Takata, Ryo; Kito, Go; Yamazaki, Hiroshi; Nakagawa, Kazuko; Nakamura, Yusuke; Kamataki, Tetsuya; Katagiri, Toyomasa

    2017-02-01

    Sex and age differences in hepatic expression of drug-metabolizing enzyme genes could cause variations in drug metabolism, but has not been fully elucidated, especially in Asian population. In this study, the global expression of human hepatic genes was analyzed by microarrays in 40 Japanese subjects (27 males and 13 females). Thirty-five sex-biased genes were identified (P < 0.005). Whereas, 60 age-biased genes in two age groups, <60 years and ≥70 years (P < 0.001), were identified in males. By Gene Ontology analysis, the sex-biased genes were related to protein catabolism and modification, while the age-biased genes were related to transcription regulation and cell death. Quantitative polymerase chain reaction confirmed the female-biased expression of drug-metabolizing enzyme genes BChE, CYP4X1, and SULT1E1 (≥1.5-fold, P < 0.05). Further analysis of drug-metabolizing enzyme genes indicated that expression of CYP2A6 and CYP3A4 in females in the ≥70 age group was less than in the <60 age group (≥1.5-fold, P < 0.05), and this trend was also observed for PXR expression in males (≥1.5-fold, P < 0.05). The results presented provide important insights into hepatic physiology and function, especially drug metabolism, with respect to sex and age.

  4. Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes.

    PubMed

    Li, Tian H; Li, Shao H

    2005-04-01

    We examined changes in nonstructural carbohydrate biosynthesis and activities of related enzymes in leaves of micropropagated apple plants (Malus domestica Borkh. cv. 'NaganoFuji') in response to water stress, with particular emphasis on the enzymes associated with sorbitol, sucrose and starch metabolism. Water stress resulted in the accumulation of photosynthates in leaves, mainly sorbitol, sucrose, glucose and fructose, accompanied by a reduction in starch concentration. Correlation and path analysis indicated that water stress affected the partitioning of newly fixed carbon among terminal products. In response to water stress, ADP-glucose-pyrophosphorylase (ADPGPPase) activity decreased, becoming a critical and limiting step in shifting partitioning of photosynthetically fixed carbon. Amylase and ADPGPPase affected sucrose and sorbitol metabolism, mainly by regulating substrate supply; however, competition for limited substrate had a greater effect on the biosynthesis of sorbitol than of sucrose. Starch metabolism was also strictly regulated by ADPGPPase and amylase, whereas other related enzymes were downstream of the pathway for synthesis and degradation of carbohydrates and thus had relatively little effect on starch metabolism. Sorbitol dehydrogenase and sucrose phosphate synthase were critical regulators of sorbitol and sucrose metabolism, respectively.

  5. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  6. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    PubMed

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury.

  7. Phenotypic knockouts of selected metabolic pathways by targeting enzymes with camel-derived nanobodies (V(HH)s).

    PubMed

    Jiménez, José I; Fraile, Sofía; Zafra, Olga; de Lorenzo, Víctor

    2015-07-01

    Surveying the dynamics of metabolic networks of Gram-negative bacteria often requires the conditional shutdown of enzymatic activities once the corresponding proteins have been produced. We show that given biochemical functions can be entirely suppressed in vivo with camel antibodies (VHHs, nanobodies) that target active sites of cognate enzymes expressed in the cytoplasm. As a proof of principle, we raised VHHs against 2,5-dihydroxypyridine dioxygenase (NicX) of Pseudomonas putida, involved in nicotinic acid metabolism. Once fused to a thioredoxin domain, the corresponding nanobodies inhibited the enzyme both in Escherichia coli and in P. putida cells, which then accumulated the metabolic substrate of NicX. VHHs were further engineered to track the antigen in vivo by C-terminal fusion to a fluorescent protein. Conditional expression of the resulting VHHs allows simultaneously to track and target proteins of interest and enables the design of transient phenotypes without mutating the genetic complement of the bacteria under study.

  8. Cadmium effect on microsomal drug-metabolizing enzyme activity in rat livers with respect to differences in age and sex

    SciTech Connect

    Ando, M.

    1982-04-01

    The effect of cadmium on the hepatic microsomal drug-metabolizing enzyme system was investigated. Cadmium chloride caused the conversion of cytochrome P-450 to P-420 in rat liver microsomes. The destruction of cytochrome P-450 by cadmium caused the reduction of microsomal drug-metabolizing enzyme activity and prolonged the pentobarbital sleeping time. There is a sex-related difference in the ability of cadmium to inhibit the hepatic drug metabolism in rats: male rats are more sensitive to cadmium than females. The effective period when cadmium prolonged their sleep depended upon the age of rats; older rats were more sensitive to cadmium than younger ones. The maximum increase of sleeping time depended upon the dose level of cadium, and the rate constant of the equations seems to depend upon the age of the animals.

  9. Mitigating role of baicalein on lysosomal enzymes and xenobiotic metabolizing enzyme status during lung carcinogenesis of Swiss albino mice induced by benzo(a)pyrene.

    PubMed

    Naveenkumar, Chandrashekar; Raghunandakumar, Subramanian; Asokkumar, Selvamani; Binuclara, John; Rajan, Balan; Premkumar, Thandavamoorthy; Devaki, Thiruvengadam

    2014-06-01

    The lungs mainly serve as a primary site for xenobiotic metabolism and constitute an important defense mechanism against inhalation of carcinogens. Our current study aimed to evaluate the chemotherapeutic efficacy of baicalein (BE) in Swiss albino mice exposed to tobacco-specific carcinogen benzo(a)pyrene [B(a)P] for its ability to mitigate pulmonary carcinogenesis. Here, we report that altered activities/levels of lysosomal enzymes (cathepsin-D, cathepsin-B, acid phosphatase, β-D-galactosidase, β-D-glucuronidase, and β-D-N-acetyl glucosaminidase), phase I biotransformation enzymes (cytochrome P450, cytochrome b5, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase), and phase II enzymes (glutathione S-transferase, UDP-glucuronyl transferase, and DT-diaphorase) were observed in the B(a)P-induced mice. Treatment with BE significantly restored back the activities/levels of lysosomal enzymes, phase I and phase II biotransformation enzymes. Moreover, assessment of lysosomal abnormalities by transmission electron microscopic examination revealed that BE treatment effectively counteract B(a)P-induced oxidative damages. Protein expression levels studied by immunohistochemistry, immunofluorescence, and immunoblot analysis of CYP1A1 revealed that BE treatment effectively negate B(a)P-induced upregulated expression of CYP1A1. Further analysis of scanning electron microscopic studies in lung was carried out to substantiate the anticarcinogenic effect of BE. The overall data suggest that BE treatment significantly inhibits lysosomal and microsomal dysfunction, thus revealing its potent anticarcinogenic effect.

  10. Temperature during embryonic development has persistent effects on metabolic enzymes in the muscle of zebrafish.

    PubMed

    Schnurr, Meghan E; Yin, Yi; Scott, Graham R

    2014-04-15

    Global warming is intensifying interest in the physiological consequences of temperature change in ectotherms, but we still have a relatively poor understanding of the effects of temperature on early life stages. This study determined how embryonic temperature (TE) affects development and the activity of metabolic enzymes in the swimming muscle of zebrafish. Embryos developed successfully to hatching (survival ≥ 88%) from 22 to 32°C, but suffered sharp increases in mortality outside of this range. Embryos that were incubated until hatching at a control TE (27°C) or near the extremes for successful development (22 or 32°C) were next raised to adulthood under control conditions at 27°C. Growth trajectories after hatching were altered in the 22°C and 32°C TE groups compared with 27°C TE controls, but growth slowed after 3 months of age in all groups. Maximal enzyme activities of cytochrome c oxidase (COX), citrate synthase (CS), hydroxyacyl-coA dehydrogenase (HOAD), pyruvate kinase (PK) and lactate dehydrogenase (LDH) were measured across a range of assay temperatures (22, 27, 32 and 36°C) in adults from each TE group that were acclimated to 27 or 32°C. Substrate affinities (Km) were also determined for COX and LDH. In adult fish acclimated to 27°C, COX and PK activities were higher in 22°C and 32°C TE groups than in 27°C TE controls, and the temperature optimum for COX activity was higher in the 32°C TE group than in the 22°C TE group. Warm acclimation reduced COX, CS and/or PK activities in the 22 and 32°C TE groups, possibly to compensate for thermal effects on molecular activity. This response did not occur in the 27°C TE controls, which instead increased LDH and HOAD activities. Warm acclimation also increased thermal sensitivity (Q10) of HOAD to cool temperatures across all TE groups. We conclude that the temperature experienced during early development can have a persistent impact on energy metabolism pathways and acclimation capacity in

  11. Can chronic maternal drug therapy alter the nursing infant's hepatic drug metabolizing enzyme pattern?

    PubMed

    Toddywalla, V S; Patel, S B; Betrabet, S S; Kulkarni, R D; Kombo, I; Saxena, B N

    1995-10-01

    This study was carried out to investigate whether minute quantities of maternal drugs ingested over an extended period of time by a breast-feeding infant can alter the activity pattern of the infant's hepatic drug metabolizing enzyme (HDME). The HDME activity patterns of 12 breast-fed infants whose mothers were not on drug therapy were compared with those of 11 infants whose mothers had been taking 30 micrograms levo-norgesterel daily for 90 to 195 days (oral contraceptives group) and of 10 infants whose mothers had been taking ethambutol and isoniazid daily since pregnancy (tuberculosis group). As 6 beta hydroxycortisol in urine is considered to be a good and acceptable reflector of HDME activity, it was estimated from the infants' urine using enzyme-linked immunosorbent assay (ELISA) technique. A comparison of the patterns between 90 days of age and 195 days of age of the infants in the control group and the two study groups indicated an increase from 36.6 ng/mL to 58.4 ng/mL at 195 days in the control group. An initial decrease from 36.6 ng/mL to 26.2 ng/mL was noted with commencement of maternal levo-norgesterel therapy, followed by a slow and steady rise to 47.8 ng/mL at 195 days of age, with a shift in the peak from 120 to 135 days of infants age in the oral contraceptive group. A suppressed pattern with decreased levels of 6 beta hydroxycortisol ranging from 19.3 ng/mL to 26.5 ng/mL at 195 days was found in the tuberculosis group. The data were analyzed by two-way analysis of variance (ANOVA) coupled with Duncan's Multiple range test. Both treatment group showed significant differences from the control group at the 0.050 level. The HDME plays an important role in determining the final outcome of any drug in humans, as it controls the metabolism of drugs. Hence, alterations in its activity caused by the transfer of maternal drugs over a prolonged period of time could pose a serious problem to nurslings when they require drugs for their own benefit.

  12. In vitro and cellular effects of 4-pyridone-3-carboxamide riboside on enzymes of nucleotide metabolism.

    PubMed

    Slominska, Ewa M; Borkowski, Tomasz; Rybakowska, Iwona; Abramowicz-Glinka, Magdalena; Orlewska, Czesława; Smolenski, Ryszard T

    2014-01-01

    4-Pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR) is an endogenously produced nucleoside that has recently been identified as a substrate for intracellular phosphorylation to form nucleotide derivatives. Low level of 4PYR is normally present in human plasma, but 4PYR massively accumulates in patients with renal failure. This study aimed to evaluate effects of 4PYR and its monophosphate derivative (4PYMP) on several enzymes of nucleotide metabolism in homogenates and intact cells. Activities of adenosine monophosphate deaminase (AMPD), adenosine deaminase, ecto-5'-nucleotidase (e5NT), adenine phosphoribosyltransferase (APRT), hypoxanthine/guanine phosphoribosyltransferase, purine nucleoside phosphorylase, and S-adenosylhomocysteine hydrolase (SAHH) were evaluated in erythrocyte lysates, rat heart homogenates, and in the intact rat cardiomyocytes by high performance liquid chromatography-based assays. 4PYMP caused significant inhibition of AMPD in both erythrocyte lysate and heart homogenate with 50% inhibitory concentration (IC50) of 74 and 55 μM, respectively. Inhibition of e5NT in heart homogenates was also noted with IC50 of 63 μM. 4PYMP slightly inhibited APRT and 4PYR caused moderate activation of SAHH. No effects on other enzymes studied were noted. Inhibition of AMPD by 4PYMP in homogenates was confirmed in the intact cell experiments with isolated cardiomyocytes that were allowed to accumulate 4PYMP by incubation with 4PYR. We conclude that among pathways studied, most important is the effect of 4PYMP on AMPD and that such effect could be one of the consequences of elevated plasma 4PYR concentration.

  13. Biomarkers of PAH exposure in fish

    SciTech Connect

    Lewis, J.; Robinson, R.; Solomon, K.; Hodson, P.; Rao, S.; Day, K.

    1995-12-31

    Many polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic, and some may cause reproductive toxicity in fish. The purpose of this study is to develop biomarkers of PAH effects on fathead minnows (P. promelas). Mesocosms will be treated with the wood preservative creosote (composition is ca. 80% as PAHs). The authors anticipate that metabolism of PAHs by fish will generate free radicals that damage DNA and cause liver tumors. Rainbow trout (RBT) (0. mykiss) and fathead minnows (FHM) will be exposed to a range of waterborne creosote concentrations below the LC,, values (5.66 mg/L for RBT and 5.97 mg/L for FHM). Fish liver, muscle, intestine, and bile will be removed to measure (1) PAH biotransformation (EROD activity and concentration of PAH metabolites in bile), (2) oxidative stress (retinoic acid, glutathione peroxidase, and lipid hydroperoxide levels), and (3) genotoxicity (micronucleus induction, DNA strand breaks, and DNA adducts). Biomarkers will be considered suitable for application when results are repeatable, show exposure dependency, and respond at sublethal concentrations typical of contaminated ecosystems.

  14. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  15. Effect of deuterium oxide on neutrophil oxidative metabolism, phagocytosis, and lysosomal enzyme release

    SciTech Connect

    Tsan, M.F.; Turkall, R.M.

    1982-12-01

    We have previously shown that deuterium oxide (D/sub 2/O) enhances the oxidation of methionine, a myeloperoxidase (MPO) -mediated reaction, by human neutrophils during phagocytosis. However, D/sub 2/O has no effect on the oxidation of methionine by the purified MPO-H/sub 2/O/sub 2/-Cl- system. To explain this observation, we studied the effect of D/sub 2/O on the oxidative metabolism, phagocytosis, and lysosomal enzyme release by human neutrophils. D/sub 2/O stimulated the hexose monophosphate shunt (HMS) activity of resting neutrophils in a dose-response fashion. In the presence of latex particles or phorbol myristate acetate (PMA), D/sub 2/O brought about an exaggerated stimulation of the HMS activity. This enhancement of the HMS activity by D/sub 2/O was markedly reduced when neutrophils form two patients with X-linked chronic granulomatous disease (CGD) were used, either in the presence or absence of latex particles or PMA. Superoxide and H/sub 2/O/sub 2/ production by neutrophils in the presence of latex particles or PMA were also stimulated by D/sub 2/O. In contrast, D/sub 2/O inhibited the ingestion of latex particles. D/sub 2/O enhanced the extracellular release of MPO, but not lactate dehydrogenase, by neutrophils only in the simultaneous presence of cytochalasin B and latex particles. The enhancement of HMS activity and MPO release by D/sub 2/O was partially inhibited by colchicine. Our results suggest that enhancement of neutrophil oxidative metabolism by D/sub 2/O may in part explain the stimulation of methionine oxidation by phagocytosing neutrophils.

  16. Glucoraphasatin and glucoraphenin, a redox pair of glucosinolates of brassicaceae, differently affect metabolizing enzymes in rats.

    PubMed

    Barillari, Jessica; Iori, Renato; Broccoli, Massimiliano; Pozzetti, Laura; Canistro, Donatella; Sapone, Andrea; Bonamassa, Barbara; Biagi, Gian Luigi; Paolini, Moreno

    2007-07-11

    Brassica vegetables are an important dietary source of glucosinolates (GLs), whose breakdown products exhibit anticancer activity. The protective properties of Brassicaceae are believed to be due to the inhibition of Phase-I or induction of Phase-II xenobiotic metabolizing enzymes (XMEs), thus enhancing carcinogen clearance. To study whether GLs affect XMEs and the role of their chemical structure, we focused on two alkylthio GLs differing in the oxidation degree of the side chain sulfur. Male Sprague-Dawley rats were supplemented (per oral somministration by gavage) with either glucoraphasatin (4-methylthio-3-butenyl GL; GRH) or glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE), at 24 or 120 mg/kg body weight in a single or repeated fashion (daily for four consecutive days), and hepatic microsomes were prepared for XME analyses. Both GLs were able to induce XMEs, showing different induction profiles. While the inductive effect was stronger after multiple administration of the higher GRH dosage, the single lower GRE dose was the most effective in boosting cytochrome P-450 (CYP)-associated monooxygenases and the postoxidative metabolism. CYP3A1/2 were the most affected isoforms by GRH treatment, whereas GRE induced mainly CYP1A2 supported oxidase. Glutathione S-transferase increased up to approximately 3.2-fold after a single (lower) GRE dose and UDP-glucuronosyl transferase up to approximately 2-fold after four consecutive (higher) GRH doses. In conclusion, the induction profile of these GLs we found is not in line with the chemopreventive hypothesis. Furthermore, the oxidation degree of the side chain sulfur of GLs seems to exert a crucial role on XME modulation.

  17. Metabolic Enzyme Microarray Coupled with Miniaturized Cell-Culture Array Technology for High-Throughput Toxicity Screening

    PubMed Central

    Lee, Moo-Yeal; Dordick, Jonathan S.; Clark, Douglas S.

    2017-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future. We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data. PMID:20217581

  18. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    PubMed

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.

  19. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  20. Bioventing PAH contamination at the Reilly Tar Site

    SciTech Connect

    Alleman, B.C.; Hinchee, R.E.; Brenner, R.C.; McCauley, P.T.

    1995-12-31

    A pilot-scale bioventing demonstration has been in progress since November 1992 to determine if bioventing is an effective remediation treatment for polycyclic aromatic hydrocarbons (PAHs). The Reilly Tar and Chemical Corporation site in St. Louis Park, Minnesota, was selected for this demonstration. The location is the site of a former coal tar refinery and wood-preserving facility at which creosote in mineral oil served as the primary preservative. The goal of the project is to achieve 10% greater PAH removal over background degradation for each year of the 3-year study. Respiration measurements were made to estimate PAH biodegradation as a means of monitoring the progress of the technology. These measurements indicated that 13.4% and 17.3% degradation of the total PAH was possible during the first year and second year, respectively. Although not all of the respiration can be attributed conclusively to PAH metabolism, strong correlations were found between the PAH concentration and biodegradation rates.

  1. Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research.

    PubMed

    Zhou, Tian; Hu, Minlu; Cost, Marilyn; Poloyac, Samuel; Rohan, Lisa

    2013-11-01

    Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes.

  2. Developing strategies for PAH and TCE bioremediation

    SciTech Connect

    Mahaffey, W.R.; Nelson, M.; Kinsella, J. ); Compeau, G. )

    1991-10-01

    Bioremediation is the controlled use of microbes, commonly bacteria and fungi, to reclaim soil and water contaminated with substances that are deleterious to human health and the environment. The organisms used often naturally inhabit the polluted matrix; however, they may inhabit a different environment and be used as seed organisms because of their ability to degrade a specific class of substances. It is because of the wide diversity of microbial metabolic potential that bioremediation is possible. Polyaromatic hydrocarbons (PAHs) are organic compounds that are ubiquitous in the environment. They are present in fossil fuels and are formed during the incomplete combustion of organic material. PAHs exhibit low volatility and low aqueous solubility. As the molecular weight of these compounds increases, there is an exponential decrease in solubility and volatility. PAHs tend to adsorb onto soils and sediments because of their hydrophobic character, which is an intrinsic function of molecular size. The microbial degradation of individual PAHs by pure cultures and mixed populations occurs under a wide range of soil types and environmental conditions. Generally, the factors having the greatest influence on PAH biodegradation rates are soil moisture content, pH, inorganic nutrients present, PAH loading rates, initial PAH concentrations, and the presence of an acclimated microbial population. Feasibility studies are essential for developing a bioremediation strategy and are performed in a phased testing program that is designed to accomplish a number of objectives. These objectives include establishing an indigenous microbial population that will degrade specific contaminants, defining the rate-limiting factors for enhanced PAH degradation and the optimal treatment in terms of rates and cleanup levels attainable, and developing design parameters for field operations.

  3. Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout.

    PubMed

    Norin, Tommy; Malte, Hans

    2012-01-01

    Highly active animals require a high aerobic capacity (i.e., a high maximum metabolic rate [MMR]) to sustain such activity, and it has been speculated that a greater capacity for aerobic performance is reflected in larger organs, which serve as energy processors but are also expensive to maintain and which increase the minimal cost of living (i.e., the basal or standard metabolic rate [SMR]). In this study, we assessed the extent of intraspecific variation in metabolic rate within a group of brown trout (Salmo trutta L.) and tested whether the observed variation in residual (body-mass-corrected) SMR, MMR, and absolute aerobic scope could be explained by variations in the residual size (mass) of metabolically active internal organs. Residual SMR was found to correlate positively with residual MMR, indicating a link between these two metabolic parameters, but no relationship between organ mass and metabolic rate was found for liver, heart, spleen, intestine, or stomach. Instead, activity in the liver of two aerobic mitochondrial enzymes, cytochrome c oxidase and, to a lesser extent, citrate synthase, was found to correlate with whole-animal metabolic rate, indicating that causes for intraspecific variation in the metabolic rate of fish can be found at a lower organizational level than organ size.

  4. Human liver enzymes responsible for metabolic elimination of tyramine; a vasopressor agent from daily food.

    PubMed

    Niwa, Toshiro; Murayama, Norie; Umeyama, Hiromi; Shimizu, Makiko; Yamazaki, Hiroshi

    2011-08-01

    Dietary tyramine is associated with hypertensive crises because of its ability to induce the release of catecholamines. The roles of monoamine oxidase (MAO); flavin-containing monooxygenase (FMO); and cytochrome P450 2D6 (CYP2D6) were studied in terms of the enzymatic elimination of tyramine in vitro at a substrate concentration of 1.0 µM; which is relevant to in vivo serum concentrations. Tyramine elimination by human liver supernatant fractions was decreased by ˜70% in the absence of NADPH. Pargyline; an MAO inhibitor; decreased tyramine elimination rates by ˜30%. Among recombinant P450 and FMO enzymes; CYP2D6 had a high activity in terms of tyramine elimination. Tyramine elimination rates were inhibited by quinidine and significantly correlated with bufuralol 1'-hydroxylation activities (a CYP2D6 marker). Liver microsomes genotyped for CYP2D6*10/*10 and CYP2D6*4/*4 showed low and undetectable activities; respectively; compared with the wild-type CYP2D6*1/*1. The present results suggest that tyramine is eliminated mainly by polymorphic CYP2D6. Tyramine toxicity resulting from differences in individual metabolic elimination is thus genetically determined.

  5. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells.

    PubMed

    Ringqvist, Emma; Palm, J E Daniel; Skarin, Hanna; Hehl, Adrian B; Weiland, Malin; Davids, Barbara J; Reiner, David S; Griffiths, William J; Eckmann, Lars; Gillin, Frances D; Svärd, Staffan G

    2008-06-01

    Giardia lamblia, an important cause of diarrheal disease, resides in the small intestinal lumen in close apposition to epithelial cells. Since the disease mechanisms underlying giardiasis are poorly understood, elucidating the specific interactions of the parasite with the host epithelium is likely to provide clues to understanding the pathogenesis. Here we tested the hypothesis that contact of Giardia lamblia with intestinal epithelial cells might lead to release of specific proteins. Using established co-culture models, intestinal ligated loops and a proteomics approach, we identified three G. lamblia proteins (arginine deiminase, ornithine carbamoyl transferase and enolase), previously recognized as immunodominant antigens during acute giardiasis. Release was stimulated by cell-cell interactions, since only small amounts of arginine deiminase and enolase were detected in the medium after culturing of G. lamblia alone. The secreted G. lamblia proteins were localized to the cytoplasm and the inside of the plasma membrane of trophozoites. Furthermore, in vitro studies with recombinant arginine deiminase showed that the secreted Giardia proteins can disable host innate immune factors such as nitric oxide production. These results indicate that contact of Giardia with epithelial cells triggers metabolic enzyme release, which might facilitate effective colonization of the human small intestine.

  6. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism.

    PubMed

    Scaglia, Fernando; Brunetti-Pierri, Nicola; Kleppe, Soledad; Marini, Juan; Carter, Susan; Garlick, Peter; Jahoor, Farook; O'Brien, William; Lee, Brendan

    2004-10-01

    Urea cycle disorders (UCD) are human conditions caused by the dysregulation of nitrogen transfer from ammonia nitrogen into urea. The biochemistry and the genetics of these disorders were well elucidated. Earlier diagnosis and improved treatments led to an emerging, longer-lived cohort of patients. The natural history of some of these disorders began to point to pathophysiological processes that may be unrelated to the primary cause of acute morbidity and mortality, i.e., hyperammonemia. Carbamyl phosphate synthetase I single nucleotide polymorphisms may be associated with altered vascular resistance that becomes clinically relevant when specific environmental stressors are present. Patients with argininosuccinic aciduria due to a deficiency of argininosuccinic acid lyase are uniquely prone to chronic hepatitis, potentially leading to cirrhosis. Moreover, our recent observations suggest that there may be an increased prevalence of essential hypertension. In contrast, hyperargininemia found in patients with arginase 1 deficiency is associated with pyramidal tract findings and spasticity, without significant hyperammonemia. An intriguing potential pathophysiological link is the dysregulation of intracellular arginine availability and its potential effect on nitric oxide (NO) metabolism. By combining detailed natural history studies with the development of tissue-specific null mouse models for urea cycle enzymes and measurement of nitrogen flux through the cycle to urea and NO in UCD patients, we may begin to dissect the contribution of different sources of arginine to NO production and the consequences on both rare genetic and common multifactorial diseases.

  7. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    PubMed

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  8. A moonlighting enzyme links Escherichia coli cell size with central metabolism.

    PubMed

    Hill, Norbert S; Buske, Paul J; Shi, Yue; Levin, Petra Anne

    2013-01-01

    Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.

  9. Transmammary modulation of xenobiotic metabolizing enzymes in liver of mouse pups by mace (Myristica fragrans Houtt.).

    PubMed

    Chhabra, S K; Rao, A R

    1994-05-01

    The present study examines the possible transfer of the active principle(s) of mace (aril of the plant Myristica fragrans) through the transmammary route and its ability to modulate hepatic xenobiotic metabolizing enzymes in the F1 progeny of mice. An aqueous suspension of mace at the dose levels of 0.025 or 0.1 g/animal/day was administered by oral gavage to dams from day 1 of lactation and continued daily for 14 or 21 days. Dams receiving mace treatment and their F1 pups showed significantly elevated hepatic sulfhydryl content, glutathione S-transferase and glutathione reductase activities and cytochrome b5 content. Hepatic cytochrome P450 content decreased in dams (P < 0.05) receiving the lower mace dose for 21 days and the F1 pups (P < 0.001), but increased in dams receiving the higher dose for both time periods (P < 0.001) and the lower dose for 14 days (P < 0.05). Only the 14-day-old pups of dams receiving either mace dose showed significantly elevated (P < 0.001) levels of hepatic glutathione peroxidase.

  10. Heparin and related polysaccharides: Synthesis using recombinant enzymes and metabolic engineering

    PubMed Central

    Suflita, Matthew; Fu, Li; He, Wenqin; Koffas, Mattheos; Linhardt, Robert J.

    2015-01-01

    Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates. PMID:26219501

  11. Phenylalanine 4-monooxygenase and the role of endobiotic metabolism enzymes in xenobiotic biotransformation.

    PubMed

    Steventon, Glyn B; Mitchell, Stephen C

    2009-10-01

    Phenylalanine 4-monooxygenase is the key enzyme in the sulfoxidation of the thioether drug S-carboxymethyl-l-cysteine and its thioether metabolites, S-methyl-l-cysteine, N-acetyl-S-carboxymethyl-l-cysteine and N-acetyl-S-methyl-l-cysteine in humans, and a number of other mammalian species. The kinetics constants of the sulfoxidation reaction (K(m), V(max) and CL(E)) have been investigated in cytosolic fractions derived from rat and human liver, in cytosolic fractions of HepG2 cells and using both human and mouse cDNA expressed phenylalanine 4-monooxygenase. Differences in K(m), V(max) and CL(E) of S-carboxymethyl-l-cysteine have been seen in HepG2 cells and human and mouse cDNA expressed phenylalanine 4-monooxygenase when compared to both rat and human hepatic cytosolic fractions. The association of the genetic polymorphism in the sulfoxidation of S-carboxymethyl-l-cysteine is highlighted with particular reference to this biotransformation reaction as being a biomarker of disease susceptibility in Parkinson's, Alzheimer's and motor neurone diseases and in rheumatoid arthritis. The possible underlying molecular genetics of the sulfoxidation polymorphism is also discussed in relation to the known allelic frequencies of phenylalanine 4-monooxygenase. Finally, the new found role phenylalanine 4-monooxygenase plays in xenobiotic metabolism is discussed.

  12. [Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi Phylum representatives].

    PubMed

    Turova, T P; Kovaleva, O L; Gorlenko, V M; Ivanovskiĭ, R N

    2014-01-01

    This work examined the feasibility of using certain genes of carbon metabolism enzymes as molecular markers adequate for studying phylogeny and ecology of green sulfur bacteria (GSB) of the Chlorobi phylum. Primers designed to amplify the genes of ATP citrate lyase (aclB) and citrate synthase (gltA) revealed the respective genes in the genomes of all of the newly studied GSB strains. The phylogenetic trees constructed based on nucleotide sequences of these genes and amino acid sequences of the conceptually translated proteins were on the whole congruent with the 16S rRNA gene tree, with the single exception of GltA of Chloroherpeton thalassium, which formed a separate branch beyond the cluster comprised by other representatives of the Chlorobi phylum. Thus, the aclB genes but not gltA genes proved to be suitable for the design of primers specific to all Chlorobi representatives. Therefore, it was the aclB gene that was further used asa molecular marker to detect GSB in enrichment cultures and environmental samples. AclB phylotypes of GSB were revealed in all of the samples studied, with the exception of environmental samples from soda lakes. The identification of the revealed phylotypes was in agreement with the identification based on the FMO protein gene (fmo), is a well-known Chlorobi-specific molecular marker.

  13. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    PubMed Central

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2, and UGFT2. Moreover, the transcript abundance of MYBA1-1 and MYB5-1, the genes encoding an important component of MYB–bHLH–WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis. PMID:28344589

  14. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans.

    PubMed

    Liu, L; Hausladen, A; Zeng, M; Que, L; Heitman, J; Stamler, J S

    2001-03-22

    Considerable evidence indicates that NO biology involves a family of NO-related molecules and that S-nitrosothiols (SNOs) are central to signal transduction and host defence. It is unknown, however, how cells switch off the signals or protect themselves from the SNOs produced for defence purposes. Here we have purified a single activity from Escherichia coli, Saccharomyces cerevisiae and mouse macrophages that metabolizes S-nitrosoglutathione (GSNO), and show that it is the glutathione-dependent formaldehyde dehydrogenase. Although the enzyme is highly specific for GSNO, it controls intracellular levels of both GSNO and S-nitrosylated proteins. Such 'GSNO reductase' activity is widely distributed in mammals. Deleting the reductase gene in yeast and mice abolishes the GSNO-consuming activity, and increases the cellular quantity of both GSNO and protein SNO. Furthermore, mutant yeast cells show increased susceptibility to a nitrosative challenge, whereas their resistance to oxidative stress is unimpaired. We conclude that GSNO reductase is evolutionarily conserved from bacteria to humans, is critical for SNO homeostasis, and protects against nitrosative stress.

  15. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    PubMed

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  16. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity

    PubMed Central

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Background: Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. Objective: The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. Materials and Methods: The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. Results: In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC50 values ranging between 9.59–22.76 μg/mL and 110.71–526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. Conclusion: These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. SUMMARY Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used: BSA: Bovine serum albumin

  17. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes.

    PubMed

    Ma, Jane Y C; Ma, Joseph K H

    2002-11-01

    Exposure to diesel exhaust particles (DEP) is an environmental and occupational health concern. This review examines the cellular actions of the organic and the particulate components of DEP in the development of various lung diseases. Both the organic and the particulate components cause oxidant lung injury. The particulate component is known to induce alveolar epithelial damage, alter thiol levels in alveolar macrophages (AM) and lymphocytes, and activate AM in the production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The organic component, on the other hand, is shown to generate intracellular ROS, leading to a variety of cellular responses including apoptosis. There are a number of differences between the biological actions exerted by these two components. The organic component is responsible for DEP induction of cytochrome P450 family 1 enzymes that are critical to the polycyclic aromatic hydrocarbons (PAH) and nitro-PAH metabolism in the lung as well as in the liver. The particulate component, on the other hand, causes a sustained down-regulation of CYP2B1 in the rat lung. The significance of this effect on pulmonary metabolism of xenobiotics and endobiotics remains to be seen, but may prove to be an important factor governing the interplay of the pulmonary metabolic and inflammatory systems. Long-term exposures to various particles including DEP, carbon black (CB), TiO2, and washed DEP devoid of the organic content, have been shown to produce similar tumorigenic responses in rodents. There is a lack of correlation between tumor development and DEP chemical-derived DNA adduct formation. But the organic component has been shown to generate ROS that produce 8-hydroxydeoxyguanosine (8-OHdG) in cell culture. The organic, but not the particulate, component of DEP suppresses the production of pro-inflammatory cytokines by AM and the development of Th1 cell-mediated immunity. The mechanism for this effect is not yet clear, but may involve the

  18. Urinary mutagenesis and fried red meat intake: influence of cooking temperature, phenotype, and genotype of metabolizing enzymes in a controlled feeding study.

    PubMed

    Peters, Ulrike; Sinha, Rashmi; Bell, Douglas A; Rothman, Nathaniel; Grant, Delores J; Watson, Mary A; Kulldorff, Martin; Brooks, Lance R; Warren, Sarah H; DeMarini, David M

    2004-01-01

    Meat cooked at high temperatures contains potential carcinogenic compounds, such as heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs). Samples from a 2-week controlled feeding study were used to examine the relationship between the intake of mutagenicity from meat fried at different temperatures and the levels of mutagenicity subsequently detected in urine, as well as the influence of the genotype of drug metabolizing enzymes on urinary mutagenicity. Sixty subjects consumed ground beef patties fried at low temperature (100 degrees C) for 1 week, followed by ground beef patties fried at high temperature (250 degrees C) the second week. Mutagenicity in the meat was assayed in Salmonella typhimurium TA98 (+S9), and urinary mutagenicity was determined using Salmonella YG1024 (+S9). Genotypes for NAT1, NAT2, GSTM1, and UGT1A1 were analyzed using blood samples from the subjects. Meat fried at 100 degrees C was not mutagenic, whereas meat fried at 250 degrees C was mutagenic (1023 rev/g). Unhydrolyzed and hydrolyzed urine samples were 22x and 131x more mutagenic, respectively, when subjects consumed red meat fried at 250 degrees C compared with red meat fried at 100 degrees C. We found that hydrolyzed urine was approximately 8x more mutagenic than unhydrolyzed urine, likely due to the deconjugation of mutagens from glucuronide. The intake of meat cooked at high temperature correlated with the mutagenicity of unhydrolyzed urine (r = 0.32, P = 0.01) and hydrolyzed urine (r = 0.34, P = 0.008). Mutagenicity in unhydrolyzed urine was not influenced by NAT1, NAT2, or GSTM1 genotypes. However, a UGT1A1*28 polymorphism that reduced UGT1A1 expression and conjugation modified the effect of intake of meat cooked at high temperature on mutagenicity of unhydrolyzed urine (P for interaction = 0.04). These mutagenicity data were also compared with previously determined levels of HCAs (measured as MeIQx, DiMeIQx, and PhIP) and polycyclic aromatic hydrocarbons (PAHs

  19. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    PubMed

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  20. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Srinivasan, Subramani; Sathish, Gajendren; Jayanthi, Mahadevan; Muthukumaran, Jayachandran; Muruganathan, Udaiyar; Ramachandran, Vinayagam

    2014-01-01

    Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.

  1. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C3 Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism 1

    PubMed Central

    Winter, Klaus; Foster, Joyce G.; Edwards, Gerald E.; Holtum, Joseph A. M.

    1982-01-01

    Mesembryanthemum crystallinum, a halophilic, inducible Crassulacean acid metabolism (CAM) species, was grown at NaCl concentrations of 20 and 400 millimolar in the rooting medium. Plants from the low salinity treatment showed exclusively C3-photosynthetic net CO2 fixation, whereas plants exposed to the high salinity level exhibited net CO2 dark fixation involving CAM. Mesophyll protoplasts, isolated from both tissues, were gently ruptured, and the intracellular localization of enzymes was studied following differential centrifugation and Percoll density gradient centrifugation of protoplast extracts. Both centrifugation techniques resulted in the separation of intact chloroplasts, with up to 90% yield, from other organelles and the nonparticulate fraction of cells. Enzymes were identified by determination of activity and by sodium dodecyl sulfate gel electrophoresis of enzyme protein. Experiments established the extraorganellar (cytoplasmic) location of phosphoenolpyruvate carboxylase, enolase, phosphoglyceromutase, and NADP-malic enzyme; the mitochondrial location of NAD-malic enzyme; and the chloroplastic location of pyruvate, Pi dikinase. NAD-glyceraldehyde-3-phosphate dehydrogenase, phosphohexose isomerase, and phosphoglycerate kinase were associated with both cytoplasm and chloroplasts. NADP-dependent malate dehydrogenase activity was found in both the chloroplastic and extrachloroplastic fractions; the activity in the chloroplast showed an optimum at pH 8.0 and was dependent upon preincubation of enzyme with dithiothreitol. The extrachloroplastic activity showed an optimum at pH 6.5 and was independent of pretreatment with dithiothreitol. Protoplast extracts of M. crystallinum performing CAM exhibited higher activities (expressed per mg chlorophyll per min) of phosphoenolpyruvate carboxylase, pyruvate, Pi dikinase, NADP-malic enzyme, NAD-malic enzyme, NADP-malate dehydrogenase, enolase, phosphoglyceromutase, NAD-glyceraldehyde-3-phosphate dehydrogenase

  2. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.

    PubMed

    Song, Jian; Guo, Baojian; Song, Fangwei; Peng, Huiru; Yao, Yingyin; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2011-08-15

    Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.

  3. Expression profile of early estradiol-responsive genes in cynomolgus macaque liver: implications for drug-metabolizing enzymes.

    PubMed

    Ise, Ryota; Kito, Go; Uno, Yasuhiro

    2012-01-01

    Estrogen plays important roles in estrogen-responsive tissues, such as mammary glands, ovaries, and the uterus. In the liver, the major drug metabolizing organ, estrogen is known to regulate expression of some drug-metabolizing enzymes. Due to the lack of information on the role of estrogen in hepatic gene expression in primate species, we previously investigated the late response of hepatic gene expression to estradiol in cynomolgus macaques. To understand the early response of hepatic gene expression to estradiol, in this study, microarray analysis was conducted using cynomolgus macaque liver samples collected at 1 h and 5 h after estradiol injection. Comparison of expression profiles in estradiol and solvent (control)-treated ovariectomized cynomolgus macaques revealed 27 differentially expressed genes (>2.0-fold), including 18 at 1 h and 9 at 5 h after estradiol injection. As indicated by Gene Ontology analysis, these genes were related to oxidoreductase activity and transferase activity, partly representing important aspects of drug-metabolizing enzymes. Further analysis by quantitative polymerase chain reaction revealed that estradiol down-regulated CYP2A24, CYP2C76, and CYP2E1 (>2.0-fold) at 1 h and up-regulated GSTM5 (>2.0-fold) at 5 h after estradiol injection. These results suggest that the short-term estradiol treatment influenced expression of hepatic genes, including drug-metabolizing enzyme genes, in cynomolgus macaque liver.

  4. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  5. X-Ray Solution Scattering Study of Four Escherichia coli Enzymes Involved in Stationary-Phase Metabolism

    PubMed Central

    Dadinova, Liubov A.; Shtykova, Eleonora V.; Konarev, Petr V.; Rodina, Elena V.; Snalina, Natalia E.; Vorobyeva, Natalia N.; Kurilova, Svetlana A.; Nazarova, Tatyana I.; Jeffries, Cy M.; Svergun, Dmitri I.

    2016-01-01

    The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS) and other structural techniques. The proteins are (i) class I fructose-1,6-bisphosphate aldolase (FbaB); (ii) inorganic pyrophosphatase (PPase); (iii) 5-keto-4-deoxyuronate isomerase (KduI); and (iv) glutamate decarboxylase (GadA). The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin) metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques. PMID:27227414

  6. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model.

    PubMed

    Anderson, Gail D; Peterson, Todd C; Vonder Haar, Cole; Farin, Fred M; Bammler, Theo K; MacDonald, James W; Kantor, Eric D; Hoane, Michael R

    2015-09-01

    In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.

  7. Probabilistic ecological risk assessment of selected PAH`s in sediments near a petroleum refinery

    SciTech Connect

    Arnold, W.R.; Biddinger, G.R.

    1995-12-31

    Sediment samples were collected and analyzed for a number of polynuclear aromatic hydrocarbons (PAHs) along a gradient from a petroleum refinery`s wastewater diffuser. These data were used to calculate the potential risk to aquatic organisms using probabilistic modeling and Monte Carlo sampling procedures. Sediment chemistry data were used in conjunction with estimates of Biota-Sediment Accumulation Factors and Non-Polar Narcosis Theory to predict potential risk to bivalves. Bivalves were the receptors of choice because of their lack of a well-developed enzymatic system for metabolizing PAHs. Thus, they represent a species of higher inherent risk of adverse impact. PAHs considered in this paper span a broad range of octanol-water partition coefficients. Results indicate negligible risk of narcotic effects from PAHs existing near the refinery wastewater discharge.

  8. In vitro residual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU.

    PubMed

    Trunzo, Roberta; Santacroce, Rosa; Shen, Nan; Jung-Klawitter, Sabine; Leccese, Angelica; De Girolamo, Giuseppe; Margaglione, Maurizio; Blau, Nenad

    2016-12-05

    Hyperphenylalaninemias (HPAs) are genetic diseases predominantly caused by a wide range of variants in the phenylalanine hydroxylase (PAH) gene. In vitro expression analysis of PAH variants offers the opportunity to elucidate the molecular mechanisms involved in HPAs and to clarify whether a disease-associated variant is genuinely pathogenic, while investigating the severity of a metabolic phenotype, and determining how a variant exerts its deleterious effects on the PAH enzyme. To study the effects of gene variants on PAH activity, we investigated eight variants: c.611A>G (p.Y204C), c.635T>C (p.L212P), c.746T>C (p.L249P), c.745C>T (p.L249F), c.809G>A (p.R270K), c.782G>C (p.R261P), c.587C>A (p.S196Y) and c.1139C>T (p.T380M), associated with different phenotypic groups. Transient expression of mutant full-length cDNAs in COS-7 cells yielded PAH proteins with PAH activity levels between 7% and 51% compared to the wild-type enzyme. With one exception (p.Y204C, which had no significant impact on PAH function), lower PAH activity was associated with a more severe phenotype (e.g. p.L249P with 7% PAH activity, 100% of classic PKU and no BH4 responsiveness), while higher activity correlated with milder phenotypes (e.g. p.T380M with 28% PAH activity, 97% of mild HPA and 83% of BH4 responsiveness). The results of the in vitro residual PAH activity have major implications, both for our understanding of genotype-phenotype correlations, and thereby existing inconsistencies, but also for the elucidation of the molecular basis of tetrahydrobiopterin (BH4) responsiveness.

  9. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    PubMed

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  10. Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic metabolic enzymes in rainbow trout.

    PubMed

    Orrego, Rodrigo; Pandelides, Zacharias; Guchardi, John; Holdway, Douglas

    2011-05-01

    This study investigates whether pulse exposure to Chilean pulp and paper mill effluent solid phase extracted (SPE) extracts via intraperitoneal injection (IP), would result in changes in the activities of the respiratory metabolic enzymes citrate synthase (CS) and lactate dehydrogenase (LDH) in rainbow trout livers. It also investigated if an alteration in liver metabolic capacity influenced the liver detoxification processes and estrogenic effects previously reported. Besides, a comparison of those enzymatic activities with fish IP injected with SPE extracts of two model effluents coming from industries that process 100% different type of feedstock (softwood, SW and hardwood, HW) was also evaluated. An initial induction of the anaerobic metabolism (increase in LDH enzymatic activity) was detected in all Chilean pulp mill effluent extracts evaluated, contrary to the initial unaltered aerobic metabolism (CS enzymatic activity) observed. A compensatory relationship in energy metabolism (Pasteur effect) was observed when comparing both enzymatic activities of fish exposed to those effluent extracts. LDH and CS activities observed in fish injected with Chilean extracts seem to be related to the effects observed in fish injected with SW extracts. This study showed that intraperitoneal injection of pulp and paper mill effluent extracts affected the anaerobic and aerobic metabolic capacities in rainbow trout livers, but this metabolic alteration did not affect detoxification capability or estrogenic effect previously reported.

  11. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism.

    PubMed

    Tak, Jun-Hyung; Isman, Murray B

    2016-10-01

    Although screening for new and reliable sources of botanical insecticides remains important, finding ways to improve the efficacy of those already in use through better understanding of their modes-of-action or metabolic pathways, or by improving formulations, deserves greater attention as the latter may present lesser regulation hurdles. Metabolic processing of citral (a combination of the stereoisomers geranial and neral), a main constituent of lemongrass (Cymbopogon citratus) essential oil has not been previously examined in insects. To address this, we investigated insecticidal activities of lemongrass oil and citral, as well as the metabolism of citral in larvae of the cabbage looper, Trichoplusia ni, in associations with well-known enzyme inhibitors. Among the inhibitors tested, piperonyl butoxide showed the highest increase in toxicity followed by triphenyl phosphate, but no synergistic interaction between the inhibitors was observed. Topical application of citral to fifth instar larvae produced mild reductions in food consumption, and frass analysis after 24h revealed geranic acid (99.7%) and neric acid (98.8%) as major metabolites of citral. Neither citral nor any other metabolites were found following in vivo analysis of larvae after 24h, and no significant effect of enzyme inhibitors was observed on diet consumption or citral metabolism.

  12. 2D SMARTCyp Reactivity-Based Site of Metabolism Prediction for Major Drug-Metabolizing Cytochrome P450 Enzymes

    DTIC Science & Technology

    2012-05-25

    ranked 1 , 2, and 3 positions in 67%, 80%, and 83% of the cases, respectively. The results were similar to those obtained by MetaSite and the reactivity...docking approach. For 70 CYP2C9 substrates, the observed sites of CYP2C9 metabolism were among the top-ranked 1 , 2, and 3 positions in 66%, 86%, and...respectively. For 36 compounds metabolized by CYP2C19, the observed sites of metabolism were found to be among the top-ranked 1 , 2, and 3 sites in 78%, 89

  13. In vitro metabolic stability and intestinal transport of P57AS3 (P57) from Hoodia gordonii and its interaction with drug metabolizing enzymes.

    PubMed

    Madgula, Vamsi L M; Avula, Bharathi; Pawar, Rahul S; Shukla, Yatin J; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2008-08-01

    Hoodia gordonii, a succulent cactus-like plant growing in South Africa, has been used in traditional medicine for its appetite suppressant properties. Its use as a dietary supplement to promote weight loss has recently gained popularity. An oxypregnane steroidal glycoside P57AS3 (P57) is reported to be the active constituent of the sap extract responsible for anorexigenic activity. No information is available about its metabolic stability, intestinal transport and interaction with drug metabolizing enzymes. In the present investigation, the metabolic stability of P57 in human liver microsomes and its interaction with drug metabolizing enzymes (CYP1A2, 2C9, 3A4 and 2D6) were determined. Intestinal transport of P57 was studied in the Caco-2 cell model of intestinal transport and absorption. P57 was metabolically stable in the presence of human liver microsomes. The compound inhibited CYP3A4 activity with an IC50 value of 45 microM, whereas the activity of CYP 1A2, 2C9 and 2D6 was not inhibited. In the Caco-2 model, P57 exhibited a higher transport in the secretory direction than in the absorptive direction with efflux ratios of 3.1 and 3.8 at 100 and 200 microM, respectively. The efflux was inhibited by selective inhibitors of multidrug resistance associated proteins MRP1/MRP2 (MK-571) and P-gp (verapamil). In conclusion, intestinal transport of P57 was mediated by P-gp and MRP transporters. The compound was metabolically stable and showed weak inhibition of CYP 3A4.

  14. Induction of xenobiotic receptors, transporters, and drug metabolizing enzymes by oxycodone.

    PubMed

    Hassan, Hazem E; Myers, Alan L; Lee, Insong J; Mason, Clifford W; Wang, Duan; Sinz, Michael W; Wang, Hongbing; Eddington, Natalie D

    2013-05-01

    Perturbations of the expression of transporters and drug-metabolizing enzymes (DMEs) by opioids can be the locus of deleterious drug-drug interactions (DDIs). Many transporters and DMEs are regulated by xenobiotic receptors [XRs; e.g., pregnane X receptor (PXR), constitutive androstane receptor (CAR), and Aryl hydrocarbon receptor (AhR)]; however, there is a paucity of information regarding the influence of opioids on XRs. The objective of this study was to determine the influence of oxycodone administration (15 mg/kg intraperitoneally twice daily for 8 days) on liver expression of XRs, transporters, and DMEs in rats. Microarray, quantitative real-time polymerase chain reaction and immunoblotting analyses were used to identify significantly regulated genes. Three XRs (e.g., PXR, CAR, and AhR), 27 transporters (e.g., ABCB1 and SLC22A8), and 19 DMEs (e.g., CYP2B2 and CYP3A1) were regulated (P < 0.05) with fold changes ranging from -46.3 to 17.1. Using MetaCore (computational platform), we identified a unique gene-network of transporters and DMEs assembled around PXR, CAR, and AhR. Therefore, a series of transactivation/translocation assays were conducted to determine whether the observed changes of transporters/DMEs are mediated by direct activation of PXR, CAR, or AhR by oxycodone or its major metabolites (noroxycodone and oxymorphone). Neither oxycodone nor its metabolites activated PXR, CAR, or AhR. Taken together, these findings identify a signature hepatic gene-network associated with repeated oxycodone administration in rats and demonstrate that oxycodone alters the expression of many transporters and DMEs (without direct activation of PXR, CAR, and AhR), which could lead to undesirable DDIs after coadministration of substrates of these transporters/DMEs with oxycodone.

  15. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  16. Transcription Factor Nrf1 Negatively Regulates the Cystine/Glutamate Transporter and Lipid-Metabolizing Enzymes

    PubMed Central

    Tsujita, Tadayuki; Peirce, Vivian; Baird, Liam; Matsuyama, Yuka; Takaku, Misaki; Walsh, Shawn V.; Griffin, Julian L.; Uruno, Akira

    2014-01-01

    Liver-specific Nrf1 (NF-E2-p45-related factor 1) knockout mice develop nonalcoholic steatohepatitis. To identify postnatal mechanisms responsible for this phenotype, we generated an inducible liver-specific Nrf1 knockout mouse line using animals harboring an Nrf1flox allele and a rat CYP1A1-Cre transgene (Nrf1flox/flox::CYP1A1-Cre mice). Administration of 3-methylcholanthrene (3-MC) to these mice (Nrf1flox/flox::CYP1A1-Cre+3MC mice) resulted in loss of hepatic Nrf1 expression. The livers of mice lacking Nrf1 accumulated lipid, and the hepatic fatty acid (FA) composition in such animals differed significantly from that in the Nrf1flox/flox::CYP1A1-Cre control. This change was provoked by upregulation of several FA metabolism genes. Unexpectedly, we also found that the level of glutathione was increased dramatically in livers of Nrf1flox/flox::CYP1A1-Cre+3MC mice. While expression of glutathione biosynthetic enzymes was unchanged, xCT, a component of the cystine/glutamate antiporter system xc−, was significantly upregulated in livers of Nrf1flox/flox::CYP1A1-Cre+3MC mice, suggesting that Nrf1 normally suppresses xCT. Thus, stress-inducible expression of xCT is a two-step process: under homeostatic conditions, Nrf1 effectively suppresses nonspecific transactivation of xCT, but when cells encounter severe oxidative/electrophilic stress, Nrf1 is displaced from an antioxidant response element (ARE) in the gene promoter while Nrf2 is recruited to the ARE. Thus, Nrf1 controls both the FA and the cystine/cysteine content of hepatocytes by participating in an elaborate regulatory network. PMID:25092871

  17. Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes.

    PubMed

    Tsujita, Tadayuki; Peirce, Vivian; Baird, Liam; Matsuyama, Yuka; Takaku, Misaki; Walsh, Shawn V; Griffin, Julian L; Uruno, Akira; Yamamoto, Masayuki; Hayes, John D

    2014-10-01

    Liver-specific Nrf1 (NF-E2-p45-related factor 1) knockout mice develop nonalcoholic steatohepatitis. To identify postnatal mechanisms responsible for this phenotype, we generated an inducible liver-specific Nrf1 knockout mouse line using animals harboring an Nrf1(flox) allele and a rat CYP1A1-Cre transgene (Nrf1(flox/flox)::CYP1A1-Cre mice). Administration of 3-methylcholanthrene (3-MC) to these mice (Nrf1(flox/flox)::CYP1A1-Cre+3MC mice) resulted in loss of hepatic Nrf1 expression. The livers of mice lacking Nrf1 accumulated lipid, and the hepatic fatty acid (FA) composition in such animals differed significantly from that in the Nrf1(flox/flox)::CYP1A1-Cre control. This change was provoked by upregulation of several FA metabolism genes. Unexpectedly, we also found that the level of glutathione was increased dramatically in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice. While expression of glutathione biosynthetic enzymes was unchanged, xCT, a component of the cystine/glutamate antiporter system x(c)(-), was significantly upregulated in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice, suggesting that Nrf1 normally suppresses xCT. Thus, stress-inducible expression of xCT is a two-step process: under homeostatic conditions, Nrf1 effectively suppresses nonspecific transactivation of xCT, but when cells encounter severe oxidative/electrophilic stress, Nrf1 is displaced from an antioxidant response element (ARE) in the gene promoter while Nrf2 is recruited to the ARE. Thus, Nrf1 controls both the FA and the cystine/cysteine content of hepatocytes by participating in an elaborate regulatory network.

  18. Induction of drug metabolizing enzymes in polybrominated biphenyl-fed lactating rats and their pups.

    PubMed

    Moore, R W; Dannan, G A; Aust, S D

    1978-04-01

    Polybrominated biphenyls (PBBs) cause a mixed-type (phenobarbital- plus 3-methylcholanthrene-like) induction of liver microsomal drug metabolizing enzymes in rats. However, 2,2',4,4',5,5'-hexabromobiphenyl and 2,2',3,4,4',5,5'-heptabromobiphenyl, which together comprise less than 80% of PBBs (FireMaster), were shown to be strictly phenobarbital-type inducers. Other components (unidentified) must therefore cause the 3-methylcholanthrene-like effects. The potential for PBBs to exert effects on neonates through milk was examined. Lactating rats were fed 0, 0.1, 1.0, or 10 ppm FireMaster for the 18 days following delivery, at which time mothers and most pups were sacrificed. Pups nursing from mothers fed 10 ppm PBBs showed significant increases in liver weights and microsomal protein, and both mothers and pups had increased cytochrome P-450, aminopyrine demethylation, benzo[a]pyrene hydroxylation, and UDP-glucuronyltransferase. Pups nursing from rats fed 1.0 ppm had increases in microsomal protein, cytochrome P-450, aminopyrine demethylation, and benzo[a]pyrene hydroxylation, while their mothers were unaffected. Several pups from the 0, 0.1, and 1.0 ppm groups were maintained on their mother's diets, raised, and allowed to mate. Their pups showed much the same responses to PBBs as did the original group of pups. The effects on both generations of adult female rats were also comparable. PBBs cause a mixed-type induction in both lactating rats and their nursing pups; PBB components responsible for both aspects of this induction must be transmitted through milk. Nursing rats are approximately tenfold more sensitive to the effects of PBBs in their mother's diets than are the dams. The approximate no-effect level for microsomal induction in nursing rats is 0.1 ppm PBBs in the diet of the adult.

  19. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism.

    PubMed Central

    Morrison, J R; Pászty, C; Stevens, M E; Hughes, S D; Forte, T; Scott, J; Rubin, E M

    1996-01-01

    RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692961

  20. Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma

    PubMed Central

    Sumantran, Venil N.; Mishra, Pratik; Bera, Rakesh; Sudhakar, Natarajan

    2016-01-01

    Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene. PMID:26901218

  1. The role of arginine and arginine-metabolizing enzymes during Giardia – host cell interactions in vitro

    PubMed Central

    2013-01-01

    Background Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. Results RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Conclusions Giardia affects the host’s arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy. PMID:24228819

  2. Polynuclear Aromatic Hydrocarbons (PAH).

    DTIC Science & Technology

    1986-07-01

    above expressways has been sampled and found to contain as much as several hundred ng/m3 of PAH. Fly ash from incinerators may contain as much as 1000 ng...Occupational Health Concerns of PAH in the Flying Community: In the flying community those who work directly with jet engines and their waste products are...movement may be slowed by the addition of sorptive materials If necessary (charcoal, zeolite ). 3. Proximity to Groundwater: This factor decides the

  3. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  4. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  5. Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase.

    PubMed

    El-Bacha, Tatiana; Menezes, Maíra M T; Azevedo e Silva, Melissa C; Sola-Penna, Mauro; Da Poian, Andrea T

    2004-11-01

    Although it is well established that cellular transformation with tumor virus leads to changes on glucose metabolism, the effects of cell infection by non-transforming virus are far to be completely elucidated. In this study, we report the first evidence that cultured Vero cells infected with the alphavirus Mayaro show several alterations on glucose metabolism. Infected cells presented a two fold increase on glucose consumption, accompanied by an increment in lactate production. This increase in glycolytic flux was also demonstrated by a significant increase on the activity of 6-phosphofructo 1-kinase, one of the regulatory enzymes of glycolysis. Analysis of the kinetic parameters revealed that the regulation of 6-phosphofructo 1-kinase is altered in infected cells, presenting an increase in Vmax along with a decrease in Km for fructose-6-phosphate. Another fact contributing to an increase in enzyme activity was the decrease in ATP levels observed in infected cells. Additionally, the levels of fructose 2,6-bisphosphate, a potent activator of this enzyme, was significantly reduced in infected cells. These observations suggest that the increase in PFK activity may be a compensatory cellular response to the viral-induced metabolic alterations that could lead to an impairment of the glycolytic flux and energy production.

  6. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions.

    PubMed Central

    Kivistö, K T; Kroemer, H K; Eichelbaum, M

    1995-01-01

    1. Little information is available about the pharmacokinetic interactions of anticancer drugs in man. However, clinically significant drug interactions do occur in cancer chemotherapy, and it is likely that important interactions have not been recognized. 2. Specific cytochrome P450 (CYP) enzymes have been recently shown to be involved in the metabolism of several essential anticancer agents. In particular, enzymes of the CYP3A subfamily play a role in the metabolism of many anticancer drugs, including epipodophyllotoxins, ifosphamide, tamoxifen, taxol and vinca alkaloids. CYP3A4 has been shown to catalyse the activation of the prodrug ifosphamide, raising the possibility that ifosphamide could be activated in tumour tissues containing this enzyme. 3. As examples of recently found, clinically significant interactions, cyclosporin considerably increases plasma doxorubicin and etoposide concentrations. Although cyclosporin and calcium channel blockers may influence the pharmacokinetics of certain anticancer agents by inhibiting their CYP3A mediated metabolism, it is more likely that these P-glycoprotein inhibitors inhibit P-glycoprotein mediated drug elimination. 4. Appropriate caution should be exercised when combining P-glycoprotein inhibitors and potential CYP3A inhibitors with cancer chemotherapy. PMID:8703657

  7. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs.

    PubMed

    Toselli, Francesca; Dodd, Peter R; Gillam, Elizabeth M J

    2016-08-01

    P450s in the human brain were originally considered unlikely to contribute significantly to the clearance of drugs and other xenobiotic chemicals, since their overall expression was a small fraction of that found in the liver. However, it is now recognized that P450s play substantial roles in the metabolism of both exogenous and endogenous chemicals in the brain, but in a highly cell type- and region-specific manner, in line with the greater functional heterogeneity of the brain compared to the liver. Studies of brain P450 expression and the characterization of the catalytic activity of specific forms expressed as recombinant enzymes have suggested possible roles for xenobiotic-metabolizing P450s in the brain. It is now possible to confirm these roles through the use of intracerebroventricular administration of selective P450 inhibitors in animal models, coupled with brain sampling techniques to measure drug concentrations in vivo, and modern neuroimaging techniques. The purpose of this review is to discuss the evidence behind the functional importance of P450s from the "xenobiotic-metabolizing" families, CYP1, CYP2 and CYP3 in the brain. Approaches used to define the quantitative and qualitative significance of these P450s in determining tissue-specific levels of xenobiotics in brain will be considered. Finally, the possible roles of these enzymes in brain biochemistry will be examined in light of the demonstrated activity of these enzymes in vitro and the association of particular P450 forms with disease states.

  8. Pharmacogenetics, pharmacogenomics and epigenetics of Nrf2-regulated xenobiotic-metabolizing enzymes and transporters by dietary phytochemical and cancer chemoprevention.

    PubMed

    Wu, Tien-Yuan; Khor, Tin Oo; Lee, Jong Hun; Cheung, Ka Lung; Shu, Limin; Chen, Chi; Kong, Ah-Ng

    2013-07-01

    Cancer chemopreventive activities of various phytochemicals have been attributed to the modulation of xenobiotic disposition, which includes absorption, distribution, metabolism, and excretion. The interaction between xenobiotics and xenobiotic-metabolizing enzymes (XMEs) is bidirectional. XMEs are responsible for the biotransformation of xenobiotics such as bioactivation and detoxification. Conversely, xenobiotics affect XMEs through transcriptional regulation (induction or suppression) and post-translational interactions (inhibition or activation). Similar relationships also exist between xenobiotics and their transporters. Studies conducted over the past decade have demonstrated that the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), plays a critical role in the regulation of detoxifying enzymes and transporters through a signaling system that senses and responds to redox imbalance. The role of Nrf2 in the interaction between chemopreventive phytochemicals and detoxifying enzymes/transporters has become an important topic in cancer chemoprevention. In this review, the genetic and epigenetic factors that contribute to Nrf2-mediated regulation of detoxifying XMEs and transporters are discussed in the context of cancer chemoprevention. Phytochemicals may modulate the genome as well as epigenome, altering the regulation of XMEs and transporters, which may be critical for both cancer chemoprevention and the prevention of other oxidative stress- and inflammatory-related diseases, including cardiovascular, metabolic and neurological pathologies. The pharmacogenomic expression of XMEs and transporters, with an emphasis on both genomics and epigenetics, will also be discussed.

  9. Myogenin Induces a Shift of Enzyme Activity from Glycolytic to Oxidative Metabolism in Muscles of Transgenic Mice

    PubMed Central

    Hughes, Simon M.; Chi, Maggie M.-Y.; Lowry, Oliver H.; Gundersen, Kristian

    1999-01-01

    Physical training regulates muscle metabolic and contractile properties by altering gene expression. Electrical activity evoked in muscle fiber membrane during physical activity is crucial for such regulation, but the subsequent intracellular pathway is virtually unmapped. Here we investigate the ability of myogenin, a muscle-specific transcription factor strongly regulated by electrical activity, to alter muscle phenotype. Myogenin was overexpressed in transgenic mice using regulatory elements that confer strong expression confined to differentiated post-mitotic fast muscle fibers. In fast muscles from such mice, the activity levels of oxidative mitochondrial enzymes were elevated two- to threefold, whereas levels of glycolytic enzymes were reduced to levels 0.3–0.6 times those found in wild-type mice. Histochemical analysis shows widespread increases in mitochondrial components and glycogen accumulation. The changes in enzyme content were accompanied by a reduction in fiber size, such that many fibers acquired a size typical of oxidative fibers. No change in fiber type-specific myosin heavy chain isoform expression was observed. Changes in metabolic properties without changes in myosins are observed after moderate endurance training in mammals, including humans. Our data suggest that myogenin regulated by electrical activity may mediate effects of physical training on metabolic capacity in muscle. PMID:10225962

  10. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    PubMed Central

    Karagianni, Eleni P.; Kontomina, Evanthia; Davis, Britton; Kotseli, Barbara; Tsirka, Theodora; Garefalaki, Vasiliki; Sim, Edith; Glenn, Anthony E.; Boukouvala, Sotiria

    2015-01-01

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism. PMID:26245863

  11. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase.

    PubMed

    Harris, Diana M; Diderich, Jasper A; van der Krogt, Zita A; Luttik, Marijke A H; Raamsdonk, Léonie M; Bovenberg, Roel A L; van Gulik, Walter M; van Dijken, Johannes P; Pronk, Jack T

    2006-03-01

    Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.

  12. Threshold levels for toxic effects of sediment-associated PAHs on marine biota from urban and nonurban embayments of the United States

    SciTech Connect

    Lomax, D.P.; Horness, B.H.; Johnson, L.L.; Landahl, J.T.; Varanasi, U. )

    1994-06-01

    The Environmental Conservation Division of the National Marine Fisheries Service has been conducting studies investigating the effects of marine pollution on the health of benthic fish since 1979. A large amount of data relating biological effects to exposure to sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) exists as a result of the many field and laboratory studies conducted since this time. These effects include the presence of hepatic lesions, high biliary levels of PAH metabolites, elevated activity of hepatic xenobiotic metabolizing enzymes and include the presence of hepatic lesions, high biliary levels of PAH metabolites, elevated activity of hepatic xenobotic metabolizing enzymes and impaired reproductive success. A comprehensive analysis of these data was undertaken in an effort to estimate thresholds for concentrations of PAHs in sediment below which the effects previously describe did not occur. Our primary objectives were to determine: (1) at what levels of chemical contamination are thresholds observed for those species examined and (2) how our findings compare with the sediment quality standards of other agencies. Thresholds were determined with the Hockey Stick regression model. Our results show that most effects exhibit thresholds at 500-1000 ng/g, with slight variances among species due to differences in sensitivity. These values are considerably lower than standards derived from the Apparent Effects Threshold and other similar methods used for evaluating sediment toxicity. This approach yields significant insight into the impact of low level contamination and may provide a useful alternative for evaluating sediment quality within urban areas.

  13. Enzymological analysis of the tumor suppressor A-C1 reveals a novel group of phospholipid-metabolizing enzymes.

    PubMed

    Shinohara, Naoki; Uyama, Toru; Jin, Xing-Hua; Tsuboi, Kazuhito; Tonai, Takeharu; Houchi, Hitoshi; Ueda, Natsuo

    2011-11-01

    A-C1 protein is the product of a tumor suppressor gene negatively regulating the oncogene Ras and belongs to the HRASLS (HRAS-like suppressor) subfamily. We recently found that four members of this subfamily expressed in human tissues function as phospholipid-metabolizing enzymes. Here we examined a possible enzyme activity of A-C1. The homogenates of COS-7 cells overexpressing recombinant A-C1s from human, mouse, and rat showed a phospholipase A½ (PLA½) activity toward phosphatidylcholine (PC). This finding was confirmed with the purified A-C1. The activity was Ca²⁺ independent, and dithiothreitol and Nonidet P-40 were indispensable for full activity. Phosphatidylethanolamine (PE) was also a substrate and the phospholipase A₁ (PLA₁) activity was dominant over the PLA₂ activity. Furthermore, the protein exhibited acyltransferase activities transferring an acyl group of PCs to the amino group of PEs and the hydroxyl group of lyso PCs. As for tissue distribution in human, mouse, and rat, A-C1 mRNA was abundantly expressed in testis, skeletal muscle, brain, and heart. These results demonstrate that A-C1 is a novel phospholipid-metabolizing enzyme. Moreover, the fact that all five members of the HRASLS subfamily, including A-C1, show similar catalytic properties strongly suggests that these proteins constitute a new class of enzymes showing PLA½ and acyltransferase activities.

  14. [Effect of domestication of the silver fox on the main enzymes of serotonin metabolism and serotonin receptors].

    PubMed

    Popova, N K; Kulikov, A V; Avgustinovich, D F; Voĭtenko, N N; Trut, L N

    1997-03-01

    In silver foxes significant alterations in the activities of basic enzymes of neurotransmitter serotonin metabolism as well as in the densities of receptors caused by selection for the absence of the aggressive defensive reaction to man were demonstrated. In the midbrain and hypothalamus of animals selected for the absence of aggressive behavior, the activity of tryptophan hydroxylase, the key enzyme of serotonin biosynthesis, was found to be remarkably higher than in animals selected for highly aggressive behavior. Domesticated animals were characterized by low activity of the main enzyme of serotonin catabolism, monoamine oxidase type A, increased Michaelis constant km, and an unchanged maximum reaction rate (Vmax). No changes in the specific binding of [3H]-ketanserin and [3H]-8-OH-DPAT in the frontal cortex of domesticated foxes were revealed; however, in the hypothalamus, the low values of Bmax for the [3H]-8-OH-DPAT specific binding were observed, indicating the decreased density of the 5-HT1A receptors. It is assumed that the transformation of a wild aggressive animal into a domesticated one taking place during directional selection is caused by hereditary alterations favored by artificial selection in the activity of the main enzymes of serotonin metabolism and serotonin receptors.

  15. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations

    PubMed Central

    Ganz, Ariel B.; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie; Vitiello, Gerardo A.; Lovesky, Jessica; Chuang, Jasmine C.; Shields, Kelsey; Fomin, Vladislav G.; Lopez, Yusnier S.; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V.; Caudill, Marie A.

    2017-01-01

    Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term. PMID:28134761

  16. Sources, fate, and effects of PAHs in shallow water environments: a review with special reference to small watercraft

    USGS Publications Warehouse

    Albers, P.H.; Kennish, Michael J.

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.

  17. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these

  18. Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?

    PubMed

    Ding, Bin; Schmeling, Sirko; Fuchs, Georg

    2008-03-01

    The anaerobic metabolism of catechol (1,2-dihydroxybenzene) was studied in the betaproteobacterium Thauera aromatica that was grown with CO2 as a cosubstrate and nitrate as an electron acceptor. Based on different lines of evidence and on our knowledge of enzymes and genes involved in the anaerobic metabolism of other aromatic substrates, the following pathway is proposed. Catechol is converted to catechylphosphate by phenylphosphate synthase, which is followed by carboxylation by phenylphosphate carboxylase at the para position to the phosphorylated phenolic hydroxyl group. The product, protocatechuate (3,4-dihydroxybenzoate), is converted to its coenzyme A (CoA) thioester by 3-hydroxybenzoate-CoA ligase. Protocatechuyl-CoA is reductively dehydroxylated to 3-hydroxybenzoyl-CoA, possibly by 4-hydroxybenzoyl-CoA reductase. 3-Hydroxybenzoyl-CoA is further metabolized by reduction of the aromatic ring catalyzed by an ATP-driven benzoyl-CoA reductase. Hence, the promiscuity of several enzymes and regulatory proteins may be sufficient to create the catechol pathway that is made up of elements of phenol, 3-hydroxybenzoate, 4-hydroxybenzoate, and benzoate metabolism.

  19. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome

    PubMed Central

    2014-01-01

    Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson’s disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications. PMID:24932457

  20. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome.

    PubMed

    Alam, Md Ashraful; Rahman, Md Mahbubur

    2014-01-01

    Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson's disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications.

  1. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    PubMed Central

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M.; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B.; Mishra, Sasmita; EI-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J.; Hill, R. Sean; Partlow, Jennifer N.; Yoo, Seung-Yun; Lam, Anh-Thu N.; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A. James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J.; Housman, David E.; Mochida, Ganeshwaran H.; Morrow, Eric M.

    2016-01-01

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  2. Constitutive expression of drug metabolizing enzymes and related transcription factors in cattle testis and their modulation by illicit steroids.

    PubMed

    Lopparelli, Rosa Maria; Zancanella, Vanessa; Giantin, Mery; Ravarotto, Licia; Cozzi, Giulio; Montesissa, Clara; Dacasto, Mauro

    2010-10-01

    In veterinary species, little information about extrahepatic drug metabolism is actually available. Therefore, the presence of foremost drug metabolizing enzymes (DMEs) and related transcription factors mRNAs was initially investigated in cattle testis; then, their possible modulation following the in vivo exposure to illicit growth promoters (GPs), which represent a major issue in cattle farming, was explored. All target genes were expressed in cattle testis, albeit to a lower extent compared to liver ones; furthermore, illicit protocols containing dexamethasone and 17β-oestradiol significantly up-regulated cytochrome P450 1A1, 2E1, oestrogen receptor-α and peroxisome proliferator-activated receptor-α mRNA levels. Overall, the constitutive expression of foremost DMEs and related transcription factors was demonstrated for the first time in cattle testis and illicit GPs were shown to affect pre-transcriptionally some of them, with possible consequences upon testicular xenobiotic drug metabolism.

  3. Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism1[W][OPEN

    PubMed Central

    Biais, Benoît; Bénard, Camille; Beauvoit, Bertrand; Colombié, Sophie; Prodhomme, Duyên; Ménard, Guillaume; Bernillon, Stéphane; Gehl, Bernadette; Gautier, Hélène; Ballias, Patricia; Mazat, Jean-Pierre; Sweetlove, Lee; Génard, Michel; Gibon, Yves

    2014-01-01

    To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum ‘Moneymaker’) plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location. Hierarchical clustering of enzyme activities also revealed tight relationships between metabolic pathways and phases of development. Thus, cell division was characterized by high activities of fructokinase, glucokinase, pyruvate kinase, and tricarboxylic acid cycle enzymes, indicating ATP production as a priority, whereas cell expansion was characterized by enzymes involved in the lower part of glycolysis, suggesting a metabolic reprogramming to anaplerosis. As expected, enzymes involved in the accumulation of sugars, citrate, and glutamate were strongly increased during ripening. However, a group of enzymes involved in ATP production, which is probably fueled by starch degradation, was also increased. Metabolites levels seemed more sensitive than enzymes to the environment, although such differences tended to decrease at ripening. The integration of enzyme and metabolite data obtained under contrasting growth conditions using principal component analysis suggests that, with the exceptions of alanine amino transferase and glutamate and malate dehydrogenase and malate, there are no links between single enzyme activities and metabolite time courses or levels. PMID:24474652

  4. Supplementation of zilpaterol hydrochloride does not significantly alter the serum metabolic profile and metabolic enzyme profile of finishing heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...

  5. Key Residues Controlling Phenacetin Metabolism By Human Cytochrome P450 2A Enzymes

    SciTech Connect

    DeVore, N.M.; Smith, B.D.; Urban, M.J.; Scott, E.E.

    2009-05-14

    Although the human lung cytochrome P450 2A13 (CYP2A13) and its liver counterpart cytochrome P450 2A6 (CYP2A6) are 94% identical in amino acid sequence, they metabolize a number of substrates with substantially different efficiencies. To determine differences in binding for a diverse set of cytochrome P450 2A ligands, we have measured the spectral binding affinities (K{sub D}) for nicotine, phenethyl isothiocyanate (PEITC), coumarin, 2{prime}-methoxyacetophenone (MAP), and 8-methoxypsoralen. The differences in the K{sub D} values for CYP2A6 versus CYP2A13 ranged from 74-fold for 2{prime}-methoxyacetophenone to 1.1-fold for coumarin, with CYP2A13 demonstrating the higher affinity. To identify active site amino acids responsible for the differences in binding of MAP, PEITC, and coumarin, 10 CYP2A13 mutant proteins were generated in which individual amino acids from the CYP2A6 active site were substituted into CYP2A13 at the corresponding position. Titrations revealed that substitutions at positions 208, 300, and 301 individually had the largest effects on ligand binding. The collective relevance of these amino acids to differential ligand selectivity was verified by evaluating binding to CYP2A6 mutant enzymes that incorporate several of the CYP2A13 amino acids at these positions. Inclusion of four CYP2A13 amino acids resulted in a CYP2A6 mutant protein (I208S/I300F/G301A/S369G) with binding affinities for MAP and PEITC much more similar to those observed for CYP2A13 than to those for CYP2A6 without altering coumarin binding. The structure-based quantitative structure-activity relationship analysis using COMBINE successfully modeled the observed mutant-ligand trends and emphasized steric roles for active site residues including four substituted amino acids and an adjacent conserved Leu{sup 370}.

  6. The effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzymes in selenium and/or iodine deficient rats

    PubMed Central

    Caglayan, Aydan; Kocer-Gumusel, Belma; Erkekoglu, Pinar; Hincal, Filiz

    2016-01-01

    Objective(s): Particularly in developing countries, selenium and/or iodine deficiencies are encountered and use of pesticides in agriculture are not well-controlled. Fenvalerate is a pyrethroid insectide used in agriculture and has applications against a wide range of pests. This study was designed to evaluate the effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzyme activities in the presence of iodine and/or selenium deficiency on a rat model. Materials and Methods: Iodine and/or selenium deficiency was induced by feeding three-week-old Wistar rats with a diet containing <0.005 mg selenium kg-1, and/or administering 1% sodium perchlorate in drinking water for 7 weeks. Test groups received fenvalerate (100 mg kg-1 BW IP) for the last 7 days. Hepatic and cerebral microsomal aniline hydroxylase (CYP2E1) and cytosolic glutathione S-transferase (GST) activities were determined. Besides, hepatic NADPH-cytochrome P450 reductase (P450R), ethoxyresorufin O-deethylase (EROD, CYP1A1/1A2) and penthoxyresorufin O-depenthylase (PROD, CYP2B1/2B2), activities were also measured. Results: Fenvalerate had a general inductive effect on the hepatic and cerebral xenobiotic metabolizing enzyme activities. Moreover, enzyme activities were also altered by iodine and/or selenium deficiency, but the effects seemed to be enzyme- and tissue-specific. Conclusion: The inductive effect of fenvalerate, particularly in high dose exposures, may change the metabolism of several xenobiotics, including drugs, as well as endogenous substrates. The effects may vary depending on the selenium and/or iodine status of individual. PMID:27872699

  7. Metabolic network structure and function in bacteria goes beyond conserved enzyme components

    PubMed Central

    Bazurto, Jannell V.; Downs, Diana M.

    2016-01-01

    For decades, experimental work has laid the foundation for our understanding of the linear and branched pathways that are integrated to form the metabolic networks on which life is built. Genetic and biochemical approaches applied in model organisms generate empirical data that correlate genes, gene products and their biological activities. In the post-genomic era, these results have served as the basis for the genome annotation that is routinely used to infer the metabolic capabilities of an organism and mathematically model the presumed metabolic network structure. At large, genome annotation and metabolic network reconstructions have demystified genomic content of non-culturable microorganisms and allowed researchers to explore the breadth of metabolisms in silico. Mis-annotation aside, it is unclear whether in silico reconstructions of metabolic structure from component parts accurately captures the higher levels of network organization and flux distribution. For this approach to provide accurate predictions, one must assume that the conservation of metabolic components leads to conservation of metabolic network architecture and function. This assumption has not been rigorously tested. Here we describe the implications of a recent study (MBio 5;7(1): e01840-15), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function. PMID:28357363

  8. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes and colorectal cancer risk

    PubMed Central

    Cotterchio, Michelle; Boucher, Beatrice A.; Manno, Michael; Gallinger, Steven; Okey, Allan B.; Harper, Patricia A.

    2009-01-01

    Colorectal cancer literature regarding the interaction between polymorphisms in carcinogen-metabolizing enzymes and red meat intake/doneness is inconsistent. A case-control study was conducted to evaluate the interaction between red meat consumption, doneness and polymorphisms in carcinogen-metabolizing enzymes. Colorectal cancer cases diagnosed 1997-2000, aged 20-74 years, were identified through the population-based Ontario Cancer Registry and recruited by the Ontario Family Colorectal Cancer Registry (OFCCR). Controls were sex- and age-group matched random sample of Ontario population. Epidemiologic and food questionnaires were completed by 1095 cases and 1890 controls; blood was provided by 842 and 1251, respectively. Multivariate logistic regression was used to obtain adjusted odds ratio (OR) estimates. Increased red meat intake was associated with increased colorectal cancer risk [OR (>5 servings/week vs. ≤2 servings/week) =1.67 (1.36, 2.05)]. Colorectal cancer risk also increased significantly with well-done meat intake [OR (>2 servings/week well-done vs. ≤ 2 servings/week rare-regular) = 1.57 (1.27, 1.93)]. We evaluated interactions between genetic variants in 15 enzymes involved in the metabolism of carcinogens in overcooked meat (CYPs, GSTs, UGTs, SULT, NATs, mEH, AHR). CYP2C9 and NAT2 variants were associated with colorectal cancer risk. Red meat intake was associated with increased colorectal cancer risk, regardless of genotypes; however, CYP1B1 combined variant and SULT1A1-638G>A variant significantly modified the association between red meat doneness intake and colorectal cancer risk. In conclusion, well-done red meat intake was associated with an increased risk of colorectal cancer regardless of carcinogen-metabolizing genotype, although our data suggests persons with CYP1B1 and SULT1A1 variants had the highest colorectal cancer risk. PMID:18990750

  9. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes.

    PubMed

    Gaunt, J K; Evans, W C

    1971-05-01

    1. A cell-free system, prepared from Pseudomonas N.C.I.B. 9340 grown on 4-chloro-2-methylphenoxyacetate (MCPA) was shown to catalyse the reaction sequence: 5-chloro-3-methylcatechol --> cis-cis-gamma-chloro-alpha-methylmuconate --> gamma-carboxymethylene-alpha-methyl-Delta(alphabeta)-butenolide --> gamma-hydroxy-alpha-methylmuconate. 2. The activity of the three enzymes involved in these reactions was completely resolved and the lactonizing and delactonizing enzymes were separated. 3. This part of the metabolic pathway of 4-chloro-2-methylphenoxyacetate is thus confirmed for this bacterium. 4. The ring-fission oxygenase required Fe(2+) or Fe(3+) and reduced glutathione for activity; the lactonizing enzyme is stimulated by Mn(2+), Mg(2+), Co(2+) and Fe(2+); no cofactor requirement could be demonstrated for the delactonizing enzyme. 5. cis-cis-gamma-Chloro-alpha-methylmuconic acid was isolated and found to be somewhat unstable, readily lactonizing to gamma-carboxymethylene-alpha-methyl-Delta(alphabeta)-butenolide. 6. Enzymically the lactonization appears to be a single-step dehydrochlorinase reaction.

  10. Thyme (Thymus vulgaris L.) leaves and its constituents increase the activities of xenobiotic-metabolizing enzymes in mouse liver.

    PubMed

    Sasaki, Keiko; Wada, Keiji; Tanaka, Yoshiko; Yoshimura, Teruki; Matuoka, Koozi; Anno, Takahiko

    2005-01-01

    The effects of thyme (Thymus vulgaris L.) leaves and its phenolic compounds, thymol and carvacrol, on the activities of xenobiotic-metabolizing enzymes, i.e., phase I enzymes such as 7-ethoxycoumarin O-deethylase (ECOD) and phase II enzymes such as glutathione S-transferase (GST) and quinone reductase (QR), were investigated. Mice were fed with a diet containing thyme (0.5% or 2.0%) or treated orally with thymol (50-200 mg/kg) or carvacrol (50-200 mg/kg) once a day for 7 successive days, and then the enzyme activities in the livers were analyzed. Dietary administration of 2% thyme caused slightly but significantly higher ECOD, GST, and QR activities by 1.1-1.4-fold. Thymol (200 mg/kg) treatment resulted in significantly higher ECOD, GST, and QR activities by 1.3-1.9-fold, and carvacrol (200 mg/kg) treatment caused significantly higher ECOD, GST, and QR activities by 1.3-1.7-fold. Thymol-treated animals had significantly higher protein levels of GST alpha and GST micro, and carvacrol-treated animals had significantly higher levels of GST micro. These results imply that thyme contains bifunctional inducers (i.e., substances capable of inducing both phase I and phase II enzymes) and that thymol and carvacrol may account for the effects of thyme.

  11. Bioavailability of PAHs: effects of soot carbon and PAH source.

    PubMed

    Thorsen, Waverly A; Cope, W Gregory; Shea, Damian

    2004-04-01

    The bioavailability of 38 individual polycyclic aromatic hydrocarbon (PAH) compounds was determined through calculation of biota-sediment-accumulation factors (BSAF). BSAF values were calculated from individual PAH concentrations in freshwater mussel, marine clam, and sediment obtained from field and laboratory bioaccumulation studies. Sediment that was amended with different types of soot carbon (SC) was used in some of the bioaccumulation experiments. BSAF values for petrogenic PAH were greater than those for pyrogenic PAH (e.g., 1.57 +/- 0.53 vs 0.25 +/- 0.23, respectively), indicating that petrogenic PAH are more bioavailable than pyrogenic PAH (p < 0.05). This trend was consistent among marine and freshwater sites. Increased SC content of sediment resulted in a linear decrease in the bioavailability of pyrogenic PAHs (r2 = 0.85). The effect of increasing SC content on petrogenic PAH was negligible. SC was considered as an additional sorptive phase when calculating BSAF values, and using PAH-SC partition coefficients from the literature, we obtained unreasonably large BSAF values for all petrogenic PAH and some pyrogenic PAH. This led us to conclude that a quantitative model to assess bioavailability through a combination of organic carbon and soot carbon sorption is not applicable among field sites with a wide range of soot carbon fractions and PAH sources, at least given our current knowledge of PAH-SC partitioning. Our data offer evidence that many factors including analysis of a full suite of PAH analytes, PAH hydrophobicity, sediment organic carbon content, sediment soot carbon content, and PAH source are importantto adequately assess PAH bioavailability in the environment.

  12. Persistent Overexpression of Phosphoglycerate Mutase, a Glycolytic Enzyme, Modifies Energy Metabolism and Reduces Stress Resistance of Heart in Mice

    PubMed Central

    Shioi, Tetsuo; Kato, Takao; Inuzuka, Yasutaka; Kawashima, Tsuneaki; Tamaki, Yodo; Kawamoto, Akira; Tanada, Yohei; Iwanaga, Yoshitaka; Narazaki, Michiko; Matsuda, Tetsuya; Adachi, Souichi; Soga, Tomoyoshi; Takemura, Genzou; Kondoh, Hiroshi; Kita, Toru; Kimura, Takeshi

    2013-01-01

    Background Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2), a glycolytic enzyme, on cardiac energy metabolism and function. Methods and Results Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/βATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA) cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS) in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. Conclusions Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice. PMID:23951293

  13. Retinoids inhibit 2,3,7,8-tetrachlorodibenzo-p-dioxine-induced activity of benzo[a]pyrene metabolizing enzymes in human diploid fibroblasts.

    PubMed

    Kohl, F V; Rüdiger, H W

    1980-09-01

    Retinoids are known to inhibit the substrate mediated enzyme induction of benzo[a]pyrene metabolizing enzymes. Consequently, the effect of two retinoids on the induction of benzo[a]pyrene metabolizing enzymes by the more potent inductor 2,3,7,8-tetrachlorodibenzo-p-dioxine (TCDD) was investigated. The studies were performed with human diploid fibroblasts in culture. Vitamin A palmitate and all-trans-retinoic-acid were found to prevent the TCDD induced increase of benzo[a]pyrene metabolism in a dose-dependent manner. The fact that this effect was immediately reversible makes it unlikely that it was due to non-specific toxic effects. The data suggest that retinoids cause a preferential inhibition of the de novo synthesis of benzo[a]pyrene metabolizing enzymes.

  14. Sex-specific basal and hypoglycemic patterns of in vivo caudal dorsal vagal complex astrocyte glycogen metabolic enzyme protein expression.

    PubMed

    Tamrakar, Pratistha; Shrestha, Prem; Briski, Karen P

    2014-10-24

    Astrocytes contribute to neurometabolic stability through uptake, catabolism, and storage of glucose. These cells maintain the major brain glycogen reservoir, which is a critical fuel supply to neurons during glucose deficiency and increased brain activity. We used a combinatory approach incorporating immunocytochemistry, laser microdissection, and Western blotting to investigate the hypothesis of divergent expression of key enzymes regulating glycogen metabolism and glycolysis during in vivo normo- and/or hypoglycemia in male versus female hindbrain astrocytes. Glycogen synthase (GS) and glycogen phosphorylase (GP) levels were both enhanced in dorsal vagal complex astrocytes from vehicle-injected female versus male controls, with incremental increase in GS exceeding GP. Insulin-induced hypoglycemia (IIH) diminished GS and increased glycogen synthase kinase-3-beta (GSK3β) expression in both sexes, but decreased phosphoprotein phosphatase-1 (PP1) levels only in males. Astrocyte GP content was elevated by IIH in male, but not female rats. Data reveal sex-dependent sensitivity of these enzyme proteins to lactate as caudal hindbrain repletion of this energy substrate fully or incompletely reversed hypoglycemic inhibition of GS and prevented hypoglycemic augmentation of GSK3β and GP in females and males, respectively. Sex dimorphic patterns of glycogen branching and debranching enzyme protein expression were also observed. Levels of the rate-limiting glycolytic enzyme, phosphofructokinase, were unaffected by IIH with or without lactate repletion. Current data demonstrating sex-dependent basal and hypoglycemic patterns of hindbrain astrocyte glycogen metabolic enzyme expression imply that glycogen volume and turnover during glucose sufficiency and shortage may vary accordingly.

  15. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming.

    PubMed

    Paiardini, Alessandro; Tramonti, Angela; Schirch, Doug; Guiducci, Giulia; di Salvo, Martino Luigi; Fiascarelli, Alessio; Giorgi, Alessandra; Maras, Bruno; Cutruzzolà, Francesca; Contestabile, Roberto

    2016-11-01

    The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP.

  16. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As.

    PubMed

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2014-09-01

    Cytochrome P450 (P450) enzymes mediate arachidonic acid (AA) oxidation to several biologically active metabolites. Our aims in this study were to characterize AA metabolism by different recombinant rat P450 enzymes and to identify new targets for modulating P450-AA metabolism in vivo. A liquid chromatography-mass spectrometry method was developed and validated for the simultaneous measurements of AA and 15 of its P450 metabolites. CYP1A1, CYP1A2, CYP2B1, CYP2C6, and CYP2C11 were found to metabolize AA with high catalytic activity, and CYP2A1, CYP2C13, CYP2D1, CYP2E1, and CYP3A1 had lower activity. CYP1A1 and CYP1A2 produced ω-1→4 hydroxyeicosatetraenoic acids (HETEs) as 88.7 and 62.7%, respectively, of the total metabolites formed. CYP2C11 produced epoxyeicosatrienoic acids (EETs) as 61.3%, and CYP2C6 produced midchain HETEs and EETs as 48.3 and 29.4%, respectively, of the total metabolites formed. The formation of CYP1A1, CYP1A2, CYP2C6, and CYP2C11 major metabolites followed an atypical kinetic profile of substrate inhibition. CYP1As inhibition by α-naphthoflavone or anti-CYP1As antibodies significantly reduced ω-1→4 HETE formation in the lungs and liver, whereas CYP1As induction by 3-methylcholanthrene resulted in a significant increase in ω-1→4 HETEs formation in the heart, lungs, kidney, and livers by 370, 646, 532, and 848%, respectively. In conclusion, our results suggest that CYP1As and CYP2Cs are major players in the metabolism of AA. The significant contribution of CYP1As to AA metabolism and their strong inducibility suggest their possible use as targets for the prevention and treatment of several diseases.

  17. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  18. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) IN THE AGING MALE FISHER RAT

    EPA Science Inventory

    Detoxification and elimination of xenobiotics is a major function of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of XMEs, in part, determines the fate of the...

  19. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner.

    PubMed

    Sachdeva, Gairik; Garg, Abhishek; Godding, David; Way, Jeffrey C; Silver, Pamela A

    2014-08-01

    Co-localization of biochemical processes plays a key role in the directional control of metabolic fluxes toward specific products in cells. Here, we employ in vivo scaffolds made of RNA that can bind engineered proteins fused to specific RNA binding domains. This allows proteins to be co-localized on RNA scaffolds inside living Escherichia coli. We assembled a library of eight aptamers and corresponding RNA binding domains fused to partial fragments of fluorescent proteins. New scaffold designs could co-localize split green fluorescent protein fragments to produce activity as measured by cell-based fluorescence. The scaffolds consisted of either single bivalent RNAs or RNAs designed to polymerize in one or two dimensions. The new scaffolds were used to increase metabolic output from a two-enzyme pentadecane production pathway that contains a fatty aldehyde intermediate, as well as three and four enzymes in the succinate production pathway. Pentadecane synthesis depended on the geometry of enzymes on the scaffold, as determined through systematic reorientation of the acyl-ACP reductase fusion by rotation via addition of base pairs to its cognate RNA aptamer. Together, these data suggest that intra-cellular scaffolding of enzymatic reactions may enhance the direct channeling of a variety of substrates.

  20. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  1. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia.

    PubMed

    He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong

    2015-08-25

    Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.

  2. Identification of the rat liver cytochrome P450 enzymes involved in the metabolism of the calcium channel blocker dipfluzine hydrochloride.

    PubMed

    Guo, Wei; Shi, Xiaowei; Wang, Wei; Zhang, Weili; Li, Junxia

    2014-11-01

    This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug-drug interactions when Dip is coadministered with other drugs.

  3. Variation in metabolic enzyme activity of persistent Haemophilus influenzae in respiratory tracts of patients with cystic fibrosis.

    PubMed

    Möller, L V; Grasselier, H; Dankert, J; van Alphen, L

    1996-08-01

    Haemophilus influenzae organisms were isolated from sputum specimens prospectively collected from 40 patients with cystic fibrosis during 2 years to study variations in the metabolic enzyme activities of persistent H. influenzae strains as determined by biotyping. In total, 97 distinct H. influenzae strains without variations in their major outer membrane protein (MOMP) patterns and 73 MOMP variants derived from 30 of these distinct strains were obtained. Twelve distinct strains and 42 MOMP variant strains were isolated at multiple time points during the study period, indicating the persistence of these strains. Among the 54 persistent H. influenzae strains, 22 (41%) strains with stable MOMP compositions showed random variations in biotypes. In 39 of 103 (38%) H. influenzae strains, biotype changes coincided with MOMP variations. Biotype variations were the result of both the loss and the acquisition of enzyme activities. The results of the study indicate that changes in metabolic enzyme activity occur randomly during the persistence of H. influenzae organisms in cystic fibrosis patients, irrespective of MOMP variations.

  4. Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage.

    PubMed

    Zhu, Zhu; Liu, Ruiling; Li, Boqiang; Tian, Shiping

    2013-12-15

    Sugars are essential contributors to fruit flavour. Controlled atmosphere (CA) storage has been proved to be beneficial for maintaining harvested fruit quality. To explore regulatory mechanism of sugar metabolism in fruit stored in CA condition, we cloned several genes, encoding key enzymes, involved in sugar metabolism in apple fruit, and analyzed sugar contents, along with gene expression and enzyme activities in fruits stored in air and CA. The results indicated that CA could maintain higher contents of sugars, including sucrose, fructose and glucose. Expression levels of key genes, such as sucrose synthase (SS), sucrose phosphate synthase (SPS), fructokinase (FK) and hexokinase (HK), were shown to be correlated with the corresponding enzyme activities. We found that activities of neutral invertase (NI), vacuolar invertase (VI), FK and HK were inhibited, but SPS activity was promoted in apple fruit stored in CA, suggesting that CA storage could enhance sucrose synthesis and delay hydrolysis of sucrose and hexose. These findings provided molecular evidence to explain why higher sugar levels in harvested fruit are maintained under CA storage.

  5. Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of Arabidopsis Flavonoid Mutants with Maize Genes1

    PubMed Central

    Dong, Xiaoyun; Braun, Edward L.; Grotewold, Erich

    2001-01-01

    Mutations in the transparent testa (tt) loci abolish pigment production in Arabidopsis seed coats. The TT4, TT5, and TT3 loci encode chalcone synthase, chalcone isomerase, and dihydroflavonol 4-reductase, respectively, which are essential for anthocyanin accumulation and may form a macromolecular complex. Here, we show that the products of the maize (Zea mays) C2, CHI1, and A1 genes complement Arabidopsis tt4, tt5, and tt3 mutants, restoring the ability of these mutants to accumulate pigments in seed coats and seedlings. Overexpression of the maize genes in wild-type Arabidopsis seedlings does not result in increased anthocyanin accumulation, suggesting that the steps catalyzed by these enzymes are not rate limiting in the conditions assayed. The expression of the maize A1 gene in the flavonoid 3′ hydroxylase Arabidopsis tt7 mutant resulted in an increased accumulation of pelargonidin. We conclude that enzymes involved in secondary metabolism can be functionally exchangeable between plants separated by large evolutionary distances. This is in sharp contrast to the notion that the more relaxed selective constrains to which secondary metabolic pathways are subjected is responsible for the rapid divergence of the corresponding enzymes. PMID:11553733

  6. Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function.

    PubMed

    Stingl, J C; Brockmöller, J; Viviani, R

    2013-03-01

    Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.

  7. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site.

    PubMed

    Johnsen, Anders R; De Lipthay, Julia R; Reichenberg, Fredrik; Sørensen, Søren J; Andersen, Ole; Christensen, Peter; Binderup, Mona-lise; Jacobsen, Carsten S

    2006-05-15

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of 14C-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled at greater distances (12-24 m) contained only background levels of PAHs. The total bacterial populations (CFU and numbers of 16S rDNA genes) were similar for all soil samples, whereas the microbial degrader populations (culturable PAH degraders and numbers of PAH dioxygenase genes) were most abundant in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot particles. The increased PAH level close to the pavement was reflected in slightly increased mutagenic activity (1 m, 0.32 +/- 0.08 revertants g(-1) soil; background/ 24 m: 0.08 +/- 0.04), determined by the Salmonella/ microsome assay of total extractable PAHs activated by liver enzymes. The potential for lighter molecular weight PAH degradation in combination with low bioaccessibility of heavier PAHs is proposed to lead to a likely increase in concentration of heavier PAHs over time. These residues are, however, likely to be of low biological significance.

  8. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota.

    PubMed

    Benjdia, Alhosna; Berteau, Olivier

    2016-02-01

    Humans live in a permanent association with bacterial populations collectively called the microbiota. In the last 10 years, major advances in our knowledge of the microbiota have shed light on its critical roles in human physiology. The microbiota has also been shown to be a major factor in numerous pathologies including obesity or inflammatory disorders. Despite tremendous progresses, our understanding of the key functions of the human microbiota and the molecular basis of its interactions with the host remain still poorly understood. Among the factors involved in host colonization, two enzymes families, sulfatases and radical S-adenosyl-L-methionine enzymes, have recently emerged as key enzymes.

  9. Polycyclic aromatic hydrocarbons (PAHs) in livers of California sea otters.

    PubMed

    Kannan, Kurunthachalam; Perrotta, Emily

    2008-03-01

    Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in livers of 81 adult female sea otters collected along the California coast in 1992-2002. Concentrations of summation operatorPAHs in livers of sea otters were in the range of 588-17400ng/g lipid wt (mean: 3880ng/g, lipid wt). On a wet weight basis, the concentrations ranged from 17 to 1430ng/g (mean: 146ng/g). Overall, di- and tri-cyclic aromatic hydrocarbons, namely, naphthalene, fluorene, phenanthrene/anthracene, and acenaphthylene, were the predominant compounds found in the livers. Although petroleum-related sources appear to be the major contributors to PAH exposure in sea otters, exposure sources varied by geographical sub-regions. Dibenz[a,h]anthracene was found to comprise a significant proportion of the summation operatorPAH concentrations in sea otters from the northern sub-region of the study area. No significant difference existed in the concentrations of summation operatorPAHs among sea otters that died from infectious diseases, emaciation, and noninfectious causes. Concentrations of summation operatorPAHs in livers of sea otters decreased significantly from 1992 to 2002. Because of the rapid metabolism of PAHs in marine mammals such as sea otters, further studies examining the association of PAHs with health effects should determine hydroxylated metabolites in livers.

  10. Enzymes of heme metabolism in the kidney: regulation by trace metals which do not form heme complexes.

    PubMed

    Maines, M D; Kappas, A

    1977-11-01

    The in vivo regulation by metal ions of the enzymes of heme metabolism in kidney-particularly of ALAS, the rate-limiting enzyme in heine formation- was investigated. Ni(2+) and Pt(4+), metals which do not enzymatically form metalloporphyrins, were found to regulate ALAS in kidney as they do in liver. The pattern of this regulation was generally similar to that observed with heme and metal ions in liver, i.e., a late increase in enzyme activity after an early period in which ALAS activity was unaltered or inhibited. The metals did not interact with the enzyme in vitro to alter its activity. In this study no direct reciprocal relationship between ALAS activity and total cellular heine content was demonstrated. The metal ions, particularly Pt(4+), also altered the activity of other enzymes of heme biosynthesis in kidney. Pt(4+) severely inhibited the activity of ALAD and UROS. Ni(2+) and Pt(4+) were potent inducers of heme oxygenase, the initial and rate-limiting enzyme in heine degradation. It is proposed that the physiological regulation of ALAS is mediated through the action of metal ions, rather than by the cellular content of heine, and that the regulation of ALAS by heine reflects the action of the central metal ion of heme rather than that of the entire metalloporphyrin complex. In this proposed mechanism for metal ion regulation of ALAS, the tetrapyrrole moiety of heine is considered to function principally as an efficient carrier of metal to the regulatory site for ALAS production, inasmuch as the tetrapyrrole ring itself has been shown in earlier studies not to have any effect on ALAS activity. The production of heine oxygenase is believed to be similarly regulated.

  11. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects

    PubMed Central

    Russell, Robyn J; Scott, Colin; Jackson, Colin J; Pandey, Rinku; Pandey, Gunjan; Taylor, Matthew C; Coppin, Christopher W; Liu, Jian-Wei; Oakeshott, John G

    2011-01-01

    Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from ‘promiscuous’ activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments. PMID:25567970

  12. Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development: perspectives of the I-PWG.

    PubMed

    Brian, William; Tremaine, Larry M; Arefayene, Million; de Kanter, Ruben; Evers, Raymond; Guo, Yingying; Kalabus, James; Lin, Wen; Loi, Cho-Ming; Xiao, Guangqing

    2016-04-01

    Genetic variants of drug metabolism enzymes and transporters can result in high pharmacokinetic and pharmacodynamic variability, unwanted characteristics of efficacious and safe drugs. Ideally, the contributions of these enzymes and transporters to drug disposition can be predicted from in vitro experiments and in silico modeling in discovery or early development, and then be utilized during clinical development. Recently, regulatory agencies have provided guidance on the preclinical investigation of pharmacogenetics, for application to clinical drug development. This white paper summarizes the results of an industry survey conducted by the Industry Pharmacogenomics Working Group on current practice and challenges with using in vitro systems and in silico models to understand pharmacogenetic causes of variability in drug disposition.

  13. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    PubMed Central

    Romagnoli, G; Verhoeven, M D; Mans, R; Fleury Rey, Y; Bel-Rhlid, R; van den Broek, M; Maleki Seifar, R; Ten Pierick, A; Thompson, M; Müller, V; Wahl, S A; Pronk, J T; Daran, J M

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and 13C-15N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic 13C15N-enrichment in γ-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1Δ mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi. PMID:24912400

  14. Effect of commercially available green and black tea beverages on drug-metabolizing enzymes and oxidative stress in Wistar rats.

    PubMed

    Yao, Hsien-Tsung; Hsu, Ya-Ru; Lii, Chong-Kuei; Lin, Ai-Hsuan; Chang, Keng-Hao; Yang, Hui-Ting

    2014-08-01

    The effect of commercially available green tea (GT) and black tea (BT) drinks on drug metabolizing enzymes (DME) and oxidative stress in rats was investigated. Male Wistar rats were fed a laboratory chow diet and GT or BT drink for 5 weeks. Control rats received de-ionized water instead of the tea drinks. Rats received the GT and BT drinks treatment for 5 weeks showed a significant increase in hepatic microsomal cytochrome P450 (CYP) 1A1 and CYP1A2, and a significant decrease in CYP2C, CYP2E1 and CYP3A enzyme activities. Results of immunoblot analyses of enzyme protein contents showed the same trend with enzyme activity. Significant increase in UDP-glucuronosyltransferase activity and reduced glutathione content in liver and lungs were observed in rats treated with both tea drinks. A lower lipid peroxide level in lungs was observed in rats treated with GT drink. Electrophoretic mobility shift assay revealed that both tea drinks decreased pregnane X receptor binding to DNA and increased nuclear factor-erythroid 2 p45-related factor 2 binding to DNA. These results suggest that feeding of both tea drinks to rats modulated DME activities and reduced oxidative stress in liver and lungs. GT drink is more effective on reducing oxidative stress than BT drink.

  15. A comparative study on the metabolism of Epimedium koreanum Nakai-prenylated flavonoids in rats by an intestinal enzyme (lactase phlorizin hydrolase) and intestinal flora.

    PubMed

    Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan

    2013-12-24

    The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.

  16. Determination of cytochrome P450 enzymes involved in the metabolism of (-)-terpinen-4-ol by human liver microsomes.

    PubMed

    Miyazawa, M; Haigou, R

    2011-12-01

    The in vitro metabolism of (-)-terpinen-4-ol was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry. (-)-Terpinen-4-ol was found to be oxidized to (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol, major metabolic product by human liver microsomal P450 enzymes. The formation of metabolites of (-)-terpinen-4-ol was determined by relative abundance of mass fragments and retention times on GC. CYP2A6 in human liver microsomes was a major enzyme involved in the oxidation of (-)-terpinen-4-ol by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 had the highest activity for oxida