Science.gov

Sample records for pah

  1. Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, shockingly large molecules by early interstellar chemistry standards, is very strong.

  2. Polynuclear Aromatic Hydrocarbons (PAH).

    DTIC Science & Technology

    1986-07-01

    above expressways has been sampled and found to contain as much as several hundred ng/m3 of PAH. Fly ash from incinerators may contain as much as 1000 ng...Occupational Health Concerns of PAH in the Flying Community: In the flying community those who work directly with jet engines and their waste products are...movement may be slowed by the addition of sorptive materials If necessary (charcoal, zeolite ). 3. Proximity to Groundwater: This factor decides the

  3. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  4. Bioavailability of PAHs: effects of soot carbon and PAH source.

    PubMed

    Thorsen, Waverly A; Cope, W Gregory; Shea, Damian

    2004-04-01

    The bioavailability of 38 individual polycyclic aromatic hydrocarbon (PAH) compounds was determined through calculation of biota-sediment-accumulation factors (BSAF). BSAF values were calculated from individual PAH concentrations in freshwater mussel, marine clam, and sediment obtained from field and laboratory bioaccumulation studies. Sediment that was amended with different types of soot carbon (SC) was used in some of the bioaccumulation experiments. BSAF values for petrogenic PAH were greater than those for pyrogenic PAH (e.g., 1.57 +/- 0.53 vs 0.25 +/- 0.23, respectively), indicating that petrogenic PAH are more bioavailable than pyrogenic PAH (p < 0.05). This trend was consistent among marine and freshwater sites. Increased SC content of sediment resulted in a linear decrease in the bioavailability of pyrogenic PAHs (r2 = 0.85). The effect of increasing SC content on petrogenic PAH was negligible. SC was considered as an additional sorptive phase when calculating BSAF values, and using PAH-SC partition coefficients from the literature, we obtained unreasonably large BSAF values for all petrogenic PAH and some pyrogenic PAH. This led us to conclude that a quantitative model to assess bioavailability through a combination of organic carbon and soot carbon sorption is not applicable among field sites with a wide range of soot carbon fractions and PAH sources, at least given our current knowledge of PAH-SC partitioning. Our data offer evidence that many factors including analysis of a full suite of PAH analytes, PAH hydrophobicity, sediment organic carbon content, sediment soot carbon content, and PAH source are importantto adequately assess PAH bioavailability in the environment.

  5. Toxicokinetics of PAHs in Hexagenia

    USGS Publications Warehouse

    Stehly, Guy R.; Landrum, Peter F.; Henry, Mary G.; Klemm, C.

    1990-01-01

    The clearance of oxygen from water is inversely and linearly related to the weight of the mayfly nymphs, but oxygen clearances were always much less than the uptake clearances of the PAHs. The high PAH uptake clearance compared to oxygen clearance implies a greater surface area or efficiency for PAH accumulation from water.

  6. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    PubMed Central

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-01-01

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp.) and P3 (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria. PMID:27517944

  7. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.

    PubMed

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-08-09

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  8. Infrared emission from interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-IR absorption and Raman spectra of polycyclic aromatic hydrocarbons (PAHs) and the mechanisms determining them are reviewed, and the implications for observations of similar emission spectra in interstellar clouds are considered. Topics addressed include the relationship between PAHs and amorphous C, the vibrational spectroscopy of PAHs, the molecular emission process, molecular anharmonicity, and the vibrational quasi-continuum. Extensive graphs, diagrams, and sample spectra are provided, and the interstellar emission bands are attributed to PAHs with 20-30 C atoms on the basis of the observed 3.3/3.4-micron intensity ratios.

  9. Deuterated PAHs in Space

    NASA Technical Reports Server (NTRS)

    Peeters, Els; Allamandola, Louis J.; Bauschlicher, Charles W., Jr.; Hudgins, Douglas M.; Sandford, Scott A.; Tielens, A. G. G. M.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The cosmic deuterium to hydrogen (D/H) ratio is of key importance from a cosmological and stellar evolution perspective since deuterium originates from big-bang nucleosynthesis and is destroyed by stellar thermonuclear reactions. Further, from the interstellar perspective, the galactic distribution of deuterium and the D/H ratio among various molecular species also traces interstellar chemical evolution. Over the past few decades, radio observations have enabled the study of a handful of small, deuterated interstellar species. However, the number of deuterated species detected and environments probed are limited, raising issues of selection effects that hamper generalization and applications to other environments. Infrared spectroscopy of the interstellar medium offers a distinct advantage in this regard as the extent of deuteration of entire chemical families, rather than one species, can be probed. These observations require spaceborne telescopes because the molecular vibrations involving D which produce the strongest IR bands fall in spectral regions which are obscured by terrestrial CO2 absorption. Here we report the tentative detection of the C-D stretching vibration from deuterated interstellar polycyclic aromatic hydrocarbons in the Orion nebula. Since the PAH emission features are widespread and probe many different types of cosmic environments, follow up observations of deuterated PAHs will provide fundamental, far reaching new insight and perspective into galactic and extragalactic processes.

  10. Removing PAH`s with cells on fibers

    SciTech Connect

    Clyde, R.

    1996-12-31

    There are over 1,500 sites contaminated with polycyclic aromatic hydrocarbons from coal gas plants. White rot fungi degrade PAH`s in soil, but the problem is to supply oxygen needed for growth of the fungus. When old cardboard boxes are buried with the fungus, oxygen is entrapped in the corrugations. A method for growing the fungus quickly is also described. Pseudomonade also degrade PAH and several strains of this bacterium have been grown on fibers. The fibers have high area, and when Celite is entrapped in the fibers, more area is provided.

  11. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction.

    PubMed

    Zhang, Juan; Fan, Shu-Kai

    2016-12-15

    Polycyclic aromatic hydrocarbon (PAH) speciation in soils and the relationship between PAH speciation in soils and the accumulation of PAHs in vegetables have rarely been reported. In this study, the organic solvent extractable PAHs in soils, PAHs that bind to endogenetic soil humus, soil properties, and PAHs in B. chinensis were comprehensively studied. Mobile fulvic acid (FA) and crude humin preferred adsorbing 3-ring and 4-ring PAHs whereas stable humic acid (HA) preferred adsorbing 5-ring PAHs. The PAH speciation in soils was in the order of organic solvent extractable PAHs (59.08%)>humin-bound PAHs (26.20%)>FA-bound PAHs (10.03%)>HA-bound PAHs (4.68%). The relative amounts of FA-bound PAHs versus HA-bound PAHs were linked to soil type. FA-bound PAHs and humin mineral-bound PAHs had a positive correlation with fine particles and were preferentially accumulated in B. chinensis. Other speciation was preferentially retained in soils and adsorbed onto the surface of and within coarse particles. The PAHs in vegetables were ideally forecasted using solvent extractable PAHs, FA-bound PAHs, and soil properties (silt, moisture, and pH). The FA-bound PAHs were more soluble in water and can be easily taken up by plants together with water and nutrients.

  12. Analysis of serum PAH`s and PAH adducts by LC/MS

    SciTech Connect

    McClure, P.C.; Barr, J.R.; Maggio, V.L.

    1995-12-31

    Polycyclic aromatic hydrocarbons are an important class of chemical carcinogens. Benzo[a]pyrene is the most extensively studied and best understood carcinogenic PAH It is believed that Benzo[a]pyrene is metabolized in vitro to the diol epoxide, Benzo[a]pyrene-7,8-dihydrodiol-9, 10-epoxide which then can react with various nucleophilic centers on DNA. The major alkylation product appears to be the reaction of the Benzo[a]pyrene diol epoxide with the N{sup 2} position of guanine sites on DNA. Methods that can measure exposure and biological response to carcinogens such as PAH`s are needed. Human Blood can be separated into plasma, lymphocytes, and red blood cells. The plasma should contain native PAH`s which may yield some useful information about recent exposure. The red blood cells contain hemoglobin and adducts of PAH`s. Hemoglobin has an average lifetime of 120 days so quantification of hemoglobin adducts should give an average of a persons exposure over four months. Also, the electrophilic metabolites that react with hemoglobin to form adducts are the same metabolites that form DNA adducts which can lead to mutations and cancer. Lymphocytes contain DNA and therefore DNA adducts. DNA adducts can be repaired by a series of enzymes so quantification of these adducts will only yield information about recent or non-repairable adducts. DNA adduct formation is believed to be the first important step in chemical carcinogenesis so quantification of these adducts should yield some information on exposure and a great deal of important data on biological response and risk from specific PAH`s.

  13. PAH nomenclature guide. First edition

    SciTech Connect

    Loening, K.; Merritt, J.; Later, D.; Wright, W.

    1990-01-01

    Research relating to polynuclear aromatic hydrocarbons (PAH) is a multidisciplinary activity carried out by scientists not familiar with the intricacies of chemical nomenclature. The PAH nomenclature Guide is designed to promote good communication in this field by giving instruction on how to name relevant compounds properly, by alerting the reader to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Biochemistry (IUB), by noting the practices of Chemical Abstracts Service, and by identifying other names in use. This book concentrates on the PAH themselves, their nitrogen, oxygen and sulfur analogs, including functional derivatives, the metabolic products of PAH, and enzymes. For each topic references are provided to the original nomenclature recommendations to enable the reader to check out further details.

  14. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  15. PAHs in Translucent Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  16. IR Spectroscopy of PAHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Bernstein, Max; Mattioda, Andrew; Sandford, Scott

    2007-05-01

    Interstellar PAHs are likely to be a component of the ice mantles that form on dust grains in dense molecular clouds. PAHs frozen in grain mantles will produce IR absorption bands, not IR emission features. A couple of very weak absorption features in ground based spectra of a few objects embedded in dense clouds may be due to PAHs. Additionally spaceborne observations in the 5 to 8 ?m region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It has not been possible to properly evaluate the contribution of PAH bands to these IR observations because the laboratory absorption spectra of PAHs condensed in realistic interstellar mixed-molecular ice analogs is lacking. This experimental data is necessary to interpret observations because, in ice mantles, the interaction of PAHs with the surrounding molecules effects PAH IR band positions, widths, profiles, and intrinsic strengths. Furthermore, PAHs are readily ionized in pure H2O ice, further altering the PAH spectrum. This laboratory proposal aims to remedy the situation by studying the IR spectroscopy of PAHs frozen in laboratory ice analogs that realistically reflect the composition of the interstellar ices observed in dense clouds. The purpose is to provide laboratory spectra which can be used to interpret IR observations. We will measure the spectra of these mixed molecular ices containing PAHs before and after ionization and determine the intrinsic band strengths of neutral and ionized PAHs in these ice analogs. This will enable a quantitative assessment of the role that PAHs can play in determining the 5-8 ?m spectrum of dense clouds and will directly address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PAHs be detected in dense clouds? 2- Are PAH ions components of interstellar ice?

  17. Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration

    NASA Astrophysics Data System (ADS)

    Kamil, N. A. F. M.; Talib, S. A.

    2016-07-01

    Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.

  18. Biodegradation of PAH`s in sediment-slurry processes

    SciTech Connect

    Hughes, J.B.; Beckles, D.; Chandra, S.

    1995-12-31

    The focus of this research was to examine biodegradation of polynuclear aromatic hydrocarbons (PAHs) in lab scale slurry reactors. The studies summarized in this paper focused on the rate and extent of contaminant release from the sediments, oxygen demand of anaerobic sediments, and the rate and extent of PAH biodegradation achieved. Mass balances were used in all cases. The studies identified several factors which may influence the design or operation of bioreactors used for sediment remediation. Mixing had the greatest effect on the rate and extent of contaminant release; solids loading and aeration had little or no effect in mixed reactors. In unmixed reactors, aerated systems showed faster rates of contaminant release than unaerated systems, indicating that the aeration process itself provides some degree of mixing. The maximum extent of mineralization appeared to be reached within five days in mixed systems; significantly lower mineralization was seen in reactors with insufficient mixing.

  19. PAH emission from the industrial boilers.

    PubMed

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler.

  20. PAH EMISSION AT THE BRIGHT LOCATIONS OF PDRs: THE grandPAH HYPOTHESIS

    SciTech Connect

    Andrews, H.; Tielens, A. G. G. M.; Boersma, C.; Allamandola, L. J.; Werner, M. W.; Livingston, J. E-mail: Christiaan.Boersma@nasa.gov

    2015-07-01

    The polycyclic aromatic hydrocarbon (PAH) emission observed in the Spitzer Infrared Spectrograph spectra of bright mid-IR locations of NGC 7023, NGC 2023, and NGC 1333 was analyzed. These objects show large variations in PAH band ratios when studied through spectral mapping. Nevertheless, the mid-IR spectra at these bright spots show a remarkably similar PAH emission. We used the NASA Ames PAH IR Spectroscopic Database to fit the observations and analyze the derived PAH populations. Our results show that PAH emission in the 5–15 μm range appears to be rather insensitive to variations of the radiation field. Similar PAH populations of neutral small to medium-sized PAHs (∼50%), with ionized species contributing in slightly less than 50%, provide very good fits. Analyzing the degeneracy of the results shows that subtle (but intrinsic) variations in the emission properties of individual PAHs lead to observable differences in the resulting spectra. On top of this, we found that variations of <30% in the PAH abundances would lead to noticeable spectral differences between the three photodissociation regions (PDRs). Therefore, PAH populations must be remarkably similar at these different lines of sight. To account for this, we suggest the concept of grandPAHs as a unique mixture of the most stable PAHs emitting at these spots. Using NGC 7023 as an example, the grandPAHs refer to the robust PAH population that results from the intense processing of PAHs at the border limit between the PDR and the molecular cloud, where, due to the UV radiation that destroys the PAH population, the abundance of PAHs starts decreasing as we move toward the star.

  1. PAH phytoremediation: rhizodegradation or rhizoattenuation?

    PubMed

    Ouvrard, S; Leglize, P; Morel, J L

    2014-01-01

    Dealing with soil contaminated with persistent organic pollutants (POP) is an increasing concern amplified by both regulatory constraints and the dramatic impact of human activities on the soil resource. The most used management options are treatments which totally eradicate the toxic compounds targeted. When possible, environmental-friendly processes should be used, and recent years have seen the emergence of green technologies using biological energies involving microorganisms (bioremediation) and plants (phytoremediation). Research has focused on phytoremediation and many have presented this technology as the process ideally combining efficiency, low cost and environmental acceptance. However, the applicability of phytoremediation on soils contaminated by bio-recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAH), has not yet proved as successful as expected. We propose here a review and discussion of the overall question of PAH status in soil and their potential for treatment. The limits and applicability of bioremediation technologies are discussed, and the specific beneficial effect of plants is objectively evaluated with a special interest to processes which lead to rhizoattenuation. Given the PAH high affinity to soil organic matter, availability is the main limitation to phytoremediation. In this context, bioavailability quantification remains an issue as well as the characterization of the recalcitrant fraction.

  2. Carcinogenic PAH in waterpipe charcoal products

    PubMed Central

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  3. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Barker, J. R.; Cohen, M.

    1987-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  4. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  5. Toxicity evaluation of PAH mixtures using Microtox

    SciTech Connect

    Thompkins, J.; Guthrie, E.; Pfaender, F.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAH) are produced from both natural and anthropogenic combustion processes. PAHs are known to be toxic and carcinogenic, are prevalent at many hazardous waste sites, and pose a potential risk to both ecological and human health. To date, few researchers have assessed the toxicity of polycyclic aromatic hydrocarbon (PAH) mixtures. The toxicity of chrysene, anthracene, pyrene, phenanthrene, fluoranthrene, acenaphthene, fluorene, and naphthalene were evaluated using Microtox, and acute toxicity assay that uses bioluminescent bacteria, Photobacterium phosphoreum, to measure toxicity. In this study, the toxicities of 2, 3, and 4 ring PAHs were determined for individual compounds. Synergistic or additive effects of PAH mixtures was assessed by comparing the toxicity of mixtures with that of pure compounds. Each PAH or mixture was evaluated at their respective water solubility concentrations, For individual PAHs tested, the toxicity of PAHs is inversely related to water solubility. Mixtures of two and three PAHs with disparate water solubilities resulted in synergistic interactions. Antagonistic interactions, a decrease in toxicity, were observed for mixtures of similar water solubilities.

  6. Bacterial biodegradation of polycyclic aromatic hydrocarbons (PAH) and potential effects of surfactants on PAH bioavailability

    SciTech Connect

    Aitken, M.D.; Grimberg, S.J.; Nagel, J.; Nagel, R.D.; Stringfellow, W.T.

    1996-02-01

    The purposes of this project were to evaluate whether indigenous microorganisms from polycyclic aromatic hydrocarbons (PAH)-contaminated soils produce surfactants (biosurfactants) as a means of enhancing the bioavailability of PAH; to improve the understanding of the general physiology of a diverse group of PAH-degrading bacteria; and to study in general how surfactants influence the biodegradation of hydrophobic chemicals.

  7. Occupational PAH Exposures during Prescribed Pile Burns

    PubMed Central

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  8. PAHS IN THE LAKE MICHIGAN AQUATIC ECOSYSTEM

    EPA Science Inventory

    PAHs in the Lake Michigan Aquatic Ecosystem. Fernandez, JD*, Burkhard, LP, Cook, PM, Nichols, JW, Mid-Continent Ecology Division, U.S. EPA, Duluth MN. In this study, we are investigating the accumulation of PAHs in the Lake Michigan food web. Focusing on EPA's 16 "Priority Po...

  9. Pavement Sealcoat, PAHs, and the Environment

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.; Mahler, B. J.

    2011-12-01

    Recent research by the USGS has identified coal-tar-based pavement sealants as a major source of polycyclic aromatic hydrocarbons (PAHs) to the environment. Coal-tar-based sealcoat is commonly used to coat parking lots and driveways and is typically is 20-35 percent coal tar pitch, a known human carcinogen. Several PAHs are suspected mutagens, carcinogens, and (or) teratogens. In the central and eastern U.S. where the coal-tar-based sealants dominate use, sum-PAH concentration in dust particles from sealcoated pavement is about 1,000 times higher than in the western U.S. where the asphalt-based formulation is prevalent. Source apportionment modeling indicates that particles from sealcoated pavement are contributing the majority of the PAHs to recent lake sediment in 35 U.S. urban lakes and are the primary cause of upward trends in PAHs in many of these lakes. Mobile particles from parking lots with coal-tar-based sealcoat are tracked indoors, resulting in elevated PAH concentrations in house dust. In a recently completed study, volatilization fluxes of PAHs from sealcoated pavement were estimated to be about 60 times fluxes from unsealed pavement. Using a wide variety of methods, the author and colleagues have shown that coal-tar-based sealcoat is a major source of PAHs to the urban environment and might pose risks to aquatic life and human health.

  10. Airborne and laboratory studies of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Hudgins, D. M.; Witteborn, Fred C.

    1995-01-01

    A brief history of the observations which have led to the hypothesis that polycyclic aromatic hydrocarbons (PAH's) are the carriers of the widespread interstellar emission features near 3050, 1615, '1300' and 890 cm(exp -1) (3.29, 6.2, '7.7', and 11.2 mu m) is presented. The central role of airborne spectroscopy is stressed. The principal reason for the assignment to PAH's was the resemblance of the interstellar emission spectrum to the laboratory absorption spectra of PAH's and PAH-like materials. Since precious little information was available on the properties of PAH's in the forms that are thought to exist under interstellar conditions -isolated and ionized in the emission zones, with the smallest PAH's being dehydrogenated- there was a need for a spectral data base on PAH's taken in these states. Here, the relevant infrared spectroscopic properties of PAH's will be reviewed. These laboratory spectra show that relative band intensities are severely altered and that band frequencies shift. It is shown that these new data alleviate several of the spectroscopic criticisms previously leveled at the hypothesis.

  11. Desorption of polycyclic aromatic hydrocarbons (PAH`s) from calcite and quartz sediments to seawater

    SciTech Connect

    Sutton, P.L.; Van Vleet, E.S.

    1996-12-31

    Polycyclic aromatic hydrocarbons (PAH`s) are ubiquitous hydrophobic organic pollutants in the marine environment. Many of the PAM`s are classified as possible carcinogens or mutagens, therefore they are of considerable concern to human and environmental health. The highest concentrations are found in coastal regions due to anthropogenic activities including oil spills, tanker operations, incomplete fossil fuel combustion and runoff. The sources and distribution of PAM`s in sediments are fairly well known, while the fate and transport of PAH`s in the marine environment are less known. Desorption is an important factor influencing the fate and transport of hydrophobic molecules at the seawater/sediment interface. The desorption of PAH`s from contaminated marine sediments to the water column/pore water affects the availability of the pollutant to biota. The sorption of PAH`s is determined in part by the organic carbon content of the sediments. The presence of dissolved organic carbon (DOC) in the water column may also influence sorption of hydrophobic molecules. DOC may play an important role in the fate and transport of PAH`s in coastal regions where DOC concentrations are highest. This study presents the results of the desorption of nine PAHs from sediments to seawater. Factors observed included carbon content of sediments, sediment mineralogy, fulvic acid addition to seawater and dissolved organic carbon in seawater.

  12. Infrared fluorescence from PAHs in the laboratory

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.

    1989-01-01

    Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.

  13. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  14. Urban sprawl leaves its PAH signature

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.; Furlong, E.T.

    2000-01-01

    The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by previous coring studies that reported decreasing concentrations of PAHs after reaching highs in the 1950s. Concurrent with the increase in concentrations is a change in the assemblage of PAHs that indicates the increasing trends are driven by combustion sources. The increase in PAH concentrations tracks closely with increases in automobile use, even in watersheds that have not undergone substantial changes in urban land-use levels since the 1970s.The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by

  15. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  16. Amphibian responses to photoinduced toxicity of PAHs

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1995-12-31

    Amphibians are essential components of many ecosystems, yet little information exists on their sensitivity to environmental stressors. Recent evidence shows amphibian diversity is declining. Others have suggested this decline is a result of increasing ultraviolet (UV) light levels. Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in the aquatic environment and their toxicity is increased in the presence of UV light. Embryos of two frogs (Rana pipiens and Xenopus laevis) were exposed to a PAH, fluoranthene, to evaluate amphibian responses to this common contaminant in the presence of sunlight. Hatching rate and development were measured in field and laboratory exposures at multiple concentrations and varying UV intensities. Hatching rate was relatively unaffected, while newly hatched larvae were sensitive to low (ug/L) concentrations. Response was related to both PAH concentration and UV intensity. Results suggest that PAH contamination in the aquatic environment may contribute to declines in amphibian populations.

  17. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  18. Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers

    PubMed Central

    Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo

    2000-01-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347

  19. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers

    SciTech Connect

    Bastiaens, L.; Springael, D.; Wattiau, P.; Harms, H.; DeWachter, R.; Verachtert, H.; Diels, L.

    2000-05-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.

  20. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations.

    PubMed

    Bengtsson, Göran; Törneman, Niklas; De Lipthay, Julia R; Sørensen, Søren J

    2013-01-01

    We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.

  1. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish

    PubMed Central

    Elie, Marc R.; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M.; Gonnerman, Gregory D.; Stevens, Jan F.; Tanguay, Robert L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7, 12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 62 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  2. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  3. Developing strategies for PAH and TCE bioremediation

    SciTech Connect

    Mahaffey, W.R.; Nelson, M.; Kinsella, J. ); Compeau, G. )

    1991-10-01

    Bioremediation is the controlled use of microbes, commonly bacteria and fungi, to reclaim soil and water contaminated with substances that are deleterious to human health and the environment. The organisms used often naturally inhabit the polluted matrix; however, they may inhabit a different environment and be used as seed organisms because of their ability to degrade a specific class of substances. It is because of the wide diversity of microbial metabolic potential that bioremediation is possible. Polyaromatic hydrocarbons (PAHs) are organic compounds that are ubiquitous in the environment. They are present in fossil fuels and are formed during the incomplete combustion of organic material. PAHs exhibit low volatility and low aqueous solubility. As the molecular weight of these compounds increases, there is an exponential decrease in solubility and volatility. PAHs tend to adsorb onto soils and sediments because of their hydrophobic character, which is an intrinsic function of molecular size. The microbial degradation of individual PAHs by pure cultures and mixed populations occurs under a wide range of soil types and environmental conditions. Generally, the factors having the greatest influence on PAH biodegradation rates are soil moisture content, pH, inorganic nutrients present, PAH loading rates, initial PAH concentrations, and the presence of an acclimated microbial population. Feasibility studies are essential for developing a bioremediation strategy and are performed in a phased testing program that is designed to accomplish a number of objectives. These objectives include establishing an indigenous microbial population that will degrade specific contaminants, defining the rate-limiting factors for enhanced PAH degradation and the optimal treatment in terms of rates and cleanup levels attainable, and developing design parameters for field operations.

  4. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  5. PAH Emission in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Sloan, G. C.

    1996-01-01

    The emission from polycyclic aromatic hydrocarbons (PAH's) in the Orion Bar region is investigated using a combination of narrow-band imaging and long-slit spectroscopy. The goal was to study how the strength of the PAH bands vary with spatial position in this edge-on photo-dissociation region. The specific focus here is how these variations constrain the carrier of the 3.4 micron band.

  6. PAHFIT: Properties of PAH Emission

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Draine, Bruce

    2012-10-01

    PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

  7. PAH Spectroscopy: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew

    2016-01-01

    Since their discovery in the 1970's, astronomers, astrophysicists and astrochemists have been intrigued by the nearly ubiquitous unidentified infrared emission (UIR) bands. In the 1980's, investigators determined the most probably source of these emissions was a family of molecules known as Polycyclic Aromatic Hydrocarbons or simply PAHs. In order to better understand these interstellar IR features and utilize them as chemical probes of the cosmos, laboratory spectroscopists have spent the last three decades investigating the spectroscopy of PAHs under astrophysically relevant conditions. This presentation will discuss the similarities and differences in the spectroscopic properties of PAHs as one goes from the Far to Mid to Near infrared wavelength regions and probe the changes observed in PAH spectra as they go from neutral to ionized molecules suspended in an inert gas matrix, to PAHs in a water ice matrix and as a thin film. In selected instances, the experimental results will be compared to theoretical values. The presentation will conclude with a discussion on the future directions of PAH spectroscopy.

  8. Biomarkers of PAH exposure in fish

    SciTech Connect

    Lewis, J.; Robinson, R.; Solomon, K.; Hodson, P.; Rao, S.; Day, K.

    1995-12-31

    Many polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic, and some may cause reproductive toxicity in fish. The purpose of this study is to develop biomarkers of PAH effects on fathead minnows (P. promelas). Mesocosms will be treated with the wood preservative creosote (composition is ca. 80% as PAHs). The authors anticipate that metabolism of PAHs by fish will generate free radicals that damage DNA and cause liver tumors. Rainbow trout (RBT) (0. mykiss) and fathead minnows (FHM) will be exposed to a range of waterborne creosote concentrations below the LC,, values (5.66 mg/L for RBT and 5.97 mg/L for FHM). Fish liver, muscle, intestine, and bile will be removed to measure (1) PAH biotransformation (EROD activity and concentration of PAH metabolites in bile), (2) oxidative stress (retinoic acid, glutathione peroxidase, and lipid hydroperoxide levels), and (3) genotoxicity (micronucleus induction, DNA strand breaks, and DNA adducts). Biomarkers will be considered suitable for application when results are repeatable, show exposure dependency, and respond at sublethal concentrations typical of contaminated ecosystems.

  9. Infrared spectra of interstellar deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  10. PAHs in decaying Quercus ilex leaf litter: mutual effects on litter decomposition and PAH dynamics.

    PubMed

    De Nicola, F; Baldantoni, D; Alfani, A

    2014-11-01

    The investigation of the relationships between litter decomposition and polycyclic aromatic hydrocarbons (PAHs) is important to shed light not only on the effects of these pollutants on fundamental ecosystem processes, such as litter decomposition, but also on the degradation of these pollutants by soil microbial community. This allows to understand the effect of atmospheric PAH contamination on soil PAH content via litterfall. At this aim, we studied mass and PAH dynamics of Quercus ilex leaf litters collected from urban, industrial and remote sites, incubated in mesocosms under controlled conditions for 361d. The results highlighted a litter decomposition rate of leaves sampled in urban>industrial>remote sites; the faster decomposition of litter of the urban site is also related to the low C/N ratio of the leaves. The PAHs showed concentrations at the beginning of the incubation of 887, 650 and 143 ng g(-1)d.w., respectively in leaf litters from urban, industrial and remote sites. The PAHs in litter decreased along the time, with the same trend observed for mass litter, showing the highest decrease at 361 d for the urban leaf litter. Anyway, PAH dynamics in all the litters exhibited two phases of loss, separated by a PAH increase observed at 246 d and mainly linked to benzo[e]pyrene.

  11. Performance of PAHs emission from bituminous coal combustion.

    PubMed

    Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa

    2004-12-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  12. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities

    NASA Astrophysics Data System (ADS)

    Ren, Yanqin; Zhou, Bianhong; Tao, Jun; Cao, Junji; Zhang, Zhisheng; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Wang, Gehui

    2017-01-01

    Concentrations and compositions of PAHs and oxygenated PAHs (OPAHs) in four size ranges of ambient particles (< 1.1, 1.1-3.3, 3.3-9.0 and > 9.0 μm) collected in Xi'an and Guangzhou, two megacities of China, during the winter and summer of 2013 were measured and compared with those in 2003. The TSP-equivalent concentrations of Σ14PAHs in Xi'an and Guangzhou are 57 ± 20 and 18 ± 23 ng m- 3 in winter, 5-10 times higher than those in summer. PAHs in both cities are dominated by 5- and 6-ring congeners in summer. In contrast, they are dominated by 4- and 5-ring congeners in winter, probably due to enhanced gas-to-particle phase partitioning of the semi-volatile PAHs. TSP-equivalent Σ7OPAHs during winter are 54 ± 15 and 23 ± 32 ng m- 3 in Xi'an and Guangzhou and dominated by 5-ring OPAHs. Size distribution results showed that the fine modes (< 3.3 μm) of PAHs and OPAHs in both cities are dominated by 4- and 5-ring congeners in winter and 5- and 6-ring congeners in summer. Relative abundances of 3-ring PAHs and OPAHs increased along with an increase in particle sizes, accounting for from about 1% of the total PAHs or OPAHs in the smallest particles (< 1.1 μm) to > 90% of the total in the largest particles (> 9.0 μm). The toxicity of PAH assessment indicated that atmospheric particles in Xi'an and Guangzhou during winter are much more toxic than those during summer and fine particles are more toxic than coarse particles. Compared to those in 2003, fine particulate PAHs and OPAHs in both cities during winter decreased by 50-90%, most likely due to the replacement of coal by natural gas in the country.

  13. Infrared emission modeling for vinyl PAHs

    NASA Astrophysics Data System (ADS)

    Maurya, Anju; Rastogi, Shantanu

    Polycyclic Aromatic Hydrocarbon (PAH) molecules are source of the infrared emission features at 3.3, 6.2, 7.7, 8.6, 11.2, 12.7 and 16.4 microns that are ubiquitously observed in diverse astrophysical objects. There are variations in the profile of these emission features between sources ranging from star forming regions to late type stars and also extra galactic sources. The profile variations point towards the presence of a variety of PAHs in different population in different objects. In order to simulate the emission spectra from different sources the vibrational spectra of a wide variety of PAH molecules have been studied. The modeled emission spectra gives good match for some bands but simultaneous fit for all features is not obtained. In particular the 6.2 micron feature, assigned to C-C stretch mode, is not fitted well. We therefore also study PAHs with vinyl side groups. Quantum chemical calculations using DFT/B3LYP in conjugation with optimum basis are performed to obtain the IR spectra of vinyl PAHs. Modeling of emission is done assuming excitation by a UV photon and cascade emission through vibrational levels that are obtained theoretically. It is expected that due to the presence of C = C in vinyl group the aromatic C-C might shift closer to 6.2 micron. A closer match with the observed spectra will provide a better insight about the physical conditions and molecular evolution in the object.

  14. A Search for PAHs in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Salama, F.; Cami, J.; Tan, X.; Biennier, L.

    2005-01-01

    We present the results of a dedicated search for the spectral signatures in the visible range of neutral polycyclic aromatic hydrocarbons (PAHs) in astronomical observations representing various astrophysical environments, probing a total column of line of sight material corresponding to Av=50. Laboratory measurements of PAHs in simulated astrophysical conditions are now available (see contribution of Salama et al.) which provide for the first time the exact wavelengths for the spectral features of these molecules, as well as detailed information on the intrinsic line profiles and oscillator strengths. These measurements therefore allow a direct comparison to astronomical observations and an estimate of, or upper limit to, the abundance of individual PAHs in space. As the column densities for individual PAHs in interstellar or circumstellar lines of sight are expected to be very low, such a comparison and analysis requires astronomical observations at very high signal to noise. We present such a data set here for lines of sight representing diffuse clouds and circumstellar environments of carbon stars, and their comparison with gas phase spectra of a representative set of free, cold PAHs.

  15. Airborne Measurements of atmospheric PAH's across Europe

    NASA Astrophysics Data System (ADS)

    Davison, B.; Jaward, F.; Jones, K.; Lee, R.

    2003-04-01

    Atmospheric measurements of PAHs were taken aboard the DRL Falcon 20 during May 2001. A sampling system was designed to work aboard this aircraft platform. Particulate PAHs were collected on a glass fiber filter (GFF) with their gaseous component concentrated on a polyurethane foam sheets located behind the filter. Typically sampling volumes of between 20-50m^3 were collected which equated to a collection time of about 30minutes. In this way the distance travelled was kept within an acceptable level, about 60 nautical miles. The average concentrations of the data set for phenanthrene was 450 pg m-3 while values for many of the heavier PAH marker compounds used in the UK such as benzo(a)pyrene, diben(ah)anthracene were below the detection limits on all flights. The results will be discussed with consideration of location, altitude and airmass trajectory.

  16. On the driving force of PAH production

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1989-01-01

    The kinetic factors affecting the production of polycyclic aromatic hydrocarbons (PAH) in high-temperature pyrolysis and combustion environments are analyzed. A lumped kinetic model representing polymerization-type growth by one irreversible step and two reversible steps is considered. It is shown that at high temperatures, PAH growth is controlled by the superequilibrium of hydrogen atoms; at low temperatures and low H2 concentrations, the PAH growth rate is proportional to the rate of the H-abstraction of a hydrogen atom from aromatic molecules; while at low temperatures and high H2 concentrations, it is controlled by the thermodynamics of the H-abstraction and the kinetics of acetylene addition to aromatic radicals. The presence of oxygen mainly affects the small-molecule reactions during the induction period.

  17. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    PubMed

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  18. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi'an, Central China.

    PubMed

    Wei, Chong; Bandowe, Benjamin A Musa; Han, Yongming; Cao, Junji; Zhan, Changlin; Wilcke, Wolfgang

    2015-09-01

    Urban road dusts are carriers of polycyclic aromatic compounds (PACs) and are therefore considered to be a major source of contamination of other environmental compartments and a source of exposure to PACs for urban populations. We determined the occurrence, composition pattern and sources of several PACs (29 alkyl- and parent-PAHs, 15 oxygenated-PAHs (OPAHs), 4 azaarenes (AZAs), and 11 nitrated-PAHs (NPAHs)) in twenty urban road dusts and six suburban surface soils (0-5cm) from Xi'an, central China. The average concentrations of ∑29PAHs, ∑4AZAs, ∑15OPAHs, and ∑11NPAHs were 15767, 673, 4754, and 885 n gg(-1) in road dusts and 2067, 784, 854, and 118 ng g(-1) in surface soils, respectively. The concentrations of most individual PACs were higher in street dusts than suburban soils, particularly for PACs with molecular weight>192 g mol(-1). The enrichment factors of individual PACs were significantly positively correlated with log KOA and log KOW, indicating an increasing deposition and co-sorption of the PACs in urban dusts with decreasing volatility and increasing hydrophobicity. Significant correlations between the concentrations of individual and sum of PACs, carbon fractions (soot and char), and source-characteristic PACs (combustion-derived PAHs and retene, etc.), indicated that PAHs, OPAHs and AZAs were mostly directly emitted from combustion activities and had similar post-emission fates, but NPAHs were possibly more intensely photolyzed after deposition as well as being emitted from vehicle exhaust sources. The incremental lifetime cancer risk (ILCR) resulting from exposure to urban dust bound-PACs was higher than 10(-6), indicating a non-negligible cancer risk to residents of Xi'an.

  19. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil.

    PubMed

    Han, Xuemei; Hu, Hangwei; Shi, Xiuzhen; Zhang, Limei; He, Jizheng

    2017-04-01

    Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders.

  20. Effect of sorption and substrate pattern on PAH degradability

    SciTech Connect

    Ressler, B.P.; Kaempf, C.; Winter, J.

    1995-12-31

    The effect of sorption and the substrate pattern on the degradability of polycyclic aromatic hydrocarbons (PAHs) during bioremediation of PAH-contaminated silt in a slurry reactor was investigated. Biological degradation of high-molecular-weight PAH compounds sorbed to silt and clay particles was enhanced in the presence of low-molecular-weight PAHs. In soil suspensions containing silt contaminated with PAH compounds of different molecular weights, PAHs containing four aromatic rings were degraded more readily in the presence of naphthalene. Bioavailability of PAHs was correlated to the water solubility of different compounds; a significant limitation of bacterial growth and activity due to sorption of PAHs to the fine particles could not be observed.

  1. THE INFRARED SPECTRA OF VERY LARGE IRREGULAR POLYCYCLIC AROMATIC HYDROCARBONS (PAHs): OBSERVATIONAL PROBES OF ASTRONOMICAL PAH GEOMETRY, SIZE, AND CHARGE

    SciTech Connect

    Bauschlicher, Charles W.; Peeters, Els; Allamandola, Louis J. E-mail: epeeters@uwo.ca

    2009-05-20

    The mid-infrared (IR) spectra of six large, irregular polycyclic aromatic hydrocarbons (PAHs) with formulae (C{sub 84}H{sub 24}-C{sub 120}H{sub 36}) have been computed using density functional theory (DFT). Trends in the dominant band positions and intensities are compared to those of large, compact PAHs as a function of geometry, size, and charge. Irregular edge moieties that are common in terrestrial PAHs, such as bay regions and rings with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for all PAHs comprised solely of C and H reported to date, mid-IR emission from irregular PAHs fails to produce a strong CC{sub str} band at 6.2 {mu}m, the position characteristic of the important, class A astronomical PAH spectra. Earlier studies showed that inclusion of nitrogen within a PAH shifts this to 6.2 {mu}m for PAH cations. Here we show that this band shifts to 6.3 {mu}m in nitrogenated PAH anions, close to the position of the CC stretch in class B astronomical PAH spectra. Thus, nitrogenated PAHs may be important in all sources and the peak position of the CC stretch near 6.2 {mu}m appears to directly reflect the PAH cation to anion ratio. Large irregular PAHs exhibit features at 7.8 {mu}m but lack them near 8.6 {mu}m. Hence, the 7.7 {mu}m astronomical feature is produced by a mixture of small and large PAHs while the 8.6 {mu}m band can only be produced by large compact PAHs. As with the CC{sub str}, the position and profile of these bands reflect the PAH cation to anion ratio.

  2. PAH EXPOSURES OF NINE PRESCHOOL CHILDREN

    EPA Science Inventory

    The exposures to 20 polycyclic aromatic hydrocarbons (PAH) of 9 children, ages 2-5 yr, were measured over 48 hr at day care and at home. Sampled media included indoor and outdoor air, floor dust, outdoor play area soil, hand surface, and solid and liquid food. Urine samples ...

  3. Probabilistic ecological risk assessment of selected PAH`s in sediments near a petroleum refinery

    SciTech Connect

    Arnold, W.R.; Biddinger, G.R.

    1995-12-31

    Sediment samples were collected and analyzed for a number of polynuclear aromatic hydrocarbons (PAHs) along a gradient from a petroleum refinery`s wastewater diffuser. These data were used to calculate the potential risk to aquatic organisms using probabilistic modeling and Monte Carlo sampling procedures. Sediment chemistry data were used in conjunction with estimates of Biota-Sediment Accumulation Factors and Non-Polar Narcosis Theory to predict potential risk to bivalves. Bivalves were the receptors of choice because of their lack of a well-developed enzymatic system for metabolizing PAHs. Thus, they represent a species of higher inherent risk of adverse impact. PAHs considered in this paper span a broad range of octanol-water partition coefficients. Results indicate negligible risk of narcotic effects from PAHs existing near the refinery wastewater discharge.

  4. Sorption and chemical transformation of PAH`s on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1995-05-09

    The major objective of this work was to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHS) and their derivatives, and to attempt to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Our studies have concentrated on the photochemical behavior of PAHs sorbed form the vapor phase on coal fly ashes, and compositional subfractions obtained therefrom. The PAHs are deposited onto the fly ash substrates from the vapor phase, using apparatus and techniques developed in this laboratory in order to simulate, as closely as possible under laboratory conditions, the processes by which PAHs deposit onto fly ash particles in the atmosphere. In this report phototransformation of pyrene sorbed on fly ash fractions, and phototransformations of 1-nitropyrene sorbed on fly ash fractions are discussed.

  5. Are urinary PAHs biomarkers of controlled exposure to diesel exhaust?

    PubMed Central

    Lu, Sixin S.; Sobus, Jon R.; Sallsten, Gerd; Albin, Maria; Pleil, Joachim D.; Gudmundsson, Anders; Madden, Michael C.; Strandberg, Bo; Wierzbicka, Aneta; Rappaport, Stephen M.

    2016-01-01

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after exposure. Using linear mixed-effects models, we tested for effects of DE exposure and several covariates (time, age, gender and urinary creatinine) on urinary PAH levels. DE exposures did not significantly alter urinary PAH levels. We conclude that urinary PAHs are not promising biomarkers of short-term exposures to DE in the range of 106–276 μg/m3. PMID:24754404

  6. Are urinary PAHs biomarkers of controlled exposure to diesel exhaust?

    PubMed

    Lu, Sixin S; Sobus, Jon R; Sallsten, Gerd; Albin, Maria; Pleil, Joachim D; Gudmundsson, Anders; Madden, Michael C; Strandberg, Bo; Wierzbicka, Aneta; Rappaport, Stephen M

    2014-06-01

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after exposure. Using linear mixed-effects models, we tested for effects of DE exposure and several covariates (time, age, gender and urinary creatinine) on urinary PAH levels. DE exposures did not significantly alter urinary PAH levels. We conclude that urinary PAHs are not promising biomarkers of short-term exposures to DE in the range of 106-276 µg/m(3).

  7. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems.

    PubMed

    Hylland, Ketil

    2006-01-08

    Low levels of oil and hence polycyclic aromatic hydrocarbons (PAHs) are naturally present in the marine environment, although levels have increased significantly following human extraction and use of oil and gas. Other major anthropogenic sources of PAHs include smelters, the use of fossil fuels in general, and various methods of waste disposal, especially incineration. There are two major sources for PAHs to marine ecosystems in Norway: the inshore smelter industry, and offshore oil and gas production activities. A distinction is generally made between petrogenic (oil-derived) and pyrogenic (combustion-derived) PAHs. Although petrogenic PAHs appear to be bioavailable to a large extent, pyrogenic PAHs are often associated with soot particles and less available for uptake into organisms. There is extensive evidence linking sediment-associated PAHs to induction of phase-I enzymes, development of DNA adducts, and eventually neoplastic lesions in fish. Most studies have focused on high-molecular-weight, carcinogenic PAHs such as benzo[a]pyrene. It is less clear how two- and three-ring PAHs affect fish, and there is even experimental evidence to indicate that these chemicals may inhibit some components of the phase I system rather than produce induction. There is a need for increased research efforts to clarify biological effects of two- and three-ring PAHs, PAH mixtures, and adaptation processes in marine ecosystems.

  8. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor.

    PubMed

    Sahu, Sarata C; Swanson, Kurt A; Kang, Richard S; Huang, Kai; Brubaker, Kurt; Ratcliff, Kathleen; Radhakrishnan, Ishwar

    2008-02-01

    The recruitment of chromatin-modifying coregulator complexes by transcription factors to specific sites of the genome constitutes an important step in many eukaryotic transcriptional regulatory pathways. The histone deacetylase-associated Sin3 corepressor complex is recruited by a large and diverse array of transcription factors through direct interactions with the N-terminal PAH domains of Sin3. Here, we describe the solution structures of the mSin3A PAH1 domain in the apo form and when bound to SAP25, a component of the corepressor complex. Unlike the apo-mSin3A PAH2 domain, the apo-PAH1 domain is conformationally pure and is largely, but not completely, folded. Portions of the interacting segments of both mSin3A PAH1 and SAP25 undergo folding upon complex formation. SAP25 binds through an amphipathic helix to a predominantly hydrophobic cleft on the surface of PAH1. Remarkably, the orientation of the helix is reversed compared to that adopted by NRSF, a transcription factor unrelated to SAP25, upon binding to the mSin3B PAH1 domain. The reversal in helical orientations is correlated with a reversal in the underlying PAH1-interaction motifs, echoing a theme previously described for the mSin3A PAH2 domain. The definition of these so-called type I and type II PAH1-interaction motifs has allowed us to predict the precise location of these motifs within previously experimentally characterized PAH1 binders. Finally, we explore the specificity determinants of protein-protein interactions involving the PAH1 and PAH2 domains. These studies reveal that even conservative replacements of PAH2 residues with equivalent PAH1 residues are sufficient to alter the affinity and specificity of these protein-protein interactions dramatically.

  9. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    SciTech Connect

    Cuypers, C.; Grotenhuis, T.; Joziasse, J.; Rulkens, W.

    2000-05-15

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to residual PAH concentrations after 21 days of biodegradation. Persulfate oxidation of samples that had first been subjected to biodegradation yielded only limited additional PAH oxidation. This implies that oxidation and biodegradation removed approximately the same PAH fraction. Persulfate oxidation thus provides a good and rapid method for the prediction of PAH bioavailability. Thermogravimetric analysis of oxidized and untreated samples showed that persulfate oxidation primarily affected expanded organic matter. The results indicate that this expanded organic matter contained mainly readily bioavailable PAHs.

  10. Photodestruction of PAHs in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; de Souza G. G., B.; Lago, A.

    It is known that polycyclic aromatic hydrocarbons (PAHs) are mainly formed in the dust shells of late stages of AGB type carbon rich stars. After the ejection of H-rich envelope those stars become the proto-planetary nebulae (PPNs). The chemistry in PPNs has been strongly modified by the UV photons coming from the hot central star and by the X-rays associated with its high-velocity winds. Benzene (C6H6) and small PAHs like Anthracene (C14H10) were effectively detected in the PPNs CRL 618 (Cernicharo et al. 2001) and Red Rectangle (Vijh, Witt & Gordon 2004) respectively. The goal of this work is to experimentally study photoabsorption, photoionization and photodissociation processes of the benzene, biphenyl (C12H10), naphthalene (C10H8), phenanthrene (C14H10) and methyl-anthracene (C14H9(CH3)). The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), using soft X-ray and UV photons from a toroidal grating monochromator TGM beamline (12-310 eV). The experimental set-up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for some molecules were also determined (see for example: Boechat-Roberty, Pilling & Santos 2005). We have observed that PAHs molecules are extreme resistant to UV photons, confirming that PAHs absorb the UV photons and after some internal energetic rearrangements, they can emit in the IR range. However, these molecules are destroyed by soft X-rays photons producing several ionic fragments, some of them with great kinetic energy. In the mass spectra of the Benzene and methyl-anthracene molecules, the observed ionic fragments C4H2+, C6H2+, C4HCH3 and C2HCH3, could correspond to the same

  11. PAHs, NITRO-PAHs, HOPANES, AND STERANES IN LAKE TROUT FROM LAKE MICHIGAN

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    The present study examines concentrations and risks of polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), steranes, and hopanes in lake trout collected in Lake Michigan. A total of 74 fish were collected in 2 seasons at 3 offshore sites. The total PAH concentration (Σ9PAH) in whole fish ranged from 223 pg/g to 1704 pg/g wet weight, and PAH concentrations and profiles were similar across season, site, and sex. The total NPAH (Σ9NPAH) concentrations ranged from 0.2 pg/g to 31 pg/g wet weight, and carcinogenic compounds, including 1-nitropyrene and 6-nitrochrysene, were detected. In the fall, NPAH concentrations were low at the Illinois site (0.2–0.5 pg/g wet wt), and site profiles differed considerably; in the spring, concentrations and profiles were similar across sites, possibly reflecting changes in fish behavior. In the fall, the total sterane (Σ5Sterane) and total hopane (Σ2Hopane) levels reached 808 pg/g and 141 pg/g wet weight, respectively, but concentrations in the spring were 10 times lower. Concentrations in eggs (fall only) were on the same order of magnitude as those in whole fish. These results demonstrate the presence of target semivolatile organic compounds in a top predator fish, and are consistent with PAH biodilution observed previously. Using the available toxicity information for PAHs and NPAHs, the expected cancer risk from consumption of lake trout sampled are low. However, NPAHs contributed a significant portion of the toxic equivalencies in some samples. The present study provides the first measurements of NPAHs in freshwater fish, and results suggest that additional assessment is warranted. PMID:24764175

  12. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major.

    PubMed

    Lye, Lon-Fye; Kang, Song Ok; Nosanchuk, Joshua D; Casadevall, Arturo; Beverley, Stephen M

    2011-01-01

    Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.

  13. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.

  14. [PAH Cations as Viable Carriers of DIBs

    NASA Technical Reports Server (NTRS)

    Snow, Ted

    1998-01-01

    This report is intended to fill in the blanks in NASA's file system for our lab astro study of molecular ions of astrophysical interest. In order to give NASA what it needs for its files, I attach below the text of the section from our recent proposal to continue this work, in which we describe progress to date, including a large number of publications. Our initial studies were focused on PAH cations, which appear to be viable candidates as the carriers of the DIBs, an idea that has been supported by laboratory spectroscopy of PAH cations in inert matrices. Beginning with the simplest aromatic (benzene; C6H6) and moving progressively to larger species (naphthalene, C10OH8; pyrene, C16H10; and most recently chrysene, C18H12), we have been able to derive rate coefficients for reactions with neutral spices that are abundant in the diffuse interstellar medium.

  15. Migration of polycyclic aromatic hydrocarbons (PAHs) in urban treatment sludge to the air during PAH removal applications.

    PubMed

    Karaca, Gizem; Cindoruk, S Siddik; Tasdemir, Yücel

    2014-05-01

    In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography-mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 degrees C. It was determined that 40% decrease was ensured in sigma12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of sigma12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.

  16. Carbon in The Universe: PAHs and Clusters

    NASA Technical Reports Server (NTRS)

    Saykally, Richard J.

    1997-01-01

    Following the initial demonstration of this new technique (Science 265 1686 (1994)) and its application to a series of neutral PAHs which have been proposed as condidates for the UIRs (Nature 380, 227 (1996)), we have concentrated on two major aspects of this project. 1. Developing a detailed model for infrared emission spectra of a collection of highly excited PAH molecules, in which experimental bandshapes and temperature-dependent redshifts are used in conjunction with ab initio vibrational frequencies and intensities to simulate the UIR bands. This shows that a collection of nine different cations (as large as ovalene) reproduce the UIR features better than do a collection of the corresponding neutrals, but a detailed match with the UIRs is not obtained. 2. Construction of SPIRES apparatus for the study of PAH ion emission spectra. The design of this experiment is shown and described. Unfortunately a disasterous accident occurred just as we were preparing to start the testing of the ion apparatus. A vacuum implosion occurred, destroying the liquid He cooled monochromator. It has taken us nearly one full year to reconstruct this, and we arc only now in the final testing of the new system. We expect to try the ion experiments by the end of summer.

  17. Environmental stability of PAH source indices in pyrogenic tars

    SciTech Connect

    Uhler, A.D.; Emsbo-Mattingly, S.D.

    2006-04-15

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants found in soil, sediments, and airborne particulates. The majority of PAHs found in modern soils and sediments arise from myriad anthropogenic petrogenic and pyrogenic sources. Tars and tar products such as creosote produced from the industrial pyrolysis of coal or oil at former manufactured gas plants (MGPs) or in coking retorts are viscous, oily substances that contain significant concentrations of PAH, usually in excess of 30% w/w. Pyrogenic tars and tar products have unique PAH patterns (source signatures) that are a function of their industrial production. Among pyrogenic materials, certain diagnostic ratios of environmentally recalcitrant 4-, 5- and 6-ring PAHs have been identified as useful environmental markers for tracking the signature of tars and petroleum in the environment. The use of selected PAH source ratios is based on the concept that PAHs with similar properties (i.e., molecular weight, partial pressure, solubility, partition coefficients, and biotic/abiotic degradation) will weather at similar rates in the environment thereby yielding stable ratios. The stability of more than 30 high molecular weight PAH ratios is evaluated during controlled studies of tar evaporation and aerobic biodegradation. The starting materials in these experiments consisted of relatively unweathered tars derived from coal and petroleum, respectively. The PAH ratios from these laboratory studies are compared to those measured in PAH residues found in tar-contaminated soils at a former MGP that operated with a carburetted water gas process.

  18. Anti-inflammatory and immunosuppressive agents in PAH.

    PubMed

    Meloche, Jolyane; Renard, Sébastien; Provencher, Steeve; Bonnet, Sébastien

    2013-01-01

    Pulmonary arterial hypertension (PAH) pathobiology involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to enhanced pulmonary vascular resistance and pressure, to right heart failure and death. The exact mechanisms accounting for PAH development remain unknown, but growing evidence demonstrate that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Not surprisingly, PAH is often associated with diverse inflammatory disorders. Furthermore, pathologic specimens from PAH patients reveal an accumulation of inflammatory cells in and around vascular lesions, including macrophages, T and B cells, dendritic cells, and mast cells. Circulating levels of autoantibodies, chemokines, and cytokines are also increased in PAH patients and some of these correlate with disease severity and patients' outcome. Moreover, preclinical experiments demonstrated the key role of inflammation in PAH pathobiology. Immunosuppressive agents have also demonstrated beneficial effects in animal PAH models. In humans, observational studies suggested that immunosuppressive drugs may be effective in treating some PAH subtypes associated with marked inflammation. The present chapter reviews experimental and clinical evidence suggesting that inflammation is involved in the pathogenesis of PAH, as well the therapeutic potential of immunosuppressive agents in PAH.

  19. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1991-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Studies to be carried out in this project include: (1) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (2) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (3) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (4) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of surface roughness'' of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles; (5) Identification of the major products of chemical transformation of PAHs on coal ash particles, and examination of any effects that may exist of the nature of the coal ash surface on the identities of PAH transformation products; and (6) Studies of the influence of other sorbed species on the chemical behavior of PAHs and PAH derivatives on fly ash surfaces. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  20. CO and PAH+/PAH0/VSG maps in external galaxies

    NASA Astrophysics Data System (ADS)

    Bayet, E.; Berné, O.; Joblin, C.; Gerin, M.; García-Burillo, S.; Fuente, A.

    We have performed a comparison between the molecular gas emission and the mid IR dust component emission distributions in a sample of nearby galaxies. We have compared CO maps at high spatial resolution, from Wilson et al. (2000), Bayet et al. (2004, 2006) and from Kramer et al. (2005), with the emission distributions of ionised and neutral PAHs (PAH+; PAH0) and of very small grains (VSGs), obtained using signal processing methods as explained in Berné et al. (2007a) and Rapacioli et al. (2005). In M 82, we have also compared the dust emission maps with dense gas tracer maps (HCO and H13CO+ data from García-Burillo et al. 2002) as well as with shock tracer maps (SiO data from García-Burillo et al. 2001).

  1. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    PubMed

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  2. Irreversible adsorption/desorption of PAHs in sediment/water

    SciTech Connect

    Fu, G.; Kan, A.T.; Tomson, M.B.

    1996-10-01

    Successive adsorption isotherm of phenanthrene on soil corresponds to a constant partition of phenanthrene between the bulk solution and solid phase. This shows that the hydrophobic reaction is a dominant mechanism in adsorption process. However, desorption of PAHs appears irreversibility. Cyclic and multiple adsorption and desorption experiments indicated that there is an irreversibly adsorbed intrinsic capacity in the interaction of PAHs (naphthalene and phenanthrene) and soil in aqueous solution. This irreversible fraction for PAHs (naphthalene and phenanthrene) is about 1000-5000 {mu}g/g normalized on the basis of soil organic carbon. The desorption of PAHs from soil appears biphasic when the total adsorbed capacity is greater than the intrinsic irreversibly adsorbed value. In phase, the partitioning coefficient of desorption of PAHs is similar to that of adsorption. However, the other mechanism may be responsible to control the release of PAHs in phase 2.

  3. Explaining PAH desorption from sediments using Rock Eval analysis.

    PubMed

    Poot, Anton; Jonker, M T O; Gillissen, Frits; Koelmans, Albert A

    2014-10-01

    Here, we provide Rock Eval and black carbon (BC) characteristics and polycyclic aromatic hydrocarbon (PAH) distribution coefficients (KD) for sediments from the Danube, Elbe, Ebro, and Meuse river basins. PAH desorption kinetic parameters were determined using sequential Tenax extractions. We show that residual carbon (RC) from Rock Eval analysis is an adequate predictor of fast, slow, and very slow desorbing fractions of 4-ring PAHs. RC correlated better than BC, the latter constituting only 7% of RC. A dual domain sorption model was statistically superior to a single domain model in explaining KD for low molecular weight PAHs, whereas the opposite was observed for high molecular weight PAHs. Because particularly the 4-ring PAHs are bioavailable and relevant from a risk assessment perspective and because their fast desorbing fractions correlate best with RC, we recommend RC as a relevant characteristic for river sediments.

  4. Bioventing PAH contamination at the Reilly Tar Site

    SciTech Connect

    Alleman, B.C.; Hinchee, R.E.; Brenner, R.C.; McCauley, P.T.

    1995-12-31

    A pilot-scale bioventing demonstration has been in progress since November 1992 to determine if bioventing is an effective remediation treatment for polycyclic aromatic hydrocarbons (PAHs). The Reilly Tar and Chemical Corporation site in St. Louis Park, Minnesota, was selected for this demonstration. The location is the site of a former coal tar refinery and wood-preserving facility at which creosote in mineral oil served as the primary preservative. The goal of the project is to achieve 10% greater PAH removal over background degradation for each year of the 3-year study. Respiration measurements were made to estimate PAH biodegradation as a means of monitoring the progress of the technology. These measurements indicated that 13.4% and 17.3% degradation of the total PAH was possible during the first year and second year, respectively. Although not all of the respiration can be attributed conclusively to PAH metabolism, strong correlations were found between the PAH concentration and biodegradation rates.

  5. Recombination Rates of Electrons with Interstellar PAH Molecules

    NASA Technical Reports Server (NTRS)

    Ballester, Jorge (Cartographer)

    1996-01-01

    The goal of this project is to develop a general model for the recombination of electrons with PAH molecules in an interstellar environment. The model is being developed such that it can be applied to a small number of families of PAHs without reference to specific molecular structures. Special attention will be focused on modeling the approximately circular compact PAHs in a way that only depends on the number of carbon atoms.

  6. PAH Intermediates: Links between the Atmosphere and Biological Systems

    PubMed Central

    SIMONICH, STACI L. MASSEY; MOTORYKIN, OLEKSII; JARIYASOPIT, NARUMOL

    2010-01-01

    China is now the world's largest emitter of polycyclic aromatic hydrocarbons (PAHs). In addition, PAHs, and their reactive intermediates, undergo trans-Pacific atmospheric transport to the Western U.S. The objectives of our research are to predict, identify and quantify novel PAH intermediates in the atmosphere and biological systems, using computational methods, as well as laboratory and field experiments. Gaussian is used to predict the thermodynamic properties of parent structure PAHs, as well as the associated nitro-, oxy-, and hydroxy- PAH intermediates. Based on these predictions, state-of-the-art analytical chemistry techniques are used to identify and quantify these potential intermediates on Asian particulate matter before and after reaction in a continuous flow photochemical reactor. These same techniques are used to identify the relative proportion of PAH intermediates in PAH source regions (such as Beijing, China) and during long-range atmospheric transport to the Western U.S. PAH personal exposure studies in China and the Confederated Tribes of the Umatilla Indian Reservation in Oregon will be used to assess the similarities and differences in the PAH intermediates in biological systems relative to the atmosphere. PMID:20849837

  7. Grafted cellulose for PAHs removal present in industrial discharge waters

    NASA Astrophysics Data System (ADS)

    Euvrard, Elise; Druart, Coline; Poupeney, Amandine; Crini, Nadia; Vismara, Elena; Lanza, Tommaso; Torri, Giangiacomo; Gavoille, Sophie; Crini, Gregorio

    2014-05-01

    Keywords: cellulose; biosorbent; PAHs; polycontaminated wastewaters; trace levels. Polycyclic aromatic hydrocarbons (PAHs), chemicals essentially formed during incomplete combustion of organic materials from anthropogenic activities, were present in all compartments of the ecosystem, air, water and soil. Notably, a part of PAHs found in aquatic system was introduced through industrial discharge waters. Since the Water Framework Directive has classified certain PAHs as priority hazardous substances, industrials are called to take account this kind of organic pollutants in their global environmental concern. Conventional materials such as activated carbons definitively proved their worth as finishing treatment systems but remained costly. In this study, we proposed to use cellulose grafted with glycidyl methacrylate [1] for the removal of PAHs present in discharge waters of surface treatment industries. Firstly, to develop the device, we worked with synthetic solutions containing 16 PAHs at 500 ng/L. Two types of grafted cellulose were tested over a closed-loop column with a concentration of 4g cellulose/L: cellulose C2 with a hydroxide group and cellulose C4 with an amine group. No PAH was retained by the raw cellulose whereas abatement percentages of PAHs were similar between C2 and C4 (94% and 98%, respectively, for the sum of the 16 PAHs) with an experiment duration of 400 min (corresponding to about 20 cycles through grafted cellulose). Secondly, to determine the shorter time to abate the amount maximum of PAHs through the system, a kinetic was realized from 20 min (one cycle) to 400 min with C4. The steady state (corresponding to about 95% of abatement of the total PAHs) was reached at 160 min. Finally, the system was then tested with real industrial discharge waters containing both mineral and organic compounds. The results indicated that the abatement percentage of PAHs was similar between C2 and C4, corroborating the tests with synthetic solution. In return

  8. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    PubMed

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.

  9. Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable.

    PubMed

    Deepthike, Halambage Upul; Tecon, Robin; Van Kooten, Gerry; Van der Meer, Jan Roelof; Harms, Hauke; Wells, Mona; Short, Jeffrey

    2009-08-01

    In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (approximately 4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable.

  10. PAH emission from Nova Cen 1986

    NASA Technical Reports Server (NTRS)

    Hyland, A. R. Harry; Mcgregor, P. J.

    1989-01-01

    The discovery of broad emission features between 3.2 and 3.6 microns were reported in the spectrum of Nova Cen 1986 (V842 Cen) some 300 days following outburst and remaining prominent for several months. The general characteristics of these features are similar to those attributed to polycyclic hydrocarbon (PAH) molecules in other dusty sources, although the relative strengths are different, and these observations provide the first clear evidence for molecular constituents other than graphite particles in the ejecta of novae.

  11. PAH metabolites in European eels (Anguilla anguilla) as indicators of PAH exposure: different methodological approaches.

    PubMed

    Szlinder-Richert, J; Nermer, T; Szatkowska, U

    2014-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants of aquatic environments derived from pyrogenic and petrogenic sources. In fish, as in other vertebrates, PAHs are rapidly metabolized. However, the metabolites have been proven to induce multiple deleterious effects in fish. The concentrations of biliary polycyclic aromatic hydrocarbon metabolites in eels (Anguilla anguilla) caught in Polish waters were measured. The main objectives of the study were to provide information on the levels of PAH metabolites in eels inhabiting Polish waters and to discuss which methodological approach is appropriate for assessing PAH exposure in aquatic ecosystems. The non-normalized median concentration of 1-OH Pyr and 1-OH Phe measured in eels from Polish waters ranged from 11 to 1642 ng ml(-1) bile and from 83 to 929 ng ml(-1) bile, respectively, depending on the sampling site. Data normalization in relation to bile pigment content reduced inter-site variation, and the normalized median concentrations of 1-OH Pyr and 1-OH Phe ranged from 0.44 to 20.24 ng A(-1)380 and from 1.58 to 11.11 ng A(-1)380, respectively. Our study indicated that results were more consistent for the two species sampled in the same area (eel examined in the current study and flounder examined in our previous study) when the fluorescence response of diluted bile samples was compared than when concentrations of 1-OH Pyr determined with the mean of HPLC were compared.

  12. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria.

    PubMed

    Yu, X Z; Wu, S C; Wu, F Y; Wong, M H

    2011-02-28

    The major aim of this experiment was to test the effects of a multi-component bioremediation system consisting of ryegrass (Lolium multiflorum), polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria (Acinetobacter sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) for cleaning up PAHs contaminated soil. Higher dissipation rates were observed in combination treatments: i.e., bacteria+ryegrass (BR), mycorrhizae+ryegrass (MR), and bacteria+mycorrhizae+ryegrass (BMR); than bacteria (B) and ryegrass (R) alone. The growth of ryegrass significantly (p<0.05) increased soil peroxidase activities, leading to enhanced dissipation of phenanthrene (PHE) and pyrene (PYR) from soil. Interactions between ryegrass with the two microbes further enhanced the dissipation of PHE and PYR. Mycorrhizal ryegrass (MR) significantly enhanced the dissipation of PYR from soil, PYR accumulation by ryegrass roots and soil peroxidase activities under lower PHE and PYR levels (0 and 50+50 mg kg(-1)). The present results highlighted the contribution of mycorrhiza and PAH-degrading bacteria in phytoremediation of PAH contaminated soil, however more detailed studies are needed.

  13. Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: linking toxic effects to chemical activity.

    PubMed

    Engraff, Maria; Solere, Clémentine; Smith, Kilian E C; Mayer, Philipp; Dahllöf, Ingela

    2011-04-01

    Organisms in marine sediments are usually exposed to mixtures of polycyclic aromatic hydrocarbons (PAHs), whereas risk assessment and management typically focus on the effects of single PAHs. This can lead to an underestimation of risk if the effects of single compounds are additive or synergistic. Because of the virtually infinite number of mixture-combinations, and the many different targeted organisms, it would be advantageous to have a model for the assessment of mixture effects. In this study we tested whether chemical activity, which drives the partitioning of PAHs into organisms, can be used to model the baseline toxicity of mixtures. Experiments were performed with two benthic amphipod species (Orchomonella pinguis and Corophium volutator), using passive dosing to control the external exposure of single PAHs and mixtures of three and four PAHs. The baseline toxicity of individual PAHs at water saturation generally increased with increasing chemical activity of the PAHs. For O. pinguis, the baseline toxicity of PAH mixtures was successfully described by the sum of chemical activities. Some compounds and mixtures showed a delayed expression of toxicity, highlighting the need to adjust the length of the experiment depending on the organism. On the other hand, some of the single compounds had a higher toxicity than expected, possibly due to the toxicity of PAH metabolites. We suggest that chemical activity of mixtures can, and should, be used in addition to toxicity data for single compounds in environmental risk assessment.

  14. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes In Diesel Exhaust Particulate Matter

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2013-01-01

    Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rate of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02 ~ 2 and 1μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 °C for up to one month did not lead to significant losses, but storing extracts for five months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing. PMID:24363468

  15. Profiles of PAH emission from steel and iron industries.

    PubMed

    Yang, Hsi-Hsien; Lai, Soon-Onn; Hsieh, Lien-Te; Hsueh, Hung-Junt; Chi, Tze-Wen

    2002-09-01

    In order to characterize the polycyclic aromatic hydrocarbons (PAHs) emission from steel and iron industries, this study measured the stack emission of twelve steel and iron plants in southern Taiwan to construct a set of source fingerprints. The study sampled the emissions by the USEPA's sampling method 5 with the modification of Graseby for the gas and particulate phase PAH and, then, used Hewlett-Packard 5890 gas chromatograph equipped with mass spectrometer detector to analyze the samples. The steel and iron industries are classified into three categories on the basis of auxiliary energy source: Category I uses coal as fuel, Category II uses heavy oil as fuel and Category III uses electric arc furnace. The pollution source profiles are obtained by averaging the ratios of individual PAH concentrations to the total concentration of 21 PAHs and total particulate matter measured in this study. Results of the study show that low molecular weight PAHs are predominant in gas plus particulate phase for all three categories. For particulate phase PAHs, however, the contribution of large molecular weight compounds increases. Two-ring PAHs account for the majority of the mass, varying from 84% to 92% with an average of 89%. The mass fractions of 3-, 4-, 5-, 6-ring PAHs in Category I are found to be more than those of the other two categories. The mass of Category III is dominated by 7-ring PAHs. Large (or heavy) molecular weight PAHs (HMW PAHs) are carcinogenic. Over all categories, these compounds are less than 1% of the total-PAH mass on the average. The indicatory PAHs are benz[a]anthracene, benzo[k]fluoranthene, benzo[ghi]perylene for Category I, benzo[a]pyrene, acenaphthene, acenaphthylene for Category II and coronene, pyrene, benzo[b]chrycene for Category III. The indicatory PAHs among categories are very different. Thus, dividing steel and iron industry into categories by auxiliary fuel is to increase the precision of estimation by a receptor model. Average total-PAH

  16. Cloud deposition of PAHs at Mount Lushan in southern China.

    PubMed

    Wang, Ruixia; Wang, Yan; Li, Hongli; Yang, Minmin; Sun, Lei; Wang, Tao; Wang, Wenxing

    2015-09-01

    Cloud water samples were collected from Mount Lushan, a high alpine area of southern China, and analyzed using GC-MS to investigate the concentration levels, seasonal variations, particle-dissolved phase partitioning, ecological risk of PAHs and its relationship to the atmosphere and rainwater. The average concentration of total (dissolved+particle) PAHs in cloud water was 819.90 ng/L, which ranged from 2.30 ng/L for DbA to 295.38 ng/L for PhA. PhA (33.11%) contributed the most individual PAHs, followed by Flu (28.24%). Distinct seasonal variations in the total PAHs measured in this research had a higher concentration during the spring and a lower concentration during the summer. When cloud events occurred, the concentration of the atmospheric PAHs of the two phases decreased. The contribution from the gaseous phase of total PAHs in the air to the dissolved phase in cloud water was up to 60.43%, but the particulate phase in the air only contributed 39.57% to the total scavenging. The contribution of total PAHs from the atmosphere to clouds is higher in the gaseous phase than in the particulate phase. A comparative study of the concentrations of cloud water and the closest rain water revealed that the PAH concentration in rainwater was 1.80 times less than that of cloud water and that the dominant individual compounds in cloud water and rainwater were PhA and Flu. A total of 81.27% of the PAHs in cloud samples and 72.21% of the PAHs in rain samples remained in the dissolved phase. Ecological risk assessment indicated that PAHs in cloud water in spring and summer caused a certain degree of ecosystem risk and the mean ecosystem risk in spring was higher than that in summer.

  17. Global time trends in PAH emissions from motor vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  18. PAH biomarkers in common eelpout (Zoarces viviparus) from Danish waters.

    PubMed

    Tairova, Zhanna M; Strand, Jakob; Chevalier, Julie; Andersen, Ole

    2012-04-01

    Eelpouts (Zoarces viviparus) sampled at surveillance stations during the fall of 2007 and spring 2008 in different Danish coastal areas, were studied for biomarkers of polycyclic aromatic hydrocarbons (PAHs) exposure and effects. Two analytical techniques, synchronous fluorescence spectrometry (SFS) and high-performance liquid chromatography with fluorescence detection (HPLC/F), were applied for detecting PAH metabolites in bile and urine. CYP1A activity, in this study regarded as potential biomarker of effect, was measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in liver of eelpouts from different stations. Biliary PAH metabolite measurements were used for monitoring the environmental PAH load at the surveillance stations. There was found significant difference in biliary PAH metabolite content between sexes with male fish containing higher concentrations of PAH metabolites than females. The urinary PAH metabolite content did not show the same spatial trends as biliary PAH metabolites. However, fish from Aarhus Bight and Vejle Fjord had significantly higher levels of PAH metabolites in both urine and bile compared to the reference station Agersø. Normalisation methods applied for bile and urine matrices did not have any effect or only slightly reduced the coefficients of variation in data sets. The CYP1A activity in eelpout liver did not show the same spatial distribution trends between sampling sites as did biliary or urinary PAH metabolite contents. Male eelpouts showed significantly higher CYP1A activity than females in fall sampling period but there were no differences found in the spring period. General comparison between both seasons showed that eelpouts sampled in the fall had significantly higher CYP1A activity than fish sampled during spring season. Overall, the results of this study describe selected biomarker responses in eelpouts to environmental PAH load at the different areas along Danish coasts.

  19. Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.

  20. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    NASA Astrophysics Data System (ADS)

    Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.

    2017-02-01

    We present 5–20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7–9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  1. High-performance liquid chromatography of the renal blood flow marker p-aminohippuric acid (PAH) and its metabolite N-acetyl PAH improves PAH clearance measurements.

    PubMed

    Decosterd, L A; Karagiannis, A; Roulet, J M; Bélaz, N; Appenzeller, M; Buclin, T; Vogel, P; Biollaz, J

    1997-12-05

    PAH (N-(4-aminobenzoyl)glycin) clearance measurements have been used for 50 years in clinical research for the determination of renal plasma flow. The quantitation of PAH in plasma or urine is generally performed by colorimetric method after diazotation reaction but the measurements must be corrected for the unspecific residual response observed in blank plasma. We have developed a HPLC method to specifically determine PAH and its metabolite NAc-PAH using a gradient elution ion-pair reversed-phase chromatography with UV detection at 273 and 265 nm, respectively. The separations were performed at room temperature on a ChromCart (125 mmx4 mm I.D.) Nucleosil 100-5 microm C18AB cartridge column, using a gradient elution of MeOH-buffer pH 3.9 1:99-->15:85 over 15 min. The pH 3.9 buffered aqueous solution consisted in a mixture of 375 ml sodium citrate-citric acid solution (21.01 g citric acid and 8.0 g NaOH per liter), added up with 2.7 ml H3PO4 85%, 1.0 g of sodium heptanesulfonate and completed ad 1000 ml with ultrapure water. The N-acetyltransferase activity does not seem to notably affect PAH clearances, although NAc-PAH represents 10.2+/-2.7% of PAH excreted unchanged in 12 healthy subjects. The performance of the HPLC and the colorimetric method have been compared using urine and plasma samples collected from healthy volunteers. Good correlations (r=0.94 and 0.97, for plasma and urine, respectively) are found between the results obtained with both techniques. However, the colorimetric method gives higher concentrations of PAH in urine and lower concentrations in plasma than those determined by HPLC. Hence, both renal (ClR) and systemic (Cls) clearances are systematically higher (35.1 and 17.8%, respectively) with the colorimetric method. The fraction of PAH excreted by the kidney ClR/ClS calculated from HPLC data (n=143) is, as expected, always <1 (mean=0.73+/-0.11), whereas the colorimetric method gives a mean extraction ratio of 0.87+/-0.13 implying some

  2. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate?

    PubMed

    Katsoyiannis, Athanasios; Terzi, Eleni; Cai, Quan-Ying

    2007-10-01

    The concentrations ratios of specific pairs of polycyclic aromatic hydrocarbons (PAHs) are widely used for the qualitative determination of the PAHs sources. These ratios are called PAHs molecular diagnostic ratios and are commonly used for PAHs concentrations in air, soils and sediments. Some scientists have extended the use of these ratios also for sewage sludges, suggesting that calculation of these ratios by individual PAHs concentrations can be as effective as in soils or sediments. This paper describes the reason why the PAH molecular ratios calculated from sewage sludge concentrations should not be used for the understanding of the PAH sources.

  3. Lipid-content-normalized polycyclic aromatic hydrocarbons (PAHs) in the xylem of conifers can indicate historical changes in regional airborne PAHs.

    PubMed

    Kuang, Yuan-wen; Li, Jiong; Hou, En-qing

    2015-01-01

    The temporal variation of polycyclic aromatic hydrocarbons (PAHs) concentrations as well as the lipid content in the xylem of Masson pine trees sampled from the same site were determined and compared with the days of haze occurrence and with the historical PAHs reported in sedimentary cores. The patterns of the lipid content as well as the PAH concentrations based on the xylem dry weight (PAHs-DW) decreased from the heartwood to the sapwood. The trajectories of PAHs normalized by xylem lipid content (PAHs-LC) coincided well with the number of haze-occurred days and were partly similar with the historical changes in airborne PAHs recorded in the sedimentary cores. The results indicated that PAHs-LC in the xylem of conifers might reliably reflect the historical changes in airborne PAHs at a regional scale. The species-specificity should be addressed in the utility and application of dendrochemical monitoring on historical and comparative studies of airborne PAHs.

  4. Are Urinary PAHs Biomarkers of Controlled Exposure to Diesel Exhaust?

    EPA Science Inventory

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after ex...

  5. PAH Clusters as Sources of Interstellar Infrared Emission

    NASA Astrophysics Data System (ADS)

    Roser, J. E.; Ricca, A.

    2015-03-01

    Polycyclic aromatic hydrocarbons (or PAHs) have been the subject of astrochemical research for several decades as principal sources of the interstellar aromatic infrared emission bands. PAH clusters could possibly contribute to these emission bands, but a lack of data on their infrared properties has made this hypothesis difficult to evaluate. Here we investigate homogeneous neutral PAH clusters by measuring the mid-infrared absorption spectra of the five nonlinear PAH molecules phenanthrene, chrysene, pyrene, perylene, and benzo[ghi]perylene within solid argon ice at a fixed temperature of 5 K. We attribute observed spectral shifts in their principal absorption bands as a function of argon/PAH ratio to clustering of the PAH molecules within the argon matrix. These shifts are related to the cluster structures forming in the matrix and the topology of the monomer PAH molecule. We predict that interstellar PAH molecules that are relatively large (no fewer than 50 carbon atoms per molecule) and compact will have clusters that contribute to the asymmetrically red-shaded profile of the interstellar 11.2 μm emission band.

  6. Polycyclic aromatic hydrocarbons (PAHs) in livers of California sea otters.

    PubMed

    Kannan, Kurunthachalam; Perrotta, Emily

    2008-03-01

    Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in livers of 81 adult female sea otters collected along the California coast in 1992-2002. Concentrations of summation operatorPAHs in livers of sea otters were in the range of 588-17400ng/g lipid wt (mean: 3880ng/g, lipid wt). On a wet weight basis, the concentrations ranged from 17 to 1430ng/g (mean: 146ng/g). Overall, di- and tri-cyclic aromatic hydrocarbons, namely, naphthalene, fluorene, phenanthrene/anthracene, and acenaphthylene, were the predominant compounds found in the livers. Although petroleum-related sources appear to be the major contributors to PAH exposure in sea otters, exposure sources varied by geographical sub-regions. Dibenz[a,h]anthracene was found to comprise a significant proportion of the summation operatorPAH concentrations in sea otters from the northern sub-region of the study area. No significant difference existed in the concentrations of summation operatorPAHs among sea otters that died from infectious diseases, emaciation, and noninfectious causes. Concentrations of summation operatorPAHs in livers of sea otters decreased significantly from 1992 to 2002. Because of the rapid metabolism of PAHs in marine mammals such as sea otters, further studies examining the association of PAHs with health effects should determine hydroxylated metabolites in livers.

  7. The effects of PAH contamination on soil invertebrate communities

    SciTech Connect

    Snow-Ashbrook, J.L.; Erstfeld, K.M.

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  8. Determination of PAHs in particulate air by micellar liquid chromatography

    SciTech Connect

    Kayali, M.N.; Rubio-Barroso, S.; Polo-Diez, L.M. . Dept. of Analytical Chemistry)

    1994-01-01

    An acetonitrile/0.20M SDS mobile phase was used to determine PAHs by HPLC with fluorimetric detection. Because the peak area is greater the method is more sensitive than using an acetonitrile/water mobile phase. The method was applied to determine PAHs in particulate air samples and the results are in good agreement with those found by GC.

  9. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    SciTech Connect

    Viamajala, S.; Peyton, B. M.; Richards, L. A.; Petersen, J. N.

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.

  10. Imaging of the PAH Emission Bands in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Rank, David; Temi, Pasqiale; Morrison, David (Technical Monitor)

    1994-01-01

    The infrared spectrum of many planetary nebulae, HII regions, galactic nuclei, reflection nebulae, and WC stars are dominated by a set of narrow and broad features which for many years were called the "unidentified infrared bands". These bands have been attributed to several carbon-rich molecular species which all contain only carbon and hydrogen atoms, and fall into the class of PAH molecules or are conglomerates of PAH skeletons. If these bands are from PAHs, then PAHs contain 1-10% of the interstellar carbon, making them the most abundant molecular species in the interstellar medium after CO. From ground based telescopes, we have studied the emission bands assigned to C-H bond vibrations in PAHs (3.3, 11.3 microns) in the Orion Bar region, and showed that their distribution and intensities are consistent with a quantitative PAH model. We have recently obtained spectral images of the Orion Bar from the KAO at 6.2 and 7.7 microns using a 128 x 128 Si:Ga array camera in order to study the C-C modes of the PAH molecules. We will show these new data along with our existing C-H mode data set, and make a quantitative comparison of the data with the existing PAH model.

  11. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-05

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air.

  12. Theoretical spectroscopic study of protonated and deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  13. SY 18-1 TRANSLATIONAL RESEARCH IN PAH.

    PubMed

    Chung, Wook-Jin

    2016-09-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder with a poor prognosis and causes pulmonary vascular remodeling accompanied with increased pulmonary arterial medial wall thickness and fibrosis, which leads to vascular and right ventricular (RV) dysfunction. Despite treatment with prostacyclin, endothelin antagonist, and phosphodiesterase-5 inhibitors the 1-year mortality rate of PAH still remains high. Recent registries, clinical trials, and basic researches have been increasing the knowledge of PAH and it would contribute to potential therapeutic strategies and better clinical outcome.Korean Registry of Pulmonary Arterial Hypertension (KORPAH) is the first modern PAH registries in Asian ethnicity. Total 39 centers participated and 625 patients were enrolled. This study evaluated the incidence, prevalence, epidemiology, therapeutic modalities and survival data of Korean patients with PAH."Gachon experiences" was to characterize the clinical outcomes and evaluate the factors influencing survival time of the PAH patients in Korean. This study compared the cumulative survival of total 43 PAH patients who received targeted or conventional therapy.PAH Ilopost BMPR-2 gene in Korea IIT Multi-institutional (PILGRIM) is a prospective, investigator-initiative, and multi-institutional clinical trials. This study was recently completed in March by 7 institutes, and aimed to investigate (1) the prevalence of BMPR-2 gene mutations in the Korean PAH patients and (2) the effect of iloprost inhalation solution on hemodynamic response, and exercise echocardiography.PAH basic research focuses on two major themes: (1) Systematic comparison of the effects of adipose tissue, bone marrow and umbilical cord blood-derived mesenchymal stem cell transplantation on MCT-induced PAH in rats and (2) investigation of the effect of human UCB-derived MSC (hUCB-MSC) transplantation combined with apelin-13 administration on MCT-induced PAH in rats. Data suggests that, although the

  14. Laboratory Photo-chemistry of PAHs: Ionization versus Fragmentation

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Ligterink, Niels; Linnartz, Harold; Nahon, Laurent; Joblin, Christine; Tielens, Alexander G. G. M.

    2015-05-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8-40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.

  15. Polynuclear aromatic hydrocarbons (PAHs) in fish from the Arabian Gulf

    SciTech Connect

    DouAbdul, A.A.Z.; Abaychi, J.K.; Al-Edanee, T.E.; Ghani, A.A.; Al-Saad, H.T.

    1987-03-01

    Emphasis has been placed upon the identification and qualification of compounds with potential adverse health effects on humans. Prominent among this group are polynuclear aromatic hydrocarbons (PAHs), several of which are known or suspected carcinogens. PAHs enter the marine environment from a variety of sources including petroleum pollution, industrial and domestic effluents, atmospheric particles, and biosynthesis by plants and microorganisms. Although one-third of the world's oil is produced around the Arabian Gulf, no detailed analysis have been conducted to determine PAHs in this region. Nevertheless, numerous investigations have shown the ability of marine organisms including fish to accumulation PAHs from solution or dispersion in seawater. When fish are harvested, a human health hazard may result. In the present communication, high performance liquid chromatography (HPLC) was used to identify and measure sixteen PAHs priority pollutants issued by US Environmental Protection Agency (EPA) in fourteen species of commercially significant fish from the NW Arabian Gulf.

  16. Comparative Developmental Toxicity of Environmentally Relevant Oxygenated PAHs

    SciTech Connect

    Knecht, Andrea; Goodale, Britton; Truong, Lisa; Simonich, Michael; Swanson, Annika; Matzke, Melissa M.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban air, dust and in the soil of most industrial coal gassification, coal burning, coke production and wood preservation sites (Howsam and Jones 1998). It is widely recognized that PAHs pose risks to human health,having been associated with increased risks of systemic inflammation (Delfino et al. 2010), cardiopulmonary mortality (Lee et al. 2011; Lewtas 2007) and lung cancer mortality (Grant 2009; Hoshuyama et al. 2006). The potential risks may be especially acute for the developing fetus and infant where PAH exposures have been linked to low birth weight, intrauterine growth retardation, in-utero mortality and lower intelligence (Dejmek et al. 1999; Dejmek et al. 2000; Perera et al. 1999; Perera et al. 2009; Perera et al. 2006; Perera et al. 1998; Wu et al. 2010). Despite the more than two decades of intensive study devoted to parent PAHs, they are only part of the hazard spectrum from PAH contamination.

  17. ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES

    SciTech Connect

    Zhang, Yong; Kwok, Sun E-mail: sunkwok@hku.hk

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support for the PAH hypothesis.

  18. [Characterization of PAHs in fly ashes from coke production].

    PubMed

    Mu, Ling; Peng, Lin; Liu, Xiao-Feng; Bai, Hui-Ling; Zhang, Jian-Qiang

    2013-03-01

    In order to investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) in ashes from coking, PAHs in ashes from three coke production plants were analyzed with GC-MS, and the distribution characteristics of PAHs and potential toxicity risk were discussed. The sum of 16 EPA prior PAHs varied from 8.17 x 10(2) to 5.17 x 10(3) microg x g(-1). PAH contents from the coke oven (stamp charging) with the height of 3.2 m were two times higher than those from the one (top charging) with the height of 6.0 m, and PAHs in ashes from coal charging were significantly higher than those from coke pushing in the same plant. Four-ring and five-ring PAHs were the dominant species in ashes from coking and the sum of them accounted for more than 80.00% of total PAHs. Chrysene (Chr), benzo [a] anthracene (BaA) and benzo [b] fluoranthene (BbF) were abundant in all ash samples. The content of total BaP-based toxic equivalency (BaPeq) ranged from 1.64 x 10(2) to 9.57 x 10(2) microg x g(-1). From the carcinogenic point of view, besides benzo [a] pyrene (BaP), dibenz [a,h] anthracene (DbA) contributed most to the overall toxicity of PAHs, followed by BaA and BbF. BaPeq concentration from coal charging was 5.21-fold higher than that from coke pushing, indicating that different reuse ways should be considered based on their specific toxicity profiles of PAHs.

  19. PAH emission from a gasoline-powdered engine

    SciTech Connect

    Mi, H.H.; Lee, W.J.; Wang, L.C.; Lin, T.A.; Chao, H.R.; Wu, T.L.

    1996-09-01

    A gasoline powered engine operated on a dynamometer was used to investigate the PAH (Polycyclic Aromatic Hydrocarbons) emission. A 95-leadfree gasoline (95-LFG) and a premium leaded gasoline (PLG) were used as power-fuels. The engine was simulated for the idling condition and for the cruising speeds at 40, 80 and 110 km/hr. The concentrations of 21 individual PAHs in the engine exhaust, gasolines, and the ambient air were determined. Engine exhaust samples were collected by a PAH sampling system, while the ambient air sample was collected by using a standard PS-1 sampler. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Naphthalene (Nap) has the highest concentration in the liquid phase of both 95-LFG and PLG, in which it accounts for respectively 98.3% and 76.6% of the total PAH. In terms of the mean fraction of the total PAHs entering the 95-LFG and PLG engines, the ambient air contributed less than 0.108% and 0.012%, respectively. Gasoline is the major PAH supplier for the automobile engine. By monitoring the PAH output/input mass ratios, the fuel combustion was found to be a generation process for 11 PAHs; and a depletion process for the rest 10 PAHs, in both 95-LFG and PLG powered engines. The mean emission factors of BaP were 2.92 and 2.47 {mu}g/km for 95-LFG and PLG powered engines, respectively. 11 refs., 12 tabs.

  20. Size distribution and dry deposition of road dust PAHs

    SciTech Connect

    Yang, H.H.; Chiang, C.F.; Lee, W.J.; Hwang, K.P.; Wu, E.M.Y.

    1999-07-01

    The size distribution of polycyclic aromatic hydrocarbons (PAHs) for road dust and for the engine exhaust of both gasoline-powered cars and motorcycles was investigated. In addition, by using the measured size distribution data, monitoring and modeling the PAH dry deposition, the contribution fraction of road dust on the dry deposition materials was also studied. Twenty-one PAHs were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). The mass median diameters (MMDs) of 21 individual PAHs for resuspendable road dust (cut size < 100 {micro}m) ranged between 63.4 {micro}m and 65.5 {micro}m. However, the MMDs of total-PAH size distributions for the engine exhaust of both gasoline-powered cars and four-stroke motorcycles averaged 0.45 {micro}m and 0.35 {micro}m, respectively, which were near the MMDs of PAHs (average 0.50 {micro}m) in the ambient air of traffic intersections. Suspended particle-phase total PAHs in the ambient air of traffic intersections were found to be more than 90% of the result of the automobile exhaust; that is, less than 10% of the amount was contributed by the road dust. However, the modeled MMDs of 21 individual PAHs on the dry deposition material were between 22.1 {micro}m and 44.6 {micro}m, and the contribution fraction of road dust on the PAH dry deposition was found to be more than 95%, even though the suspendable ambient-air PAHs were mainly from the mobile exhaust.

  1. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  2. Polycyclic Aromatic Hydrocarbon (PAH) and Oxygenated PAH (OPAH) Air–Water Exchange during the Deepwater Horizon Oil Spill

    PubMed Central

    2015-01-01

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water–air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m3 and 0.3 and 27 ng/m3, respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air–water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10 000 ng/m2/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m2/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air–water chemical flux determinations with passive sampling technology. PMID:25412353

  3. Modulation of the Effect of Prenatal PAH Exposure on PAH-DNA Adducts in Cord Blood by Plasma Antioxidants

    PubMed Central

    Kelvin, Elizabeth A.; Edwards, Susan; Jedrychowski, Wieslaw; Schleicher, Rosemary L.; Camann, David; Tang, Deliang; Perera, Frederica P.

    2011-01-01

    The fetus is more susceptible than the adult to the effects of certain carcinogens, such as polycyclic aromatic hydrocarbons (PAH). Nutritional factors, including antioxidants, have been shown to have a protective effect on carcinogen-DNA adducts and cancer risk in adults. We investigated whether the effect of prenatal airborne PAH exposure, measured by personal air monitoring during pregnancy, on the level of PAH-DNA adducts in a baby's cord blood is modified by the concentration of micronutrients in maternal and cord blood. The micronutrients examined were: retinol (vitamin A), α-tocopherol and γ-tocopherol (vitamin E), and carotenoids. With the use of multiple linear regression, we found a significant interaction between prenatal PAH exposure and cord blood concentration of α-tocopherol and carotenoids in predicting the concentration of PAH adducts in cord blood. The association between PAH exposure and PAH adducts was much stronger among those with low α-tocopherol (β = 0.15; P = 0.001) and among those with low carotenoids (β = 0.16; P < 0.001) compared with babies with high levels of these micronutrients (among those with high α-tocopherol: β = 0.05; P = 0.165; among those with high carotenoids: β = 0.06; P = 0.111). These results suggest a protective effect of micronutrients on the DNA damage and potential cancer risk associated with prenatal PAH exposure. PMID:19661084

  4. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  5. Mapping PAH sizes in NGC 7023 with SOFIA

    NASA Astrophysics Data System (ADS)

    Croiset, B. A.; Candian, A.; Berné, O.; Tielens, A. G. G. M.

    2016-05-01

    Context. NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. Aims: Our goal is to map PAH sizes in NGC 7023 with respect to the location of the star. We focus on the north west (NW) photo-dissociation region (PDR) and the south PDR of NGC 7023 to understand the photochemical evolution of PAHs, using size as a proxy. Methods: We use the unique capabilities of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe a 3.2' × 3.4' region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7'') at 3.3 and 11.2 μm. We compare the SOFIA images with existing images of the PAH emission at 8.0 μm (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the extended red emission (Hubble Space Telescope and Canadian French Hawaiian Telescope), and H2 (2.12 μm). We create maps of the 11.2/3.3 μm ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 μm ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAH database to translate the 11.2/3.3 μm ratio to PAH sizes. Results: The 11.2/3.3 μm ratio map shows the smallest PAH concentrate on the PDR surface (H2 and extended red emission) in the NW and south PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (Nc) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. Conclusions: The high-resolution PAH size map

  6. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  7. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    PubMed

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  8. PAH related effects on fish in sedimentation ponds for road runoff and potential transfer of PAHs from sediment to biota.

    PubMed

    Grung, Merete; Petersen, Karina; Fjeld, Eirik; Allan, Ian; Christensen, Jan H; Malmqvist, Linus M V; Meland, Sondre; Ranneklev, Sissel

    2016-10-01

    Road runoff is an important source of pollution to the aquatic environment, and sedimentation ponds have been installed to mitigate effects on the aquatic environment. The purpose of this study was to investigate if a) fish from sedimentation ponds were affected by road pollution and; b) the transfer of PAHs from road runoff material to aquatic organisms was substantial. Minnow from a sedimentation pond (Skullerud) near Oslo (Norway) had higher levels of CYP1A enzyme and DNA stand breaks than minnow from the nearby river, but high concentrations of PAH-metabolites in bile revealed that both populations were highly exposed. Principal component analysis revealed that CYP1A and age of fish were correlated, while levels of PAH-metabolites were not correlated to CYP1A or DNA damage. Minnow from a lake un-affected by traffic had much lower levels of PAH-metabolites than the exposed fish, and also an improved condition. The latter results indicate that fish health was affected by road runoff. A closer investigation of PAH levels of the ecosystems of two sedimentation ponds (Skullerud and Vassum) and nearby environments were conducted. The concentration of the 16 EPA PAHs in sediments of the sedimentation ponds were high (1900-4200ngg(-1)), and even higher levels were observed in plants. Principal component analysis of selected ion chromatograms of PAHs showed a clear separation of plants vs. sediments. The plants preferentially accumulated the high molecular PAHs, both from sedimentation ponds with a petrogenic PAH isomer ratio in sediments; and from a lake with pyrogenic PAH isomer ratio in sediments.

  9. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1992-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. During the past year the following specific aspects of this broad problem area have been investigated: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) The use of gas-solid chromatography to measure heats of sorption of PAHS, and PAH derivatives, on coal fly ashes and ash fractions. (c) Identification of the major photoproduct(s) of the photodecomposition of one PAH (benz[a]anthracene) sorbed on model adsorbents; (d) Estimation of fractal dimensions'' of coal fly ash particles by use of specific surface area measurements, with an ultimate objective of using these measurements to assess the importance of inner-filter effects'' on the photodecomposition of PAHs sorbed on fly ash particles. (e) The photochemical transformation of a representative nitro-PAH derivative (1-nitropyrene) sorbed on fly ash. (f) Development of techniques for studying the nonphotochemical reactions of hydroxyl radicals (and other atmospheric constituents) with PAHs sorbed on fly ash. Progress achieved, and problems encountered, in each of these major areas of emphasis is described below.

  10. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  11. Infrared absorption and emission characteristics of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  12. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  13. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs.

    PubMed

    Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi

    2002-05-01

    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil

  14. Photoinduced degradation of PAHs in the presence of ozone

    SciTech Connect

    Schutt, W.S.; Li, Y.; Sigman, M.E. |

    1995-12-31

    Polycyclic Aromatic Hydrocarbons (PAH) are formed from both anthropogenic and natural sources. In order to assess the environmental impact caused by the surface-adsorbed PAHs, the chemical lifetimes of these compounds in the atmosphere must be determined. Although ozone is known to be a primary reactant in the chemical transformation of surface-adsorbed PAHs in the atmosphere, the kinetics of these reactions have not been investigated in detail. In addition to the experimental difficulties that arise in using an oxygen-ozone stream while monitoring the PAH with fluorescence, complications in analyzing the kinetic mechanism also exist. It is difficult to determine whether the ozone or oxygen initially quenches the excited state of PAH. Ozone could enhance the degradation rate by simply reacting with a product derived from the excited state of PAH and oxygen. The focus of this study is to demonstrate the use of fluorescence spectroscopy in monitoring the degradation of PAH adsorbed on a three dimensional particle in the presence of gaseous ozone free from the interference of oxygen. More specifically, the experimental procedure will involve the generation of an ozone-nitrogen gas stream to be used in the investigation of dark and photochemical reactions between ozone and naphthalene. The absence of oxygen in the system will allow for the accurate monitoring of PAH fluorescence decay due solely to ozone quenching. It will also aid in the determination of the reaction mechanism. This is the first time that the direct interaction of ozone with an excited state of PAH has been demonstrated.

  15. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  16. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China.

    PubMed

    Hong, Wen-Jun; Jia, Hongliang; Li, Yi-Fan; Sun, Yeqing; Liu, Xianjie; Wang, Luo

    2016-06-01

    A total of 46 polycyclic aromatic hydrocarbons (PAHs, 21 parent and 25 alkylated) were determined in seawater, surface sediment and oyster from coastal area of Dalian, North China. The concentration of Σ46PAHs in seawater, sediment, and oyster were 136-621 ng/L, 172-4700 ng/g dry weight (dw) and 60.0-129 ng/g wet weight (ww) in winter, and 65.0-1130 ng/L, 71.1-1090 ng/g dw and 72.8-216 ng/g ww in summer, respectively. High PAH levels were found in industrial area both in winter and summer. Selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism and the results indicate that surface sediment from all sampling sites have a low to medium ecotoxicological risk. Daily intake of PAHs via oyster as seafood by humans were estimated and the results indicated that oyster intake would not pose a health risk to humans even 30 days after a oil spill accident near by. Water-sediment exchange analysis showed that, both in winter and summer, the fluxes for most high molecular weight PAHs were from seawater to sediment, while for low molecular weight PAHs, an equilibrium was reached between seawater and sediment.

  17. Sorption and chemical transformation of PAHs on coal fly ash. Final technical report

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1995-02-01

    The objectives of this work were to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAH`s) and their derivatives, and to attempt to understand the influence of surface properties of coal ash in the chemical transformations of PAH`s.

  18. Electronic Spectroscopy of Trapped PAH Photofragments

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Bonnamy, Anthony

    2016-06-01

    The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C

  19. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies.

    PubMed

    El Amrani, Abdelhak; Dumas, Anne-Sophie; Wick, Lukas Y; Yergeau, Etienne; Berthomé, Richard

    2015-10-06

    This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.

  20. Pore Water PAH Transport in Amended Sediment Caps

    NASA Astrophysics Data System (ADS)

    Gidley, P. T.; Kwon, S.; Ghosh, U.

    2009-05-01

    Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.

  1. Effects of PAHs on the feeding activity of tubificid worms

    SciTech Connect

    Lotufo, G.R.

    1994-12-31

    Sediment collected from a clean site in LA was sieved through a 125{mu}m screen and contaminated with individual PAHs (pyrene, phenanthrene and dibenzofuran) at increasing concentrations using spiking procedure and with a mixture of the 3 PAHs at a single concentration by shell coating. Feeding activity was estimated by defecation rate. Groups of 15 worms were assigned to defecation chambers in 4 replicates per treatment. Feces were collected daily for 10 days, filtered through a 8{mu}m membrane filter and dry weight measured. Results obtained with phenanthrene and mixture of 3 PAHs indicate that PHA bulk concentration of 100 mg/dry kg and higher significantly reduce tubificid ingestion of sediment. Total recovery to control levels occurred when worms exposed to high concentration of PAH were transferred to clean sediment. Total OC was determined to be 3.2 %.

  2. POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN

    EPA Science Inventory

    We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...

  3. Enhanced PM10 bounded PAHs from shipping emissions

    NASA Astrophysics Data System (ADS)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  4. PAH formation in carbon-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Frenklach, Michael

    1989-01-01

    While there is growing observational evidence that some fraction of interstellar carbon is in polycyclic aromatic hydrocarbons (PAH's), the mechanisms by which these molecules might be formed have not been extensively studied. A detailed investigation of PAH production in the outflowing molecular envelopes of carbon-rich red giant star is presented. The gasphase kinetics of a chemical reaction mechanism developed to study soot production in hydrocarbon flames is modified to apply in circumstellar environments. It was found that astrophysically significant quantities of PAH's can be formed in carbon star envelopes provided the gas is sufficiently dense and resides for a long time in the temperature range of 900 to 1100 k. The precise yield of PAH's is very sensitive to astronomical parameters of the envelope (e.g., mass loss rate, outflow velocity, and acetylene abundance) and certain poorly determined chemical reaction rates.

  5. DISSIPATION OF PAHs IN SATURATED, DREDGED SEDIMENTS: A FIELD TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediments dredged from navigable rivers often contain elevated concentrations of recalcitrant, potentially toxic organic compounds such as polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). The presence of these compounds often requires that the sediments be stored in fully conta...

  6. Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.

  7. Polycyclic aromatic hydrocarbons in Danish leafy crops. Part I: PAH in kale and beets relate to point sources of PAH. Part II: a survey of PAH in commercial grown fresh and deep-frozen kale

    SciTech Connect

    Vahl, M.; Beck, J.; Stoebet, M.

    1982-01-01

    Part I discusses the investigation of Polycyclic Aromatic Hydrocarbons (PAH) has been to demonstrate the possible pollution of leafy vegetables from expected PAH-emmissions, and to compare with similar investigations in Scandinavia. Part II is a survey has been to establish levels of PAH to which consumers are normally exposed from intake of fruits and above ground parts of vegetables.

  8. Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations

    PubMed Central

    Bruschweiler, Evin D.; Danuser, Brigitta; Huynh, Cong Khanh; Wild, Pascal; Schupfer, Patrick; Vernez, David; Boiteux, Philippe; Hopf, Nancy B.

    2012-01-01

    Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24–7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5–119.8 ng m−3 during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure. PMID:23087908

  9. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH.

    PubMed

    Courboulin, Audrey; Barrier, Marjorie; Perreault, Tanya; Bonnet, Pierre; Tremblay, Veronique L; Paulin, Roxane; Tremblay, Eve; Lambert, Caroline; Jacob, Maria H; Bonnet, Sandra N; Provencher, Steeve; Bonnet, Sébastien

    2012-09-01

    Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC) proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the activation of pro-survival transcription factors, such as signal transducer and activator of transcription (STAT)3 and nuclear factor of activated T-cells (NFAT). There are no drugs currently available that are able to efficiently and safely inhibit this axis. We hypothesised that plumbagin (PLB), a natural organic compound known to block STAT3 in cancer cells, would reverse experimental pulmonary hypertension. Using human PAH-PASMC, we demonstrated in vitro that PLB inhibits the activation of the STAT3/NFAT axis, increasing the voltage-gated K(+) current bone morphogenetic protein receptor type II (BMPR2), and decreasing intracellular Ca(2+) concentration ([Ca(2+)](i)), rho-associated coiled-coil containing protein kinase (ROCK)1 and interleukin (IL)-6, contributing to the inhibition of PAH-PASMC proliferation and resistance to apoptosis (proliferating cell nuclear antigen (PCNA), TUNEL, Ki67 and anexine V). In vivo, PLB oral administration decreases distal pulmonary artery remodelling, mean pulmonary artery pressure and right ventricular hypertrophy without affecting systemic circulation in both monocrotaline- and suden/chronic hypoxia-induced PAH in rats. This study demonstrates that the STAT3/NFAT axis can be therapeutically targeted by PLB in human PAH-PASMC and experimental PAH rat models. Thus, PLB could be considered a specific and attractive future therapeutic strategy for PAH.

  10. Polycyclic aromatic hydrocarbon (PAH) luminous galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Ohyama, Y.; Goto, T.; Matsuhara, H.; Oyabu, S.; Wada, T.; Pearson, C. P.; Lee, H. M.; Im, M.; Lee, M. G.; Shim, H.; Hanami, H.; Ishigaki, T.; Imai, K.; White, G. J.; Serjeant, S.; Malkan, M.

    2010-05-01

    Aims: The NEP-deep survey, an extragalactic AKARI survey towards the north ecliptic pole (NEP), provides a comprehensive wavelength coverage from 2 to 24 μm using all 9 photometric bands of the infrared camera (IRC). It allows us to photometrically identify galaxies whose mid-IR emission is clearly dominated by PAHs. Methods: We propose a single-colour selection method to identify such galaxies, using two mid-IR flux ratios at 11-to-7 μm and 15-to-9 μm (PAH-to-continuum flux ratio in the rest frame), which are useful for identifying starburst galaxies at z ~ 0.5 and 1, respectively. We perform a fitting of the spectral energy distributions (SEDs) from optical to mid-IR wavelengths, using an evolutionary starburst model with a proper treatment of radiative transfer (SBURT), in order to investigate their nature. Results: The SBURT model reproduces observed optical-to-mid-IR SEDs of more than a half of the PAH-selected galaxies. Based on the 8 μm luminosity, we find ultra luminous infrared galaxies (ULIRGs) among PAH-selected galaxies. Their PAH luminosity is higher than local ULIRGs with a similar luminosity, and the PAH-to-total IR luminosity ratio is consistent with that of less luminous starburst galaxies. They are a unique galaxy population at high redshifts, and we call these PAH-selected ULIRGs “PAH-luminous” galaxies. Although they are not as massive as submillimetre galaxies at z ~ 2, they have the stellar mass of > 3 × 1010 M_⊙ and therefore are moderately massive.

  11. Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Hannigan, Michael P.; Barsanti, Kelley C.

    2014-10-01

    In this study, a medium volume sampler equipped with quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD-4/PUF sandwich (PXP) was used to collect semi-volatile organic compounds (SVOCs) in both gaseous and particle (PM2.5) phases. A backup QFF (bQFF) was used to evaluate possible sampling artifact of particulate organics due to vapor-phase adsorption. A series of n-alkanes (molecular weight: 170-562) and PAHs (128-300), and two oxy-PAHs (acenaphthenone, 168; fluorenone, 180) were measured. Breakthrough experiments demonstrated that the PXP could collect all gas-phase target compounds with high efficiency, even the low molecular weight (MW) species (e.g., naphthalene). Comparing species concentrations across different sampling matrices encountered at the Denver, Colorado field site, the light n-alkanes (MW < 282) and PAHs (MW < 192) were mostly distributed into the gas phase; while those heavy n-alkanes (MW > 324) and PAHs (MW > 202) were primarily in the particle phase (Average temperature, 12.5 ± 10.1 °C). Log values of measured gas/particle (G/P) partitioning coefficients (Kmp,OM) of selected SVOCs (docosane, tricosane, fluoranthene, pyrene, acenaphthenone and fluorenone) were linearly regressed to those of theoretically-based partitioning coefficients (Ktp,OM) for comparison. Prior to Kmp,OM calculation, the gas- and particle-phase concentrations of SVOCs were corrected following two different approaches based on bQFF measurements. The first approach assumed that the bQFF associated SVOCs were from the adsorption of gaseous SVOCs (positive artifact); the second approach assumed equal contributions from positive and negative (organics evaporated from top QFF and adsorbed by bQFF) artifacts. Under both corrections, significant correlations (p < 0.05) were observed between log Kmp,OM and log Ktp,OM for the six selected SVOCs, suggesting that the predicted G/P partitioning can reasonably capture the measured G/P partitioning behavior. The large

  12. PAH in fossil fuels and their geochemical significance

    NASA Astrophysics Data System (ADS)

    Lin Renzi; Wang Peirong

    With the help of the advanced TSQ-45 model GC-MS-MS with INCOS data system, polycyclic aromatic hydrocarbons (PAH) of 85 samples from twelve sedimentary basins both in China and abroad, including crude oils, source rocks, oil shales and coals, have been studied. PAH, source features, sedimentary environments and maturity of organic matter have been discussed. Three series, i.e. fluorene series, dibenzofuran series and dibenzothiophene series, may be derived from the same original materials, and their properties of internal compositions may be mainly controlled by oxi-reduction conditions. The major changes of PAH are cracking, dealkylation and structural rearrangement during the maturation of organic matter, therefore the changes in ring number of PAH, the internal composition of the same series of compounds and methylphenanthrene index may reflect the maturity of organic matter. On the basis of our analysis and study, a new maturity parameter, i.e. the stable three-fluorene series index, has been proposed. Biphenyl series compounds may be the products of high-temperature cracking. PAH can be used in oil-source correlation studies. The fingerprint of PAH is particularly important for those crude oils or source rocks which are high-mature or in which steroids and terpenoids have been severely altered because of biodegradation.

  13. Ethanol-enhanced bioremediation of PAH-contaminated soils

    SciTech Connect

    Lee, P.H.; Ong, S.K.; Golchin, J.

    1999-07-01

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol.

  14. Steps Toward Identifying PAHs: A Child's Garden of Recent Results

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.

    2005-01-01

    Based on over two decades of experimental, observational and theoretical studies by scientists around the world. It is now widely accepted that the composite emission of mixtures of vibrationally-excited PAHs and PAH ions can accommodate the general pattern of band positions, intensities, and profiles observed in the discreet IR emission features of carbon-rich interstellar dust, as well as the variations in those characteristics. These variations provide insight into the detailed nature of the emitting PAH population and reflect conditions within the emitting regions giving the population enormous potential as probes of astrophysical environments. Moreover, the ubiquity and abundance of this material has impacts that extend well beyond the IR. In this presentation we will examine recent, combined experimental, theoretical, and observational studies that indicate that nitrogen-substituted PAHs represent an important component of the interstellar dust population, and we will go on to explore some of the ramifications of this result. We will also explore the results of recent experimental studies of the strong, low-lying electronic transitions of ionized PAH ions in the Near-IR (0.7 - 2.5 microns) and explore the role that these transitions might play in pumping the PAH IR emission in regions of low-excitation.

  15. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel

    NASA Astrophysics Data System (ADS)

    Alves, C. A.; Vicente, A. M. P.; Gomes, J.; Nunes, T.; Duarte, M.; Bandowe, B. A. M.

    2016-11-01

    A sampling campaign of size segregated particulate matter (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) was carried out at two sites, one in a road tunnel (Braga, Portugal) and another at an urban background location in the neighbourhood. Particle-bound polycyclic aromatic compounds were extracted with organic solvents and analysed by gas chromatography-mass spectrometry. Twenty six parent and alkyl-polycyclic aromatic hydrocarbons (PAHs), 4 azaarenes (AZAs), 15 nitrated and 15 oxygenated derivatives (NPAHs and OPAHs) were analysed. On average, submicron particles (PM1) in the tunnel comprised 93, 91, 96 and 71% of the total PAHs, OPAHs, NPAHs and AZAs mass in PM10, respectively. Tunnel to outdoor PAH concentration ratios between 10 and 14 reveal the strong contribution of fresh exhaust emissions to the PM loads. The dominant PAHs in the tunnel were pyrene, retene and benzo[ghi]perylene, accounting for 20, 17 and 8% of the total PAH levels in PM10, respectively. Isomer ratios indicated the importance of unburnt fuel as a significant PAH source. The only NPAH consistently present in all samples was 5-nitroacenaphthene. Indanone and 1,8-naphthalic anhydride were the most abundant OPAHs, accounting for 25 and 17% of the total concentrations of this organic class, respectively. Other abundant OPAHs were 1,4-naphthoquinone, 9-fluorenone, 1,2-acenaphthylenequinone and 7H-benz[de]anthracene-7-one. Individual emission factors (μg veh- 1 km- 1) were estimated and compared with those obtained in other tunnel studies.

  16. PM₂.₅-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment.

    PubMed

    Bandowe, Benjamin A Musa; Meusel, Hannah; Huang, Ru-Jin; Ho, Kinfai; Cao, Junji; Hoffmann, Thorsten; Wilcke, Wolfgang

    2014-03-01

    Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑hydroxyl+carboxyl-OPAHs, Σnitro-PAHs and Σalkyl+parent-PAHs ranged between 5-22, 0.2-13, 0.3-7, and 7-387 ng m(-3), respectively, being markedly higher than in most western cities. This represented a range of 0.01-0.4% and 0.002-0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.

  17. Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable

    SciTech Connect

    Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten; Jan Roelof van der Meer; Hauke Harms; Mona Wells; Jeffrey Short

    2009-08-15

    In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.

  18. Removal efficiency of vapour/particulate phase PAHs by using alternative protective respirators in PAHs exposure workers.

    PubMed

    Chen, Hsiu-Ling; Yang, Chien-Hung; Lin, Ming-Hsiu

    2012-06-15

    Due to the high heat environment in foundry industries, it is difficult for foundry workers to wear masks during their workday. Thus, how to prevent inhaling vapour or the particulate phase of polycyclic aromatic hydrocarbons (PAHs) is important for occupational hazard management. The present study assesses the characteristics of PAHs emission in foundry and plastic industries to evaluate the removal efficiencies of PAHs while workers use alternative personal protective equipment. The highest 1-hydroxypyrene (1-OHP) level was found for workers who used a cotton-fabric face mask (1.19 μg/g creatinine) and activated-carbon face mask (1.16 μg/g creatinine), compared to a lower level in workers who wore a surgical face mask (0.27 μg/g creatinine) and a N95 respirator (0.51 μg/g creatinine). The urinary 1-OHP in end-of-shift samples correlated to the airborne vapour phase Bapeq, but not for the particulate phase Bapeq in the foundry industry. This is probably because workers wore personal protective equipment that only removed the particulate phase PAH. The current study suggests that future work focus on developing an appropriate and comfortable respirator with high removal efficiency for ultrafine particulates and vapour phase PAHs simultaneously in PAH work environments.

  19. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils.

    PubMed

    Crampon, M; Bureau, F; Akpa-Vinceslas, M; Bodilis, J; Machour, N; Le Derf, F; Portet-Koltalo, F

    2014-01-01

    The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2-3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi.

  20. PAH Emission From ULIRGs: Evidence For Unusual Grain Properties?

    NASA Astrophysics Data System (ADS)

    Marshall, Jason A.; Armus, L.; Spoon, H. W. W.

    2007-12-01

    The tremendous power emerging from ultraluminous infrared galaxies (ULIRGs) is driven both by high levels of star-formation activity and AGN-related accretion. Observations of star-forming regions in the Milky Way and external star-forming galaxies provide evidence that the first of these energy generation mechanisms often also gives rise to emission from PAH molecules in the form of characteristic mid-IR features. Given the composite nature of ULIRGs, it is not surprising that many also exhibit significant emission from PAHs. Perhaps more surprising, however, is that some ULIRGs believed to be powered primarily by AGNs also show emission from PAHs, although typically at lower levels relative to their total dust output. To investigate the nature of the PAH emission from galaxies powered either by star-formation or AGN accretion alone, as well as emission from composite systems such as ULIRGs powered by both mechanisms, we present a detailed study of the PAH emission spectra from galaxies of each type. We use the CAFE spectral energy distribution decomposition software we have developed to derive and extinction correct the spectra of PAH emission from a sample of 100 galaxies with Spitzer/IRS observations, and use the results of this analysis to calculate the ratios of the various mid-IR PAH feature luminosities. In particular, we investigate to what extent these relative feature strengths vary as a function of the optical classification of galaxies, and we inquire into whether or not the derived feature strength ratios provide evidence for unusual grain properties in the extreme conditions within ULIRGs.

  1. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  2. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    NASA Astrophysics Data System (ADS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-02-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  3. Concentrations, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of Liaohe estuarine wetland.

    PubMed

    Wang, Nannan; Lang, Yinhai; Cheng, Fangfang; Wang, Minjie

    2011-10-01

    Concentration, source, and risk of PAHs were investigated in 31 sites from surface soils of Liaohe estuarine wetland. Total PAHs concentrations ranged from 293.4 to 1735.9 ng/g with a mean of 675.4 ng/g. The 3- and 4-ring PAHs were the dominant species. The ratios of high-molecular weight PAHs to low-molecular weight PAHs and anthracene/(anthracene+phenanthrene) were calculated to apportion sources of PAHs. It was found that both pyrogenic and petrogenic PAHs sources were important. Effect range low and effect range median showed that the PAHs would occasionally cause adverse effects. The nemerow composite index revealed that about 41.9% soil sampling sites were safety; about 58.1% sites had different grades of PAHs pollution.

  4. Distribution of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Pulau Tinggi, Johor

    NASA Astrophysics Data System (ADS)

    Razak, Ezzati Sulhi Abdul; Halim, Izzyan Syazwani Abdul; Ali, Masni Mohd

    2016-11-01

    Surface sediments samples were collected at 11 stations around the Pulau Tinggi, Johor in September 2015. A total of 15 PAHs were determined and quantified by gas chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from Pulau Tinggi ranged from 39.61 ng/g to 149.2 ng/g and they were classified as being in low to moderate pollution range. Individual PAH analysis showed that two and three rings PAHs were the most frequently detected isomers and accounted for 22 - 46% of the total PAH concentrations. The sources of PAHs were evaluated by employing diagnostic ratiosof specific PAH compounds.PAH ratios analysis showed a prevalence of pyrogenic PAH origin at most of the stations with exception of only a few stations.

  5. Occurrence and source apportionment of PAHs in highly vulnerable karst system.

    PubMed

    Shao, Yixian; Wang, Yanxin; Xu, Xiaoqing; Wu, Xiao; Jiang, Zhou; He, Shanshan; Qian, Kun

    2014-08-15

    The concentration and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in topsoil, groundwater and groundwater suspended solids (SS) at Guozhuang karst water system of northern China were investigated. The total concentration of PAHs ranged from 622 to 87,880 ng/g dry weight in topsoil, from 4739 to 59,314 ng/g dry weight in SS, and from 2137 to 9037 ng/L in groundwater, with mean values of 17,174 ng/g, 11,990 ng/g and 5020 ng/L, respectively. High concentrations of PAHs were mainly observed in the coal mining industrial area and the discharge area. The composition of PAHs indicated that low molecular weight PAHs were predominant in groundwater samples, the content of medium molecular weight PAHs was elevated in SS, and carcinogenic high molecular weight PAHs were frequently detected in topsoil. The high contents of low-medium molecular weight PAHs in groundwater and SS suggested relatively recent local sources of PAHs that were transported into the aquifer via leakage of contaminated surface water and/or infiltration of PAH-containing precipitation. The results of evaluating sources of PAHs using ratios of specific PAH compounds showed that PAHs mainly originated from coal and wood combustion. Furthermore, five sources were identified by positive matrix factorization (PMF) model, and the contribution to the total loadings of groundwater PAHs were: 2% for unburnt oil, 32% for coal combustion, 22% for vehicle emission, 27% for biomass combustion and 18% for coke production, respectively. Furthermore, strong correlations of total PAHs with total organic carbon (TOC) in topsoil indicated co-emission of PAHs and TOC. Poor correlations of PAHs with dissolved organic carbon (DOC) in groundwater indicated that other factors exert stronger influences. Therefore, PAHs might have posed a major threat to the quality of potable groundwater in Guozhuang karst water system.

  6. The Charge State of Polycyclic Aromatic Hydrocarbons Across Reflection Nebulae: PAH Charge Balance and Calibration

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2016-11-01

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μm PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction (f i ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μm PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.

  7. Biodegradation of PAHs and PCBs in Soils and Sludges

    NASA Astrophysics Data System (ADS)

    Liu, L.; Tindall, J. A.; Zhang, W.

    2002-12-01

    Results from a multi-year, pilot-scale land treatment project for PAHs and PCBs biodegradation are evaluated. A mathematical model, capable of describing sorption, sequestration, and biodegradation in a soil/water system, is applied to interpret the efficacy of a sequential active-passive biotreatment process of organic chemicals at remediation sites. To account for the recalcitrance of PAHs and PCBs in soils and sludges during long-term biotreatment, this model comprises a kinetic equation for organic chemical intraparticle sequestration. Model responses were validated by a favorable match to measurements of biodegradation of PAHs and PCBs in a land treatment unit operated by Aluminum Corporation of America Model simulations were performed to predict on-going biodegradation behavior of PAHs and PCBs in land treatment units. Simulation results indicate that complete biostabilization will be achieved when the concentration of reversibly sorbed chemical (SRA) reduces to zero (i.e., undetectable), with a certain amount of irreversibly sequestrated residual chemical (SIA) remaining within the soil particle solid phase. The residual fraction (SIA) tends to lose its original chemical and biological activity, and hence, is much less available, toxic, and mobile than the "free" compounds. Therefore, PAHs and PCBs will leach only slightly, if at all from the treatment site and thus, they constitute no threat to human health or the environment. Biotreatment of PAHs and PCBs can be terminated accordingly. Results from the pilot-scale testing data and model calculations also suggest that a significant fraction (10-30%) of high-molecular-weight PAHs and PCBs could be sequestrated and become unavailable for biodegradation. Bioavailability (large Kd, i.e., slow desorption rate) is the key factor limiting the PAHs degradation. However, both bioavailability and bioactivity, K (as described by Monod kinetics parameters), regulate PCBs biodegradation. The sequential active

  8. PAH Formation in O-rich Evolved Stars

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.

    2015-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around these objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. Using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.

  9. PAH formation in O-rich planetary nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae towards the Galactic bulge. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around such objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. In this work, using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionized emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionized material is mostly present in the inner parts of these tori, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.

  10. LABORATORY PHOTO-CHEMISTRY OF PAHs: IONIZATION VERSUS FRAGMENTATION

    SciTech Connect

    Zhen, Junfeng; Castellanos, Pablo; Ligterink, Niels; Tielens, Alexander G. G. M.; Paardekooper, Daniel M.; Linnartz, Harold; Nahon, Laurent; Joblin, Christine E-mail: junfeng.zhen@irap.omp.eu

    2015-05-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C{sub 24}H{sub 12}), ovalene (C{sub 32}H{sub 14}) and hexa-peri-hexabenzocoronene (HBC; C{sub 42}H{sub 18}) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.

  11. LABORATORY PHOTO-CHEMISTRY OF PAHS: IONIZATION VERSUS FRAGMENTATION

    PubMed Central

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Ligterink, Niels; Linnartz, Harold; Nahon, Laurent; Joblin, Christine; Tielens, Alexander G. G. M.

    2015-01-01

    Interstellar Polycyclic Aromatic Hydrocarbons (PAH) are expected to be strongly processed by Vacuum Ultra-Violet (VUV) photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium (ISM) are briefly discussed. PMID:26688710

  12. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  13. Emission characterization and δ(13)C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants.

    PubMed

    Wang, Ruwei; Yousaf, Balal; Sun, Ruoyu; Zhang, Hong; Zhang, Jiamei; Liu, Guijian

    2016-11-15

    The objective of this study was to characterize parent polycyclic aromatic hydrocarbons (pPAHs) and their nitrated derivatives (NPAHs) in coarse (PM2.5-10), intermediate (PM1-2.5) and fine (PM1) particulate matters emitted from coal-fired power plants (CFPPs) in Huainan, China. The diagnostic ratios and the stable carbon isotopic approaches to characterize individual PAHs were applied in order to develop robust tools for tracing the origins of PAHs in different size-segregated particular matters (PMs) emitted CFPP coal combustion. The concentrations of PAH compounds in flue gas emissions varied greatly, depending on boiler types, operation and air pollution control device (APCD) conditions. Both pPAHs and NPAHs were strongly enriched in PM1-2.5 and PM1. In contrary to low molecular weight (LMW) PAHs, high molecular weight (HMW) PAHs were more enriched in finer PMs. The PAH diagnostic ratios in size-segregated PMs are small at most cases, highlighting their potential application in tracing CFPP emitted PAHs attached to different sizes of PMs. Yet, substantial uncertainty still exists to directly apply PAH diagnostic ratios as emission tracers. Although the stable carbon isotopic composition of PAH molecular was useful in differentiating coal combustion emissions from other sources such as biomass combustion and vehicular exhausts, it was not feasible to differentiate isotopic fractionation processes such as low-temperature carbonization, high-temperature carbonization, gasification and combustion.

  14. Polycyclic aromatic hydrocarbons (PAHs) in transplanted Manila clams (Tapes philippinarum) from the Lagoon of Venice as assessed by PAHs/shell weight index: a preliminary study.

    PubMed

    Boscolo, Rossella; Cacciatore, Federica; Giovanardi, Otello

    2007-01-01

    Variation of polycyclic aromatic hydrocarbons (PAHs) levels was assessed in Tapes philippinarum from the Lagoon of Venice. Clams were transplanted from a polluted area next to Porto Marghera to two rearing areas of the Southern Lagoon. Analyses of PAHs were made in sediments and clams by GC/MS at first sampling and after 30, 60 and 180 days. Principal component analysis was performed to elucidate bioaccumulation and depuration pattern and input sources. Biota-Sediment-Accumulation-Factor (BSAF) was applied to evaluate the PAHs input sources from sediment. Condition index was calculated to compare the seasonal variation of clam tissue to PAHs levels. To propose results not affected by seasonal changes in flesh weight of clams, the approach based on the calculation of PAHs/SW index was applied. From the results, it was concluded that PAHs/SW index is more recommendable to asses temporal variation of PAHs levels in Manila clams.

  15. Interstellar PAH Emission in the 11-14 micron Region: New Insights and a Tracer of Ionized PAHs

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHs) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For non-adjacent and doubly-adjacent CH groups, the shift is pronounced and consistently toward higher frequencies. The non-adjacent modes are blueshifted by an average of 27 per cm and the doubly-adjacent modes by an average of 17 per cm. For triply- and quadruply-adjacent CH out-of-plane modes the ionization shifts are more erratic and typically more modest. As a result of these ionization shifts, both the non-adjacent and doubly-adjacent CH out-of-plane modes move out of the regions classically associated with their respective vibrations in neutral PAHs. The doubly-adjacent modes of ionized PAHs tend to fall into the frequency range traditionally associated with the non-adjacent modes, while the non-adjacent modes are shifted to frequencies above those normally attributed to out-of-plane bending vibrations. Consequently, the origin of the interstellar infrared emission feature near 11.2 microns, traditionally attributed to the out-of-plane bending of non-adjacent CH groups on PAHs is rendered ambiguous. Instead, this feature likely reflects contributions from both non-adjacent CH units in neutral PAHs and doubly-adjacent CH units in PAH cations, the dominant charge state in the most energetic emission regions. This greatly relieves the structural constraints placed on the interstellar PAH population by the dominance of the 11.2 micron band in this region and eliminates the necessity to invoke extensive dehydrogenation of the emitting species. Furthermore, these results indicate that the emission between 926 and 904 per cm (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the non-adjacent CH out-of-plane bending modes of moderately-sized (fewer than 50 carbon atom) PAH cations making this emission an unequivocal tracer of

  16. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures.

    PubMed

    Pieterse, B; Felzel, E; Winter, R; van der Burg, B; Brouwer, A

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitously occurring environmental compounds that are implicated in a wide range of toxicological effects. Routine measurement of PAH contamination generally involves chemical analytical analysis of a selected group of representatives, for example, EPA-16, which may result in underestimation of the PAH-related toxicity of a sample. Many high molecular weight PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a nuclear receptor that mediates toxic effects related to these compounds. Making use of this property we developed a PAH CALUX assay, a mammalian, H4IIe- cell-based reporter assay for the hazard identification of total PAH mixtures. The PAH CALUX reporter cell line allows for specific, rapid (4 h exposure time) and reliable quantification of AhR-induced luciferase induction relative to benzo[a]pyrene (BaP), which is used as a positive reference PAH congener. Full dose response relationships with inductions over 100-fold were reached within only 2 h of exposure to BaP. The PAH CALUX is highly sensitive, that is, using a 4 h exposure time, a limit of detection (LOD) of 5.2 × 10(-11) M BaP was achieved, and highly accurate, that is, a repeatability of 5.9% and a reproducibility of 6.6% were established. Screening of a selection of PAHs that were prioritized by the European Union and/or the U.S. Environmental Protection Agency showed that the PAH CALUX bioassay has a high predictability, particularly for carcinogenic PAHs. Experiments with synthetic mixtures and reference materials containing complex PAH mixtures show the suitability of the assay for these types of applications. Moreover, the presented results suggest that application of the PAH CALUX will result in a lower risk of underestimation of the toxicity of a sample than chemical analytical approaches that focus on a limited set of prioritized compounds.

  17. Diffuse interstellar bands and PAHs in the Galaxy and beyond

    NASA Astrophysics Data System (ADS)

    Cox, Nick L. J.; Ehrenfreund, Pascale

    2006-09-01

    Diffuse interstellar bands (DIBs) are ubiquitously observed towards reddened stars throughout the Milky Way. In the past decade, DIBs have been observed in only a few extra-galactic lines of sight. The carriers of DIBs are likely large organic gas phase molecules that reside in the diffuse interstellar medium. However, ever since they were first observed in the 1920s their identity remains a mystery. Investigated candidate carriers include, but are not limited to, carbon chains, polycyclic aromatic hydrocarbons (PAHs), fullerenes and tubular PAHs. Recent advances and successes in laboratory and theoretical work have given a great boost to the study of large molecules under interstellar conditions, i.e. low temperature, gas phase. We present here a short overview of our recent (extra)-galactic DIBs observations and the related studies of PAH chemistry in these environments.

  18. [Health risk assessment of coke oven PAHs emissions].

    PubMed

    Bo, Xin; Wang, Gang; Wen, Rou; Zhao, Chun-Li; Wu, Tie; Li, Shi-Bei

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) produced by coke oven are with strong toxicity and carcinogenicity. Taken typical coke oven of iron and steel enterprises as the case study, the dispersion and migration of 13 kinds of PAHs emitted from coke oven were analyzed using AERMOD dispersion model, the carcinogenic and non-carcinogenic risks at the receptors within the modeling domain were evaluated using BREEZE Risk Analyst and the Human Health Risk Assessment Protocol for Hazardous Waste Combustion (HHRAP) was followed, the health risks caused by PAHs emission from coke oven were quantitatively evaluated. The results indicated that attention should be paid to the non-carcinogenic risk of naphthalene emission (the maximum value was 0.97). The carcinogenic risks of each single pollutant were all below 1.0E-06, while the maximum value of total carcinogenic risk was 2.65E-06, which may have some influence on the health of local residents.

  19. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in an urban snowpack.

    PubMed

    Boom, A; Marsalek, J

    1988-08-01

    Accumulations of polycyclic aromatic hydrocarbons in a snowpack were studied in an industrial urban area with numerous anthropogenic sources of PAHs. Average PAH loadings stored in the snowpack were determined, plotted on a map of the study area, and arenal distribution approximated by isoloading contours. The loading contours exhibited a marked elongation in the direction of prevailing winds. The unit-area deposition rates observed in the study area exceeded the typical rates reported for other urban areas, and were the highest immediately downwind of a steel plant. PAH levels in snowmelt were well below the freshwater aquatic life toxicity criteria, but exceeded both the WHO drinking water standard and the U.S. EPA carcinogenic criteria at the 10(-5) risk level.

  20. Search for fullerenes and PAHs in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Foing, B. H.

    1995-02-01

    Recent studies suggest carbon-containing molecules as the best candidates for carriers of the unidentified diffuse interstellar bands (DIBs). considering their abundance and ability to form stable bonds in interstellar space. We have searched for new DIBs in the near-IR and have detected two new diffuse bands that are consistent with laboratory measurements of C 60+ in a neon matrix. Criteria for this possible identification are discussed. From these observations and the DIB treasured absorption. we estimate that up to 0.9% of interstellar carbon could be in the form of C 60+ We also searched for poly cyclic aromatic hydrocarbon (PAH) canons and have derived corresponding limits for the presence of the coronene C 24H 12 and ovalene C 32H 14 cations in space. We have studied the ionization properties of these PAH cations, which could explain their selective destruction. From these results we discuss the role of fullerenes and PAHs as possible DIB carriers.

  1. Sediment-porewater partitioning of polynuclear aromatic hydrocarbons (PAHs)

    SciTech Connect

    Maruya, K.A.; Risebrough, R.W.; Horne, A.J.

    1996-10-01

    Quantifying the distribution of hydrophobic organic compounds between contaminated sediment and interstitial water is key to understanding their fate and effects in aquatic ecosystems. Sampling during the wet and dry-seasons in San Francisco Bay has revealed that the extent of partitioning, measured as the apparent sediment organic carbon-porewater distribution coefficient (K{sub oc}{prime}), was positively correlated with the octanol-water distribution coefficient (K{sub ow}) for a suite of pyrogenically-derived, 2-6 ring PAHs. In addition, sediment PAHs (organic carbon basis) were associated with the silt fraction and organic carbon content. Moreover, K{sub oc}{prime} decreased along an intertidal gradient and was an order of magnitude higher during the wet season when runoff into the Bay was high. Our results provide evidence that substrate heterogeneity, a factor not accounted for in simple equilibrium models, can significantly alter the distribution of PAHs in this environment.

  2. Improved GC/MS methods for measuring hourly PAH and nitro-PAH concentrations in urban particulate matter

    NASA Astrophysics Data System (ADS)

    Crimmins, Bernard S.; Baker, Joel E.

    This study presents two methods for the quantification of nitro-substituted and parent polycyclic aromatic hydrocarbons (NPAH and PAH, respectively), respectively, utilizing large volume injection gas chromatography/mass spectrometry (GC/MS). Both methods (PAH and NPAH, respectively) employed a programmed temperature vaporization injector (PTV) in solvent vent mode, optimized using standard solutions. For the PAH method, the precision of the PTV was comparable to hot splitless injection for exhibiting a percent relative standard deviation (%RSD) consistently below 8% for 100 pg injections. Compound %RSDs for the NPAH method were consistently below 5% using the PTV. Microgram quantities (30-500 μg) of particulate matter Standard Reference Materials (SRM 1649 and 1650, National Institutes of Standards and Technology) were analyzed to simulate PAH and NPAH quantification on small aerosol mass loadings. The method detection limits from this study suggest PAHs and NPAHs can be easily quantified using low-volume samplers (>5 Lpm) on hourly timescales. In addition, this technique enabled the quantification of 12-h NPAH size distributions in the Baltimore, MD, atmosphere.

  3. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site.

    PubMed

    Johnsen, Anders R; De Lipthay, Julia R; Reichenberg, Fredrik; Sørensen, Søren J; Andersen, Ole; Christensen, Peter; Binderup, Mona-lise; Jacobsen, Carsten S

    2006-05-15

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of 14C-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled at greater distances (12-24 m) contained only background levels of PAHs. The total bacterial populations (CFU and numbers of 16S rDNA genes) were similar for all soil samples, whereas the microbial degrader populations (culturable PAH degraders and numbers of PAH dioxygenase genes) were most abundant in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot particles. The increased PAH level close to the pavement was reflected in slightly increased mutagenic activity (1 m, 0.32 +/- 0.08 revertants g(-1) soil; background/ 24 m: 0.08 +/- 0.04), determined by the Salmonella/ microsome assay of total extractable PAHs activated by liver enzymes. The potential for lighter molecular weight PAH degradation in combination with low bioaccessibility of heavier PAHs is proposed to lead to a likely increase in concentration of heavier PAHs over time. These residues are, however, likely to be of low biological significance.

  4. Abundance, composition, and vertical transport of PAHs in marsh sediments.

    PubMed

    White, Helen K; Xu, Li; Lima, Ana Lúcia C; Eglinton, Timothy I; Reddy, Christopher M

    2005-11-01

    Petroleum-derived hydrocarbons continue to persist in Wild Harbor, West Falmouth, MA, following a spill of No. 2 fuel oil in 1969 from the barge Florida. Recent analysis of marsh sediments revealed that residues of degraded oil are present with concentrations of total petroleum hydrocarbons as high as approximately 9 mg g(-1). Polycyclic aromatic hydrocarbons (PAHs) constitute only a minor fraction of these residues with maximum concentrations of 134 mirog g(-1), but their fate is of interest because of their potential toxicity to organisms. As compared to typical unweathered No. 2 fuel oil, the current distribution of PAHs in the sediments reflects substantial weathering by abiotic and biotic processes, specifically a preferential loss of naphthalenes relative to phenanthrenes, as well as isomer-specific biodegradation of alkylated PAHs. Based on comparison to results from an earlier study, it appears that little or no change has occurred to the distribution of PAHs since 1989, indicating that weathering at this site has stalled or is now proceeding at a significantly slower rate. To assess whether sediment-water partitioning and molecular diffusion in the interstitial medium are now the dominant processes controlling the vertical distribution of PAHs, downcore profiles were compared to a numerical model. While in some cases the model accurately reproduced the measured data, there were instances where the distribution of PAHs was slightly under or overestimated. Reasons for these discrepancies are discussed and are likely due to bioturbation, colloid-facilitated transport, or both. Assessment of the influence of these processes on the spilled oil expands our understanding of the overall fate of these compounds and their potential long-term effects on the environment.

  5. Remediation of PAH-contaminated sediments by chemical oxidation.

    PubMed

    Ferrarese, Elisa; Andreottola, Gianni; Oprea, Irina Aura

    2008-03-21

    The aim of this experimental investigation was to assess the feasibility of using chemical oxidation to degrade sorbed polycyclic aromatic hydrocarbons (PAHs) in case of old date sediment contamination. For this purpose several bench scale laboratory tests were performed, with the following liquid reactants: hydrogen peroxide, modified Fenton's reagent, activated sodium persulfate, potassium permanganate, as well as a combination of potassium permanganate and hydrogen peroxide, and a combination of activated sodium persulfate and hydrogen peroxide. The main target of the study was to find out what liquid oxidant was more effective in reducing the pollutant content and to assess the optimal reactant doses. The initial total PAH concentration in sediment samples was about 2800mg/kgSS (light PAHs about 1600mg/kgSS, heavy PAHs about 1200mg/kgSS) and a 95% degradation was required to meet the remediation goals. Based on the results of this study, chemical oxidation proved to be an effective remediation technology, amenably applicable for the ex situ remediation of the sediments of concern. Different reactants resulted however in different removal efficiencies. The best remediation performances were achieved with the use of modified Fenton's reagent, hydrogen peroxide and potassium permanganate, with oxidant dosages about 100mmols per 30g sediment sample. In all these cases the residual heavy PAH concentration in the treated samples was below 100mg/kgSS. The optimal oxidant dosages determined in this study were quite high, as sorbed PAH mineralization requires very vigorous oxidation conditions, especially for soils and sediments with high organic matter content. The results indicated that the optimal oxidant dose must be carefully determined under site-specific conditions. In fact, if the oxidation conditions are not strong enough, the reactants cannot be able to attack the most recalcitrant compounds, while also too high oxidant doses can result in a decrease in the

  6. Global time trends in PAH emissions from motor vehicles.

    PubMed

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EFPAH) for motor vehicles were evaluated quantitatively based on thousands of EFPAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EFPAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EFPAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EFPAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  7. Phototransformation rate constants of PAHs associated with soot particles.

    PubMed

    Kim, Daekyun; Young, Thomas M; Anastasio, Cort

    2013-01-15

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs.

  8. Recent Progress in DIB Research: Survey of PAHS and DIBS

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2013-01-01

    The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars [1, 2]. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic free jet expansion with discharge plasma and high-sensitivity cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual neutral PAH molecules and ions probed in these surveys are derived from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear and unambiguous conclusions regarding the expected abundances for PAHs of various sizes and charge states in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for unambiguous quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.

  9. Biodegradation of PAHs and PCBs in soils and sludges

    USGS Publications Warehouse

    Liu, L.; Tindall, J.A.; Friedel, M.J.

    2007-01-01

    Results from a multi-year, pilot-scale land treatment project for PAHs and PCBs biodegradation were evaluated. A mathematical model, capable of describing sorption, sequestration, and biodegradation in soil/water systems, is applied to interpret the efficacy of a sequential active-passive biotreatment process of organic chemicals on remediation sites. To account for the recalcitrance of PAHs and PCBs in soils and sludges during long-term biotreatment, this model comprises a kinetic equation for organic chemical intraparticle sequestration process. Model responses were verified by comparison to measurements of biodegradation of PAHs and PCBs in land treatment units; a favorable match was found between them. Model simulations were performed to predict on-going biodegradation behavior of PAHs and PCBs in land treatment units. Simulation results indicate that complete biostabilization will be achieved when the concentration of reversibly sorbed chemical (S RA) reduces to undetectable levels, with a certain amount of irreversibly sequestrated residual chemical (S IA) remaining within the soil particle solid phase. The residual fraction (S IA) tends to lose its original chemical and biological activity, and hence, is much less available, toxic, and mobile than the "free" compounds. Therefore, little or no PAHs and PCBs will leach from the treatment site and constitutes no threat to human health or the environment. Biotreatment of PAHs and PCBs can be terminated accordingly. Results from the pilot-scale testing data and model calculations also suggest that a significant fraction (10-30%) of high-molecular-weight PAHs and PCBs could be sequestrated and become unavailable for biodegradation. Bioavailability (large K d , i.e., slow desorption rate) is the key factor limiting the PAHs degradation. However, both bioavailability and bioactivity (K in Monod kinetics, i.e., number of microbes, nutrients, and electron acceptor, etc.) regulate PCBs biodegradation. The sequential

  10. [Biological monitoring of PAH exposure among asphalt workers].

    PubMed

    Campo, Laura; Calisti, Roberto; Polledri, Elisa; Barretta, Francesco; Stopponi, Roberta; Massacesi, Stefania; Bertazzi, Pieralberto; Fustinoni, Silvia

    2011-01-01

    Aim of this work was the assessment of exposure to polycyclic aromatic hydrocarbons (PAHs) by urinary 1-hydroxypyrene (1-OHPyr) in asphalt workers. Median levels of 1-OHPyr resulted higher in asphalt workers than in controls (184 vs. < 20 ng/L, p < 0.001). The determinants of exposure of 1-OHPyr resulted smoking habit, the number of consecutive days at work and the job task; 1-OHPyr was also associated to urinary creatinine. End of work week 1-OHPyr is suggested as an useful indicator of occupational exposure to PAHs in bitumen fumes.

  11. Use of alternative growth substrates to enhance PAH degradation

    SciTech Connect

    Tittle, P.C.; Liu, Y.T.; Strand, S.E.; Stensel, H.D.

    1995-12-31

    Freshwater and saltwater polycyclic aromatic hydrocarbons (PAH)-degrading enrichments were developed from seed from a manufactured gas plant site and contaminated marine sediment, respectively. Both enrichments were able to maintain specific degradation rates of 3- and 4-ring PAHs after growth with salicylate or phthalate, which increased their biomass concentrations by a factor of 9 to 10. Phthalate was a more effective alternative substrate than was salicylate. Specific degradation rates of phenanthrene and anthracene by the freshwater enrichment were increased after growth with phthalate. Growth with phthalate increased the specific degradation rates of phenanthrene and pyrene by the saltwater enrichment.

  12. Distribution of persistent organic pollutants (PAHs, Me-PAHs, PCBs) in dissolved, particulate and sedimentary phases in freshwater systems.

    PubMed

    Rabodonirina, Suzanah; Net, Sopheak; Ouddane, Baghdad; Merhaby, Dima; Dumoulin, David; Popescu, Tudor; Ravelonandro, Pierre

    2015-11-01

    The occurrence of three groups of hazardous organic contaminants (PCBs, PAHs, Me-PAHs) in fifteen watercourses and rivers located in highly urbanized and industrialized zones was studied. The distribution of 62 organic contaminants was determined in three matrices: in the dissolved phase, associated with suspended solid matter (SSM) and in sediment. Their distributions in the aquatic environment depend strongly on their physicochemical properties. Low molecular weight PAHs were predominant in the dissolved phase while those with high molecular weight accumulated preferentially in SSM and sediments. Among the 28 PCBs congeners, only PCB153 was detected. The results showed that the contamination of these areas originated mainly from combustion processes. The three the most polluted sites identified are surrounded by big cities. Ecotoxicological assessment based on the international Sediment Quality Guidelines (SQGs) showed that the toxic effects of the sediment in these watercourses and rivers occurred due to high levels of hydrocarbons.

  13. ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS

    EPA Science Inventory

    Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...

  14. A TOXICITY ASSESSMENT APPROACH FOR EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of organic contaminants known for their prevalence and persistence in petroleum-impacted environment such as groundwater, soils and sediments. Many high molecular weight PAHs are suspected carcinogens and the existence of...

  15. BIODEGRADATION OF SEDIMENT-BOUND PAHS IN FIELD-CONTAMINATED SEDIMENT

    EPA Science Inventory

    The biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been reported to occur under aerobic, sulfate reducing, and denitrifying conditions. PAHs present in contaminated sites, however, are known for their persistence. Most published studies were conducted in systems wh...

  16. Optical Spectroscopy of Radiation Processed Cosmic Ices & PAH-doped Water-rich Ices

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs. This ability of such water-rich, oxygen-dominated ices to promote production of complex organic species is important. We will present studies on cosmic ices that include PAH-impurities upon vacuum ultraviolet (VUV) irradiation using electronic spectroscopy. VUV-irradiation of PAH / H2O ices leads to efficient conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O / PAH+ ices are stable at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices.

  17. Coal-tar pavement sealants might substantially increase children's PAH exposures

    USGS Publications Warehouse

    Williams, E. Spencer; Mahler, Barbara J.; Van Metre, Peter C.

    2012-01-01

    Dietary ingestion has been identified repeatedly as the primary route of human exposure to polycyclic aromatic hydrocarbons (PAHs), seven of which are classified as probable human carcinogens (B2 PAHs) by the U.S. EPA. Humans are exposed to PAHs through ingestion of cooked and uncooked foods, incidental ingestion of soil and dust, inhalation of ambient air, and absorption through skin. Although PAH sources are ubiquitous in the environment, one recently identified PAH source stands out: Coal-tar-based pavement sealant—a product applied to many parking lots, driveways, and even playgrounds primarily in the central, southern, and eastern U.S.—has PAH concentrations 100–1000 times greater than most other PAH sources. It was reported recently that PAH concentrations in house dust in residences adjacent to parking lots with coal-tar-based sealant were 25 times higher than in residences adjacent to unsealed asphalt parking lots.

  18. ASSESSING THE POTENTIAL FOR PHOTO-ACTIVATED TOXICITY OF PAHS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants introduced through combustion processes and from release of petroleum and petroleum products. Assessing the ecological risk from PAHs is complicated by several factors, including their occurrence a...

  19. Increased zooplankton PAH concentrations across hydrographic fronts in the East China Sea.

    PubMed

    Hung, Chin-Chang; Ko, Fung-Chi; Gong, Gwo-Ching; Chen, Kuo-Shu; Wu, Jian-Ming; Chiang, Hsin-Lun; Peng, Sen-Chueh; Santschi, Peter H

    2014-06-15

    The Changjiang has transported large quantities of polycyclic aromatic hydrocarbons (PAHs) to the East China Sea (ECS), but information of these pollutants in zooplankton is limited. To understand PAHs pollution in zooplankton in the ECS, total concentrations of PAHs in zooplankton from surface waters were measured. Values of PAHs ranged from 2 to 3500 ng m(-3) in the ECS, with highest PAHs levels located at the salinity front between the Changjiang Diluted Water (CDW) and the mid-shelf waters. In contrast, concentrations of zooplankton PAHs in the mid-shelf and outer-shelf waters were significantly lower (2-23 ng m(-3)) than those in the CDW. These results demonstrate that PAHs are conspicuously accumulated in zooplankton at the salinity front between the CDW and the mid-shelf waters. These higher levels of PAHs in zooplankton at the salinity front may be further biomagnified in marine organisms of higher trophic levels through their feeding activities.

  20. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea.

    PubMed

    Kang, Bomi; Lee, Byung-Mu; Shin, Han-Seung

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) content and a risk assessment from consumption of Korean edible oils were investigated. Liquid-liquid extraction and gas chromatography-mass spectroscopy were used to measure eight PAH in edible oils commonly consumed in Korea. The total average PAH concentration was 0.548 μg/kg from edible oils and the content of the 8 PAH was lower than 2 μg/kg, which is the maximum tolerable limit reported by the commission regulation. The contents of the eight PAH were converted to exposure assessment and risk characterization values. Dietary exposure to PAH from edible oils was 0.025 ng-TEQBaP/kg/d, and margin of exposure (MOE) was 4 × 10(6), which represents negligible concern. Although PAH were detected from edible oils in Korea, their contribution to human exposure to PAH is considered not significant.

  1. [Influences of surfactant on the transport of PAHs in artificially contaminated soil columns].

    PubMed

    Chen, Jing; Wang, Xue-jun; Hu, Jun-dong; Tao, Shu; Liu, Wen-xin

    2005-03-01

    The effect of anionic surfactant LAS on leaching of PAHs from artificially contaminated soil was studied. The interaction of these processes were studied in a two-layer column experiment with a base layer of uncontaminated soil(9cm) and a top layer of artificially contaminated soil(1cm). Results show that 5 critical micelle concentration (CMC) LAS enhanced the transport of PAHs. The breakthrough curves of low ring PAHs followed the normal distribution and the relative leaching ratios of 4 or more rings PAHs were low, and not more than 10%. The transport of PAHs was retarded compared with LAS, and the high ring PAHs were retarded more significantly. Linear correlation was observed between the relative leachability of the individual PAHs and the octanol/water coefficient of PAHs.

  2. Biological risk and pollution history of polycyclic aromatic hydrocarbons (PAHs) in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Tam, Nora F Y; Chen, Shejun; Mai, Bixian; Zhou, Xizhen; Xia, Lihua; Geng, Xinhua

    2014-08-15

    Chinese government has taken various measures to alleviate pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the region of Pearl River Delta since the economic reform in 1978, but the effectiveness of these measures remains largely unknown. This study aimed to elucidate the biological risk and pollution history of PAHs by measuring the concentrations of 28 PAHs in the surface and core sediments, respectively, in Nansha mangrove. Results found that the biological risk of PAHs was low without obvious spatial variation. The PAH concentration along the depth gradient indicated that PAH pollution was stabilized since the early 1990s while the source of PAHs has gradually changed from combustion of coal to petroleum products. This implied that the mitigation measures taken by the Chinese government were effective. Compared to marine bottom sediment, we propose that using mangrove sediment can provide a more accurate and precise estimate of pollution history of PAHs.

  3. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects.

    PubMed

    Kim, Ki-Hyun; Jahan, Shamin Ara; Kabir, Ehsanul; Brown, Richard J C

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds comprised of two or more fused benzene rings arranged in various configurations. PAHs are widespread environmental contaminants formed as a result of incomplete combustion of organic materials such as fossil fuels. The occurrence of PAHs in ambient air is an increasing concern because of their carcinogenicity and mutagenicity. Although emissions and allowable concentrations of PAHs in air are now regulated, the health risk posed by PAH exposure suggests a continuing need for their control through air quality management. In light of the environmental significance of PAH exposure, this review offers an overview of PAH properties, fates, transformations, human exposure, and health effects (acute and chronic) associated with their emission to the atmosphere. Biomarkers of PAH exposure and their significance are also discussed.

  4. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China.

    PubMed

    Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng

    2015-10-01

    Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.

  5. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs.

    PubMed

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office.

  6. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties.

    PubMed

    Jonsson, Sofia; Persson, Ylva; Frankki, Sofia; van Bavel, Bert; Lundstedt, Staffan; Haglund, Peter; Tysklind, Mats

    2007-10-01

    In this study, we investigated how the chemical degradability of polycyclic aromatic hydrocarbons (PAHs) in aged soil samples from various contaminated sites is influenced by soil characteristics and by PAH physico-chemical properties. The results were evaluated using the multivariate statistical tool, partial least squares projections to latent structures (PLS). The PAH-contaminated soil samples were characterised (by pH, conductivity, organic matter content, oxide content, particle size, specific surface area, and the time elapsed since the contamination events, i.e. age), and subjected to relatively mild, slurry-phase Fenton's reaction conditions. In general, low molecular weight PAHs were degraded to a greater extent than large, highly hydrophobic variants. Anthracene, benzo(a)pyrene, and pyrene were more susceptible to degradation than other, structurally similar, PAHs; an effect attributed to the known susceptibility of these compounds to reactions with hydroxyl radicals. The presence of organic matter and the specific surface area of the soil were clearly negatively correlated with the degradation of bi- and tri-cyclic PAHs, whereas the amount of degraded organic matter correlated positively with the degradation of PAHs with five or six fused rings. This was explained by enhanced availability of the larger PAHs, which were released from the organic matter as it degraded. Our study shows that sorption of PAHs is influenced by a combination of soil characteristics and physico-chemical properties of individual PAHs. Multivariate statistical tools have great potential for assessing the relative importance of these parameters.

  7. PAHs (Polycyclic Aromatic Hydrocarbons), Nitro-PAHs, Hopanes and Steranes Biomarkers in Sediments of Southern Lake Michigan, USA

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2014-01-01

    PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in bottom sediments. Their nitro derivatives, nitro-PAHs (NPAHs), which can have stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport routes and also are accumulated in sediments. Limited information exists regarding the current distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in surface sediments collected at 24 offshore sites in southern Lake Michigan. The ΣPAH14 (sum of 14 compounds) ranged from 213 to 1291 ng/g dry weight (dw) across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. Compared to consensus-based sediment quality guidelines, PAH concentrations suggest very low risk to benthic organisms. The ΣNPAH5 concentration ranged from 2.9 to 18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. ΣSterane6 and ΣHopane5 concentrations ranged from 6.2 to 36 and 98 to 355 ng/g dw, respectively. Based on these concentrations, Lake Michigan is approximately receiving 11, 0.16, 0.25 and 3.6 metric tons per year (t/yr) of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations display that concentrations decline with increasing off-shore distance. The major sources of PAHs and NPAHs are pyrogenic in nature, based on diagnostic ratios. Using chemical mass balance models, sources were apportioned to emissions from diesel engines (56±18%), coal power plants (27±14%), coal-tar pavement sealants (16±11%), and coke ovens (7±12%). The biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of the lake more impacted by petroleum. This first report of NPAHs levels in sediments of Lake Michigan reveals several carcinogenic compounds at modest concentrations, and a need for further work

  8. PAHs (polycyclic aromatic hydrocarbons), nitro-PAHs, and hopane and sterane biomarkers in sediments of southern Lake Michigan, USA.

    PubMed

    Huang, Lei; Chernyak, Sergei M; Batterman, Stuart A

    2014-07-15

    PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in bottom sediments. Their nitro derivatives, nitro-PAHs (NPAHs), which can have stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport routes and also are accumulated in sediments. Limited information exists regarding the current distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in surface sediments collected at 24 offshore sites in southern Lake Michigan. The ΣPAH14 (sum of 14 compounds) ranged from 213 to 1,291 ng/g dry weight (dw) across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. Compared to consensus-based sediment quality guidelines, PAH concentrations suggest very low risk to benthic organisms. The ΣNPAH5 concentration ranged from 2.9 to 18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. ΣSterane6 and ΣHopane5 concentrations ranged from 6.2 to 36 and 98 to 355 ng/g dw, respectively. Based on these concentrations, Lake Michigan is approximately receiving 11, 0.16, 0.25 and 3.6 metrictons per year (t/yr) of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations display that concentrations decline with increasing off-shore distance. The major sources of PAHs and NPAHs are pyrogenic in nature, based on diagnostic ratios. Using chemical mass balance models, sources were apportioned to emissions from diesel engines (56 ± 18%), coal power plants (27 ± 14%), coal-tar pavement sealants (16 ± 11%), and coke ovens (7 ± 12%). The biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of the lake more impacted by petroleum. This first report of NPAH levels in sediments of Lake Michigan reveals several carcinogenic compounds at modest concentrations, and a need for

  9. Evaporation and vapor characterization of low-PAH binders for Soederberg cells

    SciTech Connect

    Eie, M.; Oeye, H.A.; Soerlie, M.

    1996-10-01

    The PAH contents in anode pitches as well as in their pitch vapors have been characterized, for both standard anode pitches and the new types of PAH-reduced cut-back pitches. This data has been compared to PAH emissions measured from industrial VS Soederberg cells. A total of 16 PAH compounds in the pitches, from phenanthrene to dibenzopyrenes, have been analyzed in this work.

  10. AN OVERVIEW OF PARTITIONING AND BIOAVAILABILITY OF PAHS IN SEDIMENTS AND SOILS

    EPA Science Inventory

    Understanding and predicting any adverse effects of PAHs depends on generating a reliable measure or estimate of how much PAH is available for uptake. Simply knowing the total amount of PAH in soil, water or sediment is insufficient for determining whether or not these compounds ...

  11. ASSESSING THE BIOAVAILABILITY OF PAHS IN FIELD-CONTAMINATED SEDIMENT USING XAD-2 ASSISTED DESORPTION

    EPA Science Inventory

    In the bioremediation of soils/sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) it is imperative to determine the fraction of the PAHs that is amenable to remediation. For example, what fraction of the PAHs is available to the indigenous microorganisms, i.e. bi...

  12. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... AGENCY Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was... of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures''...

  13. Temporal variations in PAH concentrations in Quercus ilex L. (holm oak) leaves in an urban area.

    PubMed

    De Nicola, Flavia; Maisto, Giulia; Prati, Maria Vittoria; Alfani, Anna

    2005-10-01

    Temporal variations of polycyclic aromatic hydrocarbon (PAH) concentrations in leaves of a Mediterranean evergreen oak, Quercus ilex L., were investigated in order to assess the suitability of this species to biomonitor PAH air contamination. Leaf samples were collected at six sites of the urban area of Naples (Italy) and at a control site in the Vesuvius National Park, in May and September 2001, and in January and May 2002. PAH extraction was conducted by sonication in dichloromethane-acetone and quantification by GC-MS. In winter, leaf total PAH concentrations showed, at all the urban sites, values 2-fold higher than in all the other samplings, reflecting the temporal trend reported for PAH air contamination in the Naples urban area. Moreover, leaf PAH concentrations showed, at all the urban sites, a decrease in May 2002 after the winter accumulation. At the control site leaf PAH concentrations showed lower values and smaller temporal variations than at the urban sites. The findings support the suitability of Q. ilex leaves to monitor temporal variations in PAH contamination. The highest winter concentrations of total PAHs were due to the medium molecular weight PAHs that increased with respect to both low and high molecular weight PAHs. The medium molecular weight PAHs showed the same temporal trend both at the urban and remote sites.

  14. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires

    NASA Astrophysics Data System (ADS)

    Chen, Shui-Jen; Su, Hung-Bin; Chang, Juu-En; Lee, Wen-Jhy; Huang, Kuo-Lin; Hsieh, Lien-Te; Huang, Yi-Chu; Lin, Wen-Yinn; Lin, Chih-Chung

    This work investigated the PAHs generated in a waste-tire pyrolysis process and the PAHs removal by a wet scrubber (WSB) and a flare. IND, DBA, and BaP were found to dominate in the powders of scrap tires before the pyrolysis. The PAHs in the carbon blacks formed in the pyrolysis were mainly 2-, 3-, 6-, and 7-ring PAHs. Nap was the most predominant water-phase PAH in the WSB effluent. About 40% of the water-phase total-PAHs in the WSB effluent were contributed by nine carcinogenic PAHs. NaP, IND, and COR displayed higher mean gas- and particulate-phase concentrations than the other PAHs in the flare exhaust. The mean removal efficiencies of individual PAHs, total-PAHs, and high carcinogenic BaP+IND+DBA were 39.1-90.4%, 76.2%, and 84.9%, respectively for the WSB. For the flare, the mean removal efficiencies of gaseous, particulate, and combined (gaseous+particulate) total-PAHs were 59.8%, 91.2%, and 66.8%, respectively, whereas the removal efficiencies were 91.0%, 80.1%, and 89.1%, respectively for the total-BaPeq. However, the gaseous BaA displayed a negative mean removal efficiency. The total PAH emission rate and factor estimated for the scrap tire pyrolysis plant were 42.3 g d -1 and 4.00 mg kg-tire -1, respectively.

  15. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    SciTech Connect

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  16. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils.

    PubMed

    Gao, Yanzheng; Hu, Xiaojie; Zhou, Ziyuan; Zhang, Wei; Wang, Yize; Sun, Bingqing

    2017-03-01

    Understanding the phytoavailability of bound residues of polycyclic aromatic hydrocarbons (PAHs) in soils is essential to assessing their environmental fate and risks. This study investigated the release and plant uptake of bound PAH residues (reference to parent compounds) in field contaminated soils after the removal of extractable PAH fractions. Plant pot experiments were performed in a greenhouse using ryegrass (Lolium multiflorum Lam.) to examine the phytoavailablility of bound PAH residues, and microcosm incubation experiments with and without the addition of artificial root exudates (AREs) or oxalic acid were conducted to examine the effect of root exudates on the release of bound PAH residues. PAH accumulation in the ryegrass after a 50-day growth period indicated that bound PAH residues were significantly phytoavailable. The extractable fractions, including the desorbing and non-desorbing fractions, dominated the total PAH concentrations in vegetated soils after 50 days, indicating the transfer of bound PAH residues to the extractable fractions. This transfer was facilitated by root exudates. The addition of AREs and oxalic acid to test soils enhanced the release of bound PAH residues into their extractable fractions, resulting in enhanced phytoavailability of bound PAH residues in soils. This study provided important information regarding environmental fate and risks of bound PAH residues in soils.

  17. MULTIMEDIA CONCENTRATIONS OF PAH IN SEVERAL DAY CARE CENTERS

    EPA Science Inventory

    Concentrations of polycyclic aromatic hydrocarbons were measured in nine day care centers in the spring of 1997. Indoor and outdoor air, food and beverages, indoor dust, and outdoor play area soil were sampled. The mean sums of 20 target PAH concentrations were 265 and 199 ng...

  18. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology.

    PubMed

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D

    2015-03-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  19. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    PubMed Central

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  20. Urinary concentrations of PAH and VOC metabolites in marijuana users

    PubMed Central

    Wei, Binnian; Alwis, K. Udeni; Li, Zheng; Wang, Lanqing; Valentin-Blasini, Liza; Sosnoff, Connie S.; Xia, Yang; Conway, Kevin P.; Blount, Benjamin C.

    2016-01-01

    Background Marijuana is seeing increased therapeutic use, and is the world’s third most-popular recreational drug following alcohol and tobacco. This widening use poses increased exposure to potentially toxic combustion by-products from marijuana smoke and the potential for public health concerns. Objectives To compare urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) among self-reported recent marijuana users and nonusers, while accounting for tobacco smoke exposure. Methods Measurements of PAH and VOC metabolites in urine samples were combined with questionnaire data collected from participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2012 in order to categorize participants (≥18 years) into exclusive recent marijuana users and nonusers. Adjusted geometric means (GMs) of urinary concentrations were computed for these groups using multiple regression analyses to adjust for potential confounders. Results Adjusted GMs of many individual monohydroxy PAHs (OH-PAHs) were significantly higher in recent marijuana users than in nonusers (p < 0.05). Urinary thiocyanate (p < 0.001) and urinary concentrations of many VOC metabolites, including metabolites of acrylonitrile (p < 0.001) and acrylamide (p < 0.001), were significantly higher in recent marijuana users than in nonusers. Conclusions We found elevated levels of biomarkers for potentially harmful chemicals among self-identified, recent marijuana users compared with nonusers. These findings suggest that further studies are needed to evaluate the potential health risks to humans from the exposure to these agents when smoking marijuana. PMID:26690539

  1. Sequencing batch reactor performance treating PAH contaminated lagoon sediments.

    PubMed

    Giordano, Andrea; Stante, Loredana; Pirozzi, Francesco; Cesaro, Raffaele; Bortone, Giuseppe

    2005-03-17

    The applicability of sediment slurry sequencing batch reactors (SBR) to treat Venice lagoon sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was investigated, carrying out experimental tests. The slurry, obtained mixing tap water and contaminated sediments with 17.1 mg kg(-1) TS total PAHs content, was loaded to a 8l lab-scale completely stirred reactor, operated as a sequencing batch reactor. Oxygen uptake rate exerted by the slurry, measured by means of a DO-stat titrator, was used to monitor the in-reactor biological activity and to select the optimal operating conditions for the sediment slurry SBR. The PAHs removal efficiency was evaluated in different operating conditions, obtained changing the hydraulic retention time (HRT) of the lab-scale reactor and adding an external carbon source to the slurry. HRT values used during the experiments are 98, 70 and 35 days, whereas the carbon source was added in order to evaluate its effect on the biological activity. The results have shown a stable degradation of PAHs, with a removal efficiency close to 55%, not dependent on the addition of carbon source and the tested HRTs.

  2. PAH EXPOSURES OF PRESCHOOL CHILDREN AND THEIR ADULT CAREGIVERS

    EPA Science Inventory

    The results of four small studies of the polycyclic aromatic hydrocarbon (PAH) exposures of preschool children in low-income families from the Piedmont area of North Carolina were combined to allow comparisons of the total exposures of the children and their adult caregivers. I...

  3. Angular motion of a PAH molecule in interstellar environment

    NASA Technical Reports Server (NTRS)

    Rouan, D.; Leger, Alain; Omont, A.; Giard, Martin

    1989-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules have recently been proposed as an important and hitherto undetected component of the Interstellar Medium (ISM). The theory was based on an explanation of the Unidentified IR Emission Bands by Leger et al. It has already led to a verified prediction on extended galactic and extragalactic emissions measured by IRAS, or by a recent balloon borne experiment. The physics that rules the motion of such molecules in the ISM was studied, taking into account their coupling with the ambient gas, the radiation field (absorption and emission) and the static magnetic field. This is important for many implications of the PAH theory such as the radio emission by these molecules or the expected polarization of their IR emission. A reflection nebulae is considered where the situation is rather well known. Every day life of a mean PAH molecule in such a region is as follows: every 3 hrs a UV photon is absorbed heating the molecule to a thousand degs; the temperature decay due to cooling by IR emission follows then within a few seconds. A collision with a molecule of gas occurs typically once a week, while an H atom is ejected or captured at the same rate. A typical cooling cycle after a heat impulse is given. The PAH molecules studied as representative of the family has typically 50 atoms, a radius of 4.5 A, is circular and has a molecular mass of M = 300; its permanent dipole moment is 3 Debye.

  4. LAND TREATMENT OF TWO PLATEAU MATERIALS CONTAMINATED WITH PAHS

    EPA Science Inventory

    This study was designed to evaluate several treatments for their ability to enhance the biological removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and sediment. Previously land-treated material was used to test the treatments in a 13 week bench scale stu...

  5. Are Biogenic PAHs Precursors for Fullerenes on Earth?

    NASA Astrophysics Data System (ADS)

    Heymann, D.

    2002-03-01

    C60 fullerene in shungite and in bitumen from the Bohemian Massif could have formed in situ in two steps: 1. Cyclotrimerization of the PAH C20H12. 2. Dehydrogenation of C60H30 to C60. The necessary heat was provided during metamorphism.

  6. PAHs molecules and heating of the interstellar gas

    NASA Technical Reports Server (NTRS)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  7. Levels, trends and health concerns of atmospheric PAHs in Europe

    NASA Astrophysics Data System (ADS)

    Garrido, Adrián; Jiménez-Guerrero, Pedro; Ratola, Nuno

    2014-12-01

    Changes in climate can affect the concentration patterns of polycyclic aromatic hydrocarbons (PAHs) by altering the dispersion (wind speed, mixing layer height, convective fronts), deposition by precipitation, dry deposition, photochemistry, natural emissions and background concentrations. This means the evolution trends of these pollutants have to be studied under a multi-scale perspective, allowing the establishment of transport patterns and distribution of PAHs. In this sense, this work tries to unveil the atmospheric behaviour of these pollutants using temporal data series collected in different stations from the European Monitoring and Evaluation Programme (EMEP) air sampling network. These sites are thought to avoid the direct influence of emitting areas (background stations), allowing the study of long-range transport effects, intra- and trans-annual variability, relationships between concentrations patterns and meteorological variables and latitudinal gradients of PAH levels in Europe. Overall, a typical high concentration pattern was found for the colder months (and an opposite behaviour is found for summertime). Negative trends were detected over high latitudes, for instance, in Svalbard (Norway), whereas for the United Kingdom the pattern is the inverse. Also, negative latitudinal gradients were observed in 4 of the 15 PAHs studied. Finally, air quality parameters revealed concern over human health issues, given the recent increase of BaP levels in Europe.

  8. Human Exposures to PAHs: an Eastern United States Pilot Study

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD and in four surrounding counties (NHEXAS-Maryland). An objective of this effort was to esta...

  9. Efficiency of butyl rubber sorbent to remove the PAH toxicity.

    PubMed

    Okay, O S; Özdemir, P; Yakan, S D

    2011-01-01

    Large amounts of polycyclic aromatic hydrocarbons (PAHs) have been released to the marine environment as a result of oil spills and from other sources including wastewaters, surface runoff, industrial processes, atmospheric deposition, biosynthesis, and natural events such as forest fires. PAHs have been known to affect a variety of biological processes and can be potent cell mutagens/carcinogens and toxic. In this study, PAH toxicity removal was investigated by using a novel macroporous butyl rubber (BR) sorbent. To find out the toxicity removal efficiency of the sorbents, the toxicity tests with Vibrio fisheri (luminescence bacteria) and Phaeodactylum tricornutum (marine algae) were applied to the acenaphthene (Ace) and phenanthrene (Phen) solutions in seawater (Ace: 500- 1000 μg/L; Phen; 100-1000 μg/L) before and after sorbent applications. Additionally, lysosomal stability and filtration rate biomarker techniques were applied to the mussels (Mytilus galloprovincialis) exposed to 1000 μg/L Phen solution and bioaccumulation was measured. The results showed that the toxicity of the PAH solutions decreased 50-100 percent depending on the concentration of the solutions and organisms. Phaeodactylum was found as the most sensitive organism to Phen and Ace. Since the application of BR sorbent removed the Phen from the solution, the bioaccumulated Phen amount in the mussels decreased accordingly.

  10. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  11. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    PubMed

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  12. Plasma processing of interstellar PAHs into solar system kerogen

    NASA Astrophysics Data System (ADS)

    Wdowiak, Thomas J.; Lee, Wei; Cronin, John; Beegle, Luther W.; Robinson, Michael S.

    1995-02-01

    Processes resulting in the formation of hydrocarbons of carbonaceous chondrites and the identity of the interstellar molecular precursors involved are an objective of im-estigations into the origin of the solar system and perhaps even life on earth. We have combined the resources and experience of an astronomer and physicists doing laboratory simulations with those of a chemical expert in the analysis of meteoritic hydrocarbons, in a project that investigated the conversion of polycyclic aromatic hydrocarbons (PAHs) formed in stellar atmospheres into alkanes found in meteorites. Plasma hydrogenation has been found in the University of Alabama Lit Birmingham Astrophysics Laboratory to produce from the. precursor PAH naphthalene, a new material having an I R absorption spectrum (Lee. W. and Wdowiak, T. J., Astrophys. J., 417, L49-L51, 1993) remarkably similar to that obtained at Arizona State University of the benzene-methanol extract of the Murchison meteorite (Cronin, J. R. and Pizzarello, S., Geochim. Cosmochim. Acta, 54, 2859-2868, 1990). There are astrophysical and meteoritic arguments for PAH species from extra-solar sources being incorporated into the solar nebula. where plasma hydrogenation is highly plausible. Conversion of PAHs into alkanes could also have occurred in the interstellar medium. The synthesis of laboratory analogs of meteoritic hydrocarbons through plasma hydrogenation of PAH species is underway, as is chemical analysis of those analogs. The objective is to clarify this heretofore uninvestigated process and to understand its role during the origin of the solar system as a mechanism of production of hydrocarbon species now found in meteorites. Results have been obtained in the form of time-of-flight spectroscopy and chemical analysis of the lab analog prepared from naphthalene.

  13. Plasma processing of interstellar PAHs into solar system kerogen

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Lee, W.; Cronin, J.; Beegle, L. W.; Robinson, M. S.

    1995-01-01

    Processes resulting in the formation of hydrocarbons of carbonaceous chondrites and the identity of the interstellar molecular precursors involved are an objective of investigations into the origin of the solar system and perhaps even life on earth. We have combined the resources and experience of an astronomer and physicists doing laboratory simulations with those of a chemical expert in the analysis of meteoritic hydrocarbons, in a project that investigated the conversion of polycyclic aromatic hydrocarbons (PAHs) formed in stellar atmospheres into alkanes found in meteorites. Plasma hydrogenation has been found in the University of Alabama at Birmingham Astrophysics Laboratory to produce from the precursor PAH naphthalene, a new material having an IR absorption spectrum (Lee, W. and Wdowiak, T.J., Astrophys. J. 417, L49-L51, 1993) remarkably similar to that obtained at Arizona State University of the benzene-methanol extract of the Murchison meteorite (Cronin, J.R. and Pizzarello, S., Geochim. Cosmochim. Acta 54, 2859-2868, 1990). There are astrophysical and meteoritic arguments for PAH species from extra-solar sources being incorporated into the solar nebula, where plasma hydrogenation is highly plausible. Conversion of PAHs into alkanes could also have occurred in the interstellar medium. The synthesis of laboratory analogs of meteoritic hydrocarbons through plasma hydrogenation of PAH species is underway, as is chemical analysis of those analogs. The objective is to clarify this heretofore uninvestigated process and to understand its role during the origin of the solar system as a mechanism of production of hydrocarbon species now found in meteorites. Results have been obtained in the form of time-of-flight spectroscopy and chemical analysis of the lab analog prepared from naphthalene.

  14. Photochemistry of Polycyclic Aromatic Hydrocarbons in Cosmic Water Ice: The Role of PAH Ionization and Concentration

    NASA Astrophysics Data System (ADS)

    Cook, Amanda M.; Ricca, Alessandra; Mattioda, Andrew L.; Bouwman, Jordy; Roser, Joseph; Linnartz, Harold; Bregman, Jonathan; Allamandola, Louis J.

    2015-01-01

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H2O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H2O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H2O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati & Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO2 and H2CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ~2%-4% level relative to H2O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  15. Modeling the Infrared Emission Spectra of Specific PAH Molecules in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2007-05-01

    The 3.3, 6.2, 7.7, 8.6 and 11.3 micron emission features ubiquitously seen in a wide variety of Galactic and extragalactic objects, are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Although the PAH hypothesis is quite successful in explaining the general pattern of the observed emission spectra, so far there is no actual precise identification of a single specific PAH molecule in interstellar space. Therefore, when modeling the observed PAH emission spectra, astronomers usually take an empirical approach by constructing 'astro-PAHs' which do not represent any specific material, but approximate the actual absorption properties of the PAH mixture in astrophysical regions. We propose a Spitzer Theory Program to study the photoexcitation of specific PAH molecules and their ions in interstellar space, taking a statistical-mechanical (instead of thermal) approach. For most of the specific PAH molecules selected for this research (with a small number of vibrational degrees of freedom), thermal approximation is not valid. Using available laboratory and quantum-chemical data (e.g. vibrational frequencies, UV/visible/IR absorption cross sections), we will calculate the emission spectra of 21 representative specific PAH molecules and their ions, ranging from naphthalene to circumcoronene, illuminated by interstellar radiation fields of a wide range of intensities. This program will create a web-based 'library' of the emission spectra of 21 specific PAH molecules and their ions as a function of starlight intensities. This 'library' will be made publicly available by October 2008 on the internet at http://www.missouri.edu/~lia/. By comparing observed PAH spectra with model spectra produced by co-adding the emission spectra of different PAH molecules available in this 'library' (with different weights for different species), one will be able to estimate the total PAH mass and relative abundances of each PAH species, using real PAH properties.

  16. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    SciTech Connect

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan; Bouwman, Jordy; Linnartz, Harold

    2015-01-20

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  17. Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO 3 radicals

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yang, Bo; Gan, Jie; Liu, Changgeng; Shu, Xi; Shu, Jinian

    2011-05-01

    The heterogeneous reactions of typical polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitro-, oxy-, and hydroxy-PAHs) adsorbed on azelaic acid particles with NO 3 radicals are investigated using a flow-tube reactor coupled to a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The mono-nitro-, di-nitro-, and poly-nitro-products from successive nitro-substitution reactions of PAHs and their derivatives are observed in real time with VUV-ATOFMS. 9-Nitroanthracene, anthraquinone, anthrone, 9,10-dinitroanthracene, 2-, 4-, and 9-nitrophenanthrene, 1-nitropyrene, 1,3-, 1,6-, and 1,8-dinitropyrene, 7-nitrobenzo[ a]anthracene, and benzo[ a]anthracene-7,12-dione are identified by GC/MS analysis of the reaction products of PAHs and their derivatives coated on the inner bottom surface of the conical flasks with NO 3 radicals. Other oxygenated products are tentatively assigned. 1-Nitropyrene is the only mono-nitrated product detected in the reaction of surface-bound pyrene with gas-phase NO 3 radicals. This phenomenon is different from what has been observed in previous studies of the gas-phase pyrene nitration, showing that 2-nitropyrene is the sole nitration product. The experimental results may reveal the discrepancies between the heterogeneous and homogeneous nitrations of pyrene.

  18. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    PubMed Central

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155

  19. Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil.

    PubMed

    Uyttebroek, Maarten; Breugelmans, Philip; Janssen, Mieke; Wattiau, Pierre; Joffe, Boris; Karlson, Ulrich; Ortega-Calvo, Jose-Julio; Bastiaens, Leen; Ryngaert, Annemie; Hausner, Martina; Springael, Dirk

    2006-05-01

    Summary Mycobacterium is often isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil as degraders of PAHs. In model systems, Mycobacterium shows attachment to the PAH substrate source, which is considered to be a particular adaptation to low bioavailability as it results into increased substrate flux to the degraders. To examine whether PAH-degrading Mycobacterium in real PAH-contaminated soils, in analogy with model systems, are preferentially associated with PAH-enriched soil particles, the distribution of PAHs, of the PAH-mineralizing capacity and of Mycobacterium over different fractions of a soil with an aged PAH contamination was investigated. The clay fraction contained the majority of the PAHs and showed immediate pyrene- and phenanthrene-mineralizing activity upon addition of (14)C-labelled pyrene or phenanthrene. In contrast, the sand and silt fractions showed a lag time of 15-26 h for phenanthrene and 3-6 days for pyrene mineralization. The maximum pyrene and phenanthrene mineralization rates of the clay fraction expressed per gram fraction were three to six times higher than those of the sand and silt fractions. Most-probable-number (MPN)-polymerase chain reaction demonstrated that Mycobacterium represented about 10% of the eubacteria in the clay fraction, while this was only about 0.1% in the sand and silt fractions, indicating accumulation of Mycobacterium in the PAH-enriched clay fraction. The Mycobacterium community composition in the clay fraction represented all dominant Mycobacterium populations of the bulk soil and included especially species related to Mycobacterium pyrenivorans, which was also recovered as one of the dominant species in the eubacterial communities of the bulk soil and the clay fraction. Moreover, Mycobacterium could be identified among the major culturable PAH-degrading populations in both the bulk soil and the clay fraction. The results demonstrate that PAH-degrading mycobacteria are mainly associated with the

  20. Combined use of PAH levels and EROD activities in the determination of PAH pollution in flathead mullet (Mugil cephalus) caught from the West Black Sea coast of Turkey.

    PubMed

    Bozcaarmutlu, Azra; Sapmaz, Canan; Kaleli, Gizem; Turna, Sema; Yenisoy-Karakaş, Serpil

    2015-02-01

    The aim of this study was to determine the extent of polycyclic aromatic hydrocarbon (PAH) pollution by measuring PAH levels and 7-ethoxyresorufin-O-deethylase (EROD) activities in flathead mullet (Mugil cephalus) samples caught from the West Black Sea coast of Turkey. The fish samples were caught in August 2008-2011. The levels of 13 PAHs were measured by high-performance liquid chromatography (HPLC) in the liver of fish. Most of the measured PAHs had three rings (low molecular weight). The frequencies of detection of PAHs were higher in fish samples caught from Zonguldak Harbour and Gülüç Stream Mouth than those from Sakarya River Mouth, Amasra and Kefken. EROD activities and cytochrome P4501A (CYP1A) protein level were also measured in the fish liver microsomes. Highly elevated EROD activities and CYP1A levels were measured in the mullet samples caught from Zonguldak Harbour and Gülüç Stream than those from Amasra and Kefken. The detection of PAHs in the liver of fish samples shows recent exposure to PAHs. The chemical analyses of PAHs and EROD activity results together reflected the extent of PAH pollution in the livers of fish caught from the West Black Sea coast of Turkey. The results indicate that Zonguldak Harbour is the most polluted site in the West Black Sea coast of Turkey.

  1. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry.

    PubMed

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-08-12

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs.

  2. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-08-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs.

  3. Review of PAH contamination in food products and their health hazards.

    PubMed

    Bansal, Vasudha; Kim, Ki-Hyun

    2015-11-01

    Public concern over the deleterious effects of polycyclic aromatic hydrocarbons (PAHs) has grown rapidly due to recognition of their toxicity, carcinogenicity, and teratogenicity. The aim of this review is to describe the status of PAH pollution among different food types, the route of dietary intake, measures for its reduction, and legislative approaches to control PAH. To this end, a comprehensive review is outlined to evaluate the status of PAH contamination in many important food categories along with dietary recommendations. Our discussion is also extended to describe preventive measures to reduce PAH in food products to help reduce the risks associated with human intake.

  4. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable: molecular pathology of mutations in PAH exon 11.

    PubMed

    Heintz, Caroline; Dobrowolski, Steven F; Andersen, Henriette Skovgaard; Demirkol, Mübeccel; Blau, Nenad; Andresen, Brage Storstein

    2012-08-01

    In about 20-30% of phenylketonuria (PKU) patients, phenylalanine (Phe) levels can be controlled by cofactor 6R-tetrahydrobiopterin (BH(4)) administration. The phenylalanine hydroxylase (PAH) genotype has a predictive value concerning BH(4)-response and therefore a correct assessment of the mutation molecular pathology is important. Mutations that disturb the splicing of exons (e.g. interplay between splice site strength and regulatory sequences like exon splicing enhancers (ESEs)/exon splicing silencers (ESSs)) may cause different severity of PKU. In this study, we identified PAH exon 11 as a vulnerable exon and used patient derived lymphoblast cell lines and PAH minigenes to study the molecular defect that impacted pre-mRNA processing. We showed that the c.1144T>C and c.1066-3C>T mutations cause exon 11 skipping, while the c.1139C>T mutation is neutral or slightly beneficial. The c.1144T>C mutation resides in a putative splicing enhancer motif and binding by splicing factors SF2/ASF, SRp20 and SRp40 is disturbed. Additional mutations in potential splicing factor binding sites contributed to elucidate the pathogenesis of mutations in PAH exon 11. We suggest that PAH exon 11 is vulnerable due to a weak 3' splice site and that this makes exon 11 inclusion dependent on an ESE spanning position c.1144. Importantly, this implies that other mutations in exon 11 may affect splicing, since splicing is often determined by a fine balance between several positive and negative splicing regulatory elements distributed throughout the exon. Finally, we identified a pseudoexon in intron 11, which would have pathogenic consequences if activated by mutations or improved splicing conditions. Exonic mutations that disrupt splicing are unlikely to facilitate response to BH(4) and may lead to inconsistent genotype-phenotype correlations. Therefore, recognizing such mutations enhances our ability to predict the BH(4)-response.

  5. Polycyclic aromatic hydrocarbon (PAHs) pollutants in groundwater from coal gangue stack area: characteristics and origin.

    PubMed

    Wang, X W; Zhong, N N; Hu, D M; Liu, Z Z; Zhang, Z H

    2009-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the leachate from the gangue and 20 groundwater samples, which were collected from the 12th Coal Mine around gangue piles in Henan Province, China, were determined by SPE-GC-MS. The characteristics of PAHs pollutants in groundwater were investigated, and compared with the concentrations of PAHs in the leachate from different weathered gangues to discuss the pollution effects of PAHs from coal gangue on groundwater. The results showed that total concentrations of the 16 EPA preferentially controlled PAHs ranged from 146.9 ng/L to 1220.6 ng/L.The components of PAHs such as chrysene, benzo[a]anthracene, benzo[b + k]fluoranthene, indeno[1,2,3-c,d]-pyrene, and dibenz[a,h]anthracene were fairly high. The 2-4 rings PAHs such as naphthalene, phenanthrene, fluorene and chrysene were dominant in groundwater, which was similar to those of the leachate from the different weathered gangues. Therefore, it should be paid much more attention on the transport of lower ring numbered PAHs leached by rains from the coal mines after landfilling and dumping. Based on the spatial distribution of PAHs and the high concentrations of PAHs with 2-4 rings in groundwater and leaching samples, there might be other pollution sources of PAHs except for penetration from coal gangue into groundwater in the Pingdingshan coal mine area.

  6. Distribution and sources of polycyclic aromatic hydrocarbon (PAH) in marine environment of China

    NASA Astrophysics Data System (ADS)

    Zheng, Jinshu; Richardson, Bruce J.; Shouming, O.; Zheng, Jianhua

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and mutagenic compounds that have raised considerable environmental concern. The highest concentrations of PAHs in the coastal sediment samples in China was 5.8 11.0μg/g (dry weight) in the core from the Huangpu River, Shanghai. The second highest concentration of PAHs was 4.42μg/g (dry weight) in surface sediment of Victoria Harbour in Hong Kong, and 5.73μg/g (dry weight) in sediment of Jiaozhou Bay, Qingdao City. The low concentrations of PAHs were always in the sediments far away from industrial zones and cities, and ranged from 0.10 to 0.30μg/g (dry weight). Several environmental parameters are considered for the identification of sources of PAHs in marine environment. High proportion of naphthalene, low molecular weight PAHs and alkylated PAHs, plus high ratio of phenanthrene to anthracene (>15) and low ratio of fluoranthene to pyrene (<1) suggested a petrogenic source. According to these parameters, the Changjiang (Yangtze) River estuary of Shanghai, Jiaozhou Bay of Qingdao City, Zhujiang (Pearl) River mouth, Jiulong River mouth and most of Hong Kong coastal waters were heavily contaminated by PAHs from petrogenic sources. However, PAHs in rural coastal areas were dominated by pyrolytic origin PAHs. This review clearly showed that oil pollution and incomplete combustion of oil, coal and biomass are the main reason for PAHs anormalies in the study areas.

  7. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-08

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  8. Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk.

    PubMed

    Hamidi, Elliyana Nadia; Hajeb, Parvaneh; Selamat, Jinap; Abdull Razis, Ahmad Faizal

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.

  9. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge

    SciTech Connect

    Wild, S.R.; Jones, K.C. )

    1993-01-01

    Sewage sludge containing typical indigenous concentrations of polynuclear aromatic hydrocarbons (PAHs) was applied to several different soils in glass microcosms. Biologically active and sterilized soils were monitored for PAH content over a period of approximately 205 d. Agricultural soils with and without previous exposure to sewage sludge were tested, together with a forest soil and a soil from a major roadside. Loss of PAHs from a soil spike with a PAH standard solution was also investigated. Results indicate the PAH compounds with less than four benzene rings are susceptible to abiotic loss processes. However, losses by these mechanisms were insignificant for compounds with four or more benzene rings. Half-lives for the sludge-applied PAHs were derived and indicated a strong dependence of persistence on chemical structure. Half-lives for phenanthrene and benzo[ghi]perylene were between 83 and 193 d and 282 and 535 d, respectively. Mean half-lives correlate directly with log K[sub ow] and inversely with log water solubility. Behavior of PAHs was different in each soil, probably due to different soil characteristics and history of PAH exposure. The soil spiked with PAHs provided the lowest half-life values for most PAH compounds, suggesting a higher susceptibility of spiked PAHs to both abiotic and biological degradation.

  10. Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Soils from Bursa, Turkey.

    PubMed

    Karaca, Gizem

    2016-02-01

    The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.

  11. Evergreen or deciduous trees for capturing PAHs from ambient air? A case study.

    PubMed

    De Nicola, Flavia; Concha Graña, Estefanía; López Mahía, Purificación; Muniategui Lorenzo, Soledad; Prada Rodríguez, Darío; Retuerto, Rubén; Carballeira, Alejo; Aboal, Jesús R; Fernández, J Ángel

    2017-02-01

    Tree canopies play a key role in the cycling of polycyclic aromatic hydrocarbons (PAHs) in terrestrial ecosystems, as leaves can capture PAHs from the air. In this study, accumulation of PAHs was compared in an evergreen species, P. pinaster, and in a deciduous species, Q. robur, in relation to some physio-morphological characteristics. For this purpose, pine needles and oak leaves collected from different sites across Galicia (NW Spain) were analysed to determine PAH contents, specific leaf area, stomatal density and conductance. Leaves and needles contained similar total amounts of PAHs. The major contribution of particle-bound PAHs in oak (the concentrations of 4- and 5-ring PAHs were two times higher, and those of 6-ring PAHs five times higher in oak than in pine) may be related to the higher specific leaf area (13 and 4 cm(2) g(-1) dry mass in respectively oak and pine). However, the major contribution of vapor-phase PAHs in pines may be affected by the stomatal conductance (two times higher in pine than in oak). Moreover, an increase in the diameter at breast height of trees led to an increase in accumulation of PAHs, with pine capturing higher amounts of low and medium molecular weight PAHs. The study findings underline the potential role of trees in improving air quality, taking into account the canopy biomass and life cycle.

  12. PAHs contamination in bank sediment of the Yamuna river, Delhi, India.

    PubMed

    Agarwal, Tripti; Khillare, P S; Shridhar, Vijay

    2006-12-01

    This study was performed to elucidate the distribution, concentration trend and possible sources of PAHs in bank sediment of river Yamuna in Delhi, India. The levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed during pre-monsoon, monsoon and post-monsoon seasons in the sediment fraction < 53 microm. Reference standards and internal standards were used for identification and quantification of PAHs by HPLC. The sum of 16 PAH compounds ranged from 4.50 to 23.53 microg/g with a mean concentration of 10.15 +/- 4.32 microg/g (dry wt.). Among 5 sites studied, the site, Income Tax Office (ITO) was found to be the hotspot attaining highest concentration. Predominance of 2-4 ring PAHs suggests a relatively recent local sources of PAHs in the study area. Moreover, molecular indices based source apportionment also illustrates pyrogenic source fingerprint of PAHs. No significant temporal trend was observed.

  13. The Occurrence of 16 EPA PAHs in Food – A Review

    PubMed Central

    Zelinkova, Zuzana; Wenzl, Thomas

    2015-01-01

    Occurrence and toxicity of polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in countries all over the world. PAHs generally occur in complex mixtures which may consist of hundreds of compounds. The U.S. Environmental Protection Agency (EPA) proposed in the 1970 to monitor a set of 16 PAHs which are frequently found in environmental samples. This article reviews the suitability of the 16 EPA PAHs for the assessment of potential health threats to humans stemming from the exposure to PAHs by food ingestion. It presents details on analysis methods, the occurrence of PAHs in food, regulatory aspects, and related risk management approaches. In addition, consideration is given to newer evaluations of the toxicity of PAHs and the requirements for risk assessment and management stemming from them. PMID:26681897

  14. [Characteristics of Pahs pollution in sediments from Leizhou coastal marine area, Liusha Bay and Shenzhen Bay].

    PubMed

    Zhao, Li-Rong; Sun, Sheng-Li; Ke, Sheng

    2012-04-01

    Leizhou coastal marine area, Liusha Bay and Shenzhen Bay represented open coastal area and half-closed bay, respectively. This study discussed the differences of PAHs concentration levels, spatial distribution and sources in sediments from these three marine areas. The results showed that detected ratios of 15 PAHs were 100%, and major compounds were 3-ring and 4-ring PAHs, especialy Phe, Fla, Pry and Bbf; Sigma PAHs concentration was Leizhou < Shenzhen < Liusha. In spatial distribution, PAHs concentrations were the east < the south < the west in Leizhou; the inside > the outside, and the aquaculture > the non-aquaculture in Liusha Bay and Shenzhen Bay. It suggested that large-scale mariculture inside bay played an important role in PAHs pollution and might make it serious. Oil, fossil fuels and biomass burning were the dominant sources of PAHs in sediments from Leizhou coastal area, Liusha Bay and Shenzhen Bay.

  15. The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.

    2005-01-01

    Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.

  16. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.

    PubMed

    Zheng, Xue-Jing; Blais, Jean-François; Mercier, Guy; Bergeron, Mario; Drogui, Patrick

    2007-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.

  17. Ca2+ Promoted the Low Transformation Efficiency of Plasmid DNA Exposed to PAH Contaminants

    PubMed Central

    Gao, Yanzheng; Long, Jian; Wang, Qian

    2013-01-01

    The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs) on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72–3.14 log units with phenanthrene/pyrene exposures of 50 µg·L–1. The addition of Ca2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and mass spectrometry (MS) to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca2+ formed strong electrovalent bonds with “–POO––” groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments. PMID:23484001

  18. Significance of Indirect Deposition on Wintertime PAH Concentrations in an Urban Northern California Creek

    PubMed Central

    Kim, Daekyun; Young, Thomas M.

    2009-01-01

    Abstract To investigate the main inputs and sources of polycyclic aromatic hydrocarbons (PAHs) into surface water, stream and precipitation samples were collected along an urban tributary to the Sacramento River, California. Dissolved, particulate, and colloid-bound PAHs were monitored four times between October 2004 and March 2005. The total PAH concentrations ranged from 192 to 3784 ng/L in surface water and from 77 to 236 ng/L in precipitation. Naphthalene, phenanthrene, pyrene, and benzo[g,h,i]perylene were the most abundant compounds in both rain and surface water. Surface water had truly dissolved PAH concentrations between 18 and 48 ng/L and precipitation had similar values (15–66 ng/L). PAHs larger than four rings were seldom found in the dissolved phase. Colloid-associated PAHs accounted for 4–25% of the total PAHs in rain, while they contributed only 0.1–6% to the total surface water PAHs. Indirect deposition (i.e., washoff of atmospheric particles previously deposited to land) of PAHs into surface water is likely a more significant input pathway for total PAHs than direct dry or wet deposition during the wet season in California's Mediterranean climate. During the sampling period, there was not an obvious seasonal variation in dissolved PAH concentrations of surface water despite an enormous wintertime increase in the total aqueous concentrations. Particulate matter carried by stormwater runoff was the major source of PAHs in surface water in the early rainy season; this material likely represents a combination of indirect atmospheric inputs and other non-atmospheric anthropogenic inputs (e.g., oil leaks and spills). Selected PAH ratios indicate that observed PAHs in rainwater came from pyrogenic sources and those in surface water had more complicated and variable origins. PMID:20485462

  19. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish

    PubMed Central

    DR, Brown; JM, Bailey; AN, Oliveri; ED, Levin; RT, Di Giulio

    2015-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24 hours post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3 months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naïve killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  20. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.

    PubMed

    Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T

    2016-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  1. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2014-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants, which can be transferred to a long distance and tend to accumulation in marine sediment. However, PAHs distribution and natural bioattenuation is less known in open sea, especially in the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to Makarov Basin in the summer of 2010. PAH composition and total concentrations were examined with GC-MS, we found that the concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight in total and decreased with sediment depths and as well as from the southern to northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. To learn the diversity of bacteria involved in PAHs degradation in situ, the 16S rRNA gene of the total environmental DNA was analyzed with Illumina high throughput sequencing (IHTS). In all the sediments, occurred the potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant. Meanwhile on board, enrichment with PAHs was initiated and repeated transfer in laboratory to obtain the degrading consortia. Most above mentioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas, occurred alternately as a predominant member in enrichment cultures from different sediments, as revealed with IHTS and PCR-DGGE. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus and Pseudomonas showed the best degradation capability under low temperature. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may play the most important role

  2. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants that can be transferred long distances and tend to accumulate in marine sediments. However, less is known regarding the distribution of PAHs and their natural bioattenuation in the open sea, especially the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to the Makarov Basin in the summer of 2010. PAH compositions and total concentrations were examined with GC-MS. The concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight and decreased with sediment depth and movement from the southern to the northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. The 16S rRNA gene of the total environmental DNA was analyzed with Illumina high-throughput sequencing (IHTS) to determine the diversity of bacteria involved in PAH degradation in situ. The potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant, occurred in all sediment samples. Meanwhile, enrichment with PAHs was initiated onboard and transferred to the laboratory for further enrichment and to obtain the degrading consortia. Most of the abovementioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas occurred alternately as predominant members in the enrichment cultures from different sediments based on IHTS and PCR-DGGE analysis. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus Pseudomonas showed the best degradation capability under low temperatures. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may

  3. PAH bioconcentration in Mytilus sp from Sinclair Inlet, WA

    SciTech Connect

    Frazier, J.; Young, D.; Ozretich, R.; Echols, S.

    1995-12-31

    Approximately 20 polynuclear aromatic hydrocarbons (PAH) were measured by GC/MS in seawater and whole soft tissues of the intertidal mussel Mytilus sp. collected in July 1991 within and around Puget Sound`s Sinclair Inlet. Low variability was observed in the water concentrations collected over three days at control sites, yielding reliable values for the exposure levels experienced by this bioindicator mollusk. Mean water concentrations of acenaphthene, phenanthrene, and fluoranthene in the control region were 2.7 {+-} 0.8, 2.8 {+-} 0.8, and 3.1 {+-} 0.7 ng/liter, respectively. Levels measured near sites of vessel activity were higher but much more variable; this reduced the reliability of the tissue/water bioconcentration factors (BCF) obtained from these samples. An empirical model relating values of Log BCF and Log Kow for the control zone samples supports the utility of this estuarine bioindicator for monitoring general levels of PAH in nearshore surface waters.

  4. Cells on fibers to degrade PAH and upgrade coal

    SciTech Connect

    Clyde, R.

    1997-12-31

    There are over 2000 sites contaminated with PAH`s from coal burning plants. White rot fungus degrades phenanthrene and anthracene, but the fungus needs air to grow. When grown on old cardboard boxes and buried, air is entrapped in the corrugations for growth of the fungus. When holes are put in the valleys of the corrugations and rotated in a half full reactor, drops are formed. Mass transfer to drops is much faster than to a flat surface, as described in Patent 5,256,570, so the fungus grows faster. Low rank coal can be upgraded to more valuable products with the fungus, say some Australians, but the problem is supplying oxygen. Celite can be entrapped in the fibers to ferment coal derived synthesis gas. The paper describes these processes.

  5. Reduction of Ferrrihydrite and Akaganeite by Shewanella alga (PAH93)

    NASA Astrophysics Data System (ADS)

    Jung, M.; Kim, Y.; Lee, Y.; Kwon, K.; Roh, Y.

    2009-12-01

    Shewanella species are capable of oxidizing diverse organic acids coupled to reducing Fe(III) (oxy)hydroxides to crystalline Fe(II)-containing phases such as magnetite, siderite, and vivianite. The objective of this study was to examine reduction of ferrihydrite and akaganeite as the electron acceptors using various organic acids as the electron donors by Shewanella alga (PAH93) isolated from Yeosu, South Korea. Microbial reduction of akaganeite (40 mM) and ferrihydrite (40 mM) was examined using acetate (10 mM), glucose (10 mM), and lactate (10 mM) as electron donors at room temperature. Ferrozine method was used to analyze both water soluble and HCl soluble Fe(II) concentrations during the microbial Fe(III) reduction. XRD and TEM-EDX analyses were used to characterize biominerals formed by PAH93. PAH93 was completely reduced ferrihydrite to Fe(II), which transformed as siderite (FeCO3). PAH93 was oxidized acetate, glucose, and lactate coupled to reducing akaganeite to magnetite or green rust. Microbial reduction of ferrihydrite resulted in higher soluble Fe(II) concentration (446 - 498 mg/L) than the reduction of akaganeite (255 - 284 mg/L) within 6 days of incubation. For 21 days of incubation, souble Fe(II) concentration during akaganeite reduction (945 - 1316 mg/L) was higher than ferrihydrite reduction (120 - 738 mg/L). It may be attributed to the differences of crystallinity of the iron minerals used for microbial iron reduction. This study indicates types of the electron acceptors, ferrihydrite and akaganeite, affect Fe(II) reduction rate and types of the biotransformed minerals.

  6. Prediction of PAH mutagenicity in human cells by QSAR classification.

    PubMed

    Papa, E; Pilutti, P; Gramatica, P

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of high environmental concern. The experimental data of a mutagenicity test on human B-lymphoblastoid cells (alternative to the Ames bacterial test) for a set of 70 oxo-, nitro- and unsubstituted PAHs, detected in particulate matter (PM), were modelled by Quantitative Structure-Activity Relationships (QSAR) classification methods (k-NN, k-Nearest Neighbour, and CART, Classification and Regression Tree) based on different theoretical molecular descriptors selected by Genetic Algorithms. The best models were validated for predictivity both externally and internally. For external validation, Self Organizing Maps (SOM) were applied to split the original data set. The best models, developed on the training set alone, show good predictive performance also on the prediction set chemicals (sensitivity 69.2-87.1%, specificity 62.5-87.5%). The classification of PAHs according to their mutagenicity, based only on a few theoretical molecular descriptors, allows a preliminary assessment of the human health risk, and the prioritisation of these compounds.

  7. Measurement of the recombination of photoproduced PAH ions

    NASA Astrophysics Data System (ADS)

    Novotny, O.; Sivaraman, B.; Rebrion-Rowe, C.; Travers, D.; Mitchell, J. B. A.; Rowe, B. R.

    2005-01-01

    A new technique, Flowing Afterglow with Photo Ions - FLAPI, has been developed for measuring the rate coefficient for the recombination of complex ions with electrons. The method is based on the FALP-MS apparatus at the Université de Rennes I. A helium plasma is generated by a microwave discharge in a He buffer gas and downstream a small amount of argon gas is injected to get rid of helium metastables. A very small amount of neutral PAH molecules is added to the afterglow plasma by evaporation from a plate coated with the PAH to be studied. PAH ions are then produced by photoionization of the parent molecule using a pulsed UV laser (157 nm). The laser beam is oriented along the flow-tube and so a constant spatial concentration of photoions is obtained. The electron concentration along the flow-tube is measured by means of a movable Langmuir probe. The decay of the ion concentration in time is measured at a fixed position using a quadrupole mass spectrometer which is triggered by the laser pulse. Anthracene ion recombination has been studied using this technique and we have obtained the preliminary recombination rate coefficient (1.1 +/- 0.5) × 10-6 cm3 s-1.

  8. Sorption of Pahs To Soil Minerals and Subsurface Soil

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Totsche, K. U.; Koegel-Knabner, I.

    In subsurface soil horizons, the sorption of hydrophobic organic contaminants may primarily be controlled by the composition and the properties of the soil minerals. Therefore this study aimed to elucidate the sorption and the sorption kinetics of hydrophobic organic contaminants to different inorganic soil constituents and subsurface soil horizons. Batch sorption experiments are conducted with three poly- cyclic aromatic hydrocarbons (PAHS; phenanthrene, pyrene and benzo(a)pyrene), with the model minerals quartz sand, quartz sand coated with goethite and a quartz sand - mont- morillonite mixture, and with b and c horizons of different soil types developped in the temperate climate. Batch experiments show a considerable sorption of PAHS to all soil minerals and soil horizons except for the sorption of phenanthrene to quartz sand. The sorption process of PAHS to single minerals is rapid and completed after 4 hours of contact time. The sorption to subsurface soil horizons, however, is not in equilibrium after 120h of contact time and shows a considerable sorption kinetic. Sorption capacity is higher for clay minerals and iron oxides than for quartz sand which corresponds with a higher sorption capacity of soil horizons with a high clay content. Sorption isotherms of the soil minerals are best described by a nonlinear isotherm whereas the sorption isotherms of the subsurface soil horizons are more or less linear indicating different sorption mechanisms for mineral sorbents and soil horizons.

  9. A PAH Deficit in Extremely Low Luminosity Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Rongying; Hogg, D. W.

    2006-12-01

    We present a study of 29 extremely low luminosity galaxies randomly selected from the footprint of the Sloan Digital Sky Survey (SDSS). The galaxies comprise a statistically complete sample of galaxies with Mr > -15 and recession velocity v < 2000 km s^-1 as measured in SDSS Data Release 2 (DR2). We also observe these sample galaxies in all four channels with the Spitzer Infrared Array Camera (IRAC). The photometry in SDSS shows that these galaxies appear to be visually blue (g-r < 0.6), and the IRAC color analysis shows that they are blue in IRAC infrared color [3.6]-[8]. The IRAC [3.6] magnitude measures the starlight, and the [8] measures PAH emissions. We find that these star-forming galaxies show very low PAH to star ratios. This result agrees with earlier observations on other dwarf galaxies including SBS0335-052 and small samples from ISO and the overlap of the SDSS with the Spitzer First Look Survey, but it is worth emphasizing that this sample has a lower mean luminosity than those samples. The PAH deficiency of these galaxies is discussed in the context of their metallicity and dust properties.

  10. Quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair by HPLC with fluorescence detection: a biological monitoring method to evaluate the exposure to PAHs.

    PubMed

    Toriba, Akira; Kuramae, Yayoi; Chetiyanukornkul, Thaneeya; Kizu, Ryoichi; Makino, Tsunehisa; Nakazawa, Hiroyuki; Hayakawa, Kazuichi

    2003-01-01

    A high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair. Fifteen kinds of PAHs classified as priority pollutants by the US EPA were quantified with four perdeuterated PAHs as internal standards. After 50 mg hair samples were washed with n-hexane to remove external contamination of PAHs, the samples were digested in 2.5 M sodium hydroxide. The digests were extracted with n-hexane and then analyzed by HPLC. Eleven kinds of PAHs were identified in hair samples of 20 subjects, and 10 kinds of PAHs were eventually quantified using the internal standards. For anthracene, chrysene and benzo[k]fluoranthene, significant differences were observed between smokers and non-smokers. Although benzo[b]fluoranthene, dibenz[a,h]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were observed in the particulates of indoor and outdoor air, they were not detected in all hair samples. The analysis of PAHs in human hair should be useful as a new biomarker to evaluate the exposure to PAHs.

  11. Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China.

    PubMed

    Zhang, Guizhai; Pan, Zhaoke; Wang, Xiaoming; Mo, Xiaojie; Li, Xiaoming

    2015-04-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) were analyzed in water, sediment, and biota (aquatic plant, shrimp, and fish) of Nansi Lake by gas chromatography-mass spectrometry (GC-MS). The concentrations of total PAHs were 27.54-55.04 ng L(-1) in water, 80.31-639.23 ng g(-1) dry weight (dw) in sediments, 20.92-192.78 ng g(-1) dw in aquatic plants, and 67.3-533.9 ng g(-1) dw in fish and shrimp muscles. The ratios of phenanthrene to anthracene (Ph/An), fluoranthene to pyrene (Flu/Pyr), and low molecular weight to high molecular weight (LMW/HMW) in sediment indicated that the sources of the PAHs were a mixture of pyrolytic and petrogenic contamination at most sampling sites in Nansi Lake. The composition profile of PAHs in plants was similar to that in water and animals with 2-3 ring PAHs being dominant. The 4-6 ring PAHs were the dominant PAH compounds in sediment. There is a positive correlation between sediment and aquatic plants, but their PAH composition profiles were different, implying that aquatic plant absorption of PAHs from sediment is selective and the accumulation of PAHs in aquatic plants is different. The concentration of PAHs in fish showed a positive correlation with plants, reflecting that the PAHs in fish are mainly absorbed from aquatic plants rather than directly from the water. Bioaccumulation of LMW PAHs in aquatic biota was higher than HMW PAHs. The biota-sediment accumulation factor (BSAF) values of total PAHs in the plants Potamogeton lucens Linn and Ceratophyllum demersum Linn were higher than that in most animals. The BSAF values of total PAHs in animals were in the following order: Cyprinus carpio>Macrobrachium nipponense>Carassius auratus>Channa argus. There was no significant relationship between PAH bioaccumulation and trophic levels in Nansi Lake. Risk assessment of PAHs in water, sediment, and animals indicated that the water environment of Nansi Lake is safe at present. It is worthwhile to note that benzo [a

  12. Polycyclic aromatic hydrocarbons (PAHs) in yerba mate (Ilex paraguariensis) from the Argentinean market.

    PubMed

    Garcia Londoño, Victor Alonso; Reynoso, Marcela; Resnik, Silvia

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) occurrence in 50 samples marketed in the main supermarkets from Argentina was surveyed. A high performance liquid chromatography (HPLC) method was applied with fluorescence detection (FLD) and UV-VIS diodes array detector (DAD) for the analysis of 16 PAHs in "yerba mate" (Ilex paraguariensis), with recoveries higher than 89% and limits of detection and quantification lower than that found by other methodologies in previous studies. Contamination expressed as the sum of 16 analysed PAHs ranged between 224.6 and 4449.5 μg kg(-1) on dry mass. The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene) varied between 8.3 and 512.4 μg kg(-1). The correlation coefficient for PAH2 (sum of benzo(a)pyrene and chrysene) and PAH4 groups was 0.99, for PAH2 and PAH8 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene and indeno(1,2,3cd) pyrene) 0.97 and for PAH4 and PAH8 0.98.

  13. Preliminary evaluation of PAH sorptive changes in soil by Soxhlet extraction.

    PubMed

    Hwang, Sangchul; Cutright, Teresa J

    2004-04-01

    This study was conducted to evaluate the influence of sorbent modification by synthetic, chemical/thermal weathering on the sorptive behavior of polycyclic aromatic hydrocarbons (PAHs). A clean sandy-clay-loam soil was subjected to Soxhlet extraction and PAH sorptive phenomena were evaluated based on quantity and quality changes in soil organic matter (SOM) and clay minerals. Critical changes in sorption capacity were found to depend on the initial PAH concentrations. Above 7 mg/l, weathering increased the PAH in comparison to that of unmodified soil, whereas it decreased when applied below this concentration. Similarly, less PAH was desorbed from the altered soil when PAH was applied above 7 mg/l. Therefore, when PAH was applied below 7 mg/l, quantitative reduction of sorbent amount (i.e., SOM and clay minerals) by soil weathering governed PAH sorptive behavior. However, when the PAH was applied above the critical limit, qualitative modifications in the sorbents facilitated an opposite trend. Sorbent swelling, removal of competing compounds, and possible changes in surface characteristics by Soxhlet extraction, together with increased concentration gradient effects were factors that resulted in dissimilar PAH sorptive phenomena, pivoting at the critical concentration.

  14. Spatial and seasonal atmospheric PAH deposition patterns and sources in Rhode Island

    NASA Astrophysics Data System (ADS)

    Schifman, Laura A.; Boving, Thomas B.

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) enter the environment through various combustion processes and can travel long distances via atmospheric transport. Here, atmospheric PAH deposition was measured in six locations throughout Rhode Island using passive atmospheric bulk-deposition samplers for three years. The measurements were evaluated using two source-specific PAH isomer signatures, a multivariate receptor model, and an innovative contamination index that is weighted based on PAH contamination, number of detected compounds, and toxicity. Urban areas had significantly higher deposition rates (up to 2261 μg m-2 yr-1 ∑PAH) compared to peri-urban, coastal, and rural areas (as low as 73.6 μg m-2 yr-1 ∑PAH). In fall and winter, PAH deposition was up to 10 times higher compared to summer/spring. On an annual basis a total of 3.64 t yr-1 ∑PAH (2256.9 μg yr-1 m-2 ∑PAH) are estimated to be deposited atmospherically onto Rhode Island. Both, the analysis using isomer ratios and the statistical analysis using positive matrix factorization agreed on source identification. Overall gasoline, petrodiesel, and oil combustion sources were identified in all samples year-round while wood combustion associated PAH deposition was only detected during the cold season.

  15. PAH transport by sinking particles in the open Mediterranean Sea: a 1 year sediment trap study.

    PubMed

    Bouloubassi, Ioanna; Méjanelle, Laurence; Pete, Romain; Fillaux, Joëlle; Lorre, Anne; Point, Vanessa

    2006-05-01

    One year time series of sinking particles were collected at two depths in the open Mediterranean Sea and analysed for polycyclic aromatic hydrocarbons (PAH). Average total PAH concentrations were 593+/-284 ng g(-1) at 250 m and 551 +/- 198 ng g(-1) at 2850 m. Total PAH fluxes averaged 73 +/- 58 ng m(-2) d(-1) at 250 m and 53 +/- 39 ng m(-2) d(-1) at 2850 m. Contamination levels and, thus, exposure of marine organisms to PAH are comparable in surface and deep waters. Deep waters appear as a significant, yet overlooked, PAH sink. PAH temporal patterns show noticeable seasonality. This is partly due to varying levels of specific components such as the winter increase of pyrolytic PAH. Downward transport processes and the nature of sinking particles also impact on PAH fluxes, as inferred during periods of increasing productivity. Different phase-associations and interactions with particulate organic carbon for low-MW fossil PAH and high-MW pyrolytic PAH influence their downward transport efficiency.

  16. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.

    PubMed

    Li, Chun-Hua; Wong, Yuk-Shan; Wang, Hong-Yuan; Tam, Nora Fung-Yee

    2015-04-01

    Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3.

  17. Current Approaches to the Treatment of Systemic-Sclerosis-Associated Pulmonary Arterial Hypertension (SSc-PAH).

    PubMed

    Sobanski, Vincent; Launay, David; Hachulla, Eric; Humbert, Marc

    2016-02-01

    Pulmonary arterial hypertension (PAH) is a severe condition causing significant morbidity and mortality in patients with systemic sclerosis (SSc). Despite the use of specific treatments, SSc-PAH survival remains poorer than in idiopathic PAH (IPAH). Recent therapeutic advances in PAH show a lower magnitude of response in SSc-PAH and a higher risk of adverse events, as compared to IPAH. The multifaceted underlying mechanisms and the multisystem nature of SSc probably explain part of the worse outcomes in SSc-PAH compared to IPAH. This review describes the current management of SSc-PAH with an emphasis on the impact of the different organ involvements in the prognosis and treatment response. An earlier detection of PAH and a better characterization of the clinical phenotypes of SSc-PAH are warranted in clinical practice and future trials. Determinants of prognosis, surrogate markers of clinical improvement or worsening, and relevance of the common endpoints used in clinical trials should be evaluated in this specific population. A multidisciplinary approach in expert referral centers is mandatory for SSc-PAH management.

  18. Using slow-release permanganate candles to remediate PAH-contaminated water.

    PubMed

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve

    2012-11-30

    Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water.

  19. Characteristics of PAHs from deep-frying and frying cooking fumes.

    PubMed

    Yao, Zhiliang; Li, Jing; Wu, Bobo; Hao, Xuewei; Yin, Yong; Jiang, Xi

    2015-10-01

    Cooking fumes are an important indoor source of polycyclic aromatic hydrocarbons (PAHs). Because indoor pollution has a more substantial impact on human health than outdoor pollution, PAHs from cooking fumes have drawn considerable attention. In this study, 16 PAHs emitted through deep-frying and frying methods using rapeseed, soybean, peanut, and olive oil were examined under a laboratory fume hood. Controlled experiments were conducted to collect gas- and particulate-phase PAHs emitted from the cooking oil fumes, and PAH concentrations were quantified via high-performance liquid chromatography (HPLC). The results show that deep-frying methods generate more PAHs and benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) because they consume greater volumes of edible oil and involve higher oil temperatures relative to those of frying methods. In addition, the total B[a]Peq concentration of deep-frying is 2.2-fold larger than that of frying. Regarding the four types of edible oils studied, rapeseed oil produced more PAH emission than the other three oil varieties. For all of the cooking tests, three- and four-ringed PAHs were the main PAH components regardless of the food and oil used. Concerning the PAH partition between gas and particulate phase, the gaseous compounds accounted for 59-96 % of the total. Meanwhile, the particulate fraction was richer of high molecular weight PAHs (five-six rings). Deep-frying and frying were confirmed as important sources of PAH pollution in internal environments. The results of this study provide additional insights into the polluting features of PAHs produced via cooking activities in indoor environments.

  20. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  1. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxu; Tao, Shu

    The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y -1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y -1), India (90 Gg y -1) and United States (32 Gg y -1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km -2 y in the Falkland Islands to 360 kg km -2 y in Singapore with a global mean value of 3.98 kg km -2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.

  2. The concentrations, distribution and sources of PAHs in agricultural soils and vegetables from Shunde, Guangdong, China.

    PubMed

    Li, Yong Tao; Li, Fang Bai; Chen, Jun Jian; Yang, Guo Yi; Wan, Hong Fu; Zhang, Tian Bin; Zeng, Xiao Duo; Liu, Jian Ming

    2008-04-01

    The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 microg/kg in soils, and 82 to 1,258 microg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable-soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun'an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun'an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and "stacked soil" on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.

  3. Influence of biotransformation on trophic transfer of the PAH, fluoranthene.

    PubMed

    Palmqvist, Annemette; Rasmussen, Lene Juel; Forbes, Valery E

    2006-12-01

    The persistence of polycyclic aromatic hydrocarbons (PAHs) in marine sediments may be influenced by benthic invertebrate bioturbation. Through processes such as deposit-feeding and enhancement of microbial metabolic activity PAHs may be remobilized from the sediment compartment, and either transferred to organisms at higher trophic levels or to the overlying water column, both processes inevitably changing the bioavailability of the PAH. Accumulation of contaminants from one level in the food chain to the next depends on feeding rate and assimilation efficiency, two factors that basically vary with food quality and contaminant type. Though it is generally believed that pre-consumptive biotransformation will reduce bioavailability due to the more polar nature of the metabolites compared to the unchanged parent compound, theoretically the decrease in lipophilicity will increase the sediment/food desorption rate in the intestine, and some metabolites will still be lipophilic enough to be absorbed by passive diffusion. We examined the trophic transfer of the PAH, fluoranthene from two closely related polychaete species (i.e., Capitella sp. I and Capitella sp. S), differing in their biotransformation ability, to the predatory polychaete, Nereis virens. We found that N. virens fed the biotransforming species, Capitella sp. I, accumulated significantly more Flu equivalents compared to worms fed Capitella sp. S, which have a very limited biotransformation ability. The dose-specific increase in N. virens intestinal Flu concentration was approximately twice as high in worms fed Capitella sp. I (equation: gut content=7.3 x dose-3.9) compared to worms fed Capitella sp. S (equation: gut content=3.2 x dose+0.6). In addition, we measured DNA damage, using the comet assay, in N. virens intestinal cells after feeding with the two prey species. We did not detect DNA damage above 'background' levels for worms fed either of the two Capitella species, possibly due to relatively low

  4. High Voltage Electrochemiluminescence (ECL) as a New Method for Detection of PAH During Screening for PAH-Degrading Microbial Consortia.

    PubMed

    Staninska, Justyna; Szczepaniak, Zuzanna; Staninski, Krzysztof; Czarny, Jakub; Piotrowska-Cyplik, Agnieszka; Nowak, Jacek; Marecik, Roman; Chrzanowski, Łukasz; Cyplik, Paweł

    The search for new bacterial consortia capable of removing PAH from the environment is associated with the need to employ novel, simple, and economically efficient detection methods. A fluorimetric method (FL) as well as high voltage electrochemiluminescence (ECL) on a modified surface of an aluminum electrode were used in order to determine the changes in the concentrations of PAH in the studied aqueous solutions. The ECL signal (the spectrum and emission intensity for a given wavelength) was determined with the use of an apparatus operating in single photon counting mode. The dependency of ECL and FL intensity on the concentration of naphthalene, phenanthrene, and pyrene was linear in the studied concentration range. The biodegradation kinetics of the particular PAH compounds was determined on the basis of the obtained spectroscopic determinations. It has been established that the half-life of naphthalene, phenanthrene, and pyrene at initial concentrations of 50 mg/l (beyond the solubility limit) reached 41, 75, and 130 h, accordingly. Additionally, the possibility of using ECL for rapid determination of the soluble fraction of PAH directly in the aqueous medium has been confirmed. Metagenomic analysis of the gene encoding 16S rRNA was conducted on the basis of V4 hypervariable region of the 16S rRNA gene and allowed to identify 198 species of bacteria that create the S4consortium. The consortium was dominated by Gammaproteobacteria (78.82 %), Flavobacteria (9.25 %), Betaproteobacteria (7.68 %), Sphingobacteria (3.76 %), Alphaproteobacteria (0.42 %), Clostridia (0.04 %), and Bacilli (0.03 %).

  5. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican, and Caucasian mothers and newborns.

    PubMed

    Wang, Shuang; Chanock, Stephen; Tang, Deliang; Li, Zhigang; Jedrychowski, Wieslaw; Perera, Frederica P

    2008-02-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread pollutants commonly found in air, food, and drinking water. Benzo[a]pyrene is a well-studied representative PAH found in air from fossil fuel combustion and a transplacental carcinogen experimentally. PAHs bind covalently to DNA to form DNA adducts, an indicator of DNA damage, and an informative biomarker of potential cancer risk. Associations between PAH-DNA adduct levels and both cancer risk and developmental deficits have been seen in previous experimental and epidemiologic studies. Several genes have been shown to play an important role in the metabolic activation or detoxification of PAHs, including the cytochrome P450 genes CYP1A1 and CYP1B1 and the glutathione S-transferase (GST) genes GSTM1, and GSTT2. Genetic variation in these genes could influence susceptibility to adverse effects of PAHs in polluted air. Here, we have explored interactions between prenatal PAH exposure and 17 polymorphisms in these genes (rs2198843, rs1456432, rs4646903, rs4646421, rs2606345, rs7495708, rs2472299, rs162549, rs1056837, rs1056836, rs162560, rs10012, rs2617266, rs2719, rs1622002, rs140194, and gene deletion GSTM1-02) and haplotypes on PAH-DNA adducts in cord blood of 547 newborns and in maternal blood of 806 mothers from three different self-described ethnic groups: African Americans, Dominicans, and Caucasians. PAHs were measured by personal air monitoring of mothers during pregnancy. Significant interactions (p < 0.05) were observed between certain genetic polymorphisms and CYP1A1 haplotype and PAHs in mothers and their newborns in the three ethnic groups. However, with our limited sample size, the current findings are suggestive only, warranting further study.

  6. Assessment of Interactions between PAH Exposure and Genetic Polymorphisms on PAH-DNA Adducts in African American, Dominican, and Caucasian Mothers and Newborns

    PubMed Central

    Wang, Shuang; Chanock, Stephen; Tang, Deliang; Li, Zhigang; Jedrychowski, Wieslaw; Perera, Frederica P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread pollutants commonly found in air, food, and drinking water. Benzo[a]pyrene is a well-studied representative PAH found in air from fossil fuel combustion and a transplacental carcinogen experimentally. PAHs bind covalently to DNA to form DNA adducts, an indicator of DNA damage, and an informative biomarker of potential cancer risk. Associations between PAH-DNA adduct levels and both cancer risk and developmental deficits have been seen in previous experimental and epidemiologic studies. Several genes have been shown to play an important role in the metabolic activation or detoxification of PAHs, including the cytochrome P450 genes CYP1A1 and CYP1B1 and the glutathione S-transferase (GST) genes GSTM1, and GSTT2. Genetic variation in these genes could influence susceptibility to adverse effects of PAHs in polluted air. Here, we have explored interactions between prenatal PAH exposure and 17 polymorphisms in these genes (rs2198843, rs1456432, rs4646903, rs4646421, rs2606345, rs7495708, rs2472299, rs162549, rs1056837, rs1056836, rs162560, rs10012, rs2617266, rs2719, rs1622002, rs140194, and gene deletion GSTM1-02) and haplotypes on PAH-DNA adducts in cord blood of 547 newborns and in maternal blood of 806 mothers from three different self-described ethnic groups: African Americans, Dominicans, and Caucasians. PAHs were measured by personal air monitoring of mothers during pregnancy. Significant interactions (p < 0.05) were observed between certain genetic polymorphisms and CYP1A1 haplotype and PAHs in mothers and their newborns in the three ethnic groups. However, with our limited sample size, the current findings are suggestive only, warranting further study. PMID:18268125

  7. PAH Concentrations Decline Following 2006 Ban on Coal-Tar-Based Pavement Sealants in Austin, Texas

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.; Mahler, B. J.

    2013-12-01

    Recent studies have concluded that coal-tar-based pavement sealants (CT sealants) are a major source of polycyclic aromatic hydrocarbons (PAHs) in non-industrial urban settings in the United States. In 2006, Austin, TX, became the first jurisdiction in the U.S. to ban the use of CT sealants. We evaluated PAH concentrations following the ban by analyzing sediment cores collected from Lady Bird Lake in 2012; Lady Bird Lake impounds the Colorado River in central Austin and receives runoff from much of the greater Austin area. The mean sum concentration of the 16 U.S. Environmental Protection Agency Priority Pollutant PAHs (∑PAH16) in one of two 2012 sediment cores analyzed for PAHs declined 75% from before 2006 (mean of 4 samples=8,090 μg kg-1) to 2012 (mean of 2 samples=2,030 μg kg-1), reversing a 40-year (1959-1999) upward trend in PAH concentrations that was previously documented. The downward trend in PAH concentrations in the seven uppermost 1 cm sampling intervals in the first 2012 core was statistically significant (r=0.93, p-value=0.002). Post-2008 PAH trends in the second 2012 core were similar (significant downward trend in the six uppermost 1 cm sampling intervals and mean 2012 ∑PAH16 of 2,390 μg kg-1); however, pre-2007 sediment did not appear to have been preserved in this core likely because of the effects of flooding on sediment deposition and mixing at this site--the largest flood on the Colorado River in Austin in 20 years was in 2007. On the basis of a comparison of lake-sediment PAH profiles to 22 PAH source profiles, the PAH loading to lake sediment continues to be dominated by CT sealants. The continued dominance of proportional PAH loading by CT sealants in spite of decreased concentrations since 2006 might be because legacy CT sealant and contaminated soils and sediments continue to yield PAHs to runoff. A previous study using source-receptor modeling concluded that CT sealants were the largest PAH source to 40 urban lakes studied in the

  8. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand.

    PubMed

    Boonyatumanond, Ruchaya; Wattayakorn, Gullaya; Togo, Ayako; Takada, Hideshige

    2006-08-01

    To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in coastal and riverine environments in Thailand, we collected 42 surface sediment samples from canals, a river, an estuary, and coastal areas in Thailand in 2003 and analyzed them for PAHs with 3-7 benzene rings by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs ranged from 6 to 8399 ng/g dry weight. The average total PAH concentrations were 2290+/-2556 ng/g dry weight (n=8) in canals, 263+/-174 (n=11) in the river, 179+/-222 (n=9) in the estuary, and 50+/-56 (n=14) in coastal areas. Comparison of the concentration range with a worldwide survey of sedimentary PAH concentrations ranked PAH contamination in Thai sediments as low to moderate. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P ratio) allows discrimination of PAH sources between petrogenic (>2) and pyrogenic (<0.5) origins. Sediments from urban canals in Bangkok showed the highest PAH concentrations and petrogenic signatures (MP/P=1.84+/-0.98 [n=6] in canal sediments) with abundant alkylated PAHs, indicating major sources of petrogenic PAHs in the city. To identify the sources of the petrogenic inputs in Thailand, we analyzed triterpanes, biomarkers of petroleum pollution, in the sediment samples and in potential source materials. Hopane profiles were remarkably uniform throughout the nation, suggesting a diffuse single source (e.g. automobiles). Molecular profiles of hopanes and PAHs in sediments from the urban canals were similar to those in street dust, indicating that street dust is one of the major sources of petrogenic PAHs in the urban area. On the other hand, low levels of PAHs (approximately 50 ng/g) with a pyrogenic signature (MP/P ratio approximately 0.5) were widely recorded in remote areas of the coast and the Chao Phraya River. These pyrogenic PAHs may be atmospherically transported throughout the nation. Middle and lower reaches of the Chao Phraya River, the river

  9. ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem.

    PubMed

    Mumtaz, M M; George, J D; Gold, K W; Cibulas, W; DeRosa, C T

    1996-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. There are more than 100 PAHs. PAHs generally occur as complex mixtures (for example, as part of products such as soot), not as single compounds. PAHs are found throughout the environment in the air, water, and soil. As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals, including PAHs (ATSDR, 1995), found at facilities on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) and which pose the most significant potential threat to human health, as determined by ATSDR and the Environmental Protection Agency (EPA). These profiles include information on health effects of chemicals from different routes and durations of exposure, their potential for exposure, regulations and advisories, and the adequacy of the existing database. Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are usually to complex mixtures of PAHs with other chemicals. The biological consequences of human exposure to mixtures of PAHs depend on the toxicity, carcinogenic and noncarcinogenic, of the individual components of the mixture, the types of interactions among them, and confounding factors that are not thoroughly understood. Also identified are components of exposure and health effects research needed on PAHs that will allow estimation of realistic human health risks posed by exposures to PAHs. The exposure assessment component of research should focus on (1) development of reliable analytical methods for the determination of bioavailable PAHs following ingestion, (2) estimation of bioavailable PAHs from environmental media, particularly the determination of particle-bound PAHs, (3

  10. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation.

    PubMed

    Ely, Cairn S; Smets, Barth F

    2017-03-20

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of plant species with varied biological traits, however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds - morin, caffeic acid, and protocatechuic acid - appear to be linked to bacterial degradation of 3- and 4- ring PAHs in the rhizosphere.

  11. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China.

    PubMed

    Wu, Yu-Ling; Wang, Xin-Hong; Li, Yong-Yu; Hong, Hua-Sheng

    2011-01-01

    Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24-25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L(-1), and 10.3-45.5 ng L(-1), which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.

  12. PAH characteristics and genotoxicity in the ambient air of a petrochemical industry complex

    SciTech Connect

    Tsai, Jiun-Horng; Peng, Being-Hwa; Lee, Ding-Zang; Lee, Ching-Chang

    1995-05-01

    Polycyclic aromatic hydrocarbons (PAHs) samples, at four sampling sites, in the ambient air of petrochemical plants were collected by several PS-1 samplers from October 1993 to July 1994 in a petrochemical complex area located in southern Taiwan. In addition, the genotoxicity of the PAH samples were investigated by the Ames Salmonella/microsomal assay system. The winter/summer ratios of total-PAH composition were 0.60, 1.39, 2.97, and 1.28 for sites A, B, C, and D, respectively. This result implied that wind direction is the most significant parameter affecting the total-PAH composition in these four sampling sites. Sampling sites B, C, and D were located on the downwind side of the petrochemical plant and gave higher total-PAH composition than those of sampling site A. Particle phase PAHs had higher mutagenicity than those in the gas phase.

  13. Sediment PAH: contrasting levels in the Caspian Sea and Anzali Wetland.

    PubMed

    Yancheshmeh, Rokhsareh Azimi; Bakhtiari, Alireza Riyahi; Mortazavi, Samar; Savabieasfahani, Mozhgan

    2014-07-15

    A comparative study of 23 PAH congeners in sediment of the Caspian Sea coast and Anzali Wetland was conducted in 2010. Surface sediment was analyzed using chromatography and mass spectrometry. Total PAH concentrations ranged between 212 and 9009 ng g(-1) dw. Spatial distribution maps revealed that PAH levels were higher in the coastal areas of the Caspian Sea where oil related activities have been common since 1800's. Diagnostic ratios analysis indicated that PAHs largely originated from petrogenic processes. PAH toxicity level was assessed using sediment quality guidelines and toxic equivalent concentrations to determine toxic effects on marine organism. Based on these investigations, in our study areas, the probability of toxicity for benthic organisms is "low to medium". The toxic equivalent concentrations of carcinogenic PAHs varied between 11 and 231 ng TEQ/g; higher total toxic equivalent concentrations values were found in the coastal areas of the Caspian Sea.

  14. Sorption of polycyclic aromatic hydrocarbons (PAHs) to lignin: effects of hydrophobicity and temperature.

    PubMed

    Zhang, Ming; Ahmad, Mahtab; Lee, Sang Soo; Xu, Li Heng; Ok, Yong Sik

    2014-07-01

    The study of the sorption of contaminants to lignin is significant for understanding the migration of contaminants in the environment as well as developing low cost sorbent. In this study, sorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene and phenanthrene, to lignin was investigated. Sorption isotherms were well described by both linear and Freundlich sorption models. Sorption coefficients of PAHs to lignin from water obtained from regression of both linear model (K d) and Freundlich model (K f) were highly positively correlated with hydrophobicity of PAHs. The amorphous structure of lignin provided sufficient sorption domain for partitioning of PAHs, and the attraction between PAHs molecules and aromatic fractions in lignin via π-π electron-donor-acceptor (π-π EDA) interaction is hypothesized to provide a strong sorption force. Thermodynamic modeling revealed that sorption of PAHs to lignin was a spontaneous and exothermic process.

  15. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.

    PubMed

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.

  16. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with NO3/N2O5

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Jariyasopit, N.; Simonich, S. L.; Atkinson, R.; Arey, J.

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (nitro-PAHs) have been shown to be mutagenic in bacterial and mammalian assays and are classified as probable human carcinogens. Semi-volatile PAHs partition between the gas and particulate phases, depending on their liquid-phase vapor pressures and ambient temperatures. These PAHs have been extensively measured in ambient particulate matter and can ultimately undergo long-range transport from source regions (e.g., China to the western USA) (1). During transport these particle-bound PAHs may undergo reaction with NO3/N2O5 to form nitro-PAH derivatives. Previous studies of heterogeneous nitration of PAHs have used particles composed of graphite, diesel soot, and wood smoke (2-4). This study investigates the heterogeneous formation of nitro-PAHs from ambient particle-bound PAHs from Beijing, China and sites located within the Los Angeles air basin. These ambient particle samples, along with filters coated with isotopically labeled PAHs, were exposed to a mix of NO2/NO3/N2O5 in a 7000 L Teflon chamber, with analysis focused on the heterogeneous formation of molecular weight 247 and 273 nitro-PAHs. The heterogeneous formation of certain nitro-PAHs (including1-nitropyrene and 1- and 2-nitrotriphenylene) was observed for some, but not all, ambient samples. Formation of nitro-PAHs typically formed through gas-phase reactions (2-nitrofluoranthene and 2-nitropyrene) was not observed. The effect of particle age and local photochemical conditions during sampling on the degree of nitration in environmental chamber reactions, as well as ambient implications, will be presented. 1. Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Environ. Sci. Technol. 2007, 41, 3551-3558. 2. Esteve, W.; Budzinski, H.; Villenave, E. Atmospheric Environment 2004, 38, 6063-6072. 3. Nguyen, M.; Bedjanian, Y.; Guilloteau, A. Journal of Atmospheric Chemistry 2009, 62

  17. Depth Profile of Bacterial Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments

    DTIC Science & Technology

    2007-11-02

    organisms and the resultant changes in PAH metabolism by bacteria can complicate interpretation of sedimentation and biodegradation rates based on analytical...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Washington, DC 20375-5320 MICHAEL T. MONTGOMERY CHRISTOPHER L...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Unclassified 5a. CONTRACT NUMBER N0001499WX20525 5b. GRANT NUMBER 61-7800

  18. Insight into the Modulation of Dissolved Organic Matter on Microbial Remediation of PAH-Contaminated Soils.

    PubMed

    Han, Xue-Mei; Liu, Yu-Rong; Zhang, Li-Mei; He, Ji-Zheng

    2015-08-01

    Microorganisms play a key role in degradation of polycyclic aromatic hydrocarbons (PAHs) in environments. Dissolved organic matter (DOM) can enhance microbial degradation of PAHs in soils. However, it is not clear how will the soil microbial community respond to addition of DOM during bioremediation of PAH-contaminated soils. In this study, DOMs derived from various agricultural wastes were applied to remediate the aging PAH-contaminated soils in a 90-day microcosm experiment. Results showed that the addition of DOMs offered a more efficient and persistent elimination of soil PAHs compared to the control which had no DOM addition. PAH removal effects were different among treatments with various DOMs; the addition of DOMs with high proportion of hydrophobic fraction could remove PAHs more efficiently from the soil. Low-molecular-weight (LMW) PAHs were more easily eliminated than that with high-molecular-weight (HMW). Addition of DOMs significantly increased abundance of 16S ribosomal RNA (rRNA), pdo1, nah, and C12O genes and obviously changed community compositions of nah and C12O genes in different ways in the PAH-contaminated soil. Phylogenetic analyses of clone libraries exhibited that all of nah sequences and most of C12O sequences were affiliated into Gammaproteobacteria and Betaproteobacteria. These results suggested that external stimuli produced by DOMs could enhance the microbial degradation of PAHs in soils through not only solubilizing PAHs but also altering abundance and composition of indigenous microbial degraders. Our results reinforce the understanding of role of DOMs in mediating degradation of PAHs by microorganims in soils.

  19. The NASA Ames PAH IR Spectroscopic Database: A Demo of its Contents and Web Tools

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Sánchez de Armas, F.; Ricca, A.; Cami, J.; Peeters, E.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2009-01-01

    The features formerly known as the Unidentified Infrared (UIR) Emission Bands are now generally attributed to polycyclic aromatic hydrocarbons (PAHs). Exploitation of these features as astrophysical and astrochemical probes requires the IR properties of PAHs under interstellar conditions. To fulfill this need, we experimentally measured and theoretically computed the 2-2000 µm spectra of many PAHs over the past 18 years at NASA's Ames Research Center. Today's collection comprises about 600 theoretically computed and 60 laboratory measured spectra of PAHs in different forms. The molecules in the collection range in size from C10H8 to C130H28. For most of these, spectra are available for PAHs in their neutral and singly charged (+/-) states. In some cases, IR spectra of multiply charged species were also computed. The database includes pure PAHs; PAHs containing nitrogen (PANHs), oxygen, and silicon; PAHs with side groups; PAHs with extra hydrogens; and PAHs complexed with iron and magnesium. This collection of PAH spectra from 2 - 2000 µm has been assembled into a uniform database, which we will make publicly available on the web in early 2009. A WebGUI interface has been developed that can effectively interrogate the database using a variety of queries, such as formula, molecular name, charge, specific number of atoms, etc. Several molecules can be selected in such a process and one can obtain their 3-D structures, plot and co-add their spectra, adjust parameters such as the bandwidth, download their data and print graphs. The database can also be downloaded as a whole and IDL-routines are provided to interrogate it. This talk will present an overview of the contents and the web-GUI tools of the NASA Ames PAH IR Spectroscopic Database. Hands-on demonstrations will be available at the SOFIA Booth.

  20. Quantitative Determination of PAHs in Diesel Engine Exhausts by GC-MS

    NASA Astrophysics Data System (ADS)

    Fleurat-Lessard, Paul; Pointet, Karine; Renou-Gonnord, Marie-France

    1999-07-01

    A gas chromatography-mass spectrometry (GC-MS) analytical protocol for quantitation of PAHs in diesel exhaust particles, adapted for a single laboratory period, is proposed. Gravitational chromatography is first used to isolate aromatic compounds. Then quantitative determination of PAHs (polycyclic aromatic hydrocarbons) is performed by GC-MS, using deuterated PAHs as internal standards. Results obtained by students for recovery yields and for quantitation are reproducible.

  1. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system.

    PubMed

    Zhang, Juan; Fan, Shukai; Du, Xiaoming; Yang, Juncheng; Wang, Wenyan; Hou, Hong

    2015-01-01

    Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs) in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA), rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6)). The concentration of total PAHs was (1052 ± 73) μg/kg d.w. in vegetation (mean ± standard error). The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4) with an average of 1.66 × 10(-4), which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4)). The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil) increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  2. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  3. Comparative carcinogenicity of the PAHs as a basis for acceptable exposure levels (AELs) in drinking water

    SciTech Connect

    Rugen, P.J.; Stern, C.D.; Lamm, S.H. )

    1989-06-01

    The carcinogenicity of various polynuclear aromatic hydrocarbons (PAHs) has generally been demonstrated by their ability to act as complete carcinogens in the development of cancers in rodent skin tests. In order to develop proposed acceptable concentration levels for various PAHs in drinking water, we reviewed the studies that formed the basis for determining that these specific PAHs were carcinogenic in animals. We found that the relative potency of these PAHs varied over a range of many orders of magnitude. For example, the carcinogenic strength of benz(a)anthracene (BaA) is found to be about 1/2000th that of benzo(a)pyrene (BaP). We have used the calculated carcinogenic potency of the various PAHs relative to that of BaP as a means for proposing specific acceptable concentration levels in drinking water for each of the specific PAHs. BaP is the only carcinogenic PAH for which EPA has published an acceptable concentration level based on carcinogenicity. Based on the level EPA set for BaP (0.028 micrograms/liter), this methodology has provided for the specific PAHs a determination of proposed acceptable concentration levels quantitatively based on the same data that were used to qualitatively determine them to be animal carcinogens. We have proposed acceptable concentration levels for the carcinogenic PAHs in drinking water that range from 0.03 micrograms/liter for BaP to 6.5 micrograms/liter for BaA. We recommend that acceptable concentration levels for the various PAHs be based on their relative carcinogenic potencies rather than the EPA method of using the potency of only one specific PAH, BaP, to serve as the exposure level determinant for all PAHs. We further suggest that this methodology may be applicable to other classes of carcinogenic compounds.

  4. Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India.

    PubMed

    Agarwal, Tripti

    2009-11-15

    Present study was envisaged to examine the impact of vehicular traffic on the contamination status of urban traffic sites in Delhi with respect to Polycyclic Aromatic Hydrocarbon (PAH). Surface soil (0-5 cm) from three traffic sites and one rural site was analyzed and the content of 16 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1062 microg kg(-1) to 9652 microg kg(-1) with an average value of 4694+/-3028 microg kg(-1). At the rural site average concentration of total PAHs was found to be 886+/-303 microg kg(-1). Carcinogenic potency of PAH load in traffic soil was nearly 21 times higher as compared to the rural soil. PAH pattern was dominated by five- and six-ring PAHs (contributing >50% to the total PAHs) at all the three traffic sites. On the other hand, rural soil showed a predominance of low molecular weight two- and three-ring PAHs (contributing >50% to the total PAHs). A lack of correlation was observed between total PAH and total organic carbon (TOC) content in traffic soils but in rural soil both were positively correlated (r=0.76). In rural soil naphthalene (r=0.88, P=<0.05) displayed strongest correlation with TOC. Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. Principal Component Analysis (PCA) provided the fingerprints of vehicular traffic emission and coal combustion in the study area.

  5. Accumulation, Allocation, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Brassica chinensis System

    PubMed Central

    Zhang, Juan; Fan, Shukai; Du, Xiaoming; Yang, Juncheng; Wang, Wenyan; Hou, Hong

    2015-01-01

    Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs) in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi’an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA), rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1×10−6). The concentration of total PAHs was (1052±73) μg/kg d.w. in vegetation (mean±standard error). The cancer risks posed by ingestion of vegetation ranged from 2×10−5 to 2×10−4 with an average of 1.66×10−4, which was higher than international excess lifetime risk limits for carcinogens (1×10−4). The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil) increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation. PMID:25679782

  6. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use.

  7. [Advances in studies on the effect of surfactant on bioavailability of polycylcic aromatic hydrocarbons (PAHs) in soil].

    PubMed

    Jiang, Xia; Jing, Xin; Gao, Xuesheng; Ou, Ziqing

    2002-09-01

    The solubility and adsorption/desorption equilibrium of PAHs in soil and their interaction with soil bacterium can be altered by surfactants, which lead to the alternation of PAHs bioavailability. The bioavailability of PAHs can be enhanced by the decrease of interface tension between soil and water, the increasement of PAHs' solubility, and the transportation facilitation of PAHs in the presence of surfactants. It also can be inhibited by the surfactant toxicity to the bacteria or by the competitive ultilization between non-toxicitic surfactants and PAHs by the bacteria. In addition, the effects of surfactants on the PAHs of different existence-forms in soils are different. The bioavailability of PAHs can be affected by the type and concentrion of surfactants, PAHs and soil microorganisms, and also by soil physi-chemical characteristics.

  8. Sources, fate, and effects of PAHs in shallow water environments: a review with special reference to small watercraft

    USGS Publications Warehouse

    Albers, P.H.; Kennish, Michael J.

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.

  9. Polycyclic aromatic hydrocarbon (PAH) metabolites in marine fishes as a specific biomarker to indicate PAH pollution in the marine coastal environment.

    PubMed

    Wang, Xin H; Hong, Hua S; Mu, Jing L; Lin, Jian Q; Wang, Shong H

    2008-02-15

    In this study, analysis methods for the PAH metabolites of naphthalene (Na), pyrene (Py) and benzo(a)pyrene (BaP) with different benzo-rings (2-4-5 rings respectively) were developed and the metabolism kinetics of Py and BaP in marine fishes were studied. Two PAH metabolites of Na and Py, namely 1-naphthol (1-OH Na) and 1-hydroxy pyrene (1-OH Py), were determined using the fixed wavelength fluorescence (FF) method, and the BaP metabolite, 3-hydroxy benzo(a)pyrene (3-OH BaP), was determined using reverse-phase HPLC with fluorescence detection. The dose- and time-response of Lateolabrax japonicus to Py metabolites and Sparus macrocephalus to BaP metabolites were studied in order to evaluate the use of PAH metabolites as a means of assessing exposure to PAHs. The results showed that both fishes could be induced to metabolize and eliminate their metabolites in vivo with increasing Py and BaP exposure concentrations in seawater. As Py and BaP concentrations increased, metabolite concentrations in the fish bile also increased. A significant dose-response of biliary PAH metabolites was observed after exposure for 1, 3 and 7 days for Py and 2, 4 and 7 days for BaP, respectively. These results provide the proof necessary for using PAH metabolites in marine fishes as a specific biomarker or early warning signal of PAH pollution in the marine coastal environment.

  10. Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Stormwater, Madison, Wisconsin, 2005-08

    USGS Publications Warehouse

    Selbig, William R.

    2009-01-01

    Concentrations of 18 PAH compounds were characterized from six urban source areas (parking lots, feeder street, collector street, arterial street, rooftop, and strip mall) around Madison, Wisconsin. Parking lots were categorized into those that were or were not sealed. On average, chrysene, fluoranthene, and pyrene were the dominant PAH compounds in all urban stormwater samples. Geometric mean concentrations for most individual PAH compounds were significantly greater for a parking lot that was sealed than for lots that were not sealed. Results from this study are consistent with similar studies that measured PAH concentrations in urban stormwater samples in Marquette, Mich., and Madison, Wis.

  11. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil.

    PubMed

    Lors, Christine; Ryngaert, Annemie; Périé, Frédéric; Diels, Ludo; Damidot, Denis

    2010-11-01

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2-, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 16S rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82% respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma-proteobacteria, in particular, the Enterobacteria and Pseudomonas genera, which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely, other species, like the Beta-proteobacteria, were detected after 3months, when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus, presence of the Beta-proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH-contaminated soil.

  12. Predicting bioaccumulation of PAHs in the trophic chain in the estuary region of Paranagua, Brazil.

    PubMed

    Froehner, Sandro; Maceno, Marcell; Machado, Karina Scurupa

    2011-03-01

    The presence of polycyclic aromatic hydrocarbon (PAH) compounds in sediment and water samples collected in the estuary area of Paranagua, southern Brazil, was investigated. There is a lot of port activity in the region. Recreational fishing is widespread; thus, there is concern about possible contamination by PAHs. The 16 priority PAHs were investigated, and only eight were found. The total concentration of PAHs ranged from 40.8 to 406.8 ng/g. High molecular weight were the most abundant, while PAHs with a low molecular weight were absent. There are suspicions that the main source of PAHs is combustion, but some uncertainties exist, and there may even be the presence of PAHs resulting from accidental spills of crude oil. Although the sediments contain PAHs, the amount is below the maximum concentrations allowed by the Brazilian environmental legislation, as well as the maximum levels at which adverse effects are observed. From the analytical results, a probable bioaccumulation was assessed in the local trophic chain using a mathematical model (Arnot and Gobas, Environ Toxicol Chem 23(10):2343-2355, 2004). The model showed that there is a possibility of biomagnification along the food chain selected. Three fishes with high local consumption were selected, and the concentration of some PAHs could be found in those fishes.

  13. Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles.

    PubMed

    Ribeiro, Joana; Silva, Tais; Mendonca Filho, Joao Graciano; Flores, Deolinda

    2012-01-15

    The coal waste material that results from Douro Coalfield exploitation was analyzed by gas chromatography with mass spectrometry (GC-MS) for the identification and quantification of the 16 polycyclic aromatic hydrocarbons (PAHs), defined as priority pollutants. It is expected that the organic fraction of the coal waste material contains PAHs from petrogenic origin, and also from pyrolytic origin in burning coal waste piles. The results demonstrate some similarity in the studied samples, being phenanthrene the most abundant PAH followed by fluoranthene and pyrene. A petrogenic contribution of PAHs in unburned samples and a mixture of PAHs from petrogenic and pyrolytic sources in the burning/burnt samples were identified. The lowest values of the sum of the 16 priority PAHs found in burning/burnt samples and the depletion LMW PAHs and greater abundance of HMW PAHs from the unburned coal waste material relatively to the burning/burnt material demonstrate the thermal transformation attributed to the burning process. The potential environmental impact associated with the coal waste piles are related with the release of petrogenic and pyrolytic PAHs in particulate and gaseous forms to soils, sediments, groundwater, surface water, and biodiversity.

  14. Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media

    PubMed Central

    Kim, Seung-Kyu; Lee, Dong Soo; Shim, Won Joon; Yim, Un Hyuk; Shin, Yong-Seung

    2009-01-01

    Interrelationships between pyrogenic polycyclic aromatic hydrocarbons (PAHs) were assessed in air, soil, water, sediment, and tree leaves by using multi-media monitoring data. Concurrent concentration measurements were taken bimonthly for a year for the multi-media at urban and suburban sites. PAH level correlations between air and other media were observed at the urban site but were less clear at the suburban site. Considering a closer PAHs distribution/fate characteristics to soil than suspended solids, contamination in sediment seemed to be governed primarily by that in soil. The partitioning of PAHs in waters could be better accounted for by sorption onto black carbon and dissolved organic carbon. PMID:22303141

  15. Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions.

    PubMed

    Sakulthaew, Chainarong; Comfort, Steve D; Chokejaroenrat, Chanat; Li, Xu; Harris, Clifford E

    2015-12-01

    Ozone (O3) is a chemical oxidant capable of transforming polycyclic aromatic hydrocarbons (PAHs) in urban runoff within minutes but complete oxidation to CO2 can take days to weeks. We developed and tested a flow-through system that used ozone to quickly transform PAHs in a runoff stream and then removed the ozone-transformed PAHs via adsorption to carbon nano-onions (CNOs). To quantify the efficacy of this approach, (14)C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 unlabeled PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained CNOs to adsorb the ozone-transformed PAHs and allowed clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, biodegradable products back into solution. Control treatments confirmed that parent PAH structures (i.e., non-ozonated) were not biologically degraded following CNO adsorption and that O3-transformed PAHs were not released from the CNOs in the absence of bacteria. These results support the combined use of ozone, carbon nano-onions with subsequent biological degradation as a means of removing PAHs from urban runoff or a commercial waste stream.

  16. Polyaromatic hydrocarbons (PAHs) and metal evaluation after a diesel spill in Oaxaca, Mexico.

    PubMed

    Salazar-Coria, L; Amezcua-Allieri, M A; Tenorio-Torres, M; González-Macías, C

    2007-10-01

    Pollution in the marine environment due to a diesel spill takes days to months to complete natural remediation owing to its low volatility. Metal and PAH contamination caused by an accidental diesel spill were studied. V, Ni and Hg levels increased immediately after the spill, while PAH levels decreased after 1 month (79.4-7.6 microg kg(-1)). At the diesel spill point, fluoranthene exceeded acute and chronic levels, although most of the PAHs were within the range of low effects. In fish body burden, the highest bioaccumulation factor (2.63 for naphthalene) was related to the lower molecular weight PAHs.

  17. Sorption and chemical transformation of PAHs on coal fly ash. Technical progress report No. 8

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1993-12-01

    The objective of this work is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Specific investigations directed toward this overall objective include: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (c) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (d) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of {open_quotes}surface roughness{close_quotes} of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  18. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors.

    PubMed

    Zhang, Yanyan; Dong, Sijun; Wang, Hongou; Tao, Shu; Kiyama, Ryoiti

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and

  19. Historical changes in the concentrations of polycyclic aromatic hydrocarbons (PAHs) in Lake Peipsi sediments.

    PubMed

    Punning, Jaan-Mati; Terasmaa, Jaanus; Vaasma, Tiit; Kapanen, Galina

    2008-09-01

    The distribution of 11 individual polycyclic aromatic hydrocarbons (PAHs) was analysed in a (210)Pb dated sediment core from the deepest area of Lake Peipsi and in four surface sediment samples taken from littoral areas. According to the concentrations in the core three groups of PAHs may be distinguished: (1) relatively stable concentrations of PAHs within the whole studied time interval; (2) very low concentrations in sediments accumulated before intensive anthropogenic impact (from 19th century up to the 1920s) following a slight increase and (3) an overall increase in PAH concentrations since the 1920s up to the present. Comprehensive analysis of PAHs in the core and monitoring data obtained in the 1980s together with the lithology of sediments show that an increase of anthropogenically induced PAHs correlates well with the history of fuel consumption in Estonia and speaks about atmospheric long-distance transport of PAHs. The continuous increase of PAH concentrations since the 1920s do not support the earlier hypothesis about the dominating impact of the oil shale fired power plants near the lake, because their emissions decreased significantly in the 1990s. The concentration of PAHs in the deep lake core sample correlates well with the content of organic matter, indicating absorption and co-precipitation with plankton in the sediment.

  20. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  1. Characterization and distribution of PAHs in surface sediments of Daliao River, China

    SciTech Connect

    Zhang, J.X.; Ni, Y.W.; Yang, M.; Zhang, H.J.; Zhang, Q.; Chen, J.P.

    2008-07-01

    The concentrations of 16 priority pollutant PAHs in the samples of Daliao River were analyzed by a method based on Soxhlet extraction, solid-phase extraction clean-up and high performance liquid chromatography-programmable fluorescence/ultra violet detection. The total concentrations of PAHs in Daliao River ranged from 267.9 ng/g to 9,212 ng/g. The highest concentration of PAHs was 9,212 ng/g at the Station 24 (Anshan Railroad Bridge), and the lowest 267.9 ng/g at the Station 19 (Estuary). Compared with the total concentrations of PAHs of rivers in other parts of the world, the degree of contamination of Daliao River by PAHs was moderate to high. Specific compounds or groups of PAHs have been used as molecular markers to differentiate petrogenic and pyrogenic origin. The results showed that the main sources of PAHs in Daliao River were pyrolytic inputs such as combustion of coal, wood and petrogenic chemicals. The data was also compared by mean of two guideline values, an effects range-low (ER-L) and effects range-medium (ER-M), to assess the potential biological effects of the sediment adsorbed PAHs. It showed that the PAHs in some sites of Daliao River would exert adverse biological effects.

  2. A review of polycyclic aromatic hydrocarbons (PAHs) research progress in China based on CNKI database

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao

    2017-03-01

    This article using the retroactive content analysis method summarizes the research progress of air polycyclic aromatic hydrocarbons during 1983 to 2016, and is based on the 72 search results about "Air Polycyclic Aromatic Hydrocarbons" in CNKI database. This article directly points out the study achievements and improvements about air polycyclic aromatic hydrocarbons from 4 aspects, the reviews of the studies of PAHs in a special stage, the studies on PAHs determination and analysis method, the studies on PAHs concentration in different places and the studies on the relationship between PAHs concentration in air and human health, respectively.

  3. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  4. Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica.

    PubMed

    Kim, Moonkoo; Kennicutt, Mahlon C; Qian, Yaorong

    2006-12-01

    The molecular and stable carbon isotopic compositions of contaminant polycyclic aromatic hydrocarbons (PAHs) at McMurdo Station, Antarctica were analyzed in samples collected from land and sub-tidal area. PAHs in the study areas were characterized by high amounts of naphthalene and alkylated naphthalenes from petroleum products introduced by human activities in the area. Principal component analysis (PCA) of PAH composition data identified multiple sources of PAH contamination in the study area. Compositional assignments of origins were confirmed using compound specific stable carbon isotopic analysis.

  5. Spatial distribution and source apportionment of PAHs in marine surface sediments of Prydz Bay, East Antarctica.

    PubMed

    Xue, Rui; Chen, Ling; Lu, Zhibo; Wang, Juan; Yang, Haizhen; Zhang, Jie; Cai, Minghong

    2016-12-01

    This paper reports the concentrations of polycyclic aromatic hydrocarbons (PAHs) in marine sediments sampled from Prydz Bay, East Antarctica. Total PAH concentrations ranged from 12.95 to 30.93 ng/g, with a mean of 17.99 ± 5.57 ng/g. Two- and three-ring PAHs were the most abundant compounds found at the majority of the sampling stations of Prydz Bay. Long-range atmospheric transportation was found to play an important role in determining the spatial distribution of PAHs in the sediments sampled here. However, transport by ocean currents and release from melting glaciers were also found to influence PAH distributions in the sediments of East Antarctica. The vertical migration of PAHs in sediments showed a decreasing trend with depth, with higher concentrations in the relatively shallow-water regions (<500 m) found on the Fram and Four Ladies banks compared with those of the intermediate-depth (500-1000 m) and deep-water regions (>1000 m) of the Amery Basin and associated Canyons, respectively. A Pearson correlation analysis between PAH concentrations and sediment parameters demonstrated that PAHs has poor correlations with grain size, but has positive correlation with total organic carbon, indicated complex processing during transfer to remote environments. The results of qualitative and quantitative analyses indicate that the PAHs sampled here were derived mainly from a mixture of biomass combustion, traffic emissions, and petrogenic sources.

  6. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    PubMed

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  7. Further evidence for limited bioavailability of sediment PAH from an aluminum smelter

    SciTech Connect

    Allard, P.J.; Chapman, P.M.; Murdoch, M.H.; Paine, M.D.; Minifie, D.

    1995-12-31

    Spatial trends in benthic community structure and various parameters measured in resident Dungeness crabs (i.e., parent PAH in hepatopancreas, PAH metabolites in haemolymph, abnormalities, size, condition, female reproductive potential) were determined as part of a Sediment Quality Triad study into potential effects of PAH contamination in marine sediments of Kitimat Arm, BC. Despite high concentrations of PAH near the smelter (historically close to percent levels), previous evidence from a battery of toxicity tests and analyses of fish, shellfish and crab tissue had suggested limited PAH bioavailability. In this study, there were differences between the benthas near the smelter and in a reference area. However, the pattern observed, of reduced abundance and increased richness (i.e., diversity) near the smelter is the reverse of what is generally considered to be a negative effect (i.e., increased abundance, decreased richness). Resident Dungeness crabs showed no evidence of contaminant effects and only limited evidence of PAH bioavailability. Crab hepatopancreas contained low concentrations of PAH, primarily in crab collected near the smelter but also, unexpectedly, in crab from the reference area. PAH metabolites in crab haemolymph were elevated close to the smelter but nowhere else. These results extend and strengthen conclusions from past studies, specifically that sediment PAH in this area has very limited bioavailability. More, importantly, the results indicate little evidence of adverse biological effects.

  8. Surfactant influence on PAH biodegradation in a creosote-contaminated soil

    SciTech Connect

    Deschenes, L.; Lafrance, P.; Villeneuve, J.P.; Samson, R.

    1995-12-31

    This study consisted of assessing the biodegradation of 13 of the 16 US Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in a creosote-contaminated soil, using both biological and chemical surfactants. The assumption was that surfactants may enhance the mobilization of the hydrophobic PAHs, and possibly their biodegradation. The rhamnolipid biosurfactants were produced by Pseudomonas aeruginosa UG2. The chemical surfactant was sodium dodecyl sulfate. Over a period of 45 weeks, PAHs were periodically extracted from soil and quantified by gas chromatography/mass spectrometry. Results showed that, at three studied concentrations, surfactant addition did not enhance PAH biodegradation in the creosote-contaminated soil. Furthermore, for the four-ring PAHs, surfactant presence seemed harmful to the biodegradation process, the residual concentrations of each studied PAH decreasing more slowly than those found in the untreated soil. Moreover, this effect increased as a function of surfactant concentration. The negative effect was less evident with biosurfactants than for the chemical surfactant. The high-molecular-weight PAHs were not degraded by the indigenous microorganisms. For the PAHs in general, the higher the molecular weight, the more recalcitrant was the contaminant. It is suggested that the surfactants were used as a preferential substrate by the indigenous microflora, which may have interfered with the biodegradation of the PAHs.

  9. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  10. The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking

    PubMed Central

    Wang, Yulong; Zhao, Ruifang; Zhang, Chun; Li, Guanlong; Zhang, Jing; Li, Fan

    2014-01-01

    The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3 on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3 is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3 at 600°C and is 52.88% at 700°C for CaO. The catalytic temperature and particle size of the catalysts have a significant effect on PAHs cracking rate and CaO will lose the capability of decreasing 16 PAHs when the temperature is higher than 900°C. The possible cracking process of 16 PAHs is deduced by elaborately analyzing the cracking effect of the two catalysts on 16 different species of PAHs. PMID:24963507

  11. PAHs pollution from traffic sources in air of Hangzhou, China: trend and influencing factors.

    PubMed

    Zhu, Li-Zhong; Wang, Jing

    2005-01-01

    PAHs pollution in air of arterial roads was investigated from October 1998 to October 2001 in Hangzhou, China. The results showed that sigma10 PAHs was 13-36 microg/m3, among which, BaP, a strong carcinogenic kind ranged from 0.034 microg/m3 to 0.12 microg/m3. PAHs pollutions in four seasons were winter > autumn > spring-summer. The annual averages of sigmaPAHs concentration were 25 microg/m3 for 1999, 28 microg/m3 for 2000, and 29 microg/m3 for 2001, respectively. Leaded gasoline was banned in December 1998 in Hangzhou, thus comparative measurements with PAHs in leaded and lead-free gasoline powered motor exhausts made it certain that the use of lead-free gasoline leaded to a heavier PAHs pollution in roadside air from December, 1998, in China, and sigmaPAHs in air samples after the lead-banning were more than twice of that in samples before the action. For the large contribution of vehicle discharge to air pollution in roadside, further research was performed to suggest the factors influencing PAHs distribution in vehicle exhaust in order to control air pollution effectively. Compared to gasoline engines, emissions from diesel engines were less toxic, although they might produce more PAHs. Of the same vehicular and oil type, automobiles of longer mileages produced more toxic PAHs. PAHs distributions in the vehicular exhausts were related to the oil type. Large difference was found in the abundance of 3-, 5- and 6-ring PAHs between exhausts from gasoline and diesel oil engines. Diesel oil engines produced relative lighter PAHs such as NAPH, ACEN, FLUOR, while gasoline engines emitted heavier kinds such as BkF, IN and BP. The automobile produced more PAHs with the increase of mileage especially FLUR, PY, BaP, BP. Some significant ratios for traffic source in Hangzhou such as PHEN/AN, FLUR/PY, IN/BP were 0.50-4.3, 0.58-7.4, 0.51-1.5, respectively. A source fingerprint for vehicle exhausts of a mixture of vehicle and oil types in the city district for light

  12. Differential responses of eubacterial, Mycobacterium, and Sphingomonas communities in polycyclic aromatic hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile.

    PubMed

    Uyttebroek, Maarten; Spoden, Astrid; Ortega-Calvo, Jose-Julio; Wouters, Katinka; Wattiau, Pierre; Bastiaens, Leen; Springael, Dirk

    2007-01-01

    Recent reports suggest that Mycobacterium is better adapted to soils containing poorly bioavailable polycyclic aromatic hydrocarbons (PAHs) compared to Sphingomonas. To study this hypothesis, artificial conditions regarding PAH profile and PAH bioavailability were induced in two PAH-contaminated soils and the response of the eubacterial, Mycobacterium, and Sphingomonas communities to these changed conditions was monitored during laboratory incubation. Soil K3663 with a relatively high proportion of high molecular weight PAHs was amended with phenanthrene or pyrene to artificially change the soil into a soil with a relatively increased bioavailable PAH contamination. Soil AndE with a relatively high proportion of bioavailable low molecular weight PAHs was treated by a single-step Tenax extraction to remove the largest part of the easily bioavailable PAH contamination. In soil K3663, the added phenanthrene or pyrene compounds were rapidly degraded, concomitant with a significant increase in the number of phenanthrene and pyrene degraders, and minor and no changes in the Mycobacterium community and Sphingomonas community, respectively. However, a transient change in the eubacterial community related to the proliferation of several gamma-proteobacteria was noted in the phenanthrene-amended soil. In the extracted AndE soil, the Sphingomonas community initially developed into a more diverse community but finally decreased in size below the detection limit. Mycobacterium in that soil never increased to a detectable size, while the eubacterial community became dominated by a gamma-proteobacterial population. The results suggest that the relative bioavailability of PAH contamination in soil affects bacterial community structure but that the behavior of Mycobacterium and Sphingomonas in soil is more complex than prospected from studies on their ecology and physiology.

  13. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  14. Development and application of a simultaneous SPE-method for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, heterocyclic PAHs (NSO-HET) and phenols in aqueous samples from German Rivers and the North Sea.

    PubMed

    Siemers, Anne-Kathrin; Mänz, Jan Sebastian; Palm, Wolf-Ulrich; Ruck, Wolfgang K L

    2015-03-01

    Polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs (NSO-HETs), alkylated PAHs and phenols are known as the prevailing contaminants in groundwater at tar contaminated sites. Besides these local sources, the concentrations and the distribution in particular of NSO-HETs in environmental samples, such as rivers, have received notably less attention. To investigate their occurrence in river basins two sensitive analytical methods for the simultaneous extraction of 86 substances including NSO-HETs, classical EPA-PAHs, alkylated PAHs and phenols were developed: liquid-liquid extraction for the whole water phase and solid phase extraction for the dissolved water phase only. Solely GC-MS or additionally LC-MSMS for fractionated basic nitrogen heterocycles (N-HETs) were used for quantification. Limits of quantification were in the low ngL(-1) range. Concentrations were determined in 29 aqueous samples from 8 relatively large rivers located in Lower Saxony (Germany) and the North Sea. NSO-HETs had comparable or even higher sum concentrations than EPA-PAHs. N-HETs, especially acridine and quinolines with concentrations of up to 20ngL(-1) per substance, were predominant.

  15. Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments.

    PubMed

    Witter, Amy E; Nguyen, Minh H

    2016-02-01

    Recent studies indicate that PAH transformation products such as ketone or quinone-substituted PAHs (OPAHs) are potent aryl hydrocarbon receptor (AhR) activators that elicit toxicological effects independent of those observed for PAHs. Here, we measured eight OPAHs, two sulfur-containing (SPAH), one oxygen-containing (DBF), and one nitrogen-containing (CARB) heterocyclic PAHs (i.e. ΣONS-PAHs = OPAH8 + SPAH + DBF + CARB) in 35 stream sediments collected from a small (∼1303 km(2)) urban watershed located in south-central Pennsylvania, USA. Combined ΣONS-PAH concentrations ranged from 59 to 1897 μg kg(-1) (mean = 568 μg kg(-1); median = 425 μg kg(-1)) and were 2.4 times higher in urban versus rural areas, suggesting that activities taking place on urban land serve as a source of ΣONS-PAHs to sediments. To evaluate urban land use metrics that might explain these data, Spearman rank correlation analyses was used to evaluate the degree of association between ΣONS-PAH concentrations and urban land-use/land-cover metrics along an urban-rural transect at two spatial scales (500-m and 1000-m upstream). Combined ΣONS-PAH concentrations showed highly significant (p < 0.0001) correlations with ΣPAH19, residential and commercial/industrial land use (RESCI), and combined state and local road miles (MILES), suggesting that ΣONS-PAHs originate from similar sources as PAHs. To evaluate OPAH sources, a subset of ΣONS-PAHs for which reference assemblages exist, an average OPAH fractional assemblage for urban sediments was derived using agglomerative hierarchal cluster (AHC) analysis, and compared to published OPAH source profiles. Urban sediments from the Condoguinet Creek (n = 21) showed highly significant correlations with urban particulate matter (X(2) = 0.05, r = 0.91, p = 0.0047), suggesting that urban particulate matter is an important OPAH source to sediments in this watershed. Results suggest the inclusion of ΣONS-PAH measurements

  16. Bacterial community changes with N'-N' dimethylforamide (DMF) additives during polycyclic aromatic hydrocarbons (PAH) biodegardation.

    PubMed

    Chang, Y T; Lee, J F; Chao, H P; Liao, W L

    2006-01-01

    This study examined the changes in the bacterial community during biodegradation of polycyclic aromatic hydrocarbon (PAH) substrate when N'-N' dimethylformamide (DMF) was added. The microbial populations that biodegrade the PAH substrate were assessed by Fluorescence in-situ hybridization (FISH) and changed from 49.45% Archaea and 49.15% Bacteria to 42.00% Archaea and 51.78% Bacteria when the PAH was supplemented with DMF. Nine microorganisms were classified as Gram-negative alpha-, beta- and gamma-Proteobacteria bacteria during biodegradation of PAH alone by the Biolog system. Incentive eleven microorganisms obtained from the PAH-DMF mixed substrate were found to be beta-, gamma-Proteobacteria bacteria, high G+C Gram-positive bacteria (HGC), low G+C Gram-positive bacteria (LGC) and there was even one Deinococcus-Thermus strain; this indicates greater biodiversity. The numbers in the Pseudomonad group were as high as 10(5)-10(6) CFU ml(-1), suggesting that this group plays an important role in PAH biodegradation. Community-Level Physiological Profiling (CLPP) and physiological characterization were different in the PAH biodegradation process with and without DMF. Utilization of the 95 carbon sources from the Biolog GN2 microtiter plate was greater during PAH biodegradation when PAH is present alone compared to that in the presence of DMF. The range of enzymatic activities during PAH biodegradation was lower in the presence of DMF. These results show that DMF should be used with caution when PAH is a substrate during laboratory or pilot biotreatability studies.

  17. Polycyclic aromatic hydrocarbons (PAHs) around tea processing industries using high-sulfur coals.

    PubMed

    Saikia, Jyotilima; Khare, Puja; Saikia, Prasenjit; Saikia, Binoy K

    2016-09-27

    In the present investigation, the concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5, PM10 and dust particles emitted from two tea processing industrial units were studied that uses high-sulfur coal as their energy source. A total of 16 PAHs (viz. naphthalene (Nap), acenaphthene (Ace), acenaphthylene (Acen), phenanthrene (Phe), fluorene (Flu), anthracene (Ant), fluoranthene (Fluo), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBahA), indeno[1,2,3-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were measured. The total PAH concentration was found to be 94.7 ng/m(3) (∑4 PAHs) in the PM10 particle, 32.5 (∑12 PAHs) in PM2.5 and 1.08 ng/m(3) (∑6 PAHs) in the dust sample from site A. In site B, the sum of the PAHs in the PM2.5, PM10 and dust samples are found to be 154.4 ng/m(3) (∑7 PAHs), 165 ng/m(3) (∑3 PAHs) and 1.27 ng/m(3) (∑6 PAHs), respectively. Hybrid Single Particle Lagrangian Integrated Trajectory model study revealed the contribution of local or long-range transport of aerosol sources. Along with the coal combustion activities in the study sites, other sources such as biomass burning and vehicular emission may contribute to the PAHs in the aerosol samples.

  18. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-06-01

    Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis

  19. Spatial Variations of PAH Properties in M17SW Revealed by Spitzer/IRS Spectral Mapping

    NASA Astrophysics Data System (ADS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Onaka, T.; Nagayama, T.; Umemoto, T.; Minamidani, T.; Nishimura, A.; Matsuo, M.; Fujita, S.; Tsuda, Y.; Kohno, M.; Ohashi, S.

    2016-12-01

    We present Spitzer/IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Brγ and Nobeyama 45 m/FOREST 13CO (J = 1-0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2 μm. We find that the PAH emission features are bright in the region between the H ii region traced by Brγ and the molecular cloud traced by 13CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer/IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7 μm/PAH 11.3 μm varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0 μm, 12.7 μm, 13.5 μm, and 14.2 μm features to the PAH 11.3 μm feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  20. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-03-31

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source.

  1. Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency

    NASA Astrophysics Data System (ADS)

    Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold

    2014-02-01

    Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.

  2. Quantitative Assessment of Parametric Uncertainty in Northern Hemisphere PAH Concentrations.

    PubMed

    Thackray, Colin P; Friedman, Carey L; Zhang, Yanxu; Selin, Noelle E

    2015-08-04

    We quantitatively examine the relative importance of uncertainty in emissions and physicochemical properties (including reaction rate constants) to Northern Hemisphere (NH) and Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, using a computationally efficient numerical uncertainty technique applied to the global-scale chemical transport model GEOS-Chem. Using polynomial chaos (PC) methods, we propagate uncertainties in physicochemical properties and emissions for the PAHs benzo[a]pyrene, pyrene and phenanthrene to simulated spatially resolved concentration uncertainties. We find that the leading contributors to parametric uncertainty in simulated concentrations are the black carbon-air partition coefficient and oxidation rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene and pyrene. NH geometric average concentrations are more sensitive to uncertainty in the atmospheric lifetime than to emissions rate. We use the PC expansions and measurement data to constrain parameter uncertainty distributions to observations. This narrows a priori parameter uncertainty distributions for phenanthrene and pyrene, and leads to higher values for OH oxidation rate constants and lower values for European PHE emission rates.

  3. Batch leaching tests: Colloid release and PAH leachability

    SciTech Connect

    Bergendahl, J.

    2005-07-01

    The Toxicity Characteristic Leaching Procedure (TCLP) was developed by the U.S. Environmental Protection Agency to assess leaching potential of contaminants from waste, and to provide a test to classify, hazardous waste. It is a batch leaching test where a waste (such as contaminated soil) and an extraction fluid are agitated for a predetermined time. Since TCLP employs an aggressive mixing technique, it is possible that hydrophobic contaminant-laden colloidal fractions may appear as 'dissolved' constituents. In this study, TCLP was employed to determine the leachability of PAH contamination from a coal tar contaminated site. Generated colloids and the apparent aqueous concentrations of naphthalene and phenanthrene were measured at various mixing times in the extraction fluid. A mathematical model was developed that predicted the apparent aqueous contaminant concentration in the filtrate. This model accounted for the presence of colloids in the filtrate, and quantified contaminant desorption from colloids. The fraction of colloid-bound contaminant was predicted to be negligible for naphthalene. However, phenanthrene was predicted to have a significant fraction of the total contaminant in the colloidal phase, while naphthalene was primarily dissolved. The desorption model and PAH desorption data are presented here to determine the extent of colloid-facilitated desorption during leaching tests.

  4. Degradation of PAHs in soil by indigenous and inoculated bacteria

    SciTech Connect

    Aamand, J.; Bruntse, G.; Jepsen, M.; Joergensen, C.; Jensen, B.K.

    1995-12-31

    In soil heavily polluted by coal tar, the inherent mineralization of radio-labeled phenanthrene to {sup 14}CO{sub 2} was relatively slow, and a stimulation of degradation was observed by inoculation with a mixed population of PAH-degrading bacteria. A much faster inherent mineralization of phenanthrene was observed in soil slightly polluted by coal tar, and inoculation of this soil had no effect. Several phenanthrene-degrading bacteria were isolated from different soils. Two strains were further characterized as an Arthrobacter sp. and a Pseudomonas sp. In an organic medium without phenanthrene, growth rates of 0.52 h{sup {minus}1} and 0.71 h{sup {minus}1} were measured for the Arthrobacter sp. and the Pseudomonas sp., respectively. Most isolates grown in the phenanthrene-free medium, including the Arthrobacter sp., rapidly adapted to phenanthrene degradation following transfer to a phenanthrene-containing medium. In contrast, the phenanthrene-degrading capability of other strains, including the Pseudomonas sp., was lost during growth in the phenanthrene-free medium. Growth in an organic medium without phenanthrene of strains that retain the ability to degrade phenanthrene could prove to be a useful technique for production of PAH-degrading bacteria on a larger scale for soil inoculation.

  5. Comparative study on the growth mechanisms of PAHs

    SciTech Connect

    Shukla, Bikau; Koshi, Mitsuo

    2011-02-15

    The efficiencies of recently proposed, phenyl addition/cyclization (PAC), methyl addition/cyclization (MAC) and a popular hydrogen abstraction/acetylene addition (HACA) mechanisms have been examined experimentally by detecting the gas phase reaction products of pyrolysis of toluene with/without addition of benzene + acetylene by using vacuum ultraviolet (VUV) single photon ionization (SPI) time of flight mass spectrometry (TOFMS). Besides the observation of verities of large polycyclic aromatic hydrocarbons (PAHs), intense mass peaks of indene, phenylacetylene and propyne confirmed a remarkable quenching of the major active species, benzyl, phenyl and methyl radicals by acetylene. In spite of quenching, only benzyl contributed products were diminished while phenyl and methyl contributed products were enhanced. Uniquely observed symmetrical PAHs; corrannulene/coronene; formed by the active involvement of PAC, HACA and/or MAC mechanisms, reflects the interdependencies of these mechanisms. Individually, PAC was found highly efficient for endless growth, HACA for filling triple fusing site and MAC for expanding cyclotetra/pentafused into benzenoid structure, respectively. (author)

  6. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    NASA Astrophysics Data System (ADS)

    Klærke, B.; Holm, A. I. S.; Andersen, L. H.

    2011-08-01

    Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.

  7. Use of microbial encapsulation/immobilization for biodegradation of PAHs

    SciTech Connect

    Lin, J.E.; Lantz, S.; Mueller, J.G.; Schultz, W.W.; Pritchard, P.H.

    1995-12-31

    Bioaugmentation as a strategy in bioremediation has great potential but has had little success to support its use. Problems have arisen because of a general inability to support the growth and/or activity of the introduced organism in the environment because of competition factors, poor survival of the inoculum, and grazing by protozoa. A specialized technique that has been used to overcome these problems is cell immobilization or encapsulation, in which the inoculant can be placed in environmental media in a way that reduces competition from the indigenous microflora and allows expression of the specific introduced metabolic function. Packaging of specific bacterial or fungal cells in a porous polymeric material potentially improves storage of inocula, and enhances the capability of directly introducing viable and active cells into environmental material at some future time without the need to regrow the cells. The authors have been experimenting with encapsulation;immobilization procedures for use in the bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. In this paper, the authors demonstrate the potential usefulness of polyurethane foam and vermiculite for this purpose and show that optimal PAH degradation can be maintained with immobilized cells.

  8. Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluted sediments: A field survey

    SciTech Connect

    Oost, R. Van Der; Heida, H.; Satumalay, K. ); Schooten, F.J. Van . Dept. of Health Risk Analysis and Toxicology); Ariese, F.; Vermeulen, N.P.E. )

    1994-06-01

    Samples of sediment and eel taken from six sites in Amsterdam with different levels of water pollution were analyzed for 16 parental PAHs. In addition, biliary PAH metabolites and hepatic PAH-DNA adducts were determined in the eel to evaluate biomonitoring techniques for PAH exposure. There was a clear difference between PAH profiles in sediments and eel. Mainly two- and three-ring PAHs were detected in eel, whereas four-ring PAHs predominated in the sediments. Because PAH bioaccumulation was highest in eel from the reference sites, tissue levels of the parental PAH are probably not the most accurate monitor of PAH exposure in fish. An elevated excretion of 1-OH pyrene (determined by synchronous scan fluorescence) was observed in the bile of fish from three of the four polluted sites, indicating that this parameter may be used as a biomarker for PAH exposure. A significant increase in PAH-DNA adduct levels was observed in the liver of eel from all polluted sites. Therefore, this parameter seems to be a sensitive biomarker for exposure to mutagenic and carcinogenic PAHs.

  9. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  10. Spectroscopy of PAH species in the gas phase

    NASA Astrophysics Data System (ADS)

    Robinson, Michael S.; Beegle, Luther W.; Wdowiak, Thomas J.

    1995-02-01

    At elevated temperatures, the structured CH stretch absorption occurring at room temperature of polycyclic aromatic hydrocarbon (PAH) molecules encapsulated in KBr coalesces to a single peak whose wavelength is a very close match for that of the observed 3.3 μm unidentified infrared band (UIR) emission feature (Flickinger and Wdowiak. Astrophys. J.362, L71-L74. 1990). The temperature of approximately 800 K is significant because a PAH molecule in the interstellar radiation field, upon absorption of an ultraviolet photon, is expected to be excited to an energy equivalent to temperatures of this order (Sellgren, Astrophys. J.277, 623 1984). Our previous study of PAH molecules in the vapor phase at 600-800 K showed that the C-H stretch PAH feature near 3.3 μm is at a shorter wavelength than in the condensed state (Flickinger et al., Astrophys. J.380, L43-L46, 1991). Recent work by Joblin et al. ( 1st Symp. on the Infrared Cirrus and Diffuse Interstellar Clouds. 1994) in a short path length diamond cell indicates the gas phase wavelength of the 3.3 μm region C-H stretch feature of naphthalene is directly proportional to temperature over a large temperature range. Laser-excited IR fluorescence studies have also suggested that the wavelength is sensitive to laser photon energy in a direct relationship (Williams and Leone, The Diffuse Interstellar Bands Conf., 1994). Comprehensive studies of PAHs thermally excited up to the decomposition temperature are therefore important to carry out. We have utilized a long-path-length optical heat pipe to confirm that the wavelength of the peak of the C-H stretch band of naphthalene vapor obeys a direct relationship with temperature as reported by Joblin, and to demonstrate that this feature undergoes a strengthening with respect to the longer wavelength band due to an out-of-plane deformation (782 cm -1) as temperature increases. The shift from 3067.6 to 3063.7 cm -1 over the temperature range of 316-996 K seems to be linear

  11. Influence of Vegetation on the In Situ Bacterial Community and Polycyclic Aromatic Hydrocarbon (PAH) Degraders in Aged PAH-Contaminated or Thermal-Desorption-Treated Soil▿ †

    PubMed Central

    Cébron, Aurélie; Beguiristain, Thierry; Faure, Pierre; Norini, Marie-Paule; Masfaraud, Jean-François; Leyval, Corinne

    2009-01-01

    The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs·kg−1 of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs·kg−1 of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and Gammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN

  12. Interstellar PAH emission in the 11-14 micron region: new insights from laboratory data and a tracer of ionized PAHs

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1999-01-01

    The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHS) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For solo- and duet-CH groups, the shift is pronounced and consistently toward higher frequencies. The solo-CH modes are blueshifted by an average of 27 cm-1 and the duet-CH modes by an average of 17 cm-1. For trio- and quartet-CH groups, the ionization shifts of the out-of-plane modes are more erratic and typically more modest. As a result of these ionization shifts, the solo-CH out-of-plane modes move out of the region classically associated with these vibrations in neutral PAHS, falling instead at frequencies well above those normally attributed to out-of-plane bending, vibrations of any type. In addition, for the compact PAHs studied, the duet-CH out-of-plane modes are shifted into the frequency range traditionally associated with the solo-CH modes. These results refine our understanding of the origin of the dominant interstellar infrared emission feature near 11.2 microns, whose envelope has traditionally been attributed only to the out-of-plane bending of solo-CH groups on PAHS, and provide a natural explanation for the puzzling emission feature near 11.0 microns within the framework of the PAH model. Specifically, the prevalent but variable long-wavelength wing or shoulder that is often observed near 11.4 microns likely reflects the contributions of duet-CH units in PAH cations. Also, these results indicate that the emission between 926 and 904 cm-1 (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the out-of-plane wagging, of solo-CH units in moderately sized (fewer than 50 carbon atom) PAH cations, making this emission an unequivocal tracer of ionized interstellar PAHS.

  13. MEASURING AIRBORNE PAHS FROM THE NEW YORK WORLD TRADE CENTER DISASTER

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in ambient air, are suspected human carcinogens, and have been linked to genotoxic and mutagenic effects. Although there are no specific monitoring programs for PAHs in ambient air in the United States, there is a national...

  14. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  15. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.

    PubMed

    Bueno-Montes, Marisa; Springael, Dirk; Ortega-Calvo, José-Julio

    2011-04-01

    The influence of the nonionic surfactant Brij 35 on biodegradation of slowly desorbing polycyclic aromatic hydrocarbons (PAHs) was determined in contaminated soils. We employed a soil originated from a creosote-polluted site, and a manufactured gas plant soil that had been treated by bioremediation. The two soils differed in their total content in five indicator 3-, 4-, and 5-ring PAHs (2923 mg kg(-1) and 183 mg kg(-1) in the creosote-polluted and bioremediated soils, respectively) but had a similar content (140 mg kg(-1) vs 156 mg kg(-1)) of slowly desorbing PAHs. The PAHs present in the bioremediated soil were highly recalcitrant. The surfactant at a concentration above its critical micelle concentration enhanced the biodegradation of slowly desorbing PAHs in suspensions of both soils, but it was especially efficient with bioremediated soil, causing a 62% loss of the total PAH content. An inhibition of biodegradation was observed with the high-molecular-weight PAHs pyrene and benzo[a]pyrene in the untreated soil, possibly due to competition effects with other solubilized PAHs present at relatively high concentrations. We suggest that nonionic surfactants may improve bioremediation performance with soils that have previously undergone extensive bioremediation to enrich for a slowly desorbing profile.

  16. Source apportionment of PAHs using Unmix model for Yantai costal surface sediments, China.

    PubMed

    Lang, Yin-Hai; Yang, Wei

    2014-01-01

    16 Polycyclic aromatic hydrocarbons (PAHs) in 20 surface sediments from Yantai offshore area were measured. The total PAHs concentrations varied from 450.0 to 4,299.0 ng/g, with a mean of 2,492.9 ng/g. The high molecular weight (HMW) PAHs were most abundant and the ratio ranged from 54.9 % to 81.6 % in all sampling stations, indicating that pyrogenic sources were a predominant contribution to PAHs pollution. The source contributions of PAHs were estimated based on the EPA Unmix 6.0 receptor model. The data were well simulated due to a high correlation coefficient between predicted and measured PAHs concentration (R(2) = 0.99). A mixed source of coal combustion and traffic pollution contributed to 38.9 % of the measured PAHs, followed by diesel emission (38.8 %) and a mixed source of biomass combustion and gasoline engine emissions (22.3 %). The current findings further validated that Unmix model could be applied to apportion the sources of PAHs in sediments.

  17. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  18. MANAGEMENT OF PAH-IMPACTED SITES VIA IN SITU CHEMICAL CONTAINMENT AND MONITORING

    EPA Science Inventory

    On a world-wide basis the magnitude of environmental contamination problems involving polycyclic aromatic hydrocarbon (PAHs) is unmatched by any other group of organic chemicals. Despite the recognized limitations to PAH biodegradation (e.g., intrinsic chemical stability of the h...

  19. Seasonal variation and source apportionment of PAHs in TSP in the atmosphere of Guiyang, Southwest China

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, C. Q.; Zhang, G. P.; Zhang, Y. L.

    2012-11-01

    Total suspended particle (TSP) samples were collected during January to December in 2005 at urban and rural sites in Guiyang, and were analyzed for 14 particulate-phase polycyclic aromatic hydrocarbons (P-PAHs) using High Performance Liquid Chromatography (HPLC) with fluorescence detection. The total concentration of the P-PAHs ranged from 6.0-29.1 ng/m3 at monitoring sites, and 1.2-84.8 ng/m3 in and around Guiyang. P-PAHs concentration in samples collected from Guiyang possesses distinct seasonal variation with a higher concentration in winter and lower concentration in summer. PAHs with 5-ring were found to have the most distinct seasonal variation among other target PAHs. Correlations between the TSP concentration, ambient temperature (T), relative humidity (RH), and the P-PAHs concentrations were evaluated. It was found that the TSP had significant influence on the P-PAHs concentration with correlation coefficients of 0.69 (P < 0.01, n = 180). In addition, the P-PAHs concentration showed negative correlation with RH (r = - 0.28, P < 0.01, n = 180), and a moderate negative correlation with T (r = - 0.17, P < 0.05 n = 180). Diagnostic ratios and Principal Component Analysis suggest that the main pollution sources identified were coal combustion emission (52.5%), traffic gasoline (21.4%) and other miscellaneous sources (14.2%).

  20. [Emission factors of polycyclic aromatic hydrocarbons (PAHs) in residential coal combustion and its influence factors].

    PubMed

    Hai, Ting-Ting; Chen, Ying-Jun; Wang, Yan; Tian, Chong-Guo; Lin, Tian

    2013-07-01

    As the emission source of polycyclic aromatic hydrocarbons (PAHs), domestic coal combustion has attracted increasing attention in China. According to the coal maturity, combustion form and stove type associated with domestic coal combustion, a large-size, full-flow dilution tunnel and fractional sampling system was employed to collect the emissions from five coals with various maturities, which were burned in the form of raw-coal-chunk (RCC)/honeycomb-coal-briquettes (HCB) in different residential stoves, and then the emission factors of PAHs (EF(PAHs)) were achieved. The results indicate that the EF(PAHs) of bituminous coal ranged from 1.1 mg x kg(-1) to 3.9 mg x kg(-1) for RCC and 2.5 mg x kg(-1) to 21. 1 mg x kg(-1) for HCB, and the anthracite EF(PAH8) were 0.2 mg x kg(-1) for RCC and 0.6 mg x kg(-1) for HCB, respectively. Among all the influence factors of emission factors of PAHs from domestic coal combustion, the maturity of coal played a major role, the range of variance reaching 1 to 2 orders of magnitude in coals with different maturity. Followed by the form of combustion (RCC/HCB), the EF(PAHs) of HCB was 2-6 times higher than that of RCC for the same geological maturity of the coal. The type of stove had little influence on EF(PAHs).

  1. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge.

    PubMed

    Gworek, Barbara; Klimczak, Katarzyna; Kijeńska, Marta; Gozdowski, Dariusz

    2016-10-01

    The study was focused on two goals: (i) the confirmation of the existence of a general relation between the content of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and in plants growing in it, regardless of the type and content of sewage sludge, and (ii) if so, the answer to the question whether the uptake of PAHs by plants depends on their type. To realize the set aims, the contents of PAHs in four differentiated plant species were measured, two belonging to the Monocotyledones and two belonging to Dicotyledones group, growing in municipal and industrial sewage sludge in two locations. All the investigations were carried out during the period of 3 years. The results clearly demonstrated that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The relation between accumulation coefficient of PAHs in plant material vs. the content of PAH in sewage sludge was of exponential character. The results indicate that in case of four- and five-ring PAHs, the root uptake mechanism from soil solution occurs, regardless of the type and origin of sewage sludge and the type of plant. For three-ring PAHs, we can assume for Monocotyledones that the root uptake mechanism occurs because we observe a significant correlation between the content of fluorene, phenanthrene, and anthracene in plant material and in the sewage sludge. For Dicotyledones, the correlation is insignificant, and in this case probably two mechanisms occur-the uptake by roots and by leaves.

  2. Coal-tar-based parking lot sealcoat: an unrecognized source of PAH to settled house dust.

    PubMed

    Mahler, Barbara J; Metre, Peter C Van; Wilson, Jennifer T; Musgrove, Marylynn; Burbank, Teresa L; Ennis, Thomas E; Bashara, Thomas J

    2010-02-01

    Despite much speculation, the principal factors controlling concentrations of polycyclic aromatic hydrocarbons (PAH) in settled house dust (SHD) have not yet been identified. In response to recent reports that dust from pavement with coal-tar-based sealcoat contains extremely high concentrations of PAH, we measured PAH in SHD from 23 apartments and in dust from their associated parking lots, one-half of which had coal-tar-based sealcoat (CT). The median concentration of total PAH (T-PAH) in dust from CT parking lots (4760 microg/g, n = 11) was 530 times higher than that from parking lots with other pavement surface types (asphalt-based sealcoat, unsealed asphalt, concrete [median 9.0 microg/g, n = 12]). T-PAH in SHD from apartments with CT parking lots (median 129 microg/g) was 25 times higher than that in SHD from apartments with parking lots with other pavement surface types (median 5.1 microg/g). Presence or absence of CT on a parking lot explained 48% of the variance in log-transformed T-PAH in SHD. Urban land-use intensity near the residence also had a significant but weaker relation to T-PAH. No other variables tested, including carpeting, frequency of vacuuming, and indoor burning, were significant.

  3. Polycyclic aromatic hydrocarbons (PAHs) in the mariculture zones of China's northern Yellow Sea.

    PubMed

    Zong, Humin; Ma, Xindong; Na, Guangshui; Huo, Chuanlin; Yuan, Xiutang; Zhang, Zhifeng

    2014-08-15

    Polycyclic aromatic hydrocarbons (PAHs) were detected in water and sediment samples collected from three mariculture zones in China's northern Yellow Sea. In these samples, total PAH concentrations ranged from 110.8 ng/L to 997.2 ng/L and 142.2 ng/gdry weight (dw) to 750.2 ng/gdw, respectively. The log KOC values of the various PAH compounds examined in this study increased with the log KOW values, which is consistent with the prediction regarding PAH behavior in the environment. However, these KOC values were lower than the predicted values as a result of the effects of organic matters, which were abundant in the mariculture water. The isomeric ratios of the PAHs in sediment indicated that the source of the PAHs in the mariculture zones were mainly pyrolytic. The TEQ(carc) values of PAHs ranged from 7 ng TEQ/gdw to 92 ng TEQ/gdw, and only a few samples met the safe criterion with respect to individual PAH concentrations.

  4. Paleolimnological evidence of variations in deposition of atmosphere-borne Polycyclic Aromatic Hydrocarbons (PAHs) in Ireland.

    PubMed

    O'Dwyer, B; Taylor, D

    2009-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous in the environment and are produced by both natural and anthropogenic processes, principally from the incomplete combustion of organic matter. Levels of emissions of PAHs from the combustion of fossil fuels have increased rapidly over the last ca. 200 years. As PAHs have detrimental environmental and human health impacts, assessing spatial and temporal variations in environmental loadings has become a pressing issue in many industrialised and industrializing countries. The current paper reports spatial and temporal variations in levels of atmospheric deposition of PAHs recorded in sediment cores from three lakes in Ireland, the locations of which were selected on the basis of known geographic differences in the deposition of atmospheric pollutants. Thirteen PAH compounds were analysed for in samples of lake sediment that were assumed to represent contemporary/recent and historical (possibly reference) levels of deposition. A third sample was selected from each core on the basis of measured levels of spheroidal carbonaceous particles, which are regarded as a direct indicator of depositions from the industrial-level combustion of fossil fuels. Chronological control was provided by the (210)Pb dating technique which also allowed for the calculation of PAH flux. For the most part, and when compared with the limited published data, measured levels of PAH depositions were relatively low. However, levels of deposition of PAHs in the west of Ireland are higher now than previously, which is in contrast to a general trend of decreasing levels in Europe.

  5. Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil.

    PubMed

    Tarafdar, Abhrajyoti; Sinha, Alok

    2017-03-09

    The role of preferential biodegradation in the reduction of cancer risk caused by polycyclic aromatic hydrocarbons (PAHs) has been studied. A consortium of microorganisms isolated from aged oil refinery exposed soil was used to degrade 13 PAHs content extracted from an urban traffic site soil. The biodegradation arranged in a batch process with a mineral salt broth, where PAHs were the sole carbon source. 70.46% biodegradation of the total PAHs occurred in an incubation period of 25 days. Sequential or preferential biodegradation took place as the lower molecular weight (LMW) PAHs were more prone to biodegradation than that of the higher molecular weight (HMW) PAHs. Microorganisms from the isolated consortia preferred the simpler carbon sources first. The relatively higher carcinogenicity of the HMW PAHs than that of the LMW PAHs leads to only 40.26% decrement in cancer risk. Initial cancer risk for children was 1.60E-05, which was decreased to 9.47E-06, whereas, for the adults, the risk decreased to 1.01E-05 from an initial value of 1.71E-05. The relative skin adherence factor for soil (AF) turned out to be the most influential parameter with 54.2% contributions to variance in total cancer risk followed by the exposure duration (ED) for children. For the adults, most contributions to the variance in total cancer risk were 58.5% by ED and followed by AF.

  6. Coal-tar-based parking lot sealcoat: An unrecognized source of PAH to settled house dust

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Burbank, T.L.; Ennis, T.E.; Bashara, T.J.

    2010-01-01

    Despite much speculation, the principal factors controlling concentrations of polycyclic aromatic hydrocarbons (PAH) in settled house dust (SHD) have not yet been identified. In response to recent reports that dust from pavement with coaltar-based sealcoat contains extremely high concentrations of PAH, we measured PAH in SHD from 23 apartments and in dust from their associated parking lots, one-half of which had coal-tar-based sealcoat (CT). The median concentration of total PAH (T-PAH) in dust from CT parking lots (4760 ??g/g, n = 11) was 530 times higher than that from parking lots with other pavement surface types (asphalt-based sealcoat, unsealed asphalt, concrete [median 9.0 ??g/g, n = 12]). T-PAH in SHD from apartments with CT parking lots (median 129 ??g/g) was 25 times higher than that in SHD from apartments with parking lots with other pavement surface types (median 5.1 ??g/g). Presence or absence of CT on a parking lot explained 48% of the variance in log-transformed T-PAH in SHD. Urban land-use intensity near the residence also had a significant but weaker relation to T-PAH. No other variables tested, including carpeting, frequency of vacuuming, and indoor burning, were significant. ?? 2010 American Chemical Society.

  7. BILIARY PAH METABOLITES AS A BIOLOGICAL INDICATOR OF FISH EXPOSURE IN TRIBUTARIES OF LAKE ERIE

    EPA Science Inventory

    Biliary polynuclear aromatic hydrocarbons (PAH) metabolites have been studied as a biological indicator of fish exposure to PAHs since the mid 1980's. Brown bullheads were collected from the following Lake Erie tributaries: Buffalo River (BUF), Niagara River at Love Canal (NIA)...

  8. Measurement of gaseous PAHs with an innovative passive sampler in community exposure studies

    EPA Science Inventory

    A sensitive, simple, and cost-effective passive sampling methodology was developed to quantify gaseous polycyclic aromatic hydrocarbons (PAHs) in personal, indoor and outdoor air. A Fan-Lioy passive PAH sampler (FL-PPS) is constructed from four 80 sections of 1 cm long SPB-5 GC c...

  9. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  10. VOCs and PAHs emissions from creosote-treated wood in a field storage area.

    PubMed

    Gallego, E; Roca, F J; Perales, J F; Guardino, X; Berenguer, M J

    2008-08-25

    In this study, the emissions of volatile organic compounds (VOCs, in this case aromatic hydrocarbons containing one benzene ring and furans) and polycyclic aromatic hydrocarbons (PAHs) from wood recently treated with creosote are examined. The VOCs and PAHs were identified and quantified in the gas phase. Additionally, the PAHs were quantified in the particulate phase. Glass multi-sorbent tubes (Carbotrap, Carbopack X, Carboxen-569) were used to hold the VOCs. The analysis was performed using automatic thermal desorption (ATD) coupled with capillary gas chromatography/mass spectrometry (GC/MS). PAHs vapours were collected on XAD-2 resin, and particulate matter was collected on glass fibre filters. The PAHs were analysed using GC/MS. The main components of the vapours released from the creosote-treated wood were naphthalene, toluene, m+p-xylene, ethylbenzene, o-xylene, isopropylbenzene, benzene and 2-methylnaphthalene. VOCs emission concentrations ranged from 35 mg m(-3) of air on the day of treatment to 5 mg m(-3) eight days later. PAHs emission concentrations ranged from 28 microg m(-3) of air on the day of treatment to 4 microg m(-3) eight days later. The air concentrations of PAHs in particulate matter were composed predominantly of benzo[b+j]fluoranthene, benzo[a]anthracene, chrysene, fluoranthene, benzo[e]pyrene and 1-methylnaphthalene. The emission concentrations of particulate polycyclic aromatic hydrocarbons varied between 0.2 and 43.5 ng m(-3). Finally, the emission factors of VOCs and PAHs were determined.

  11. Ranking the factors influencing polycyclic aromatic hydrocarbons (PAHs) build-up on urban roads.

    PubMed

    Liu, An; Ma, Yukun; Deilami, Kaveh; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2017-05-01

    An in-depth understanding of polycyclic aromatic hydrocarbons (PAHs) build-up on urban roads is essential for effective stormwater treatment design. Past research studies have pointed out the relationship between influential factors and PAHs build-up individually. However, these studies do not provide a comprehensive analysis of the relationships and the hierarchy of factors in terms of their importance in influencing PAHs build-up. This paper presents the outcomes of an in-depth investigation into the range of influential factors, including traffic volume, land use, distance to highway and roughness of road surfaces by ranking them in terms of their influence on PAHs build-up. A number of data analysis techniques including forward stepwise linear regression (FSWLR), principal component analysis (PCA) and multiple linear regression (MLR) were employed for the analyses undertaken. The outcomes confirmed that traffic volume is ranked first while land use and roughness of road surfaces are second and the third, respectively. Distance to highway did not show a significant influence on PAHs build-up. Additionally, it was noted that a high traffic volume tended to produce high loads of PAHs with more than 4 rings and the spatial variability of PAHs build-up were relatively higher in high traffic volume areas. These outcomes contributed to the formulation of a robust stormwater treatment strategy and generation of priority area maps focusing on the removal of PAHs.

  12. Biliary PAH metabolites and the hepatosomatic index of brown bullheads from Lake Erie tributaries

    USGS Publications Warehouse

    Yang, X.; Baumann, P.C.

    2006-01-01

    In studies designed to investigate the environmental exposure of fish in Lake Erie tributaries, a benthic fish, the brown bullhead (Ameiurus nebulosus), was collected from the industrially contaminated Detroit River, Ottawa River, Black River, Cuyahoga River-harbor and -upstream, Ashtabula River, Buffalo River, and Niagara River, and the non-industrialized Old Woman Creek during 1997-2000. Biliary benzo[a]pyrene (B[a]P)- and naphthalene (NAPH)-type metabolites and the hepatosomatic index (HSI) were measured in fish and compared between different sites. Fish from all of the contaminated sites except Niagara River had significantly higher concentrations of both types of polycyclic aromatic hydrocarbon (PAH) metabolites than fish from the Old Woman Creek. Concentrations of PAH metabolites in bile of fish were positively associated with concentrations of PAHs in sediments, supporting the use of bile metabolites as a measure of PAH exposure. Relatively low concentrations of PAHs detected in fish bile and sediments of the Niagara River, which had undergone extensive remediation, suggested a lowered PAH exposure for fish at this site. No apparent trend was observed in HSI between the industrialized and non-industrialized sites. This study demonstrates that biliary PAH metabolites are an effective indicator of exposure of fish to PAHs. However, because factors other than contamination could also affect the liver size of wild fish, HSI alone may be not a reliable biomarker for assessing contaminant stress. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment.

    PubMed

    Baldwin, Austin K; Corsi, Steven R; Lutz, Michelle A; Ingersoll, Christopher G; Dorman, Rebecca; Magruder, Christopher; Magruder, Matthew

    2016-11-24

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison with the probable effect concentrations and (or) the equilibrium partitioning sediment benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-d) and the midge Chironomus dilutus (10-d) measured significant reductions in 1 or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus. Environ Toxicol Chem 2016;9999:1-14. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  14. In situ biomonitoring of PAH-contaminated sediments using juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Barbee, Gary C; Barich, John; Duncan, Bruce; Bickham, John W; Matson, Cole W; Hintze, Christopher J; Autenrieth, Robin L; Zhou, Guo-Dong; McDonald, Thomas J; Cizmas, Leslie; Norton, Dale; Donnelly, Kirby C

    2008-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous marine and freshwater sediment contaminants. Extensive data exist to confirm that PAHs are toxic to aquatic receptors. However, limited information is available regarding the bioavailability and genotoxicity of sediment PAHs to aquatic organisms. This study investigated an integrated biomonitoring approach using chemical analyses and biomarkers to characterize the bioavailability and genotoxicity of a complex PAH mixture in freshwater lake sediments associated with a former manufactured gas plant (MGP). Sediment PAH genotoxicity was assessed by flow cytometry (FCM), DNA adduct (32)P-postlabeling, and erythrocyte micronuclei in juvenile coho salmon (Oncorhynchus kisutch) caged in the water column. Significant PAH-induced genotoxicity was observed with FCM and (32)P-postlabeling, but not with erythrocyte micronuclei. Chromosome damage in peripheral blood and hepatic DNA adducts correlated with sediment, but not water column PAH concentrations. Total hepatic DNA adducts in salmon caged nearest the former MGP facility was 39+/-6.5 (RALx10(9)), while salmon caged in a reference lake had 28+/-2.3 total hepatic DNA adducts per 10(9) nucleotides. These results indicate that in situ biomonitoring using biomarkers and caged fish can be a sensitive indicator of genotoxic PAHs in sediments.

  15. Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment.

    PubMed

    Kim, Myungsu; Bae, Seung Seob; Seol, Mijin; Lee, Jung-Hyun; Oh, Young-Sook

    2008-12-01

    Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism (T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights on how to effectively remediate PAH-contaminated sediments.

  16. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    PubMed

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene).

  17. Comparison of PAH Biodegradation and Desorption Kinetics During Bioremediation of Aged Petroleum Hydrocarbon Contaminated Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2000-09-20

    It is commonly assumed that mass-transfer limitations are the cause for slow and incomplete biodegradation of PAHs in aged soils. In order to test this hypothesis, the biodegradation rate and the abiotic release rate were measured and compared for selected PAHs in three different soils. It was found that PAH biodegradation was not mass-transfer limited during slurry bioremediation of an aged loamy soil. By contrast, PAH biodegradation rates were much larger than abiotic release rates in kaolinite clay indicating that sorbed-phase PAHs can apparently be biodegraded directly from mineral surfaces without prior desorption or dissolution into the aqueous phase. A comparison of PAH biodegradation rates and abiotic release rates at termination of the slurry bioremediation treatment revealed that abiotic release rates are much larger than the respective biodegradation rates. In addition, it was found that the number of hydrocarbon degraders decreased by four orders of magnitude during the bioremediation treatment. It can therefore be concluded that the slow and incomplete biodegradation of PAHs is not caused by mass-transfer limitations but rather by microbial factors. Consequently, the residual PAHs that remain after extensive bioremediation treatment are still bioavailable and for that reason could pose a greater risk to environmental receptors than previously thought.

  18. Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment.

    PubMed

    Spasojević, Jelena M; Maletić, Snežana P; Rončević, Srđan D; Radnović, Dragan V; Cučak, Dragana I; Tričković, Jelena S; Dalmacija, Božo D

    2015-01-01

    This work compares the biodegradation potential of four polycyclic aromatic hydrocarbons (PAH) (phenanthrene, pyrene, chrysene and benzo(a)pyrene, chosen as representatives of the 3, 4 and 5 ring PAHs) with their desorption from sediment by XAD4 resin and methyl-β-cyclodextrin (MCD). The biodegradation study was conducted under various conditions (biostimulation, bioaugmentation and their combination). The results show that total PAH removal in all treatments except biostimulation gave similar results, whereby the total amount of PAHs was decreased by about 30-35%. The desorption experiment showed that XAD4 desorbed a greater fraction of phenanthrene (77% versus 52%), and benzo(a)pyrene (44% versus 25%) than MCD. The results for four ring PAHs were similar for both desorption agents (about 30%). Comparing the maximum biodegraded amount of each PAH with the rapidly desorbed XAD4 and MCD fraction, XAD4 was found to correlate better with biodegradation for the high molecular PAHs (pyrene, chrysene, benzo(a)pyrene), although it overestimated the availability of phenanthrene. In contrast, MCD showed better correlation with the biodegradation of low molecular weight PAHs.

  19. Remarkably constant PAH concentrations in Swiss soils over the last 30 years.

    PubMed

    Gubler, Andreas; Wächter, Daniel; Blum, Franziska; Bucheli, Thomas D

    2015-10-01

    Although polycyclic aromatic hydrocarbons (PAH) are of concern due to their carcinogenic, mutagenic, and teratogenic properties and their ubiquitous occurrence in environmental compartments, only few studies assessed the temporal evolutions of PAH contents of soils over extended time periods. The Swiss Soil Monitoring Network NABO runs long-term monitoring sites resampled every five years since the 1980s. In the present study, soil (0-20 cm) samples collected from 1985 through 2013 at 25 selected monitoring sites were analysed for the 16 priority PAH according to the U.S. EPA and five PAH marker substances. We observed divergent trends for light PAH, such as naphthalene and phenanthrene, compared with heavy PAH, such as benzo[a]pyrene and benzo[ghi]perylene. Whereas the former showed decreasing concentrations since the late 1980s, no significant trends were found for the latter. Furthermore, the analyses showed that naphthalene contents decreased most strongly at rural sites featuring low population densities, while phenanthrene contents generally decreased most strongly at semi-rural sites. The deviating evolutions of light and heavy PAH were mainly attributed to their differing physico-chemical properties. Temporal evolutions in soils contradict emission inventory data suggesting PAH emissions to decline since the 1980s.

  20. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    PubMed

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  1. Marine sponges as bioindicators of oil and combustion derived PAH in coastal waters.

    PubMed

    Batista, Daniela; Tellini, Karla; Nudi, Adriana H; Massone, Thaís P; Scofield, Arthur de L; Wagener, Angela de L R

    2013-12-01

    The present study evaluates the potential of Hymeniacidon heliophila as bioindicator of PAH contamination. For this, concentration of 33 PAH was determined in organisms from sites with different contamination level including the heavily polluted Guanabara Bay, Rio de Janeiro, and less impacted coastal areas. PAH concentration and typology were determined in sponges collected from different depths and in two different seasons. The brown mussel broadly studied as bioindicator was also sampled from the same sites for comparison. Both species provided similar information on total PAH concentration which is related to site contamination level. Sponges, however, revealed slight tendency to accumulation of combustion-derived PAH in relation to petrogenic compounds. Differences in PAH typology between species may derive from the interspecific variation in particle size ingestion. Different hydrocarbon typologies were observed in sponges from dry and wet season and PAH concentration varied with depth. H. heliophila may be used as an alternative approach to investigate the presence and sources of PAH in estuarine areas.

  2. Coal-tar-based sealcoated pavement: a major PAH source to urban stream sediments.

    PubMed

    Witter, Amy E; Nguyen, Minh H; Baidar, Sunil; Sak, Peter B

    2014-02-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (~1303 km(2)) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69-0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use.

  3. Nonadditive effects of PAHs on Early Vertebrate Development: mechanisms and implications for risk assessment

    PubMed Central

    Billiard, Sonya M.; Meyer, Joel N.; Wassenberg, Deena M.; Hodson, Peter V.; Di Giulio, Richard T.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants. Traditionally, much of the research has focused on the carcinogenic potential of specific PAHs, such as benzo(a)pyrene, but recent studies using sensitive fish models have shown that exposure to PAHs alters normal fish development. Some PAHs can induce a teratogenic phenotype similar to that caused by planar halogenated aromatic hydrocarbons, such as dioxin. Consequently, mechanism of action is often equated between the two classes of compounds. Unlike dioxins, however, the developmental toxicity of PAH mixtures is not necessarily additive. This is likely related to their multiple mechanisms of toxicity and their rapid biotransformation by CYP1 enzymes to metabolites with a wide array of structures and potential toxicities. This has important implications for risk assessment and management as the current approach for complex mixtures of PAHs usually assumes concentration addition. In this review we discuss our current knowledge of teratogenicity caused by single PAH compounds and by mixtures and the importance of these latest findings for adequately assessing risk of PAHs to humans and wildlife. Throughout, we place particular emphasis on research on the early life stages of fish, which has proven to be a sensitive and rapid developmental model to elucidate effects of hydrocarbon mixtures. PMID:18156145

  4. [Concentration and distribution of PAHs in vegetables grown near an iron and steel industrial area].

    PubMed

    Shen, Fei; Zhu, Li-Zhong

    2007-03-01

    Concentrations of 15 kinds of polycyclic aromatic hydrocarbon (PAHs) were determined in 8 vegetable species and their growing environment (soil and atmosphere) near an iron and steel industrial area. The total concentrations of 15 kinds of PAHs (sigma PAHs) were 227.1 - 1 533.2 ng/g, 759.1 ng/g in average. The concentrations of 8 carcinogenic PAHs (sigma carePAHs) were 7.1 - 231.2 ng/g, 70.6 ng/g in average. Of the various vegetable species determined, the highest polyaromatic burden was observed in the leafy vegetables, followed by melon and fruit species, while the rhizome species accumulated the lowest amount. In melon and fruit species, most PAHs were accumulated on the peel, only about 30% transfer into the core. The ability of the plant accumulating PAHs was mainly influenced by the lipid content of the plant. Leaf with pubescence or rough surface was found to have higher sigma PAHs than the other, and the fibre higher than the taproot, when the lipid contents were close.

  5. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

    PubMed

    Jajoo, Anjana; Mekala, Nageswara Rao; Tomar, Rupal Singh; Grieco, Michele; Tikkanen, Mikko; Aro, Eva-Mari

    2014-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are very toxic and highly persistent environmental pollutants which accumulate in soil and affect growth of the plants adversely. This study aims to investigate inhibitory effects of 3 major PAH particularly on photosynthetic processes in Arabidopsis thaliana grown in soil treated with PAH. The 3 PAH chosen differ from each other in aromaticity (number of rings) comprising their structure (2 rings: naphthalene, 3 rings: anthracene and 4 rings: pyrene). Several growth parameters and Chlorophyll a fluorescence was monitored in PAH treated plants. BN-PAGe analysis was done in order to get information about change in the protein conformation. PAH treatment led to increased value of Fo which collaborated with increase in the amount of free LHC as seen through BN-Page analysis. Thus PAH were found to inhibit PS II photochemistry and caused distinct change in pigment composition. However the results led us to infer that 3-ring anthracence is more inhibitory as compared to 2-ring naphthalene and 4-ring pyrene. This indicates that aromaticity of PAH is unrelated to their response on photosynthetic processes.

  6. Variations in the 3 Micron Spectrum Across the Orion Bar: PAHS and Related Molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.; Wittborn, Fred C. (Technical Monitor)

    1996-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 micrometer PAH spectrum. The strong PAH band at 3.29 micrometers generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and approximately 20" behind the ionization front, close to layers of H2 and CO emission respectively. The 3.40 micrometer PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 micrometers), along with the 3.51 micrometer band and the PAH plateau (3.3-3.6 micrometers), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 micrometer band. The extra component of the 3.40 micrometer band, which peaks at approximately 3.405 micrometers, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 micrometer feature. Aliphatic C-H stretches in either attached methyl sidegroups or super-hydrogenated PAHs (H-PAHs), or perhaps both, could produce the complicated spectral and spatial structure at 3.40 micrometers. The distribution of these fragile PAH-based species traces the physical and chemical conditions in the interface between the ionized region and molecular cloud.

  7. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew

    2016-01-01

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  8. Generation and distribution of PAHs in the process of medical waste incineration.

    PubMed

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  9. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    PubMed Central

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main

  10. PAH volatilization following application of coal-tar-based pavement sealant

    USGS Publications Warehouse

    Van Metre, Peter C.; Majewski, Michael S.; Mahler, Barbara J.; Foreman, William T.; Braun, Christopher L.; Wilson, Jennifer T.; Burbank, Teresa L.

    2012-01-01

    Coal-tar-based pavement sealants, a major source of PAHs to urban water bodies, have recently been identified as a source of volatile PAHs to the atmosphere. We tracked the volatilization of PAHs for 1 year after application of a coal-tar-based pavement sealant by measuring gas-phase PAH concentrations above the pavement surface and solid-phase PAH concentrations in sealant scraped from the surface. Gas-phase concentrations at two heights (0.03 and 1.28 m) and wind speed were used to estimate volatilization flux. The sum of the concentrations of eight frequently detected PAHsPAH8) in the 0.03-m sample 1.6 h after application (297,000 ng m-3) was about 5000 times greater than that previously reported for the same height above unsealed parking lots (66 ng m-3). Flux at 1.6 h after application was estimated at 45,000 μg m-2 h-1 and decreased rapidly during the 45 days after application to 160 μg m-2 h-1. Loss of PAHs from the adhered sealant also was rapid, with about a 50% decrease in solid-phase ΣPAH8 concentration over the 45 days after application. There was general agreement, given the uncertainties, in the estimated mass of ΣPAH8 lost to the atmosphere on the basis of air sampling (2–3 g m-2) and adhered sealant sampling (6 g m-2) during the first 16 days after application, translating to a loss to the atmosphere of one-quarter to one-half of the PAHs in the sealcoat product. Combining the estimated mass of ΣPAH8 released to the atmosphere with a national-use estimate of coal-tar-based sealant suggests that PAH emissions from new coal-tar-based sealcoat applications each year (~1000 Mg) are larger than annual vehicle emissions of PAHs for the United States.

  11. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    PubMed

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.

  12. Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea.

    PubMed

    Boitsov, Stepan; Jensen, H K B; Klungsøyr, Jarle

    2009-12-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in sediment cores from 13 locations in South-Western Barents Sea as part of a detailed study of the Norwegian seabed under the MAREANO program. The generally low PAH levels found, an average around 200 ng g(-1) dry weight for sum PAH, indicate low inputs of petroleum hydrocarbons to the marine environment in the area. Differences in PAH composition and various PAH ratios indicate a natural, mostly petrogenic origin of PAH in sediments from the open sea locations, while the fjord locations show higher pyrogenic PAH contents with an increase towards upper sediment layers, indicating low inputs from human activities. Petrogenic PAH levels increase in deeper sediments at open sea locations, also when normalised to total organic carbon (TOC) contents, suggesting natural leakages of oil-related hydrocarbons in the area.

  13. Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA).

    PubMed

    Perra, Guido; Pozo, Karla; Guerranti, Cristiana; Lazzeri, Denise; Volpi, Valerio; Corsolini, Simonetta; Focardi, Silvano

    2011-04-01

    Surface sediment from 15 Italian marine protected areas (MPA) were analysed for polycyclic aromatic hydrocarbons (PAHs). The organic carbon percentage was also determined. Total PAH concentrations (ng g⁻¹ d.w.) ranged from 0.71 (Penisola del Sinis) to 1550 (Miramare). Individual PAH analysis showed that three and four rings PAHs were the most frequently detected isomers and accounted for 60-70% of the PAH total concentrations. PAH ratio analysis showed a prevalence of pyrolytic PAH origin at most of the MPAs with exception of Porto Cesareo and Ustica where a petrogenic origin was detected. Results for organic carbon percentages ranged from 0.3% (Capo Rizzuto) to 2% (Punta Campanella). These results are comparable to other Mediterranean marine environments. However, our results shows that some MPAs, such as Miramare, Porto Cesareo, Isola Capo Rizzuto and Punta Campanella, are subject to strong pressure from urban and industrial activities where high PAH levels were detected.

  14. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.

    PubMed

    Zielińska, Anna; Oleszczuk, Patryk

    2016-06-01

    The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents.

  15. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Given the current understanding of polycyclic aromatic hydrocarbons (PAHs), the spectroscopic data suggest that are at least two components which contribute to the interstellar emission spectrum: (1) free molecule-sized PAHs producing the narrow features and (2) amorphous carbon particles (which are primarily composed of an irregular 'lattice' of PAHs) contributing to the broad underlying components. An exact treatment of the IR fluorescence from highly vibrationally excited large molecules demonstrates that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. It is concluded that, since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is required along with an observational program focusing on the spatial characteristics of the spectra.

  16. Distribution and sources of PAHs using three pine species along the Ebro River.

    PubMed

    Ratola, Nuno; Alves, Arminda; Lacorte, Sílvia; Barceló, Damià

    2012-01-01

    Needles of three pine species (Pinus halepensis, Pinus pinea and Pinus nigra) were analysed to assess the occurrence of polycyclic aromatic hydrocarbons (PAHs) in 34 sites located throughout the Ebro River, in Northeast Spain. Overall, the concentration varied between 55 and 808 ng g(-1) (dry weight). The three- and four-ring PAHs were the most representative, with phenanthrene having 43% of the total PAH load and naphthalene showing a high incidence in rural areas. Despite matrix apparent similarities, P. halepensis needles revealed higher entrapment levels than P. nigra and P. pinea, the latter showing the lowest levels. The assessment of possible sources using PAH ratios (phenanthrene/anthracene and fluoranthene/pyrene) did not reveal a clear tendency regarding the distinction of petrogenic and pyrogenic sources in general, reflecting heterogeneous sources of PAHs in the Ebro area.

  17. PAH Metabolites in Bile of European Eel (Anguilla anguilla) from Morocco.

    PubMed

    Wariaghli, Fatima; Kammann, Ulrike; Hanel, Reinhold; Yahyaoui, Ahmed

    2015-12-01

    Environmental pollution of fish with organic contaminants is a topic of rising attention in Morocco. Polycyclic aromatic hydrocarbons (PAH) are prominent organic contaminants which are rapidly metabolized in fish. Their metabolites are accumulated in the bile fluid and can be used to assess PAH exposure. The two PAH metabolites 1-hydroxypyrene and 1-hydroxyphenanthrene were quantified in European eels (Anguilla anguilla) from two Moroccan river systems by high-performance liquid chromatography with fluorescence detection. Mean values ranged from 52 to 210 ng/mL 1-hydroxypyrene and from 61 to 73 ng/mL 1-hydroxyphenanthrene. The overall concentrations of PAH metabolites in eel from Morocco appeared moderate compared to eel from European rivers and coastal sites. The present study provides first information on concentrations of PAH metabolites in fish from Morocco.

  18. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions.

    PubMed

    Quantin, C; Joner, E J; Portal, J M; Berthelin, J

    2005-03-01

    A batch experiment was conducted to compare PAH degradation in a polluted river sediment under aerobic and anaerobic conditions, and to investigate whether input of fresh organic material (cellulose) could enhance such degradation. All measurements were checked against abiotic control treatments to exclude artifacts of sample preparation and non-biological processes like aging. Three- and four-ring PAHs could be degraded by the indigenous microbial community under aerobic conditions, but anaerobic metabolism based on iron and sulphate reduction was not coupled with PAH degradation of even the simplest 3-ring compounds like phenanthrene. Cellulose addition stimulated both aerobic and anaerobic respiration, but had no effect on PAH dissipation. We conclude that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow. Dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.

  19. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development.

    PubMed

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C

    2015-02-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g(-1) to 3631 ng g(-1) during the period of 1978-2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development.

  20. Potential sources of pesticides, PCBs, and PAHs to the atmosphere of the Great Lakes.

    PubMed

    Hafner, William D; Hites, Ronald A

    2003-09-01

    A probabilistic model called the potential source contribution function (PSCF) has been used to estimate atmospheric source regions of polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides, and polychlorinated biphenyls (PCBs) to the Great Lakes. This model allows us to map each compound's source region on a 0.5 degrees x 0.5 degrees latitude/longitude grid centered over the Great Lakes basin. PCBs primarily have urban sources, the strengths of which vary. Like PCBs, PAHs show a strong urban signature, but these compounds also seem to come from rural sites. The source regions of PAH become less distinct as the molecular weight of the compound increases. Since reactivity increases with PAH size, this diminishing trend may be an indication that atmospheric degradation plays a large role in PAH transport. The pesticides have the strongest source regions and are typically transported the farthest, often from areas distant from the Great Lakes basin.

  1. Non-destructive assessment of polycyclic aromatic hydrocarbon (PAH) exposure by fluorimetric analysis of crab urine.

    PubMed

    Koenig, Samuel; Savage, Candida; Kim, Jonathan P

    2008-12-01

    The detection of urinary polycyclic aromatic hydrocarbon (PAH) metabolites by fluorescence spectrophotometry is particularly effective as a practical means to assess PAH exposure in decapod crabs. However, the practical application of this technique has thus far only been tested for the European shore crab (Carcinus maenas) and only a few field studies have been conducted in heavily polluted areas. The present study evaluated the adaptability of this method as a rapid, cost-effective and non-destructive biomonitoring tool for the New Zealand crab species, Macrophthalmus hirtipes (stalk-eyed mud crab). A field gradient could be detected among the sites and different input sources of PAH contamination could be discerned through the differentiation of pyrogenic and petrogenic PAH signatures. The present study shows that the fluorescence screening method is sensitive to relatively low levels of PAH contamination and more broadly applicable to smaller crab species than C. maenas, for which the technique was developed.

  2. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    NASA Astrophysics Data System (ADS)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  3. Sorption effects interfering with the analysis of polycyclic aromatic hydrocarbons (PAH) in aqueous samples.

    PubMed

    Krüger, Oliver; Kalbe, Ute; Meißner, Kerstin; Sobottka, Sebastian

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAH) are severe environmental pollutants that are analyzed frequently. The risk assessment of PAH impact to groundwater can be performed using leaching tests. Therby a liquid-solid separation step including centrifugation may be required, which in turn might lead to loss of analytes due to sorption on the equipment. Thus we determined the PAH recoveries from various container materials (polyethylene (PE), polypropylene (PP), polytetraflourethylene (PTFE), stainless steel (ES), and perflouroalkoxy (PFA)) and compared them to selected PAH properties. We found the best recoveries for PFA (68%) and PTFE (65%) containers. We found good negative correlations (-0.93 and better) between PAH recovery and log partition coefficient organic carbon-water (logKOC) for PFA, PTFE, and ES containers.

  4. Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market.

    PubMed

    Martena, M J; Grutters, M M P; De Groot, H N; Konings, E J M; Rietjens, I M C M

    2011-01-01

    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aimed to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. From 2003 to 2008, benzo[a]pyrene exceeded the limit of quantification (LOQ) in 553 (44%) of 1258 supplements with a lower-bound mean of 3.37 µg kg(-1). In 2008 and 2009, benzo[a]pyrene and 12 other EFSA priority PAH were determined in 333 food supplements. Benzo[a]pyrene exceeded the LOQ in 210 (63%) food supplements with a lower-bound mean of 5.26 µg kg(-1). Lower-bound mean levels for PAH4 and PAH8(-indeno[1,2,3-cd]pyrene) were 33.5 and 40.5 µg kg(-1), respectively. Supplements containing resveratrol, Ginkgo biloba, St. John's wort and propolis showed relatively high PAH4 levels in 2008 and 2009. Before 2008, supplements with these ingredients and also dong quai, green tea or valerian contained relatively high benzo[a]pyrene levels. On average, PAH4 intake resulting from food supplement use will be at the lower end of the range of contributions of main food groups to PAH4 exposure, although individual food supplements can contribute significantly to PAH4 exposure. Regular control of EFSA indicator PAH levels in food supplements may prove a way forward to reduce further the intake of PAH from food.

  5. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice

    SciTech Connect

    Becker, L. |; Glavin, D.P.; Bada, J.L.

    1997-01-01

    Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level. The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars. 33 refs., 3 figs., 1 tab.

  6. Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks

    NASA Astrophysics Data System (ADS)

    Slezakova, Klara; Castro, Dionísia; Delerue–Matos, Cristina; Alvim–Ferraz, Maria da Conceição; Morais, Simone; Pereira, Maria do Carmo

    2013-06-01

    Considering vehicular transport as one of the most health-relevant emission sources of urban air, and with aim to further understand its negative impact on human health, the objective of this work was to study its influence on levels of particulate-bound PAHs and to evaluate associated health risks. The 16 PAHs considered by USEPA as priority pollutants, and dibenzo[a,l]pyrene associated with fine (PM2.5) and coarse (PM2.5-10) particles were determined. The samples were collected at one urban site, as well as at a reference place for comparison. The results showed that the air of the urban site was more seriously polluted than at the reference one, with total concentrations of 17 PAHs being 2240% and 640% higher for PM2.5 and PM2.5-10, respectively; vehicular traffic was the major emission source at the urban site. PAHs were predominantly associated with PM2.5 (83% to 94% of ΣPAHs at urban and reference site, respectively) with 5 rings PAHs being the most abundant groups of compounds at both sites. The risks associated with exposure to particulate PAHs were evaluated using the TEF approach. The estimated value of lifetime lung cancer risks exceeded the health-based guideline levels, thus demonstrating that exposure to PM2.5-bound PAHs at levels found at urban site might cause potential health risks. Furthermore, the results showed that evaluation of benzo[a]pyrene (regarded as a marker of the genotoxic and carcinogenic PAHs) alone would probably underestimate the carcinogenic potential of the studied PAH mixtures.

  7. Diffusive exchange of PAHs across the air-water interface of the Kaohsiung Harbor lagoon, Taiwan.

    PubMed

    Fang, Meng-Der; Lee, Chon-Lin; Jiang, Jheng-Jie; Ko, Fung-Chi; Baker, Joel E

    2012-11-15

    Instantaneous air-water polycyclic aromatic hydrocarbons (PAHs) exchange fluxes were calculated in 22 pairs of ambient air and water samples from Kaohsiung Harbor lagoon, from December 2003 to January 2005. The highest net volatilization (3135 ng m(-2) day(-1)) and absorptive (-1150 ng m(-2) day(-1)) fluxes in the present study were obtained for the three-ring PAH phenanthrene on 7 April and 27 January 2004, respectively. All PAH diffusive fluxes for three-ring PAHs except phenanthrene were mainly volatilization exchange across the air-water interface. Phenanthrene and the four-ring PAHs were absorbed primarily from the atmosphere and deposited to the surface water, although some minor volatilization fluxes were also observed. Differences in flux magnitude and direction between the dry and wet seasons were also evident for PAHs. Strong absorptive/weaker volatilization PAH fluxes occurred in the dry season, but the opposite was found in the wet season. The mean daily PAH diffusive fluxes were an in flux of -635 ng m(-2) day(-1) in the dry season and an efflux of 686 ng m(-2) day(-1) in the wet season. The integrated absorbed and emitted fluxes of PAHs for harbor lagoon surface waters in the dry and wet seasons were 3.1 kg and 3.4 kg, respectively. Different from water bodies located in temperate zone, phenanthrene diffusive fluxes in Kaohsiung Harbor lagoon was favored in volatilization from surface waters during the wet season (April to September) because of scavenging by precipitation and dilution by prevailing southwesterly winds. In addition, this study used both of salinity and temperature to improve estimation of Henry's law constants (H) of PAHs in a tropical coastal area and show that correction for salinity produced 13-15% of differences in H values.

  8. Excretion of polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in cattle urine in Ghana.

    PubMed

    Bortey-Sam, Nesta; Ikenaka, Yoshinori; Akoto, Osei; Nakayama, Shouta M M; Marfo, Jemima; Saengtienchai, Aksorn; Mizukawa, Hazuki; Ishizuka, Mayumi

    2016-11-01

    Previous studies of polycyclic aromatic hydrocarbons (PAHs) in particulate matter, soils and livers of wild rats indicated that the city centre of Kumasi, Ghana has been severely polluted with high cancer potency. Cattle urine were therefore collected from Kumasi (urban) and Offinso (rural), Ghana: to determine concentrations of urinary PAH metabolites (OH-PAHs); and find their association with sex; and to estimate exposure of cattle to PAHs from the different sites. From the results, geometric mean concentrations (adjusted by specific gravity), GMSG, showed that 2-OHNaphthalene (2-OHNap) was the most abundant OH-PAH in cattle urine from all study sites, and naphthalene-containing-mothballs might have contributed significantly to the levels. There was no significant difference between urinary OH-PAHs concentrations in cattle from urban and rural sites except for 2-OHPhe and 4-OHPhe, and similar to urban areas, rural sites could also be polluted with PAHs. GMSG of 2-OHNap in cattle urine in Kokote (21.9 ± 6.51 ng/mL; a rural area), was significantly higher compared to the other sites followed by Oforikrom (4.15 ± 4.37 ng/mL; urban). The GMSG concentration (ng/mL) of the sum of OH-PAHs decreased in the order, Kokote (44.7) > Oforikrom (7.87) > Saboa (6.98) > Santasi (6.68) > and Twumasen Estate (5.23). The high concentrations of urinary 2-OHNap, 2-3-OHFlu, 2-OHPhe, 3-OHPhe and 4-OHPhe in Kokote indicated high PAHs exposure to cattle in this area or different/specific source of PAHs exposure. GMSG of 2-OHNap was significantly higher in male cattle compared to females while 1-9-OHPhe was significantly higher in females.

  9. Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.

  10. PAH emissions from old and new types of domestic hot water boilers.

    PubMed

    Horak, Jiri; Kubonova, Lenka; Krpec, Kamil; Hopan, Frantisek; Kubesa, Petr; Motyka, Oldrich; Laciok, Vendula; Dej, Milan; Ochodek, Tadeas; Placha, Daniela

    2017-03-24

    Five different domestic heating boilers (automatic, over-fire, with down-draft combustion and gasification) and three types of fuel (lignite, wood and mixed fuel) were examined in 25 combustion tests and correlated with the emissions of particulate matter (PM), carbon monoxide (CO), total organic carbon (TOC) and 12 polycyclic aromatic hydrocarbons (PAHs with MW = 178-278 g/mol) focusing on particle phase. However, the distribution of 12 PAHs in gas phase was considered as well due to the presence mainly of lighter PAHs in gas phase. The PAHs, as well as the CO and TOC, are the indicators of incomplete combustion, and in this study PAH emission increased significantly with increasing emissions of CO and TOC. The PAHs were mainly detected on PM2.5, their contents were increasing linearly with increasing PM2.5 emissions. The highest emission factors of PAHs were measured for boilers of old construction, such as over-fire boiler (5.8-929 mg/kg) and boiler with down-draft combustion (3.1-54.1 mg/kg). Modern types of boilers produced much lower emissions of PAHs, in particular, automatic boiler (0.3-3.3 mg/kg) and gasification boilers (0.2-6.7 mg/kg). In general, the inefficient combustion at reduced output of boilers generated 1.4-17.7 times more emissions of PAHs than the combustion at nominal output of boilers. It is recommended to operate boilers at nominal output with sufficient air supply and to use the proper fuel to minimise PAHs emissions from domestic heating appliances.

  11. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wang, Siyao; Lohmann, Rainer; Yu, Na; Zhang, Chenkai; Gao, Yi; Zhao, Jianfu; Ma, Limin

    2015-04-01

    Understanding sources and contributions of gaseous and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from traffic in urban areas. On-road sampling campaigns were comprehensively conducted during 2011-2012 in an urban tunnel of Shanghai, China. 2-3 rings PAHs were abundant in the tunnel's gas and particle phases. Diagnostic ratios of PAHs were statistically described; several were significantly different between the gas and particle phases. Principal component analysis (PCA), positive matrix factorization (PMF), bivariate correlation analysis and multiple linear regression analysis (MLRA) were applied to apportion sources of gaseous and particulate PAHs in the tunnel. Main sources of the gaseous PAHs included evaporative emission of fuel, high-temperature and low-temperature combustion of fuel, accounting for 50-51%, 30-36% and 13-20%, respectively. Unburned fuel particles (56.4-78.3%), high-temperature combustion of fuel (9.5-26.1%) and gas-to-particle condensation (12.2-17.5%) were major contributors to the particulate PAHs. The result reflected, to a large extent, PAH emissions from the urban traffic of Shanghai. Improving fuel efficiency of local vehicles will greatly reduce contribution of traffic emission to atmospheric PAHs in urban areas. Source apportionment of PM10 mass was also performed based on the organic component data. The results showed that high-temperature combustion of fuel and gas-to-particle condensation contributed to 15-18% and 7-8% of PM10 mass, respectively, but 55-57% of the particle mass was left unexplained. Although the results from the PCA and PMF models were comparable, the PMF method is recommended for source apportionment of PAHs in real traffic conditions. In addition, the combination of multivariate statistical method and bivariate correlation analysis is a useful tool to comprehensively assess sources of PAHs.

  12. A statistical approach to develop a detailed soot growth model using PAH characteristics

    SciTech Connect

    Raj, Abhijeet; Celnik, Matthew; Shirley, Raphael; Sander, Markus; Patterson, Robert; West, Richard; Kraft, Markus

    2009-04-15

    A detailed PAH growth model is developed, which is solved using a kinetic Monte Carlo algorithm. The model describes the structure and growth of planar PAH molecules, and is referred to as the kinetic Monte Carlo-aromatic site (KMC-ARS) model. A detailed PAH growth mechanism based on reactions at radical sites available in the literature, and additional reactions obtained from quantum chemistry calculations are used to model the PAH growth processes. New rates for the reactions involved in the cyclodehydrogenation process for the formation of 6-member rings on PAHs are calculated in this work based on density functional theory simulations. The KMC-ARS model is validated by comparing experimentally observed ensembles on PAHs with the computed ensembles for a C{sub 2}H{sub 2} and a C{sub 6}H{sub 6} flame at different heights above the burner. The motivation for this model is the development of a detailed soot particle population balance model which describes the evolution of an ensemble of soot particles based on their PAH structure. However, at present incorporating such a detailed model into a population balance is computationally unfeasible. Therefore, a simpler model referred to as the site-counting model has been developed, which replaces the structural information of the PAH molecules by their functional groups augmented with statistical closure expressions. This closure is obtained from the KMC-ARS model, which is used to develop correlations and statistics in different flame environments which describe such PAH structural information. These correlations and statistics are implemented in the site-counting model, and results from the site-counting model and the KMC-ARS model are in good agreement. Additionally the effect of steric hindrance in large PAH structures is investigated and correlations for sites unavailable for reaction are presented. (author)

  13. Soil pollution by PAHs in urban soils: a comparison of three European cities.

    PubMed

    Morillo, E; Romero, A S; Maqueda, C; Madrid, L; Ajmone-Marsan, F; Grcman, H; Davidson, C M; Hursthouse, A S; Villaverde, J

    2007-09-01

    The purpose of this study was to determine the degree of contamination with polycyclic aromatic hydrocarbons (PAHs) in samples of urban soil from three European cities: Glasgow (UK), Torino (Italy) and Ljubljana (Slovenia). Fifteen PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) were measured in urban soil samples, using harmonised sampling, sample extraction and analyte quantification methods. Although the mean concentration of each PAH in urban soils of each city showed a wide range of values, high levels of contamination were only evident in Glasgow, where the sum of concentrations of 15 PAHs was in the range 1487-51,822 microg kg(-1), cf. ranges in the other two cities were about ten-fold lower (89.5-4488 microg kg(-1)). The three predominant PAHs were phenanthrene, fluoranthene and pyrene, with the sum of these compounds about 40% of the total PAH content. These data, together with some special molecular indices based on ratios of selected PAHs, suggest pyrogenic origins, especially motor vehicle exhausts, to be the major sources of PAHs in urban soils of the three cities. The largest concentrations for PAHs were often found in sites close to the historic quarters of the cities. Overall, the different climatic conditions, the organic carbon contents of soil, and the source apportionment were the dominant factors affecting accumulation of PAHs in soil.

  14. Chemical Oxidation of Complex PAH Mixtures by Base-activated Sodium Persulfate

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Miller, C. T.

    2013-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant soil and groundwater contaminants. One oxidant that has received significant recent attention is sodium persulfate, which has several advantages, including a relatively long lifetime in porous media, the ability to destroy a wide-range of chemical contaminants, and a high oxidation potential. In this study, we investigated the chemical mechanisms associated with base-activated persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) and assessed the applicability of persulfate to the remediation of porous media contaminated with non-aqueous phase liquid (NAPL) PAH mixtures. Batch experiments were conducted to determine the oxidation kinetics for individual PAH compounds, synthetic PAH mixtures, and manufactured gas plant (MGP) tars. Additional experiments were conducted with added surfactants (Triton X-100, Triton X-45, and Tween 80) to increase PAH mass transfer from the NAPL to the aqueous phase, and with radical scavengers (ethanol and tert-butyl alcohol) to identify the reactive species responsible for degradation. Degradation of total PAHs in the NAPL experiments was as high as 70%. The addition of surfactant increased initial PAH degradation rates, but also greatly increased the rate of base consumption, thereby reducing the overall fraction degraded. The degradation of individual PAHs within the NAPLs varied significantly, with the masses of some compounds remaining largely unchanged. The results of the radical scavenger and single PAH experiments suggest that the observed pattern of degradation in PAH mixtures is the result of a combination of mass transfer considerations and competition for radical species.

  15. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil.

    PubMed

    Eom, I C; Rast, C; Veber, A M; Vasseur, P

    2007-06-01

    Soil samples from a former cokery site polluted with polycyclic aromatic hydrocarbons (PAHs) were assessed for their toxicity to terrestrial and aquatic organisms and for their mutagenicity. The total concentration of the 16 PAHs listed as priority pollutants by the US Environmental Protection Agency (US-EPA) was 2634+/-241 mg/kgdw in soil samples. The toxicity of water-extractable pollutants from the contaminated soil samples was evaluated using acute (Vibrio fischeri; Microtox test, Daphnia magna) and chronic (Pseudokirchneriella subcapitata, Ceriodaphnia dubia) bioassays and the EC values were expressed as percentage water extract in the test media (v/v). Algal growth (EC50-3d=2.4+/-0.2% of the water extracts) and reproduction of C. dubia (EC50-7d=4.3+/-0.6%) were the most severely affected, compared to bacterial luminescence (EC50-30 min=12+/-3%) and daphnid viability (EC50-48 h=30+/-3%). The Ames and Mutatox tests indicated mutagenicity of water extracts, while no response was found with the umu test. The toxicity of the soil samples was assessed on the survival and reproduction of earthworms (Eisenia fetida) and collembolae (Folsomia candida), and on the germination and growth of higher plants (Lactuca sativa L.: lettuce and Brassica chinensis J.: Chinese cabbage). The EC50 values were expressed as percentage contaminated soil in ISO soil test medium (weight per weight-w/w) and indicated severe effects on reproduction of the collembola F. candida (EC50-28 d=5.7%) and the earthworm E. fetida (EC50-28 d=18% and EC50-56 d=8%, based on cocoon and juvenile production, respectively). Survival of collembolae was already affected at a low concentration of the contaminated soil (EC50-28 d=11%). The viability of juvenile earthworms was inhibited at much lower concentrations of the cokery soil (EC50-14 d=28%) than the viability of adults (EC50-14 d=74%). Only plant growth was inhibited (EC50-17d=26%) while germination was not. Chemical analyses of water extracts allowed

  16. PAH Biodegradation, Turnover, and Ambient Concentration in Surface Sediments of Coaster’s Harbor and Narragansett Bay

    DTIC Science & Technology

    2007-11-02

    TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT January 21, 2003 PAH Biodegradation ...sediments at the Coaster’s Harbor site would be difficult given the large amount of benthos covered by rock or confluent with eelgrass. PAH biodegradation ...1 PAH Biodegradation

  17. ATTRIBUTION OF PARTICLE EXPOSURE AND RISK TO COMBUSTION SOURCE EMISSIONS BASED ON PERSONAL PAH EXPOSURE AND URINARY METABOLITES

    EPA Science Inventory

    Personal airborne exposures to carcinogenic particulate PAH have been significantly correlated with exposure to respirable fine particle mass (PM 2.5) in several studies. All combustion sources emit PAH, however the relative concentrations of different PAH and other organic tr...

  18. [Analysis of Component Spectral Characteristics of PM10-Bound PAHs and the Influence of Weather Conditions During Spring in Xiamen].

    PubMed

    Zhang, Jian; Fan, Shu-xian; Sun, Yu; Zhang, Yue; Wei, Jin-cheng

    2015-04-01

    In order to study pollution status and distribution characteristics of PAHs in PM10 during the spring in city and suburban Xiamen. A total of 18 PAHs were analyzed in the aerosol samples collected in daytime and nighttime during 11th to 21st of April, 2013 in city and suburban Xiamen. Results showed diurnal variation of Σ PAHs in suburban was weaker than that in city. In the city, the concentration of PAHs during daytimes was higher than that during nighttimes, close to 1.83 times, and it is still under the national environmental standards. In different times and space scales, PAHs were a bimodal distribution, the components of PAHs gave the priority to low and middle rings in urban and suburban during daytimes and nighttimes. PAHs with high molecular weight decreased gradually by the increase of particle size, and the proportion of low molecular weight PAHs increased gradually in the meantime. In the city, the change of size distribution among 2-4 rings PAHs in PM10 during days and nights was bigger than these among 5-7 rings. The main sources of PAHs were estimated by DR, the main contributions included gasoline and diesel combustion, the smelting furnace exhaust emissions. During sampling periods, the relationship between the concentration of PAHs, temperature and WD is negative, PAHs had a positive correlation with the visibility and WS in suburban. And in urban, the relationship with temperature during the day was negative, and with an opposite correlation between other meteorological elements.

  19. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis.

    PubMed

    Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao

    2014-12-01

    Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.

  20. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    PubMed

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

  1. [Pollution Characteristics and Ecological Risk Assessment of PAHs in Water and Fishes from Daqing Lakes].

    PubMed

    Wang, Xiao-di; Zang, Shu-ying; Zhang, Yu-hong; Wang, Fan; Yang, Xing; Zuo, Yi-long

    2015-11-01

    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in 30 water samples and 5 tissues (gill, liver, brain, kidney and muscle) of 36 fishes which were collected from 18 typical lakes of the Daqing lakes group, China were measured between February and April 2012. The results of PAHs concentrations in the water showed that the range of total concentrations was 0.2-1.21 μg x L(-1) and the highest concentration was found in the Yueliangpao Lake. Clustering analysis of statistical method was used to classify the concentrations of PAHs in the water of 18 lakes, and PAHs source and evaluation of ecological risk in different lake groups were obtained respectively based on the analysis of PAHs ratio and the species sensitivity distributions method. The results of cluster analysis about PAHs concentrations in the water of 18 lakes showed that all the lakes were divided into 4 lake groups. Yueliangpao (YLP) and dongdahai (DDH) lakes were respectively divided into a separate group and the other 14 lakes were divided into two groups named XHH group and DQSK group. PAHs in the water of lakes were mainly from wood and coal burning except that the PAHs of the water in YLP group was caused by oil contamination. According to the surface water quality standard of the world and China, the concentrations of PAHs in the water of 4 lake groups all exceeded the standard variously. The PAHs concentrations of most water samples in YLP group and XHH group exceeded the 16 PAHs limit value of Environmental Protection Agency (US EPA) standard, especially, the concentration of Benz[a] pyrene with the strongest carcinogenicity of YLP group exceeded Chinese surface water quality standard. While in the DQSK lake group and the DDH lake group, several PAHs contaminations of water samples exceeded the standard. The tested and statistical results of 16 PAHs concentrations in 5 tissues of Cyprinus carpio and Hypophthalmichthys molitrix fish species in Daqing lakes showed the concentrations

  2. Bacterial PAH degradation in marine and terrestrial habitats.

    PubMed

    Vila, Joaquim; Tauler, Margalida; Grifoll, Magdalena

    2015-06-01

    Cycling of pollutants is essential to preserve functional marine and terrestrial ecosystems. Progress in optimizing these natural biological processes relies on the identification of the underlying microbial actors and deciphering their interactions at molecular, cellular, community, and ecosystem level. Novel advances on PAH biodegradation are built on a progressive approach that span from pure cultures to environmental communities, illustrating the complex metabolic networks within a single cell, and their further implications in higher complexity systems. Recent analytical chemistry and molecular tools allow a deeper insight into the active microbial processes actually occurring in situ, identifying active functions, metabolic pathways and key players. Understanding these processes will provide new tools to assess biodegradation occurrence and, as a final outcome, predict the success of bioremediation thus reducing its uncertainties, the main drawback of this environmental biotechnology.

  3. Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Candian, A.; Tielens, A. G. G. M.

    2016-10-01

    Context. We have modelled the abundance distribution and IR emission of the first 3 members of the coronene family in the north-west photodissociation region of the well-studied reflection nebulae NGC 7023. Aims: Our aim was 3-fold: i) analyze the distribution of abundances; (ii) examine the spectral footprints from the hydrogenation state of polycyclic aromatic hydrocarbons (PAHs); and (iii) assess the role of PAHs in the formation of H2 in photodissociation regions. Methods: To model the physical conditions inside the cloud, we used the Meudon PDR Code, and we gave this as input to our kinetic model. We used specific molecular properties for each PAH, based on the latest data available at the present time. We considered the loss of an H atom or an H2 molecule as multiphoton processes, and we worked under the premise that PAHs with extra H atoms can form H2 through an Eley-Rideal abstraction mechanism. Results: In terms of abundances, we can distinguish clear differences with PAH size. The smallest PAH, coronene (C24H12), is found to be easily destroyed down to the complete loss of all of its H atoms. The largest species circumcircumcoronene (C96H24), is found in its normal hydrogenated state. The intermediate size molecule, circumcoronene (C54H18), shows an intermediate behaviour with respect to the other two, where partial dehydrogenation is observed inside the cloud. Regarding spectral variations, we find that the emission spectra in NGC 7023 are dominated by the variation in the ionization of the dominant hydrogenation state of each species at each point inside the cloud. It is difficult to "catch" the effect of dehydrogenation in the emitted PAH spectra since, for any conditions, only PAHs within a narrow size range will be susceptible to dehydrogenation, being quickly stripped off of all H atoms (and may isomerize to cages or fullerenes). The 3 μm region is the most sensitive one towards the hydrogenation level of PAHs. Conclusions: Based on our results, we

  4. From Interstellar PAHs and Ices to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  5. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    PubMed

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments.

  6. The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio)

    PubMed Central

    Fleming, Carrie R.; Di Giulio, Richard T.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with elevated concentrations in waters that may also experience hypoxia. Previous research has shown interactions between hypoxia and some PAHs (fluoranthene, α-naphthoflavone) but no interaction with others (benzo[a]pyrene (BaP), β-naphthoflavone). Here we examine how hypoxia (7.4% oxygen, ~35% of normoxia) affects the embryotoxicity of PAHs that act through different mechanisms and the role that CYP1A inhibition may play in these interactions. 500 μg/L BaP and 1-200 μg/L benzo[k]fluoranthene (BkF) interacted synergistically with hypoxia to induce pericardial edema in developing zebrafish (Danio rerio). Hypoxia protected from the embryotoxicity of pyrene (PY) and had no effect on the toxicity of polychlorinated biphenyl-126. Despite previous reports of other CYP1A inhibitors interacting with hypoxia, up to 2000 μg/L dibenzothiophene, 2-aminoanthracene (AA), and carbazole (CB) all failed to induce embryotoxicity under normoxic or hypoxic conditions. The toxicity of PAH mixtures—including binary mixtures of BaP/AA and BaP/CB and two environmentally relevant, complex mixtures—were exacerbated severely by hypoxia to induce or worsen pericardial edema and cause mortality. The interactions between hypoxia and BkF and PY were closely mimicked by morpholino knockdown of CYP1A, indicating a potential role for metabolism of these compounds in their toxicity. Our results indicate that various PAHs may exhibit synergistic, antagonistic or additive toxicity with hypoxia. The enhanced toxicity of environmental mixtures of PAHs under hypoxia suggests that risk assessments that do not take into account potential interactions with hypoxia may underestimate the threat of PAHs to fish in contaminated sites. PMID:21706407

  7. Investigation into the distribution of polycyclic aromatic hydrocarbons (PAHs) in wastewater sewage sludge and its resulting pyrolysis bio-oils.

    PubMed

    Hu, Yanjun; Li, Guojian; Yan, Mi; Ping, Chuanjuan; Ren, Jianli

    2014-03-01

    This study firstly investigated the distributions of 16 US EPA priority controlled polycyclic aromatic hydrocarbons (PAHs) in seven kinds of different wastewater sewage sludges and bio-oils from the sludge pyrolysis. A lab-scale tube furnace was used to simulate sludge pyrolysis and retrieve condensed oils. PAH determination was conducted with the extraction, concentration, and purification of PAHs in sludge samples and the resulting bio-oils, and then GC-MS analysis. Then, the factors influencing the distributions of different rings of PAHs in pyrolysis bio-oil, such as the chemical characteristics of raw sewage sludge and pyrolysis condition, were analyzed. It was noted that the total amount of PAHs in raw sludge is evidently varied with the sludge resource, with values ranging between 9.19 and 23.68 mg/kg. The middle molar weight (MMW) PAH distribution is dominant. PAH concentrations in sludge pyrolysis bio-oil were ranged from 13.72 to 48.9 mg/kg. The most abundant PAHs were the low molar weight (LMW) PAHs. It could be found that the concentration of LMW PAHs in bio-oil is correlated with MMW PAHs in raw sewage sludge at best, which the correlation coefficient is 0.607. For MMW and HMW (high molar weight) PAHs, they are significantly correlated with HMW PAHs in raw sewage sludge, which the correlation coefficients are 0.672 and 0.580, respectively. The concentration of LMW PAHs in bio-oil is also relatively significant and correlated with the volatile matter content of raw sludge. In addition, it was proved that final temperature and residence time have important influences on PAH generations during the pyrolysis of sewage sludge.

  8. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase

    PubMed Central

    Hernández-Vega, Juan C.; Cady, Brian; Kayanja, Gilbert; Mauriello, Anthony; Cervantes, Natalie; Gillespie, Andrea; Lavia, Lisa; Trujillo, Joshua; Alkio, Merianne; Colón-Carmona, Adán

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment. PMID:27637093

  9. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  10. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  11. Occupational exposures to PAHs measured with UV derivative spectroscopy corrected for advective and gaseous losses

    SciTech Connect

    Ares, J. )

    1993-08-01

    PAHs (polynuclear aromatic hydrocarbons) are a group of ubiquitous substances occuring in occupational environments due to combustion of hydrocarbons and coal, vehicle emissions, etc. Some PAHs are known to be carcinogenic in animal tests, and most legislation requires the air concentration of several of them should be kept at minimum values, implying a model of [open quotes]no safe threshold[close quotes]. An adequate analysis of occupational exposures to PAHs in air should satisfy a number of requisites. The sample must be obtained with a personal portable pump, and should cover a substantial or representative part of the working period. Vapor-phase components and particulates both should be samples, and carcinogenice PAHs would be estimated with greater precision. The collection and analytical techniques would require only average trained personnel with the shortest time elapsed between sample collection and producing the results. For several reasons, these simultaneous objectives are sometimes difficult to attain. If the cleanup and evaporation could be obviated, about 7-10 ng could be delivered to the detector chamber with the corresponding increase in detection accuracy. This study extends the use of a newly developed technique of UV-diode array computer enhanced derivative spectroscopy to the analysis of PAHs in particulate samples obtained in the usual way with personal monitors. This method provides a reliable and conservative estimate of total PAH exposure and lower errors in detection of relatively heavy PAHs. 13 refs., 3 figs., 1 tab.

  12. Analyzing hydrocarbons in sewer to help in PAH source apportionment in sewage sludges.

    PubMed

    Mansuy-Huault, Laurence; Regier, Annette; Faure, Pierre

    2009-05-01

    A multi-molecular approach for polycyclic aromatic hydrocarbons (PAH) source apportionment in sewage sludge was tested. Three simple catchment areas with corresponding wastewater treatment plants (WWTP) were chosen. Sewage sludges of these WWTPs chronically exceeded the French guide values for PAHs. Aliphatic and aromatic hydrocarbons were quantified in sediments or wastewater suspended particulate matter sampled in different locations of the sewer as well as in sewage sludge. Various molecular indices including PAH ratios were calculated. The results showed that the ratios calculated from sewage sludge analyses provided a rather unspecific hydrocarbon fingerprint where combustion input appear as the main PAH sources. The complexity of the inputs as well as degradation occurring during wastewater treatment prevent any detailed diagnosis. Coupled to the analyses of samples collected in the sewer, the multi-molecular approach becomes more efficient especially for the identification of specific petroleum inputs such as fuel or used lubricating oils which can be important PAH sources. Indeed, the sampling in the sewer allows a spatial screening of the hydrocarbon inputs and facilitates the PAH source apportionment by avoiding the dilution of specific inputs with the whole wastewater inputs and by limiting the degradation of the molecular fingerprint that could occur during transfer and treatment in the WWTP. Then, the combination of PAH ratios and aliphatic distribution analyses is a very valuable approach that can help in sewer and WWTP management.

  13. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water.

    PubMed

    Qi, Yi-Bin; Wang, Chen-Yu; Lv, Cheng-Yuan; Lun, Zeng-Min; Zheng, Cheng-Gang

    2017-02-22

    The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA-DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography-mass spectrometry (GC-MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.

  14. Growth and Destruction of PAH Molecules in Reactions with Carbon Atoms

    NASA Astrophysics Data System (ADS)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia; Henning, Thomas

    2017-02-01

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that all small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.

  15. Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment.

    PubMed

    Haapea, Pia; Tuhkanen, Tuula

    2006-08-21

    The aim of the study was to optimise three different treatment methods and to find out if the integration of soil washing, ozonation and biological treatment could be a feasible method for the remediation of aged oil contaminated with PAHs. Three different ozone doses and soil washing were studied in different pHs in order to assess their effect to the degradation and enhancement of biodegradability of PAH in the soil and water phase. Main target of the study was to find out a method with which the PAH concentrations could be decreased below the Finnish guideline level for total PAHs. In this case, the initial concentration of PAHs was 1200 mg kg(-1) and therefore almost 85% degradation of PAHs was required. Any of the methods studied was not able to reach this target level alone, but by several combinations of the methods studied achieved 90% reduction of PAHs. The consumption of ozone was 5-10 times lower in the integrated treatments of soil washing, ozonation and biological treatment than without prewashing.

  16. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor.

    PubMed

    Niu, Junfeng; Dai, Yunrong; Guo, Huiyuan; Xu, Jiangjie; Shen, Zhenyao

    2013-03-15

    The remediation of polycyclic aromatic hydrocarbons (PAHs) polluted waters has become a concern as a result of the widespread use of PAHs and their adverse impacts on water ecosystems and human health. To remove PAHs rapidly and efficiently in situ, an active fibrous membrane, laccase-loading spider-type reactor (LSTR) was fabricated by electrospinning a poly(D,L-lactide-co-glycolide) (PDLGA)/laccase emulsion. The LSTR is composed of beads-in-string structural core-shell fibers, with active laccase encapsulated inside the beads and nanoscale pores on the surface of the beads. This structure can load more laccase and retains higher activity than do linear structural core-shell fibers. The LSTR achieves the efficient removal/degradation of PAHs in water, which is attributed to not only the protection of the laccase activity by the core-shell structure but also the pre-concentration (adsorption) of PAHs on the surface of the LSTR and the concentration of laccase in the beads. Moreover, the effects of pH, temperature and dissolved organic matter (DOM) concentration on the removal of PAHs by the LSTR, in comparison with that by free laccase, have been taken into account. A synergetic mechanism including adsorption, directional migration and degradation for PAH removal is proposed.

  17. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis.

    PubMed

    Lima, Ana T; Ottosen, Lisbeth M; Heister, Katja; Loch, J P Gustav

    2012-10-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100 years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils, having been subjected to different PAH contact times. Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field contaminated soil, as expected. In spiked soil, electro-osmosis achieves up to 85% while electrodialysis accomplishes 68% PAH removal. In field contaminated soil, electro-osmosis results in 35% PAH removal whereas electrodialysis results in 79%. Short recommendations are derived for the up-scale of the two techniques.

  18. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water

    PubMed Central

    Qi, Yi-Bin; Wang, Chen-Yu; Lv, Cheng-Yuan; Lun, Zeng-Min; Zheng, Cheng-Gang

    2017-01-01

    The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography–mass spectrometry (GC–MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution. PMID:28241412

  19. Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Wang, Xin-Ming; Zhao, Xiu-Ying; Ding, Xiang; Fu, Xiao-Xin; Zhang, Yan-Li; He, Quan-Fu; Zhang, Zhou; Liu, Teng-Yu; Huang, Zou-Zhao; Chen, Lai-Guo; Peng, Yan; Guo, Hai

    2015-02-01

    24-h PM2.5 samples were simultaneously collected at six sites in a subtropical city of South China during November-December, 2009. Particle-phase concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic tracers such as hopanes for vehicular emissions (VE), levoglucosan for biomass burning (BB) and picene for coal combustion (CC) were determined. Meanwhile, their gas-phase concentrations were calculated from gas/particle (G/P) partitioning theory using the particle-phase concentrations. The 4 ring PAHs (fluoranthene to chrysene) had lower particle-phase fractions (10%-79%) than other species. Estimated BaPeq and lifetime cancer risk for particle-only (P-only) vs gas + particle (G + P) data sets showed similar values, indicating PAHs with 5-7 rings dominated the carcinogenicity of PAHs. Positive Matrix Factorization (PMF) was applied on both P-only and G + P data sets to estimate the source contributions to PAHs and their toxicity. Three common sources were identified: VE, BB and CC, with CC as the most significant source for both particulate (58%) and total (G + P, 40%) PAHs. While CC exhibited consistent contributions to BaPeq for P-only (66%) vs G + P (62%) solutions, VE and BB contributions were under- and overestimated by 68% and 47%, respectively by the P-only solution, as compared to the G + P solution. The results provide an insight on the impact of G/P partitioning on the source apportionment of PAHs and their toxicity.

  20. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs.

    PubMed

    Wang, Cuiping; Yu, Li; Zhang, Zhiyuan; Wang, Baolin; Sun, Hongwen

    2014-01-15

    The potential application on tourmaline was explored. The combination of tourmaline and Phanerochaete chrysosporium was conducted to remediate the field soil from the Dagu Drainage River bank of Tianjin in China. The total PAH and OCP concentrations in the soil were 6.4±0.05 and 145.9±1.9mg/kg, respectively. During the 60 day remediation program, the remediation degradation rates of all the 16 U.S. EPA priority PAHs and OCPs were 53.2±4.7% and 43.5±3.1%, respectively. The PAH and OCP removal rates were 31.9±2.9% and 26.4±1.8%, respectively, in soil with the addition of tourmaline, and the removal rates were 40.5±2.3% and 34.2±3.9%, respectively, in soil with the addition of P. chrysosporium. Thus, the combination of tourmaline and P. chrysosporium promoted the bioremediation rate of PAHs and OCPs in the soil, compared with the rates obtained using tourmaline or P. chrysosporium individually for the remediation of PAH and OCP degradation. In addition, tourmaline can promote the generation of soil hydrogen peroxidase and invertase enzyme, significantly increase the indigenous bacterial community and the number of PAH and OCP-degraders compared to those in the control, and reduce the soil humic acid content. Hence, the present study provides a potential alternative for the remediation of soils contaminated by PAHs and OCPs.

  1. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater.

    PubMed

    Wang, Lin-Chi; Wang, I-Ching; Chang, Juu-En; Lai, Soon-Onn; Chang-Chien, Guo-Ping

    2007-09-05

    This study investigated the emission of polycyclic aromatic hydrocarbons (PAHs) from stack flue gas and air pollution control device (APCD) effluent of the liquid injection incinerator (LII) disposing the petrochemical industrial wastewater, and PAH removal efficiencies of wet electrostatic precipitator (WESP) and wet scrubber (WSB). The PAH carcinogenic potency were investigated with the benzo(a)pyrene equivalent concentration (BaP(eq)). The remarkably high total-BaP(eq) concentration (220 microgNm(-3)) in the stack flue gas was much higher than those of several published emission sources, and indicated the possible influence on its surrounding environment. The total-PAH emission factors of the WESP, WSB and stack flue gas were 78.9, 95.7 and 30,900 microgL(-1) wastewater, respectively. The removal efficiencies of total-PAHs were 0.254, 0.309 and 0.563% for WESP, WSB and overall, respectively, suggesting that the use of both WESP and WSB shows insignificant PAH removal efficiencies, and 99.4% of total-PAHs was directly emitted to the ambient air through the stack flue gas. This finding suggested that the better incineration efficiencies, and APCD removal efficiencies for disposing the petrochemical industrial wastewater are necessary in future.

  2. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    PubMed

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  3. Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea.

    PubMed

    Yim, U H; Hong, S H; Shim, W J; Oh, J R; Chang, M

    2005-03-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in the surface and core sediments from Masan Bay, Korea. Total PAHs in the surface sediments ranged from 207 to 2670 ng/g dry weight with a mean value of 680 ng/g. Qualitative similarity and quantitative difference between inner and outer bay indicate that the main sources of PAHs are located in the inner bay and outer bay is also affected by the same sources. Vertical distribution of PAHs revealed that three distinctive stages could be differentiated with the help of PCA analysis. The highest concentration (industrialization stage) appeared between late 1950s and 1980, which was 10 years later than other developed countries. A strong pyrolytic source fingerprint has been detected with slight influence of petrogenic sources, and diagenetic PAH, perylene also contributed. Total organic carbon normalized PAHs (sum of 13 PAHs, 8.85-88.0 microg/g OC) were under the threshold effects concentration (TEC, 290 microg/g OC).

  4. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.

  5. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China.

    PubMed

    Bu, Qing Wei; Zhang, Zhi Huan; Lu, Song; He, Feng Peng

    2009-02-01

    Vertical distribution of both the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in ten profiles in Beijing has been investigated. The results showed that PAH concentrations and compositions in topsoil from different sampling sites were different. PAH concentrations were much higher in topsoil of the investigated urban area, industrial region, and paddy field with wastewater irrigation than in other areas. Moreover, PAH concentrations in topsoil were much higher than those at greater depth, where the concentrations were relatively consistent in most soil profiles. The fingerprints of PAHs in the samples from topsoil (0-30 cm) in the same profiles were similar and were obviously different from those at greater depth, suggesting that PAH sources were consistent in topsoil samples and were discriminating between topsoil and deeper soils. PAHs in topsoil mainly arose from mixed sources of combustion of liquid fuel, coal, and/or wood, as well as wastewater irrigation, while those at greater depth were derived from soil genesis and the process of soil formation.

  6. PAH phototoxicity: Identification of sensitive marine infaunal crustaceans and the effects of alkylation

    SciTech Connect

    Boese, B.; Swartz, R.; Lamberson, J.

    1995-12-31

    The toxicity of some polycyclic aromatic hydrocarbons (PAHs) has been shown to be greatly enhanced in the presence of UV light. The objectives of the research were to: (1) test for PAH phototoxicity using seven marine infaunal crustacean species, (2) determine if the sensitivity to PAH phototoxicity was related to their potential exposure to sunlight in nature, and (3) determine if alkylation alters PAH phototoxicity. The first objective was accomplished by exposing test species to fluoranthene in 4-day, water-only bioassays. Survivors of the tests were then exposed to UV light in an exposure chamber for one hour. The differences between EC50s (the ability to bury in sediment) before and after UV exposure were used to access phototoxicity. The results indicated that species having the greatest potential for natural exposure to sunlight were the least sensitive UV-enhanced fluoranthene toxicity. The amphipod, Rhepoxynius abronius, which in nature has the least potential for exposure to sunlight among the organisms tested, was the most sensitive. Rhepoxynius abronius was subsequently used in a series of tests to determine if alkylation of PAHs alters phototoxicity. This was done by conducting standard 10-day sediment bioassay using alkylated and unalkylated PAHs. As in the water-only tests, EC{sub 50}s were determined before and after UV light exposures. The results indicated that alkylation of PAHs, in general, did not alter phototoxicity.

  7. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks' soil.

    PubMed

    Lundstedt, Staffan; Persson, Ylva; Oberg, Lars

    2006-11-01

    PAH-contaminated soil from a former gasworks site was treated with Fenton's reagent in a number of lab-scale slurry reactors. The degradation result obtained by traditional Fenton oxidation and Fenton oxidation preceded by ethanol treatment were compared. The ethanol pre-treatment enhanced the depletion of all PAHs in the soil by facilitating their desorption from the soil matrix. However, some PAHs, especially anthracene, benzo[a]pyrene and perylene, were more extensively depleted than other PAHs with fewer or equal numbers of fused rings, indicating that the hydroxyl radicals react faster with these PAHs than with other kinds. The ethanol present in the slurry also appeared to influence the relative reactivity of the PAHs. Furthermore, the enhanced oxidation that occurred in the ethanol pre-treated soil resulted in the accumulation of oxidation products. For example, 1-indanone, anthracene-9,10-dione, 1-methylanthracenedione, 2-methylanthracenedione, 1,8-naphthalic anhydride, benz[a]anthracene-7,12-dione and two compounds tentatively identified as hydroxy-9-fluorenones were found at higher concentrations after the treatment than before it. The accumulation was most evident for the quinones, and in many cases it could be attributed to extensive oxidation of their parent PAHs, although the total oxidation efficiency in this study was relatively poor.

  8. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China.

    PubMed

    Li, Wei-Hong; Tian, Ying-Ze; Shi, Guo-Liang; Guo, Chang-Sheng; Li, Xiang; Feng, Yin-Chang

    2012-01-01

    Sixteen PAHs in surface sediments at 28 sites throughout Fenhe reservoir and watershed were measured. The ∑PAHs concentrations ranged from 539.0 to 6281.7 with the mean of 2214.8ng/g. The 2-3 rings PAHs, contributing 55 percent to ∑PAHs, were the dominant species. Twenty-eight sites were grouped into three segments: Fenhe principal stream, estuaries of main branch streams, and Fenhe reservoir. ∑PAHs was highest in the estuaries of main branch streams. The ecological risk assessment was studied by biological thresholds. The results showed levels of PAHs might cause mild but not acute adverse biological effects. In addition, PAHs ratios, PCA/MLR and hierarchical clustering analysis were applied to evaluate the possible sources. Coal combustion (35 percent), diesel and gasoline emissions (29 percent and 16 percent, respectively) might be the important sources. For sites in Fenhe reservoir, the major sources were complex, while other two segments were mainly influenced by coal combustion source.

  9. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  10. Impact of natural gas extraction on Pah levels in ambient air

    PubMed Central

    Paulik, L. Blair; Donald, Carey E.; Smith, Brian W.; Tidwell, Lane G.; Hobbie, Kevin A.; Kincl, Laurel; Haynes, Erin N.; Anderson, Kim A.

    2015-01-01

    Natural gas extraction, often referred to as “fracking,” has increased rapidly in the U.S. in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. PAH levels were highest when samplers were closest to active wells. Additionally, PAH levels closest to natural gas activity were an order of magnitude higher than levels previously reported in rural areas. Sourcing ratios indicate that PAHs were predominantly petrogenic, suggesting that elevated PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. Closest to active wells, the risk estimated for maximum residential exposure was 2.9 in 10,000, which is above the U.S. EPA's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest. This work suggests that natural gas extraction may be contributing significantly to PAHs in air, at levels that are relevant to human health. PMID:25810398

  11. PAHs in soils and estimated air-soil exchange in the Pearl River Delta, South China.

    PubMed

    Liu, Guoqing; Yu, Lili; Li, Jun; Liu, Xiang; Zhang, Gan

    2011-02-01

    In this study, 74 soil samples collected from the Pearl River Delta were analyzed for polycyclic aromatic hydrocarbons (PAHs). The PAH mixture in the soils is mainly of low molecular weight compounds, with naphthalene (21.4%) and phenanthrene (21.8%) being dominant. Soil PAH levels from the Pearl River Delta are relatively low (28-711 ng/g, averaged 192 ng/g) compared to those from urban soils in temperate regions. The mean concentration of ΣPAHs generally decrease with increasing distance from the city center, with ΣPAHs of paddy soils>crop soil>natural soil. PAHs in the air were measured during a year-round sampling campaign using semipermeable membrane devices, and the transfer of chemicals between the soil and air compartments were estimated. Soil-air fugacity quotient calculations showed a highly uncertain equilibrium position of PAHs, with net volatilization of naphthalene and fluorene, whereas net deposition of phenanthrene, fluoranthene, and pyrene, indicating a capacity for the air to supply the soil with more substances.

  12. Modeling PAH uptake by vegetation from the air using field measurements

    NASA Astrophysics Data System (ADS)

    St-Amand, Annick D.; Mayer, Paul M.; Blais, Jules M.

    We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004-June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h -1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h -1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air-foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds.

  13. PAHs underfoot: Contaminated dust from coal-tar sealcoated pavement is widespread in the United States

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.

    2009-01-01

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U. S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat Dust was swept from parking lots in six cities in the central and eastern U. S., where coal-tar-based sealcoat dominates use, and three cities in the western U. S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2. 1 and 0. 8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.

  14. Impact of natural gas extraction on PAH levels in ambient air.

    PubMed

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2015-04-21

    Natural gas extraction,