Sample records for pahs naphthalene phenanthrene

  1. Assessment of bile fluorescence patterns in a tropical fish, Nile tilapia (Oreochromis niloticus) exposed to naphthalene, phenanthrene, pyrene and chrysene using fixed wavelength fluorescence and synchronous fluorescence spectrometry.

    PubMed

    Pathiratne, A; Hemachandra, C K; Pathiratne, K A S

    2010-05-01

    Bile fluorescence patterns in Nile tilapia, a potential fish for biomonitoring tropical water pollution were assessed following exposure to selected polycyclic aromatic hydrocarbons (PAHs): naphthalene, phenanthrene, pyrene and chrysene. Non-normalized fixed wavelength fluorescence signals in the fish exposed to these PAHs reflected dose and/or time response relationships of their metabolism. Normalizing signals to biliverdin introduced deviations to these response patterns. The optimal wavelength pairs (excitation/emission) for synchronous fluorescence scanning measurements of bile metabolites of naphthalene, phenanthrene, pyrene and chrysene were identified as 284/326, 252/357, 340/382 and 273/382 respectively. This study supports the use of bile fluorescence in Nile tilapia by fixed wavelength fluorescence and synchronous fluorescence spectrometry with non-normalized data as a simple method for screening bioavailability of these PAHs.

  2. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Identification of petroleum hydrocarbons using a reduced number of PAHs selected by Procrustes rotation.

    PubMed

    Fernández-Varela, R; Andrade, J M; Muniategui, S; Prada, D; Ramírez-Villalobos, F

    2010-04-01

    Identifying petroleum-related products released into the environment is a complex and difficult task. To achieve this, polycyclic aromatic hydrocarbons (PAHs) are of outstanding importance nowadays. Despite traditional quantitative fingerprinting uses straightforward univariate statistical analyses to differentiate among oils and to assess their sources, a multivariate strategy based on Procrustes rotation (PR) was applied in this paper. The aim of PR is to select a reduced subset of PAHs still capable of performing a satisfactory identification of petroleum-related hydrocarbons. PR selected two subsets of three (C(2)-naphthalene, C(2)-dibenzothiophene and C(2)-phenanthrene) and five (C(1)-decahidronaphthalene, naphthalene, C(2)-phenanthrene, C(3)-phenanthrene and C(2)-fluoranthene) PAHs for each of the two datasets studied here. The classification abilities of each subset of PAHs were tested using principal components analysis, hierarchical cluster analysis and Kohonen neural networks and it was demonstrated that they unraveled the same patterns as the overall set of PAHs. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Characterization of a Polycyclic Aromatic Hydrocarbon Degradation Gene Cluster in a Phenanthrene-Degrading Acidovorax Strain▿

    PubMed Central

    Singleton, David R.; Guzmán Ramirez, Liza; Aitken, Michael D.

    2009-01-01

    Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels. PMID:19270134

  5. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.

    PubMed

    Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra

    2015-02-01

    The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Urinary naphthalene and phenanthrene as biomarkers of occupational exposure to polycyclic aromatic hydrocarbons

    PubMed Central

    Sobus, Jon R.; Waidyanatha, Suramya; McClean, Michael D.; Herrick, Robert F.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Hart, Jaime E.; Zheng, Yuxin; Rappaport, Stephen M.

    2009-01-01

    Objectives We investigated the utility of unmetabolized naphthalene (Nap) and phenanthrene (Phe) in urine as surrogates for exposures to mixtures of polycyclic aromatic hydrocarbons (PAHs). Methods Our study included workers exposed to diesel exhausts (low PAH exposure level, n = 39) as well as those exposed to emissions from asphalt (medium PAH exposure level, n = 26) and coke ovens (high PAH exposure level, n = 28). Levels of Nap and Phe were measured in urine from each subject using head space-solid phase microextraction and gas chromatography-mass spectrometry. Published levels of airborne Nap, Phe, and other PAHs in the coke-producing and aluminum industries were also investigated. Results In post-shift urine, the highest estimated geometric mean concentrations of Nap and Phe were observed in coke-oven workers (Nap: 2,490 ng/l; Phe: 975 ng/l), followed by asphalt workers (Nap: 71.5 ng/l; Phe: 54.3 ng/l), and by diesel-exposed workers (Nap: 17.7 ng/l; Phe: 3.60 ng/l). After subtracting logged background levels of Nap and Phe from the logged post-shift levels of these PAHs in urine, the resulting values [referred to as ln(adjNap) and ln(adjPhe), respectively] were significantly correlated in each group of workers (0.71 ≤ Pearson r ≤ 0.89), suggesting a common exposure source in each case. Surprisingly, multiple linear regression analysis of ln(adjNap) on ln(adjPhe) showed no significant effect of the source of exposure (coke ovens, asphalt, and diesel exhaust) and further suggested that the ratio of urinary Nap/Phe (in natural scale) decreased with increasing exposure levels. These results were corroborated with published data for airborne Nap and Phe in the coke-producing and aluminum industries. The published air measurements also indicated that Nap and Phe levels were proportional to the levels of all combined PAHs in those industries. Conclusion Levels of Nap and Phe in urine reflect airborne exposures to these compounds and are promising surrogates for occupational exposures to PAH mixtures. Main Messages Urinary naphthalene and phenanthrene are promising surrogates for occupational exposures to PAHs. Policy Implications Measurement of urinary naphthalene and phenanthrene could simplify the assessment of occupational exposures to PAHs. PMID:19017700

  7. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    PubMed Central

    Laurie, Andrew D.; Lloyd-Jones, Gareth

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein α and β subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the ς54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve PhnR and PhnS. PMID:9882667

  8. Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander

    2016-04-01

    It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).

  9. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.C.R.; Boyd, D.R.; Hempenstall, F.

    The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueousmore » solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.« less

  10. Tissue distribution and depuration kinetics of waterborne 14C-labeled light PAHs in mummichog (Fundulus heteroclitus).

    PubMed

    Valdez Domingos, F X; Oliveira Ribeiro, C A; Pelletier, É; Rouleau, C

    2011-04-01

    Light polycyclic aromatic hydrocarbons (PAHs) of petrogenic origin are commonly found in estuaries and coastal areas. Though they are known to be toxic to fish, little is known about their uptake and tissue distribution. This paper reports on the results of a study on uptake, elimination, and tissue distribution of three waterborne 14C-labeled PAHs in the mummichog, Fundulus heteroclitus, using whole-body autoradiography. After a 24 h exposure to 1 μCi·L(-1) of 14C-naphthalene, 14C-1-naphthol, and 14C-phenanthrene, fish were transferred to clean water and tissue distribution examined after 0, 1, 3, 7, 14, and 21 days of depuration. All compounds were readily accumulated by fish and were also rapidly eliminated (t0.5 range=1.1 to 3.0 days). Most of the radioactivity in naphthalene- and phenanthrene-treated fish was found in gall bladder≫liver>intestinal lumen. In naphthol-exposed fish, an important labeling of some brain areas was observed. Brain of naphthalene-exposed fish was also labeled after 24 h depuration, indicating that exposure to naphthalene may result in metabolite accumulation in the brain. This is the first study showing that naphthalene, naphthol, and/or unidentified metabolite(s) can accumulate in brain tissues, which may impair normal brain function.

  11. Remarkably constant PAH concentrations in Swiss soils over the last 30 years.

    PubMed

    Gubler, Andreas; Wächter, Daniel; Blum, Franziska; Bucheli, Thomas D

    2015-10-01

    Although polycyclic aromatic hydrocarbons (PAH) are of concern due to their carcinogenic, mutagenic, and teratogenic properties and their ubiquitous occurrence in environmental compartments, only few studies assessed the temporal evolutions of PAH contents of soils over extended time periods. The Swiss Soil Monitoring Network NABO runs long-term monitoring sites resampled every five years since the 1980s. In the present study, soil (0-20 cm) samples collected from 1985 through 2013 at 25 selected monitoring sites were analysed for the 16 priority PAH according to the U.S. EPA and five PAH marker substances. We observed divergent trends for light PAH, such as naphthalene and phenanthrene, compared with heavy PAH, such as benzo[a]pyrene and benzo[ghi]perylene. Whereas the former showed decreasing concentrations since the late 1980s, no significant trends were found for the latter. Furthermore, the analyses showed that naphthalene contents decreased most strongly at rural sites featuring low population densities, while phenanthrene contents generally decreased most strongly at semi-rural sites. The deviating evolutions of light and heavy PAH were mainly attributed to their differing physico-chemical properties. Temporal evolutions in soils contradict emission inventory data suggesting PAH emissions to decline since the 1980s.

  12. Characterization of a Microbial Consortium for the Bioremoval of Polycyclic Aromatic Hydrocarbons (PAHs) in Water

    PubMed Central

    Blanco-Enríquez, Esmeralda G.; Zavala-Díaz de la Serna, Francisco Javier; Peralta-Pérez, María del Rosario; Ballinas-Casarrubias, Lourdes; Salmerón, Iván; Rubio-Arias, Héctor; Rocha-Gutiérrez, Beatriz A.

    2018-01-01

    Pollution of freshwater ecosystems from polycyclic aromatic hydrocarbons (PAHs) is a global concern. The US Environmental Protection Agency (EPA) has included the PAHs pyrene, phenanthrene, and naphthalene among the 16 priority compounds of special concern for their toxicological effects. The aim of this study was to adapt and characterize a microbial consortium from ore waste with the potential to remove these three PAHs from water. This microbial consortium was exposed to the target PAHs at levels of 5, 10, 20, 50, and 100 mg L−1 for 14 days. PAH bioremoval was measured using the analytical technique of solid phase microextraction, followed by gas chromatography mass spectrometry (SPME-GC/MS). The results revealed that up to 90% of the target PAHs can be removed from water after 14 days at a concentration level of 100 mg L−1. The predominant group of microorganisms identified at the phylum taxonomic level were the Proteobacteria, while the Actinobacteria were the predominant subgroup. The removal of phenanthrene, naphthalene, and pyrene predominantly occurred in specimens of genera Stenotrophomonas, Williamsia, and Chitinophagaceae, respectively. This study demonstrates that the use of specific microorganisms is an alternative method of reducing PAH levels in water. PMID:29757264

  13. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol.

    PubMed

    Seo, Jong-Su; Keum, Young-Soo; Hu, Yuting; Lee, Sung-Eun; Li, Qing X

    2007-02-01

    Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

  14. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water

    PubMed Central

    Qi, Yi-Bin; Wang, Chen-Yu; Lv, Cheng-Yuan; Lun, Zeng-Min; Zheng, Cheng-Gang

    2017-01-01

    The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography–mass spectrometry (GC–MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution. PMID:28241412

  15. Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil

    NASA Astrophysics Data System (ADS)

    Tavares, Moacir; Pinto, Jurandir P.; Souza, Alexandre L.; Scarmínio, Ieda S.; Cristina Solci, Maria

    2004-09-01

    The concentrations of vapor phase polycyclic aromatic hydrocarbons (PAHs) were measured at the Central Bus Station of Londrina, where only diesel-powered vehicles circulate. The samples were collected within a period of 24 h for 14 consecutive days in January 2002. The semi-volatile PAHs were collected using a cartridge packed with XAD-2 resin, extracted under sonication and subsequently analyzed by gas chromatograph equipped with the flame ionization and mass spectrometer detectors (GC-FID and GC/MS). Ten PAH compounds were found (naphthalene, acenapthylene, acenapthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene). The average concentrations ranged from 1.4±0.3 ng m-3 for benzo(a)anthracene to 348.0±32.7 ng m-3 for phenanthrene. The species that presented higher concentration were phenanthrene (348.0±32.7 ng m-3), fluorene (140.2±17.3 ng m-3) and naphthalene (97.7±10.3 ng m-3). The PAHs with two and three rings were responsible by 90.2% of the total concentration among 10 PAHs. The concentrations of PAHs were lower on Sunday in comparison with the workdays, due to the reduction of bus traffic in the station. Correlations and principal component analysis with Varimax rotation were used to estimate the local PAH emission source profile originating from the diesel exhaust. The ratio PHEN/FLU of 2.5 calculated from the results is suggested as indication from diesel combustion exhaust.

  16. Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, S.; Peters, C.A.; Jaffe, P.R.

    Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less

  17. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  18. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Lovley, D.R.

    1996-01-01

    [14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

  19. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.

    PubMed

    Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A

    2014-12-01

    Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site.

    PubMed

    Sun, Yujiao; Zhao, Xiaohui; Zhang, Dayi; Ding, Aizhong; Chen, Cheng; Huang, Wei E; Zhang, Huichun

    2017-11-01

    A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons.

    PubMed

    Andreolli, Marco; Lampis, Silvia; Poli, Marika; Gullner, Gabor; Biró, Borbala; Vallini, Giovanni

    2013-07-01

    Burkholderia fungorum DBT1 is a bacterial strain isolated from an oil refinery discharge and capable of transforming dibenzothiophene, phenanthrene, naphthalene, and fluorene. In order to evaluate the influence of a policyclic aromatic hydrocarbon (PAH)-transforming bacterial strain on the phytoremediation of organic contaminants, B. fungorum DBT1 was inoculated into hybrid poplar (Populus deltoides×Populus nigra). The poplar plants were grown for 18-wk with or without naphthalene, phenanthrene, fluorene and dibenzothiophene (488mgkg(-1) soil each) in non-sterile sand-peat substrate. Evidences were gained that B. fungorum DBT1 was present in high concentration in poplar root tissues (2.9-9.5×10(3)CFUg(-1)), while the strain was not detected in stem, leaves and rhizosphere. When poplar was planted in uncontaminated substrate, the infection caused negative effects on biomass index, leaves and stem dry weight, without showing however any disease symptoms. On the other hand, plants inoculated with the strain DBT1 resulted in better tolerance against the toxic effects of PAHs, in terms of root dry weight. Although the presence of plants acted as the main effective treatment for PAH dissipation (82-87%), the inoculum with DBT1 strain lead to the highest PAH abatement (up to 99%). In the present study, an environmental isolate with proper metabolic features was demonstrated to be possibly suitable as a poplar endophyte for improving microbe-assisted phytoremediation in PAH contaminated matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China.

    PubMed

    Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen

    2015-12-18

    The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites.

  3. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China

    PubMed Central

    Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen

    2015-01-01

    The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites. PMID:26694442

  4. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora.

    PubMed

    Olivera, N L; Commendatore, M G; Delgado, O; Esteves, J L

    2003-09-01

    Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day(-1) with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.

  5. Anaerobic Degradation of Benzene and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Meckenstock, Rainer U; Boll, Matthias; Mouttaki, Housna; Koelschbach, Janina S; Cunha Tarouco, Paola; Weyrauch, Philip; Dong, Xiyang; Himmelberg, Anne M

    2016-01-01

    Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers. © 2016 S. Karger AG, Basel.

  6. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils

    NASA Astrophysics Data System (ADS)

    Bayard, Rémy; Barna, Ligia; Mahjoub, Borhane; Gourdon, Rémy

    2000-11-01

    The mobility of the most water-soluble polynuclear aromatic hydrocarbons (PAHs) such as naphthalene in contaminated soils from manufactured gas plant (MGP) sites or other similar sites is influenced not only by the naturally occurring soil organic matter (SOM) but also, and in many cases mostly, by the nature and concentration of coal tar xenobiotic organic matter (XOM) and other PAH molecules present in the medium under various physical states. The objective of the present study was to quantify the effects of these factors using batch experiments, in order to simulate naphthalene transport in soil-tar-water systems using column experiments. Naphthalene sorption was studied in the presence of (i) solid coal tar particles, (ii) phenanthrene supplied as pure crystals, in the aqueous solution or already sorbed onto the soil, (iii) fluoranthene as pure crystals, and (iv) an aqueous solution of organic molecules extracted from a liquid tar. All experiments were conducted under abiotic conditions using short naphthalene/sorbent contact times of 24-60 h. Although these tests do not reflect true equilibrium conditions which usually take more time to establish, they were used to segregate relatively rapid sorption phenomena ("pseudo equilibrium") from slow sorption and other aging phenomena. For longer contact times, published data have shown that experimental biases due to progressive changes in the characteristics of the soil and the solution may drastically modify the affinity of the solutes for the soil. Slow diffusion in the microporosity and in dense organic phases may also become significant over the long term, along with some irreversible aging phenomena which have not been addressed in this work. Results showed that PAHs had no effect on naphthalene sorption when present in the aqueous solution or as pure crystals, due to their low solubility in water. Adsorbed phenanthrene was found to reduce naphthalene adsorption only when present at relatively high concentrations (about 120 mg/kg) in the soil. In contrast, experiments carried out with coal tar particles revealed a significant effect. Naphthalene sorption appeared to be proportional to the amount of coal tar added to the sand or soil, and a much higher affinity of naphthalene for XOM ( Koc above 2000 cm 3/g) than SOM ( Koc around 300 cm 3/g) was observed. Naphthalene transport in the columns of sand or soil spiked with coal tar particles was simulated very satisfactorily with a dual double-domain model. Around 90% of naphthalene retention by coal tar was found to occur within the organic phase, suggesting a phase partition process which may be explained by the amorphous nature of the XOM and its extreme affinity for naphthalene. For SOM, however, which is present as porous microaggregates of clay and humic substances, with less affinity for naphthalene, only 1/3 of naphthalene retention was found to occur within the organic phase, underlining the significant role of surface adsorption in the short term behavior of naphthalene in soil. For longer contact times, the model simulations proposed in the present study should be coupled to slow sorption, aging and biodegradation models to describe long-term behavior of naphthalene in soil-tar-water systems.

  7. Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 3; The Members

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.; Wittebon, Fred C. (Technical Monitor)

    1994-01-01

    In spite of the fact that the infrared spectroscopic properties of only a few isolated ionized polycyclic aromatic hydrocarbons (PAHs) are known, gaseous, ionized PAHs are thought to be responsible for a very common family of infrared interstellar emission bands. In order to provide a data base to test this hypothesis and, if borne out, to use this emission band family as a probe of many different interstellar environments, we are carrying out a thorough study of the infrared spectroscopic properties of neutral and ionized PAHs in argon matrices. Here we present the near and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo[ghilperylene, and coronene. The properties of naphthalene, the first member of the series, are given elsewhere. The spectra of perdeuterated phenanthrene and pyrene are also reported. For those molecules which have been previously studied (pyrene, d(10)-pyrene, and coronene), band positions and relative intensities are in agreement. In all cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeutero-phenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene,the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 5-20 times weaker than in the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  8. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents.

    PubMed

    Poursafa, Parinaz; Amin, Mohammad Mehdi; Hajizadeh, Yaghoub; Mansourian, Marjan; Pourzamani, Hamidreza; Ebrahim, Karim; Sadeghian, Babak; Kelishadi, Roya

    2017-07-01

    This study aims to determine the atmospheric concentrations of particulate matter 2.5 (PM 2.5 )-bounded polycyclic aromatic hydrocarbons (PAHs) and their association with their urinary metabolites in children and adolescents. This study was conducted from October 2014 to March 2016 in Isfahan, Iran. We measured 16 species of PAHs bounded to PM 2.5 by gas chromatography mass spectrometry (GC/MS) from 7 parts of the city. Moreover, PAH urinary metabolites were measured in 186 children and adolescents, randomly selected from households. Urinary metabolites consisted of 1-hydroxy naphthalene (1-naphthol), 2-hydroxy naphthalene (2-naphthol), 9-hydroxy phenanthrene (9-phenanthrol), and 1-hydroxy pyrene using GC/MS. Considering the short half-lives of PAHs, we measured the metabolites twice with 4 to 6 months of time interval. We found that the ambient concentrations of PAHs were significantly associated with their urinary metabolites. 1-hydroxy naphthalene and 2-hydroxy naphthalene concentrations showed an increase of 1.049 (95% CI: 1.030, 1.069) and 1.047 (95% CI: 1.025, 1.066) for each unit increase (1 ng/m 3 ) in ambient naphthalene. Similarly, 1-hydroxy pyrene showed an increase of 1.009 (95% CI: 1.006-1.011) for each unit increase (1 ng/m 3 ) in ambient pyrene concentration after adjustment for body mass index, physical activity level, urinary creatinine, age, and sex. The association of urinary 9-hydroxyphenanthrene and ambient phenantherene was significant in the crude model; however after adjustment for the abovementioned covariates, it was no more significant. We found significant correlations between exposure to ambient PM 2.5 -bounded PAHs and their urinary excretion. Considering the adverse health effects of PAHs in the pediatric age group, biomonitoring of PAHs should be underscored; preventive measures need to be intensified.

  9. High Voltage Electrochemiluminescence (ECL) as a New Method for Detection of PAH During Screening for PAH-Degrading Microbial Consortia.

    PubMed

    Staninska, Justyna; Szczepaniak, Zuzanna; Staninski, Krzysztof; Czarny, Jakub; Piotrowska-Cyplik, Agnieszka; Nowak, Jacek; Marecik, Roman; Chrzanowski, Łukasz; Cyplik, Paweł

    The search for new bacterial consortia capable of removing PAH from the environment is associated with the need to employ novel, simple, and economically efficient detection methods. A fluorimetric method (FL) as well as high voltage electrochemiluminescence (ECL) on a modified surface of an aluminum electrode were used in order to determine the changes in the concentrations of PAH in the studied aqueous solutions. The ECL signal (the spectrum and emission intensity for a given wavelength) was determined with the use of an apparatus operating in single photon counting mode. The dependency of ECL and FL intensity on the concentration of naphthalene, phenanthrene, and pyrene was linear in the studied concentration range. The biodegradation kinetics of the particular PAH compounds was determined on the basis of the obtained spectroscopic determinations. It has been established that the half-life of naphthalene, phenanthrene, and pyrene at initial concentrations of 50 mg/l (beyond the solubility limit) reached 41, 75, and 130 h, accordingly. Additionally, the possibility of using ECL for rapid determination of the soluble fraction of PAH directly in the aqueous medium has been confirmed. Metagenomic analysis of the gene encoding 16S rRNA was conducted on the basis of V4 hypervariable region of the 16S rRNA gene and allowed to identify 198 species of bacteria that create the S4consortium. The consortium was dominated by Gammaproteobacteria (78.82 %), Flavobacteria (9.25 %), Betaproteobacteria (7.68 %), Sphingobacteria (3.76 %), Alphaproteobacteria (0.42 %), Clostridia (0.04 %), and Bacilli (0.03 %).

  10. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less

  11. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10.

    PubMed

    Barone, Roberto; de Biasi, Margherita-Gabriella; Piccialli, Vincenzo; de Napoli, Lorenzo; Oliviero, Giorgia; Borbone, Nicola; Piccialli, Gennaro

    2016-10-01

    The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza.

    PubMed

    Naidoo, Gonasageran; Naidoo, Krishnaveni

    2016-12-15

    The uptake of polycyclic aromatic hydrocarbons and their cellular effects were investigated in the mangrove Bruguiera gymnorrhiza. Seedlings were subjected to sediment oiling for three weeks. In the oiled treatment, the ƩPAHs was higher in roots (99%) than in leaves (1%). In roots, PAHs included phenanthrene (55%), acenaphthene (13%), fluorine (12%) and anthracene (8%). In leaves, PAHs possessed two to three rings and included acenaphthene (35%), naphthalene (33%), fluorine (18%) and phenanthrene (14%). In the roots, oil caused disorganization of cells in the root cap, meristem and conducting tissue. Oil contaminated cells were distorted and possessed large and irregularly shaped vacuoles. Ultrastructural changes included loss of cell contents and fragmentation of the nucleus and mitochondrion. In the leaves, oil caused dilation and distortion of chloroplasts and disintegration of grana and lamellae. Oil targets critical organelles such as nuclei, chloroplasts and mitochondria which are responsible for cell vitality and energy transformation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.

    PubMed

    Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho

    2017-09-20

    Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

  14. Occupational PAH exposures during prescribed pile burns.

    PubMed

    Robinson, M S; Anthony, T R; Littau, S R; Herckes, P; Nelson, X; Poplin, G S; Burgess, J L

    2008-08-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 microg m(-3). The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 +/- 0.15) than ignition (0.55 +/- 0.04 microg mg(-1)). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements.

  15. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge.

    PubMed

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-08-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.

  16. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge

    PubMed Central

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-01-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously. PMID:18445026

  17. Modulation of ethoxyresorufin O-deethylase and glutathione S-transferase activities in Nile tilapia (Oreochromis niloticus) by polycyclic aromatic hydrocarbons containing two to four rings: implications in biomonitoring aquatic pollution.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K

    2010-08-01

    Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.

  18. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India.

    PubMed

    Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D

    2011-11-01

    As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well.

  19. Multiple stress effects on marine planktonic organisms: Influence of temperature on the toxicity of polycyclic aromatic hydrocarbons to Tetraselmis chuii

    NASA Astrophysics Data System (ADS)

    Vieira, L. R.; Guilhermino, L.

    2012-08-01

    In the present context of global warming and increasing long-range transport of oil and goods by sea potentially resulting in oil spills, more knowledge on the toxicological interactions between temperature and oil components on marine organisms is urgently needed. Therefore, the effects of temperature increase on the toxicity of three polycyclic aromatic hydrocarbons (PAH; anthracene, phenanthrene and naphthalene) to the marine planktonic algae Tetraselmis chuii were investigated under laboratory conditions. T. chuii cultures were exposed for 96 h to different concentrations of each of the test substances at both 20 and 25 °C. Effect criterion was the inhibition of culture growth assessed at 24 h intervals. All the PAHs significantly reduced T. chuii growth after 96 h of exposure with 20% inhibition concentrations between 0.052 and 1.124 mg L- 1 at 20 °C, and between 0.048 and 0.831 mg L- 1 at 25 °C. At both temperatures, the ranking, in order of decreasing toxicity based on the 50% inhibition concentration, was phenanthrene > naphthalene > anthracene. The increase of temperature by 5 °C significantly increased the toxicity of all the PAHs tested. These findings highlight the importance of considering temperature variation in the ecological risk assessment of oil and other chemical spills in the marine environment, and the need of more research on the toxic effects of multiple stressors on marine organisms.

  20. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater

    NASA Astrophysics Data System (ADS)

    Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo

    2003-02-01

    In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.

  1. Occupational PAH Exposures during Prescribed Pile Burns

    PubMed Central

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  2. Analysis of particle and vapour phase PAHs from the personal air samples of bus garage workers exposed to diesel exhaust.

    PubMed

    Kuusimaki, Leea; Peltonen, Kimmo; Mutanen, Pertti; Savela, Kirsti

    2003-07-01

    The levels of particle and vapour phase polycyclic aromatic hydrocarbons (PAHs) derived from the diesel exhaust compounds in bus garage work were measured in winter and in summer. Five personal air samples were collected from the breathing zones of 22 garage workers every other day of consecutive weeks. Control samples (n = 22) were collected from office workers in Helsinki. Fifteen PAHs in the air samples were analysed by HPLC using a fluorescence detector. Statistically significant differences were observed between total PAH levels of the exposed workers (2241 and 1245 ng/m(3)) and the control group (254 and 275 ng/m(3)) in both winter (P < 0.001) and summer (P < 0.001). Phenanthrene, pyrene, benzo[ghi]perylene and fluoranthene were the major compounds in the particle phase, and naphthalene, phenanthrene and fluorene in the vapour phase. About 98% of PAHs measured were related to the vapour phase compounds, whereas the high molecular weight PAH compounds were detected only in the particle phase. The PAH levels in the garages were twice as high (P < 0.001) in winter as in summer. Even though the exposure levels were low in the bus garages, the low level does not allow conclusions to be drawn about the possible adverse health effects due to exposure to diesel exhaust.

  3. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    PubMed

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  4. Immune effects of HFO on European sea bass, Dicentrarchus labrax, and Pacific oyster, Crassostrea gigas.

    PubMed

    Bado-Nilles, Anne; Quentel, Claire; Auffret, Michel; Le Floch, Stéphane; Gagnaire, Béatrice; Renault, Tristan; Thomas-Guyon, Hélène

    2009-07-01

    The European sea bass, Dicentrarchus labrax, and the Pacific oyster, Crassostrea gigas, were exposed to a soluble fraction of heavy fuel oil for 5 and 9 days, respectively. The organisms were then transferred to non-contaminated seawater for 1 month. The bioaccumulation and elimination of PAHs in contaminated tissues were dissimilar between species. In fish, acenaphthene and naphthalene were detected and naphthalene was still detectable 30 days after the beginning of the recovery period. In oysters, on the other hand, pyrene and phenanthrene were bioaccumulated and 14 days after exposure no more PAHs were detected. Concerning innate immune parameters, the increase of haemolytic activity of the alternative complement pathway in fish and the reduction of phenoloxidase activity in oysters endured, respectively, 1 and 2 weeks in contaminated organisms. This indicates that these two enzymatic cascades could be quite useful for monitoring pollution by oil.

  5. Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure.

    PubMed

    Dos Santos Fogaça, Fabíola Helena; Soares, Cristina; Oliveira, Marta; Alves, Ricardo N; Maulvault, Ana L; Barbosa, Vera L; Anacleto, Patrícia; Magalhães, João Avelar; Bandarra, Narcisa M; Ramalhosa, Maria João; Morais, Simone; Marques, António

    2018-07-01

    This work aimed to determine the effect of culinary practices on the contamination level and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in seafood. The selected farmed seafood species (marine shrimp, clams and seaweed) were commercially available in Portugal. The mean concentrations of PAHs varied between 0.23 and 51.8 µg kg -1 , with the lowest value being observed in raw shrimp and the highest in dried seaweed. The number of compounds detected in seaweed and clams (naphthalene, acenaphthene, fluorene, phenanthrene, benzo(b)fluoranthene and benzo(j)fluoranthene) were higher than in shrimp (fluorene and pyrene). Among the PAHs measured, fluorene was the predominant one. There was a significant interaction effect between species and culinary treatment (p < 0.05), thus boiled and dried seaweed samples presented the lowest and the highest levels of fluorene (0.13 and 1.8 µg kg -1 ), respectively. The daily intake of PAHs decreased with bioaccessibility, varying from 22% for benzo(k)fluoranthene (in raw clam) to 84% for phenanthrene (in steamed clam). According to the potency equivalent concentrations, screening values and bioaccessibility of PAHs, the consumption of marine shrimp, clam and seaweed is considered as safe for consumers. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Evaluation of the performance of biochars as an adsorbent for polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Jung, J.; Kang, S.; Ok, Y.; Choi, Y.

    2016-12-01

    Biochars, byproducts generated by pyrolysis of biomass, are known to have several advantages as a soil amendment such as carbon sequestration effect, enhancement of soil microbial activity, and nutrient supply. Because of their high surface area and affinity to organic pollutants, biochars are also being evaluated as an adsorbent for hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in soils, stormwater, and wastewater. Depending on their organic precursors and pyrolysis temperatures, biochars have been shown to have various physicochemical properties, which should determine their performance as an adsorbent for hydrophobic organic pollutants. In this study, we obtained biochars derived from soybean stover, wood chip, rice husk, and sewage sludge with pyrolysis temperatures of 700°, 250°, 500°, and 500°, respectively, to investigate their performance for PAH adsorption. Adsorption kinetic and isotherm experiments were conducted using naphthalene and phenanthrene as model compounds. Soybean stover biochar reached close to equilibrium in 7 days while the others did in 25 days in the kinetic experiments. The first-order sorption rate constants were greater for naphthalene than for phenanthrene for all biochars studied, and they were generally in the order of soybean stover>rice husk>sewage sludge>wood chip biochars for the two contaminants. The removal rates of aqueous PAHs at equilibrium were in the order of soybean stover>rice husk>sewage sludge>wood chip biochars at a concentration range of a few ng/mL. The results suggested that the sorption capability and the rate is generally greater for biochar produced from plant materials than that from sludge, and for biochar produced at higher pyrolysis temperature. Comparing the sorption properties of the biochars and granular activated carbon (GAC), it is shown that biochar produced at optimal conditions can exhibit performance for PAH adsorption similar to GAC.

  7. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.

    PubMed

    Xi, Zemin; Chen, Baoliang

    2014-04-01

    Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  9. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  10. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary.

    PubMed

    Oliva, Ana L; La Colla, Noelia S; Arias, Andrés H; Blasina, Gabriela E; Lopez Cazorla, Andrea; Marcovecchio, Jorge E

    2017-08-01

    The aim of this study is to assess-for the first time-the concentration of the 16 polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of four fish species (Micropogonias furnieri, Cynoscion guatucupa, Ramnogaster arcuata, and Mustelus schmitti) from Bahía Blanca estuary, Argentina and to evaluate their sources, distribution, and the human health risks implicated. Considering the four species under study, mean total PAH concentrations showed the following decreasing accumulation trend: M. schmitti, R. arcuata, C. guatucupa, and M. furnieri. Low molecular weight PAHs, such as naphthalene and phenanthrene, were generally predominant, displaying properties of PAH mixtures generated from petrogenic pollution. Of the four fish species analyzed, M. furnieri was the only one that did not raise any human consumption warning. In the case of the other species, exceeding values were found above the safety human consumption guidelines. Nevertheless, the screening criteria for carcinogenic PAHs proposed by the USEPA indicated a good quality status for these fish species.

  11. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants of mangrove swamps in Shenzhen, China.

    PubMed

    Li, Fenglan; Zeng, Xiaokang; Yang, Junda; Zhou, Kai; Zan, Qijie; Lei, Anping; Tam, Nora F Y

    2014-08-30

    The concentrations of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) in sediments, roots and leaves of three mangrove swamps in Shenzhen, China, namely Futian, Baguang and Waterlands, were determined. The mean concentration of ∑PAHs in Futian (4480 ng g(-1)) was significantly higher than that in Baguang (1262 ng g(-1)) and Waterlands (2711 ng g(-1)). Among the 16 PAHs, the concentration of naphthalene was the highest. Based on the ratios of phenanthrene/anthracene and fluoranthene/pyrene, PAHs in Futian and Waterlands came from petrogenic and pyrolytic sources, while Baguang was mainly from pyrolytic. More PAHs were accumulated in leaves, as reflected by its higher mean concentration of ∑PAHs (3697 ng g(-1)) and bioconcentration factor of PAHs (BCF) (>1.5) than that in roots. The BCF values in plants collected from Futian were significantly higher than that from Waterlands. These results indicated that more attention should be paid to the PAH contamination in Futian. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    PubMed

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    PubMed

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Urinary hydroxy-metabolites of naphthalene, phenanthrene and pyrene as markers of exposure to diesel exhaust.

    PubMed

    Kuusimäki, Leea; Peltonen, Yrjö; Mutanen, Pertti; Peltonen, Kimmo; Savela, Kirsti

    2004-01-01

    The objective of this study was to assess the exposure of bus-garage and waste-collection workers to polycyclic aromatic hydrocarbons (PAHs) derived from diesel exhaust by the measurement of levels of seven urinary PAH metabolites: 2-naphthol, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 1+9-hydroxyphenanthrene, 4-hydroxyphenanthrene and 1-hydroxypyrene. One urine sample from each of 46 control persons, and one pre-shift and two post-shift spot urine samples from 32 exposed workers were obtained in winter and in summer. The metabolites were analysed after enzymatic hydrolysis by high performance liquid chromatography (HPLC) with fluorescence detection. The sum of seven PAH metabolites (mean 3.94 +/- 3.40 and 5.60 +/- 6.37 micromol/mol creatinine in winter and summer, respectively) was higher [P=0.01, degrees of freedom (df) =61.2 and P=0.01, df=67.6 in winter and summer, respectively] in the exposed group than in the control group (mean 3.18 +/- 3.99 and 3.03 +/- 2.01 micromol/mol creatinine in winter and summer, respectively). The mean concentrations of 2-naphthol among exposed and controls ranged between 3.34 and 4.85 micromol/mol creatinine and 2.51 and 2.58 micromol/mol creatinine, respectively (P<0.01 in winter, P<0.03 in summer). The mean level of the hydroxyphenanthrenes in the samples of exposed workers was between 0.40 and 0.70 micromol/mol creatinine and in the control samples 0.40-0.60 micromol/mol creatinine. The concentration of 1-hydroxypyrene was higher among exposed workers in both pre-shift and post-shift samples (mean 0.10-0.15 micromol/mol creatinine) than in control group (mean 0.05-0.06 micromol/mol creatinine) in winter (P=0.002, df=78) and in summer (P<0.001, df=68). The urinary hydroxy-metabolites of naphthalene, phenanthrene and pyrene showed low exposure to diesel-derived PAHs; however, it was higher in exposed workers than in control group. Urinary PAH monohydroxy-metabolites measured in this study did not correlate with the PAHs in the air samples, reported earlier, in 2002 and 2003.

  16. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities.

    PubMed

    Hamdan, Hamdan Z; Salam, Darine A; Hari, Ananda Rao; Semerjian, Lucy; Saikaly, Pascal

    2017-01-01

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway, employment of anode as terminal electron acceptor (TEA) under inhibited sulfate reducing bacteria activity, and combined sulfate and anode usage as electron acceptors. A significant removal of naphthalene and 2-methylnaphthalene was observed at early stages of incubation in all treatments and was attributed to their high volatility. In the case of phenanthrene, a significant removal (93.83±1.68%) was measured in the closed circuit SMFCs with the anode acting as the main TEA and under combined anode and sulfate reduction conditions (88.51±1.3%). A much lower removal (40.37±3.24%) was achieved in the open circuit SMFCs operating with sulfate reduction as a major biodegradation pathway. Analysis of the anodic bacterial community using 16S rRNA gene pyrosequencing revealed the enrichment of genera with potential exoelectrogenic capability, namely Geoalkalibacter and Desulfuromonas, on the anode of the closed circuit SMFCs under inhibited SRB activity, while they were not detected on the anode of open circuit SMFCs. These results demonstrate the role of the anode in enhancing PAHs biodegradation in contaminated marine sediments and suggest a higher system efficiency in the absence of competition between microbial redox processes (under SRB inhibition), namely due to the anode enrichment with exoelectrogenic bacteria, which is a more energetically favorable mechanism for PAHs oxidation than sulfate. Copyright © 2016. Published by Elsevier B.V.

  17. Human biomonitoring of polycyclic aromatic hydrocarbonsand metals in the general population residing near the municipal solid waste incinerator of Modena, Italy.

    PubMed

    Gatti, Maria Giulia; Bechtold, Petra; Campo, Laura; Barbieri, Giovanna; Quattrini, Giulia; Ranzi, Andrea; Sucato, Sabrina; Olgiati, Luca; Polledri, Elisa; Romolo, Michael; Iacuzio, Laura; Carrozzi, Giuliano; Lauriola, Paolo; Goldoni, Carlo A; Fustinoni, Silvia

    2017-11-01

    A cross-sectional biomonitoring study was carried out to investigate exposure to incinerator emission in relation to the body burden of selected biomarkers in the population living around the plant. Approximately 500 people, aged 18-69 yrs, living within 4 km from the incinerator were randomly selected form the population register. Exposure was measured through fall-out maps of particulate matter (PM), used as tracer for incinerator emissions. Ten metabolized polycyclic aromatic hydrocarbons (PAHs), from naphthalene to chrysene, 1-hydroxypyrene and twelve metals (Cd, Cr, Cu, Hg, Ni, Pb, Ni, Zn, V, Tl, As, Sn) were measured in spot urine samples. Confounders, such as diet, smoking, traffic, occupation and personal characteristics were assessed by questionnaires and objective measurements, and included into multivariate linear regression models. Metal concentrations in urine were in line with or higher than Italian reference limits, besides Cr and V with more than twofold concentrations. Metal levels did not show clear association to exposure categories. Most abundant PAHs were naphthalene (median 26.2 ng/L) and phenanthrene (7.4 ng/L). All PAHs, but benz[a]anthracene and 1-hydroxypyrene, were found in more than 52% of samples, and included in regression models. Significant associations between urinary PAHs and exposure were found, strong for fluorene, and weaker for naphthalene, fluoranthene and pyrene. Results were confirmed by sensitivity analyses. Correlation with variables reported in literature were observed. The study indicates that the emissions were very low and highlights that specific urinary PAHs provided useful information about the internal dose arising from incinerator emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  19. Double-tagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability.

    PubMed

    Tecon, Robin; Binggeli, Olivier; van der Meer, Jan R

    2009-09-01

    Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

  20. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  1. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-06-01

    Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis alone.

  2. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchez, M.; Besnaienou, B.; Blanchet, D.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weightmore » or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.« less

  3. Predicting bioavailability of PAHs in soils to wheat roots with triolein-embedded cellulose acetate membranes and comparison with chemical extraction.

    PubMed

    Tao, Yuqiang; Zhang, Shuzhen; Wang, Zijian; Christie, Peter

    2008-11-26

    Triolein-embedded cellulose acetate membrane (TECAM) was buried in 15 field-contaminated soils in parallel with the cultivation of wheat to predict bioavailability of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene to wheat roots, and the method was compared with chemical extraction methods. Although a good linear relationship was found between PAH concentrations in chemical extractants and wheat roots, the percentage of PAH in soil removed by chemical extraction was much higher than the corresponding percentage removed by wheat roots. In contrast to chemical extraction, a nearly 1:1 relationship was found between the amount of each PAH taken up by TECAMs and wheat roots (r(2) = 0.798-0.925, P < 0.01). Furthermore, the uptake of PAHs by TECAMs and wheat roots had the same pathway of passive transport via the soil solution. Moreover, TECAM caused minimal disturbance to the soil and was easy to deploy. Therefore, TECAM is believed to be a useful tool to predict bioavailability of PAHs to wheat roots grown in contaminated soils.

  4. Succession of Phenotypic, Genotypic, and Metabolic Community Characteristics during In Vitro Bioslurry Treatment of Polycyclic Aromatic Hydrocarbon-Contaminated Sediments

    PubMed Central

    Ringelberg, David B.; Talley, Jeffrey W.; Perkins, Edward J.; Tucker, Samuel G.; Luthy, Richard G.; Bouwer, Edward J.; Fredrickson, Herbert L.

    2001-01-01

    Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community. PMID:11282603

  5. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Kraatz, M.; Luthy, R.G.

    The dissolution of naphthalene, phenanthrene, and pyrene from viscous organic phases into water was studied in continuous-flow systems for time periods ranging from several months to more than 1 year. By selecting nonaqueous phases ranging from low viscosity to semisolid, i.e., from a light lubricating oil to paraffin, the governance of mass transfer was shown to vary from water phase control to nonaqueous phase control. An advancing depleted-zone model is proposed to explain the dissolution of PAHs from a viscous organic phase wherein the formation of a depleted zone within the organic phase increases the organic phase resistance to themore » dissolution of PAHs. The experimental data suggest the formation of a depleted zone within the organic phase for systems comprising a high-viscosity oil, petrolatum (petroleum jelly), and paraffin. Organic phase resistance to naphthalene dissolution became dominant over aqueous phase resistance after flushing for several days. Such effects were not evident for low viscosity lubricating oil. The transition from aqueous-phase dissolution control to nonaqueous-phase dissolution control appears predictable, and this provides a more rational framework to assess long-term release of HOCs from viscous nonaqueous phase liquids and semisolids.« less

  7. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  8. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast)

    NASA Astrophysics Data System (ADS)

    Zhidkin, A. P.; Gennadiev, A. N.; Koshovskii, T. S.

    2017-03-01

    Contents of 11 most prevalent polycyclic aromatic hydrocarbons (PAHs) in snow and soils of arable, fallow, and forest areas significantly remote from impact technogenic sources of polyarenes have been examined in the Torzhok district of Tver oblast. From the analysis of snow samples, the volumes and composition of PAHs coming from the atmosphere onto the areas of different land use have been determined. Light hydrocarbons prevail in PAHs. They make up 65-70% of total PAHs; their share in soils reaches almost 95%. An increase in the content of PAHs is revealed in fallow soils compared to arable and afforested areas. A direct relationship is revealed between the lateral distribution of total PAHs and the content of organic carbon. The distribution of total PAHs is surface-accumulative in forest soils, mainly uniform in arable soils, and deepaccumulative in fallow soils. PAH groups characterized by similar radial distributions and ratios between their reserves in snow and soils are distinguished: (1) fluorene and phenanthrene, (2) biphenyl and naphthalene, (3) benzo(a)anthracene, chrysene, perylene, and benzo[ a]pyrene, and (4) anthracene and benzo[ ghi]pyrene.

  9. Health-hazard evaluation report HETA 82-309-1630, Inland Steel, East Chicago, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almaguer, D.; Orris, P.

    1985-10-01

    Environmental and breathing-zone samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) and coal-tar-pitch volatiles at the Inland Steel Company, East Chicago, Indiana in November, 1982 and September, 1984. The evaluation was requested because of concern about employee exposures during maintenance of the coke battery precipitator at the number 2 facility. Four former employees were interviewed. The cyclohexane soluble fraction of coal-tar-pitch volatiles ranged from 0.232 to 0.668 mg/m/sup 3/. The OSHA standard is 0.15mg/m/sup 3/. Naphthalene concentrations up to 0.107mg/m/sup 3/ were detected. The OSHA standard for naphthalene is 50mg/m/sup 3/. Other PAHs detected included phenanthrene, fluorene and acenaphthene. Themore » employees reported experiencing local skin, eye, ear, nose, and throat irritation while working on the coke battery precipitator in the past. Personal protective measures such as wearing safety boots, barrier creams on exposed skin surfaces, and showering and changing clothes before leaving the facility were implemented. The authors conclude that a potential health hazard from PAHs and coal-tar-pitch volatiles is being adequately addressed by the facility. Recommendations include continuing the present personal protective measures and providing emergency rescue training.« less

  10. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    PubMed

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene

  11. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil.

    PubMed

    García-Sánchez, Mercedes; Košnář, Zdeněk; Mercl, Filip; Aranda, Elisabet; Tlustoš, Pavel

    2018-01-01

    Biological treatments are considered an environmentally option to clean-up polluted soil with polycyclic aromatic hydrocarbons (PAHs). A pot experiment was conducted to comparatively evaluate four different strategies, including natural attenuation (NA), mycoaugmentation (M) by using Crucibulum leave, phytoremediation (P) using maize plants, and microbial-assisted phytoremediation (MAP) for the bioremediation of an aged PAH-polluted soil at 180 days. The P treatment had higher affinity degrading 2-3 and 4 ring compounds than NA and M treatments, respectively. However, M and P treatments were more efficient in regards to naphthalene, indeno[l,2,3-c,d]pyrene and benzo[g,h,i]perylene degradation respect to NA. However, 4, 5-6 rings undergo a strong decline during the microbe-assisted phytoremediation, being the treatment which determined the highest rates of PAHs degradation. Sixteen PAH compounds, except fluorene and dibenzo[a,h]anthracene, were found in maize roots, whereas the naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were accumulated in the shoots, in both P and MAP treatments. However, higher PAH content in maize biomass was achieved during the MAP treatment respect to P treatment. The bioconversion and translocation factors were less than 1, indicating that phystabilization/phytodegradation processes occurred rather than phytoextraction. The microbial biomass, activity and ergosterol content were significantly boosted in the MAP treatment respect to the other treatments at 180 days. Ours results demonstrated that maize-C. laeve association was the most profitable technique for the treatment of an aged PAH-polluted soil when compared to other bioremediation approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reduced biodegradability of desorption-resistant fractions of polycyclic aromatic hydrocarbons in soil and aquifer solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.C.; Alexander, M.

    1996-11-01

    Less of the desorption-resistant fractions of phenanthrene and naphthalene than freshly added phenanthrene and naphthalene was mineralized in columns of aquifer solids, loam, or muck. Slurrying columns of hydrocarbon-amended aquifer solids, loam, or muck enhanced the rate and extent of mineralization of desorption-resistant phenanthrene and naphthalene, but degradation was still less than in slurries amended with fresh compound. A substantial portion of the desorption-resistant compound remained undergraded in the slurry. A surfactant and methanol increased the mineralization of resistant phenanthrene in slurries of loam. A mixed culture of microorganisms enriched on desorption-resistant phenanthrene degraded twice as much of this fractionmore » of compound as a pseudomonad. The authors suggest that predictions of the environment fate of toxic chemicals require information on the biodegradability of the fraction of a compound that is resistant to desorption.« less

  13. Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars

    NASA Astrophysics Data System (ADS)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia.; Ristovski, Zoran D.; Jayaratne, E. Rohan

    The composition of exhaust emissions from eight in-service passenger cars powered by liquefied petroleum gas (LPG) and unleaded petrol (ULP) were measured on a chassis dynamometer at two driving speeds (60 and 80 km h -1) with the aims of evaluating their polycyclic aromatic hydrocarbon (PAH) contents and investigating the effects of the type of fuel on vehicle performance, ambient air quality and associated health risks. Naphthalene, fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene were the most prominent PAHs emitted by both ULP and LPG powered cars. The total emission factors of PAHs from LPG cars were generally lower than (but statistically comparable with) those of ULP cars. Similarly, the total BAP eq of the PAHs emitted by LPG cars were lower than those from ULP cars. Multi-criteria decision making (MCDM) methods showed that cars powered by LPG fuel performed better than those powered by ULP fuel in term of PAH levels. The implications of these observations on the advantages and disadvantages of using ULP and LPG fuels are discussed.

  14. Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom.

    PubMed

    Okere, Uchechukwu V; Schuster, Jasmin K; Ogbonnaya, Uchenna O; Jones, Kevin C; Semple, Kirk T

    2017-11-15

    In this study, the indigenous microbial mineralisation of 14 C-phenanthrene in seven background soils (four from Norwegian woodland and three from the UK (two grasslands and one woodland)) was investigated. ∑PAHs ranged from 16.39 to 285.54 ng g -1 dw soil. Lag phases (time before 14 C-phenanthrene mineralisation reached 5%) were longer in all of the Norwegian soils and correlated positively with TOC, but negatively with ∑PAHs and phenanthrene degraders for all soils. 14 C-phenanthrene mineralisation in the soils varied due to physicochemical properties. The results show that indigenous microorganisms can adapt to 14 C-phenanthrene mineralisation following diffuse PAH contamination. Considering the potential of soil as a secondary PAH source, these findings highlight the important role of indigenous microflora in the processing of PAHs in the environment.

  15. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, T; Fredrickson, Jim K.; Balkwill, David L.

    Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methyl naphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l(-1) Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate atmore » which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, stra in B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium.« less

  16. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    PubMed

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  17. Occupational Exposure to Polycyclic Aromatic Hydrocarbon of Wildland Firefighters at Prescribed and Wildland Fires.

    PubMed

    Navarro, Kathleen M; Cisneros, Ricardo; Noth, Elizabeth M; Balmes, John R; Hammond, S Katharine

    2017-06-06

    Wildland firefighters suppressing wildland fires or conducting prescribed fires work long shifts during which they are exposed to high levels of wood smoke with no respiratory protection. Polycyclic aromatic hydrocarbons (PAHs) are hazardous air pollutants formed during incomplete combustion. Exposure to PAHs was measured for 21 wildland firefighters suppressing two wildland fires and 4 wildland firefighters conducting prescribed burns in California. Personal air samples were actively collected using XAD4-coated quartz fiber filters and XAD2 sorbent tubes. Samples were analyzed for 17 individual PAHs through extraction with dichloromethane and gas chromatograph-mass spectrometer analysis. Naphthalene, retene, and phenanthrene were consistently the highest measured PAHs. PAH concentrations were higher at wildland fires compared to prescribed fires and were highest for firefighters during job tasks that involve the most direct contact with smoke near an actively burning wildland fire. Although concentrations did not exceed current occupational exposure limits, wildland firefighters are exposed to PAHs not only on the fire line at wildland fires, but also while working prescribed burns and while off-duty. Characterization of occupational exposures from wildland firefighting is important to understand better any potential long-term health effects.

  18. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  19. Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration

    NASA Astrophysics Data System (ADS)

    Kamil, N. A. F. M.; Talib, S. A.

    2016-07-01

    Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.

  20. Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity.

    PubMed

    Nalin, Federica; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    Retention indices (I) for 45 polycyclic aromatic hydrocarbons (PAHs) and 63 methyl-substituted PAHs were determined by gas chromatography - mass spectrometry (GC-MS) using two different stationary phases: a Rxi-PAH phase (a "higher phenyl-content stationary phase") and a 50% (mole fraction) liquid crystalline dimethylpolysiloxane phase. Retention data were obtained for parent PAHs from molecular mass (MM) 128 g/mol (naphthalene) to 328 g/mol (benzo[c]picene) and for 12 sets of methyl-PAHs (methylfluorenes, methylanthracenes, methylphenanthrenes, methylfluoranthenes, methylpyrenes, methylbenz[a]anthracenes, methylbenzo[c]phenanthrenes, methylchrysenes, methyltriphenylenes, methylbenzo[a]pyrenes, methylperylenes, and methylpicenes). Molecular shape descriptors such as length-to-breath ratio (L/B) and thickness (T) were determined for all the PAHs studied. Correlation between I and L/B ratio was evaluated for both stationary phases with a better correlation observed for the 50% liquid crystalline phase (correlation coefficients ranging from 0.22 to 1.00). Graphical Abstract GC separation of six methylchrysene isomers (m/z 242) on two different stationary phases: 50 % phenyl-like methylpolysiloxane phase and 50 % liquid crystalline phase. Retention indices (I) are plotted as a function of L/B for both phases. The data marker numbers identify each isomer based on methyl-substitution position.

  1. Levels of PAHs in the Waters, Sediments, and Shrimps of Estero de Urias, an Estuary in Mexico, and Their Toxicological Effects

    PubMed Central

    Jaward, Foday M.; Alegria, Henry A.; Galindo Reyes, Jose G.; Hoare, Armando

    2012-01-01

    PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development. PMID:22997501

  2. Monitoring the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAH) and alkylphenols (AP) around a Norwegian oil platform by holistic passive sampling.

    PubMed

    Harman, Christopher; Thomas, Kevin V; Tollefsen, Knut Erik; Meier, Sonnich; Bøyum, Olav; Grung, Merete

    2009-11-01

    In order to assess the environmental impact of aquatic discharges from the offshore oil industry, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs) were deployed around an oil platform and at reference locations in the North Sea. Exposure to polycyclic aromatic hydrocarbons (PAH) and alkylated phenols (AP) was determined from passive sampler accumulations using an empirical uptake model, the dissipation of performance reference compounds and adjusted laboratory derived sampling rates. Exposure was relatively similar within 1-2 km of the discharge point, with levels dominated by short chained C1-C3 AP isomers (19-51 ngL(-1)) and alkylated naphthalenes, phenanthrenes and dibenzothiophenes (NPD, 29-45 ngL(-1)). Exposure stations showed significant differences to reference sites for NPD, but not always for more hydrophobic PAH. These concentrations are several orders of magnitude lower than those reported to give both acute and sub-lethal effects, although their long term consequences are unknown.

  3. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  4. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    NASA Astrophysics Data System (ADS)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations of other target compounds. Quinoline and isoquinoline can be used to indicate indoor levels of ETS.

  5. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    PubMed

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  6. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues

    PubMed Central

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0–8.0, temperature of 30 °C–42 °C, initial phenanthrene concentration less than 100 mg·L−1, and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  7. Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant

    NASA Astrophysics Data System (ADS)

    Durant, Neal D.; Wilson, Liza P.; Bouwer, Edward J.

    1995-01-01

    A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7 m) and deep (24.7 m) areas of the subsurface in both relatively clean (<20 μg L -1 naphthalene) and contaminated (4400 μg L -1 naphthalene) zones. Significant ( p < 0.05) quantities of naphthalene (8±3% to 43±7%) and/or phenanthrene (3±1% to 31±3%) were mineralized in sediment-groundwater microcosms during 4 weeks of aerobic incubation at 22°C. Three samples out of 11 were able to aerobically mineralize significant quantities of benzene (6±2% to 24±1%). Of 11 samples tested for anaerobic mineralization, naphthalene biodegradation (7±1% to 13±2%) in the presence of N03 was observed in two samples. Compound removals were first order with respect to substrate concentration during the first 10-15 days of incubation. Compound biodegradation plateaued in the later stages of incubation (15-40 days), most likely from diminishing bioavailability and nutrient and oxygen depletion. Population densities in the sediments were typically low, with viable aerobic counts ranging from 0 to 10 5 CFU gdw -1, viable anaerobic counts ranging from 0 to 104 CFU gdw -1, and total counts (AODC) usually 10-fold greater than viable counts. Total counts exhibited a strong ( p < 0.01) positive correlation with sample grain size. Viable aerobic and anaerobic populations commonly occurred in the same sample, suggesting the presence of facultative anaerobes. Bacteria were metabolically active in samples from groundwaters with low pH (3.7) and high naphthalene concentrations (11,000 μg L -1). Data from these enumeration and microcosm studies suggest that natural in situ biodegradation is occurring at the site.

  8. Stable-Isotope Probing of Bacteria Capable of Degrading Salicylate, Naphthalene, or Phenanthrene in a Bioreactor Treating Contaminated Soil

    PubMed Central

    Singleton, David R.; Powell, Sabrina N.; Sangaiah, Ramiah; Gold, Avram; Ball, Louise M.; Aitken, Michael D.

    2005-01-01

    [13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment. PMID:15746319

  9. Evaluating environmental modeling and sampling data with biomarker data to identify sources and routes of exposure

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2013-04-01

    Exposure to environmental chemicals results from multiple sources, environmental media, and exposure routes. Ideally, modeled exposures should be compared to biomonitoring data. This study compares the magnitude and variation of modeled polycyclic aromatic hydrocarbons (PAHs) exposures resulting from emissions to outdoor and indoor air and estimated exposure inferred from biomarker levels. Outdoor emissions result in both inhalation and food-based exposures. We modeled PAH intake doses using U.S. EPA's 2002 National Air Toxics Assessment (NATA) county-level emissions data for outdoor inhalation, the CalTOX model for food ingestion (based on NATA emissions), and indoor air concentrations from field studies for indoor inhalation. We then compared the modeled intake with the measured urine levels of hydroxy-PAH metabolites from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) survey as quantifiable human intake of PAH parent-compounds. Lognormal probability plots of modeled intakes and estimated intakes inferred from biomarkers suggest that a primary route of exposure to naphthalene, fluorene, and phenanthrene for the U.S. population is likely inhalation from indoor sources. For benzo(a)pyrene, the predominant exposure route is likely from food ingestion resulting from multi-pathway transport and bioaccumulation due to outdoor emissions. Multiple routes of exposure are important for pyrene. We also considered the sensitivity of the predicted exposure to the proportion of the total naphthalene production volume emitted to the indoor environment. The comparison of PAH biomarkers with exposure variability estimated from models and sample data for various exposure pathways supports that both indoor and outdoor models are needed to capture the sources and routes of exposure to environmental contaminants.

  10. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  11. Distribution and sources of polycyclic aromatic hydrocarbon (PAH) in marine environment of China

    NASA Astrophysics Data System (ADS)

    Zheng, Jinshu; Richardson, Bruce J.; Shouming, O.; Zheng, Jianhua

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and mutagenic compounds that have raised considerable environmental concern. The highest concentrations of PAHs in the coastal sediment samples in China was 5.8 11.0μg/g (dry weight) in the core from the Huangpu River, Shanghai. The second highest concentration of PAHs was 4.42μg/g (dry weight) in surface sediment of Victoria Harbour in Hong Kong, and 5.73μg/g (dry weight) in sediment of Jiaozhou Bay, Qingdao City. The low concentrations of PAHs were always in the sediments far away from industrial zones and cities, and ranged from 0.10 to 0.30μg/g (dry weight). Several environmental parameters are considered for the identification of sources of PAHs in marine environment. High proportion of naphthalene, low molecular weight PAHs and alkylated PAHs, plus high ratio of phenanthrene to anthracene (>15) and low ratio of fluoranthene to pyrene (<1) suggested a petrogenic source. According to these parameters, the Changjiang (Yangtze) River estuary of Shanghai, Jiaozhou Bay of Qingdao City, Zhujiang (Pearl) River mouth, Jiulong River mouth and most of Hong Kong coastal waters were heavily contaminated by PAHs from petrogenic sources. However, PAHs in rural coastal areas were dominated by pyrolytic origin PAHs. This review clearly showed that oil pollution and incomplete combustion of oil, coal and biomass are the main reason for PAHs anormalies in the study areas.

  12. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  13. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments

    USGS Publications Warehouse

    Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.

    1998-01-01

    The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., Koc values) are relatively invariant either for the `clean' (uncontaminated) soils or for the clean sediments; however, the mean Koc values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in Koc are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher Koc values. At given Kow values (octanol-water), the PAHs exhibit much higher Koc values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower Kow values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log Koc and log Kow for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.

  14. Simultaneous analysis of naphthols, phenanthrols, and 1-hydroxypyrene in urine as biomarkers of polycyclic aromatic hydrocarbon exposure: intraindividual variance in the urinary metabolite excretion profiles caused by intervention with beta-naphthoflavone induction in the rat.

    PubMed

    Elovaara, Eivor; Väänänen, Virpi; Mikkola, Jouni

    2003-04-01

    Two fluorimetric HPLC methods are described for the quantification of naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in urine specimens obtained from male Wistar rats exposed to naphthalene, phenanthrene and pyrene. The polycyclic aromatic hydrocarbons (PAHs) were given intraperitoneally, either alone (1.0 mmol/kg body weight) or as an equimolar mixture (0.33 mmol/kg), using the same dosages for repeated treatments on week 1 and week 2. Between these treatments, PAH-metabolizing activities encoded by aryl hydrocarbon (Ah) receptor-controlled genes were induced in the rats with beta-naphthoflavone (betaNF). Chromatographic separation of five phenanthrols (1-, 2-, 3-, 4-, and 9-isomers) was accomplished using two different RP C-18 columns. Despite selective detection (programmable wavelengths), the quantification limits in the urine ranged widely: 1-OHP (0.18 microg/l)

  15. Levels and sources of PAHs in selected sites from Portugal: biomonitoring with Pinus pinea and Pinus pinaster needles.

    PubMed

    Ratola, Nuno; Amigo, José Manuel; Alves, Arminda

    2010-04-01

    Pine needle samples from two pine species (Pinus pinaster Ait. and Pinus pinea L.) were collected at 29 sites scattered throughout Portugal, in order to biomonitor the levels and trends of 16 polycyclic aromatic hydrocarbons (PAHs). The values obtained for the sum of all PAHs ranged from 76 to 1944 ng/g [dry weight (dw)]. Despite the apparent matrix similarities between both pine species, P. pinaster needles revealed higher mean entrapment levels than P. pinea (748 and 399 ng/g (dw) per site, respectively). The urban and industrial sites have the highest average of PAH incidence [for P. pinea, 465 and 433 ng/g (dw) per site, respectively, and for P. pinaster, 1147 and 915 ng/g (dw)], followed by the rural sites [233 ng/g and 711 ng/g (dw) per site, for P. pinea and P. pinaster, respectively]. The remote sites, both from P. pinaster needles, show the least contamination, with 77 ng/g (dw) per site. A predominance of 3-ring and 4-ring PAHs was observed in most samples, with phenanthrene having 30.1% of the total. Naphthalene prevailed in remote sites. Rainfall had no influence on the PAHs levels, but there was a relationship between higher wind speeds and lower concentrations. PAH molecular ratios revealed the influence of both petrogenic and pyrogenic sources.

  16. Determination of polycyclic aromatic hydrocarbons in urine of coke oven workers by headspace solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M

    2003-05-06

    Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.

  17. Effect of land use activities on PAH contamination in urban soils of Rawalpindi and Islamabad, Pakistan.

    PubMed

    Ud Din, Ikhtiar; Rashid, Audil; Mahmood, Tariq; Khalid, Azeem

    2013-10-01

    Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops-a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n = 32) areas were evaluated for five PAHs--naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene-and compared with control area locations with minimum petroleum-related activity (n = 16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml(-1)) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg(-1). Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r = 0.82, P < 0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.

  18. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.

    PubMed

    Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.

  19. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao

    1991-01-01

    Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic surfactants: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in surfactant solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle form. The partitioning of organic compounds between surfactant micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in surfactant solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given surfactant solution. A knowledge of partitioning in aqueous surfactant systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport.« less

  20. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    PubMed

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  1. Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China.

    PubMed

    Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan

    2014-06-01

    We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.

  2. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  3. Leaching behaviour of low level organic pollutants contained in cement-based materials: experimental methodology and modelling approach.

    PubMed

    Tiruta-Barna, Ligia; Fantozzi-Merle, Catherine; de Brauer, Christine; Barna, Radu

    2006-11-16

    The aim of this paper is the investigation of the leaching behaviour of different porous materials containing organic pollutants (PAH: naphthalene and phenanthrene). The assessment methodology of long term leaching behaviour of inorganic materials was extended to cement solidified organic pollutants. Based on a scenario-approach considering environmental factors, matrix and pollutants specificities, the applied methodology is composed of adapted equilibrium and dynamic leaching tests. The contributions of different physical and chemical mechanisms were identified and the leaching behaviour was modelled. The physical parameters of the analysed reference and polluted materials are similar. A difference in the pore size distribution appears for higher naphthalene content. The solubility of the PAH contained in the material is affected by the ionic strength and by the presence of a co-solvent; the solution pH does not influence PAH solubility. The solubility of the major mineral species is not influenced by the presence of the two PAH nor by the presence of the methanol as co-solvent in the range of the tested material compositions. In the case of the leaching of a monolith material the main transport mechanism is the diffusion in the porous system. For both mineral and organic species we observed at least two dynamic domains. At the beginning of the leaching process the released flux is due to the surface dissolution and to the diffusion of the main quantity dissolved in the initial pore solution. The second period is governed by a stationary regime between dissolution in pore water and diffusion. The model, coupling transport and chemical phenomena in the pore solution, at the monolith surface and in the leachate simulates satisfactory the release for both mineral and organic species.

  4. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-08-23

    Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.

  5. Comparing Urinary Biomarkers of Airborne and Dermal Exposure to Polycyclic Aromatic Compounds in Asphalt-Exposed Workers

    PubMed Central

    Sobus, Jon R.; McClean, Michael D.; Herrick, Robert F.; Waidyanatha, Suramya; Nylander-French, Leena A.; Kupper, Lawrence L.; Rappaport, Stephen M.

    2009-01-01

    When working with hot mix asphalt, road pavers are exposed to polycyclic aromatic hydrocarbons (PAHs) through the inhalation of vapors and particulate matter (PM) and through dermal contact with PM and contaminated surfaces. Several PAHs with four to six rings are potent carcinogens which reside in these particulate emissions. Since urinary biomarkers of large PAHs are rarely detectable in asphalt workers, attention has focused upon urinary levels of the more volatile and abundant two-ring and three-ring PAHs as potential biomarkers of PAH exposure. Here, we compare levels of particulate polycyclic aromatic compounds (P-PACs, a group of aromatic hydrocarbons containing PAHs and heterocyclic compounds with four or more rings) in air and dermal patch samples from 20 road pavers to the corresponding urinary levels of naphthalene (U-Nap) (two rings), phenanthrene (U-Phe) (three rings), monohydroxylated metabolites of naphthalene (OH-Nap) and phenanthrene (OH-Phe), and 1-hydroxypyrene (OH-Pyr) (four rings), the most widely used biomarker of PAH exposure. For each worker, daily breathing-zone air (n = 55) and dermal patch samples (n = 56) were collected on three consecutive workdays along with postshift, bedtime, and morning urine samples (n = 149). Measured levels of P-PACs and the urinary analytes were used to statistically model exposure–biomarker relationships while controlling for urinary creatinine, smoking status, age, body mass index, and the timing of urine sampling. Levels of OH-Phe in urine collected postshift, at bedtime, and the following morning were all significantly associated with levels of P-PACs in air and dermal patch samples. For U-Nap, U-Phe, and OH-Pyr, both air and dermal patch measurements of P-PACs were significant predictors of postshift urine levels, and dermal patch measurements were significant predictors of bedtime urine levels (all three analytes) and morning urine levels (U-Nap and OH-Pyr only). Significant effects of creatinine concentration were observed for all analytes, and modest effects of smoking status and body mass index were observed for U-Phe and OH-Pyr, respectively. Levels of OH-Nap were not associated with P-PAC measurements in air or dermal patch samples but were significantly affected by smoking status, age, day of sample collection, and urinary creatinine. We conclude that U-Nap, U-Phe, OH-Phe, and OH-Pyr can be used as biomarkers of exposure to particulate asphalt emissions, with OH-Phe being the most promising candidate. Indications that levels of U-Nap, U-Phe, and OH-Pyr were significantly associated with dermal patch measurements well into the evening after a given work shift, combined with the small ratios of within-person variance components to between-person variance components at bedtime, suggest that bedtime measurements may be useful for investigating dermal PAH exposures. PMID:19602502

  6. Preferential glutathione conjugation of a reverse diol epoxide compared to a bay region diol epoxide of phenanthrene in human hepatocytes: relevance to molecular epidemiology studies of glutathione-s-transferase polymorphisms and cancer.

    PubMed

    Hecht, Stephen S; Berg, Jeannette Zinggeler; Hochalter, J Bradley

    2009-03-16

    Bay region diol epoxides are recognized ultimate carcinogens of polycyclic aromatic hydrocarbons (PAH), and in vitro studies have demonstrated that they can be detoxified by conjugation with glutathione, leading to the widely investigated hypothesis that individuals with low activity forms of glutathione-S-transferases are at higher risk of PAH induced cancer, a hypothesis that has found at most weak support in molecular epidemiology studies. A weakness in this hypothesis was that the mercapturic acids resulting from the conjugation of PAH bay region diol epoxides had never been identified in human urine. We recently analyzed smokers' urine for mercapturic acids derived from phenanthrene, the simplest PAH with a bay region. The only phenanthrene diol epoxide-derived mercapturic acid in smokers' urine was produced from the reverse diol epoxide, anti-phenanthrene-3,4-diol-1,2-epoxide (11), not the bay region diol epoxide, anti-phenanthrene-1,2-diol-3,4-epoxide (10), which does not support the hypothesis noted above. In this study, we extended these results by examining the conjugation of phenanthrene metabolites with glutathione in human hepatocytes. We identified the mercapturic acid N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c-1-phenanthryl)-L-cysteine (14a), (0.33-35.9 pmol/mL at 10 microM 8, 24 h incubation, N = 10) in all incubations with phenanthrene-3,4-diol (8) and the corresponding diol epoxide 11, but no mercapturic acids were detected in incubations with phenanthrene-1,2-diol (7), and only trace amounts were observed in incubations with the corresponding bay region diol epoxide 10. Taken together with our previous results, these studies clearly demonstrate that glutathione conjugation of a reverse diol epoxide of phenanthrene is favored over conjugation of a bay region diol epoxide. Since reverse diol epoxides of PAH are generally weakly or nonmutagenic/carcinogenic, these results, if generalizable to other PAH, do not support the widely held assumption that glutathione-S-transferases are important in the detoxification of PAH in humans.

  7. A new liquid chromatography-tandem mass spectrometry method using atmospheric pressure photo ionization for the simultaneous determination of azaarenes and azaarones in Dutch river sediments.

    PubMed

    Brulik, Jan; Simek, Zdenek; de Voogt, Pim

    2013-06-14

    A new method for the analysis of azaarenes and their degradation products (azaarones) was developed, optimized and validated using liquid chromatography coupled with atmospheric pressure photo ionization tandem mass spectrometric detection (LC-APPI/MS/MS). Seventeen compounds including 4 PAHs (naphthalene, anthracene, phenanthrene, benz[a]anthracene), 7 azaarenes (quinoline, acridine, phenanthridine, 5,6-benzoquinoline and 7,8-benzoquinoline, benzo[a]acridine, benzo[c]acridine), and 6 azaarones (2-OH-quinoline, 4-OH-quinoline, 5-OH-quinoline, 6-OH-quinoline, 9(10H)-acridone, 6(5H)phenanthridinone) were analyzed in sediment samples from Dutch rivers. All compounds were analyzed simultaneously in multi reaction monitoring (MRM) mode. Soxhlet extraction was used for the extraction of analytes from sediments. The limits of quantification of azaarenes and azaarones varied from 0.21 to 1.12μg/l and from 0.23 to 1.58μg/l, respectively. The limits of quantification for PAHs varied from 32 to 769μg/l. Matrix-independent recoveries of sediment samples were in the range 85-110%; matrix-dependent recoveries were in the range 73-148%, respectively. The method was tested on real sediment samples and the results were compared with a previous study in which GC/MS/MS was used for the simultaneous measurement of azaarenes and azaarones. 4-, 5- and 6-OH-quinolines and naphthalene, anthracene and phenanthrene were not present or below detection limits in some samples. All other analytes were present in samples in the concentration range 0.2-1200ng/g (dw). To our knowledge, this is the first report showing the possibility of measurement non-polar polyaromatic hydrocarbons together with polar azaarenes and their degradation products azaarones simultaneously with sufficient sensitivity and accuracy using LC/MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effects of profession on urinary PAH metabolite levels in the US population.

    PubMed

    Liu, Bian; Jia, Chunrong

    2016-01-01

    Although exposure to polycyclic aromatic hydrocarbons (PAHs) is common in both environmental and occupational settings, few studies have compared PAH exposure among people with different professions. The purpose of this study was to investigate the variations in recent PAH exposure among different occupational groups over time using national representative samples. The study population consisted of 4162 participants from the 2001 to 2008 National Health and Nutrition Examination Survey, who had both urinary PAH metabolites and occupational information. Four corresponding monohydroxy-PAH urine metabolites: naphthalene (NAP), fluorene (FLUO), phenanthrene (PHEN), and pyrene (PYR) among seven broad occupational groups were analyzed using weighted linear regression models, adjusting for creatinine levels, sociodemographic factors, smoking status, and sampling season. The overall geometric mean concentrations of NAP, FLUO, PHEN, and PYR were 6927, 477, 335, and 87 ng/L, respectively. All four PAH metabolites were elevated in the "extractive, construction, and repair (ECR)" group, with 21-42 % higher concentrations than those in the reference group of "management." Similar trends were seen in the "operators, fabricators, and laborers (OFL)" group for FLUO, PHEN, and PYR. In addition, both "service" and "support" groups had elevated FLUO. Significant (p < 0.001) upward temporal trends were seen in NAP and PYR, with an approximately 6-17 % annual increase, and FLUO and PHEN remained relatively stable. Race and socioeconomic status show independent effects on PAH exposure. Heterogeneous distributions of urinary PAH metabolites among people with different job categories exist at the population level. The upward temporal trends in NAP and PYR warrant reduction in PAH exposure, especially among those with OFL and ECR occupations.

  9. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    PubMed Central

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-01-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg·L−1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination. PMID:24964867

  10. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  11. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Tao; Fuliu Xu; Wenxin Liu

    Severe contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) occurs in many places in China mainly as a result of coal and biomass combustion. Because ingestion is the main source of human exposure to PAHs and vegetables are basic ingredients for the Chinese diet, it is important to know how and to what extent PAHs are accumulated in vegetables produced in contaminated soils. This study, evaluated the extent to which organic matter contents in soils influence the accumulation of PAHs by the roots of wheat plants and have developed a rapid chemical method for determining the bioavailability of PAH.more » Four PAHs, naphthalene, acenaphthylene, fluorene, and phenanthrene, were added to natural soil samples with different amounts of organic matter for pot experiments to evaluate apparent bioavailability of PAHs to wheat roots (Triticum aestivum L.). The extractabilities of PAHs in the soil were tested by a sequential extraction scheme using accelerated solvent extraction with water, n-hexane, and a mixture of dichloromethane and acetone as solvents. The water or n-hexane-extractable PAHs were positively correlated to dissolved organic matter (DOM) and negatively correlated to total organic matter (TOM), indicating mobilization and immobilization effects of DOM and TOM on soil PAHs, respectively. The apparent accumulation of PAHs by wheat roots was also positively and negatively correlated to DOM and TOM, respectively. As a result, there are positive correlations between the amounts of PAHs extracted by water or n-hexane and the quantities accumulated in plant roots, suggesting the feasibility of using water- or n-hexanes-extractable fractions as indicators of PAH availability to plants. 19 refs., 8 figs., 1 tab.« less

  12. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.

    PubMed

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-08-09

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  13. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed Central

    2010-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water solubility. PHE uptake by wheat roots caused an increase in external solution pH, implying that wheat roots take up PHE via a PHE/nH+ symport system. Conclusion It is concluded that an active, carrier-mediated and energy-consuming influx process is involved in the uptake of PHE by plant roots. PMID:20307286

  14. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia.

    PubMed Central

    Zhang, X; Young, L Y

    1997-01-01

    The anaerobic biodegradation of naphthalene (NAP) and phenanthrene (PHE) was investigated by using sediment collected from the Arthur Kill in New York/New Jersey harbor. The initial cultures were composed of 10% sediment and 90% mineral medium containing 20 mM sulfate. Complete loss of NAP and PHE (150 to 200 muM) was observed after 150 days of incubation. Upon refeeding, NAP and PHE were utilized within 14 days. The utilization of both compounds was inhibited in the presence of 20 mM molybdate. [14C]NAP and [14C]PHE were mineralized to 14CO2. The activities could be maintained and propagated by subculturing in mineral medium. In the presence of halogenated analogs, 2-naphthoate was detected in NAP-utilizing enrichments. The mass spectrum of the derivatized 2-napththoate from the enrichment supplemented with both [13C]bicarbonate and NAP indicates the incorporation of 13CO2 into NAP. In the PHE-utilizing enrichment, a metabolite was detected by both high-pressure liquid chromatography and gas chromatography-mass spectrometry analyses. The molecular ion and fragmentation pattern of its mass spectrum indicate that it was phenanthrenecarboxylic acid. The results obtained with [13C] bicarbonate indicate that 13CO2 was incorporated into PHE. It appears, therefore, that carboxylation is an initial key reaction for the anaerobic metabolism and NAP and PHE. To our knowledge, this is the first report providing evidence for intermediates of PAH degradation under anaerobic conditions. PMID:9471963

  15. Biodegradation Ability and Catabolic Genes of Petroleum-Degrading Sphingomonas koreensis Strain ASU-06 Isolated from Egyptian Oily Soil

    PubMed Central

    Mostafa, Yasser M.; Shoreit, Ahmed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period. PMID:25177681

  16. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana.

    PubMed

    Feldt, Torsten; Fobil, Julius N; Wittsiepe, Jürgen; Wilhelm, Michael; Till, Holger; Zoufaly, Alexander; Burchard, Gerd; Göen, Thomas

    2014-01-01

    The informal recycling of electronic waste (e-waste) is an emerging source of environmental pollution in Africa. Among other toxins, polycyclic aromatic hydrocarbons (PAHs) are a major health concern for exposed individuals. In a cross-sectional study, the levels of PAH metabolites in the urine of individuals working on one of the largest e-waste recycling sites of Africa, and in controls from a suburb of Accra without direct exposure to e-waste recycling activities, were investigated. Socioeconomic data, basic health data and urine samples were collected from 72 exposed individuals and 40 controls. In the urine samples, concentrations of the hydroxylate PAH metabolites (OH-PAH) 1-hydroxyphenanthrene (1-OH-phenanthrene), the sum of 2- and 9-hydroxyphenanthrene (2-/9-OH-phenanthrene), 3-hydroxyphenanthrene (3-OH-phenanthrene), 4-hydroxyphenanthrene (4-OH-phenanthrene) and 1-hydroxypyrene (1-OH-pyrene), as well as cotinine and creatinine, were determined. In the exposed group, median urinary concentrations were 0.85 μg/g creatinine for 1-OH-phenanthrene, 0.54 μg/g creatinine for 2-/9-OH-phenanthrene, 0.99 μg/g creatinine for 3-OH-phenanthrene, 0.22 μg/g creatinine for 4-OH-phenanthrene, and 1.33 μg/g creatinine for 1-OH-pyrene, all being significantly higher compared to the control group (0.55, 0.37, 0.63, 0.11 and 0.54 μg/g creatinine, respectively). Using a multivariate linear regression analysis including sex, cotinine and tobacco smoking as covariates, exposure to e-waste recycling activities was the most important determinant for PAH exposure. On physical examination, pathological findings were rare, but about two thirds of exposed individuals complained about cough, and one quarter about chest pain. In conclusion, we observed significantly higher urinary PAH metabolite concentrations in individuals who were exposed to e-waste recycling compared to controls who were not exposed to e-waste recycling activities. The impact of e-waste recycling on exposure to environmental toxins and health of individuals living in the surroundings of e-waste recycling sites warrant further investigation. © 2013 Elsevier B.V. All rights reserved.

  17. Development of a short path thermal desorption-gas chromatography/mass spectrometry method for the determination of polycyclic aromatic hydrocarbons in indoor air.

    PubMed

    Li, Yingjie; Xian, Qiming; Li, Li

    2017-05-12

    Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m 3 except for naphthalene (0.61μg/m 3 ), fluorene (0.28μg/m 3 ) and phenanthrene (0.35μg/m 3 ). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sediments from stormwater drainage system as sorbents of organic and inorganic pollutants

    NASA Astrophysics Data System (ADS)

    Sałata, Aleksandra; Dąbek, Lidia

    2017-11-01

    The study presents the results of tests aimed at determining variations in concentrations of polycyclic aromatic hydrocarbons (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a, h]anthracene, benzo[g, h, i]perylene and indeno[1, 2, 3-c, d]pyrene) and heavy metals (copper, cadmium, chromium, nickel, lead and zinc) in the sediments from the stormwater sewer system. Results of this study were then compared to Polish regulations and established ecological screening values to determine their potential risk to environment. The results suggest that stormwater sediments are moderately contaminated with PAHs and heavy metals according to domestic regulations and highly contaminated according to ecological benchmarks.

  19. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    PubMed Central

    Gran-Scheuch, Alejandro; Fuentes, Edwar; Bravo, Denisse M.; Jiménez, Juan Cristobal; Pérez-Donoso, José M.

    2017-01-01

    Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems. PMID:28894442

  20. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  1. High-Sensitivity Surface-Enhanced Raman Scattering (SERS) Substrate Based on a Gold Colloid Solution with a pH Change for Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution.

    PubMed

    Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng

    2015-05-01

    In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.

  2. Toxicity of effluents from gasoline stations oil-water separators to early life stages of zebrafish Danio rerio.

    PubMed

    Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M

    2017-07-01

    Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.

    PubMed

    Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T

    2018-01-01

    When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantifying the equilibrium partitioning of substituted polycyclic aromatic hydrocarbons in aerosols and clouds using COSMOtherm.

    PubMed

    Awonaike, Boluwatife; Wang, Chen; Goss, Kai-Uwe; Wania, Frank

    2017-03-22

    Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.

  5. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.

    PubMed

    Gao, Y; Yu, X Z; Wu, S C; Cheung, K C; Tam, N F Y; Qian, P Y; Wong, M H

    2006-12-15

    The effects of cultivation of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) separately, and in combination, on the dissipation of spiked phenanthrene and pyrene (0, 50+50, 100+100, 200+200 mg kg(-1)) in waterlogged soil were studied using pot trials. The population of introduced PAH-degrading bacteria remained at 10(5) CFU g(-1) dry soil after 20 days of treatment with Acinetobacter sp. only, but increased to 10(6) when planted with rice simultaneously. Shoot and root biomass of rice when grown alone was adversely affected by spiked PAHs, but significantly increased by 2-55% and 8-409%, respectively, when inoculated with Acinetobacter sp.. Phenanthrene and pyrene concentrations in roots ranged from 1-27 and 20-98 mg kg(-1), respectively, while their concentrations in shoots were generally lower than 0.2 mg kg(-1). The dissipation of phenanthrene was mainly due to abiotic loss as 70-78% phenanthrene was lost from the control soil at the end of 80 days, while removal of 86-87% phenanthrene had been achieved after 40 days in the treatment co-cultivated with Acinetobacter sp. and rice. Compared with the control where only 6-15% of pyrene was removed from soil, a much higher dissipation of pyrene (43-62%) was attained for the treatments co-cultivated with Acinetobacter sp. and rice at the end of 80 days. The results demonstrated that co-cultivation of rice and PAH-degrading bacteria may have a great potential to accelerate the bioremediation process of PAH-contaminated soil under waterlogged conditions.

  6. Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product.

    PubMed

    Roseiro, L C; Gomes, A; Santos, C

    2011-06-01

    The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in traditional dry/fermented sausage along distinct stages of processing under two different technological procedures (traditional and modified processes). The influence of product's position in the smoking room, on the variation of contaminants and in their migration dynamics from the outer into the inner part, was also followed up. Raw material mixtures presented expressive total PAH values, 106.17 μg kg(-1) in wet samples and 244.34 μg kg(-1) in dry mater (DM), expressing the frequent fire woods occurred in the regions pigs were extensively reared. Traditional processing produced a higher (p<0.01) total PAH levels comparatively to modified/industrial procedures, with mean values reaching 3237.10 and 1702.85 μg kg(-1) DM, respectively. Both, raw materials and final products, showed PAH profiles with light compounds representing about 99.0% of the total PAHs, mostly accounted by those having two rings (naphthalene-27.5%) or three rings (acenaphtene-16.9%; fluorene-27.1%; phenanthrene-19.5% and anthracene-3.9%). The benzo[a]pyrene (BaP) accumulated in traditional and modified processed products never surpassed the limit of 5 μg kg(-1) established by the EU legislation. PAHs in products hanged in bars closer to heating/smoking source speed up their transfer from the surface/outer portion to the inner part of the product. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil.

    PubMed

    Salehi-Lisar, Seyed Yahya; Deljoo, Somaye; Harzandi, Ahmad Mosen

    2015-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are diverse organic contaminants released into the environment by both natural and anthropogenic activities. These compounds have negative impacts on plants growth and development. Although there are many reports on their existence in different parts of plant, their uptake and translocation pathways and mechanisms are not well understood yet. This paper highlights the uptake, translocation and accumulation of PAHs by wheat, sunflower and alfalfa through an experimental study under controlled conditions. Seeds were cultivated in a soil containing 50 mg/kg of phenanthrene and fluorene and their concentrations in plants roots and shoots were determined using a gas chromatograph after 7 and 14 days. The results showed that phenanthrene and fluorene concentrations in the treated plants were increased over the time. PAHs bioavailability was time and species dependent and generally, phenanthrene uptake and translocation was faster than that of fluorene, probably due to their higher Kow. Fluorene tended to accumulate in roots, but phenanthrene was transported to aerial parts of plants.

  8. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    PubMed

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae.

    PubMed

    Overmans, Sebastian; Nordborg, Mikaela; Díaz-Rúa, Rubén; Brinkman, Diane L; Negri, Andrew P; Agustí, Susana

    2018-05-01

    Exposure to polycyclic aromatic carbons (PAHs) poses a growing risk to coral reefs due to increasing shipping and petroleum extraction in tropical waters. Damaging effects of specific PAHs can be further enhanced by the presence of ultraviolet radiation, known as phototoxicity. We tested phototoxic effects of the PAHs anthracene and phenanthrene on larvae of the scleractinian coral Acropora tenuis in the presence and absence of UVA (320-400 nm). Activity of superoxide dismutase (SOD) enzyme was reduced by anthracene while phenanthrene and UVA exposure did not have any effect. Gene expression of MnSod remained constant across all treatments. The genes Catalase, Hsp70 and Hsp90 showed increased expression levels in larvae exposed to anthracene, but not phenanthrene. Gene expression of p53 was upregulated in the presence of UVA, but downregulated when exposed to PAHs. The influence on stress-related biochemical pathways and gene expresson in A. tenuis larvae was considerably greater for anthracene than phenanthrene, and UVA-induced phototoxicity was only evident for anthracene. The combined effects of UVA and PAH exposure on larval survival and metamorphosis paralleled the sub-lethal stress responses, clearly highlighting the interaction of UVA on anthracene toxicity and ultimately the coral's development. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium.

    PubMed

    Bumpus, J A

    1989-01-01

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs.

  11. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium.

    PubMed Central

    Bumpus, J A

    1989-01-01

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs. PMID:2705768

  12. Responses of metabolic pathways to polycyclic aromatic compounds in flounder following oil spill in the Baltic Sea near the Estonian coast.

    PubMed

    Kreitsberg, Randel; Zemit, Irina; Freiberg, Rene; Tambets, Meelis; Tuvikene, Arvo

    2010-09-15

    In January 2006 an oil spill that involved approximately 40tons of heavy fuel oil affected more than 30km of the north-west coast of Estonia. The aquatic pollution of the coastal area of the Baltic Sea was monitored by measuring the content of selected polycyclic aromatic hydrocarbons (PAHs and PAH metabolites) in flounder (Platichthys flesus trachurus Duncker). One hundred and thirty-one fish were collected: muscle and liver tissues were analyzed by high-performance liquid chromatography (HPLC); bile and urine samples were analyzed using fixed wavelengths fluorescence. Fifteen different types of PAHs were analyzed in liver and muscle, and four types of PAH metabolites were analyzed in bile and urine (2-, 3-, 4- and 5-ringed PAH metabolites represented by naphthalene, phenanthrene, pyrene and benzo(a)pyrene). Fluorescence analyses were carried out using excitation/emission wavelength pairs: 290/380, 256/380, 341/383 and 380/430nm, respectively. There was a time-dependent decrease of PAH concentrations in liver (83%), bile (82%) and urine (113%). HPLC analysis of muscle tissues demonstrated low concentrations of single PAHs, but a decrease of concentrations during the study period was not observed. During the analyses concentrations of PAH metabolites in bile and urine were compared. Liver metabolic transformation activity is believed to exceed that of the kidney but the analyses demonstrated high metabolite concentration in fish urine, particularly of 4- and 5-ring PAH metabolites. The results indicate remarkable buffer capacity of hydrodynamically active sea as well as considerable importance of kidney-urine metabolic pathways in flounder physiology. 2010 Elsevier B.V. All rights reserved.

  13. Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS.

    PubMed

    Ratola, Nuno; Lacorte, Sílvia; Barceló, Damià; Alves, Arminda

    2009-01-15

    Two different extraction strategies (microwave-assisted extraction (MAE) and ultrasonic extraction (USE)) were tested in the extraction of the 16 US Environmental Protection Agency (EPA) polycyclic aromatic hydrocarbons (PAHs) from pine trees. Extraction of needles and bark from two pine species common in the Iberian Peninsula (Pinus pinaster Ait. and Pinus pinea L.) was optimized using two amounts of sample (1g and 5 g) and two PAHs spiking levels (20 ng/g and 100 ng/g). In all cases, the clean-up procedure following extraction consisted in solid-phase extraction (SPE) with alumina cartridges. Quantification was done by gas chromatography (GC) with mass spectrometry (MS), using five deuterated PAH surrogate standards as internal standards. Limits of detection were globally below 0.2 ng/g. The method was robust for the matrices studied regardless of the extraction procedures. Recovery values between 70 and 130% were reached in most cases, except for high molecular weight PAHs (indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene). A field study with naturally contaminated samples from eight sites (four in Portugal and four in Catalonia, Spain) showed that needles are more suitable biomonitors for PAHs, yielding concentrations from 2 to 17 times higher than those found in bark. The levels varied according to the sampling site, with the sum of the individual PAH concentrations between 213 and 1773 ng/g (dry weight). Phenanthrene was the most abundant PAH, followed by fluoranthene, naphthalene and pyrene.

  14. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  15. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media.

    PubMed Central

    Jenkins, M B; Lion, L W

    1993-01-01

    Sorption of hydrophobic pollutants such as polynuclear aromatic hydrocarbons (PAHs) to soil and aquifer materials can severely retard their mobility and the time course of their removal. Because mobile colloids may enhance the mobility of hydrophobic pollutants in porous media and indigenous bacteria are generally colloidal in size, bacterial isolates from soil and subsurface environments were tested for their ability to enhance the transport of phenanthrene, a model PAH, in aquifer sand. Batch isotherm experiments were performed to measure the ability of selected bacteria, including 14 isolates from a manufactured gas plant waste site, to sorb 14C-phenanthrene and to determine whether the presence of the suspended cells would reduce the distribution coefficient (Kd) for phenanthrene with the sand. Column experiments were then used to test the mobility of isolates that reduced the Kd for phenanthrene and to test the most mobile isolate for its ability to enhance the transport of phenanthrene. All of the isolates tested passively sorbed phenanthrene, and most but not all of the isolates reduced the Kd for phenanthrene. Some, but not all, of those isolates were mobile in column experiments. The most mobile isolate significantly enhanced the transport of phenanthrene in aquifer sand, reducing its retardation coefficient by 25% at a cell concentration of approximately 5 x 10(7) ml-1. The experimental results demonstrated that mobile bacteria may enhance the transport of PAHs in the subsurface. PMID:8250555

  16. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat.

    PubMed

    Liu, Juan; Xiang, Yanbing; Zhang, Zhiming; Ling, Wanting; Gao, Yanzheng

    2017-06-01

    Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

  17. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  18. Neutral and ionized polycyclic aromatic hydrocarbons, diffuse interstellar bands and the ultraviolet extinction curve

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Allamandola, Louis John

    1993-01-01

    Neutral naphthalene C10H8, phenanthrene C14H10 and pyrene C16H10 absorb strongly in the ultraviolet region and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these polycyclic aromatic hydrocarbons (PAHs) absorb in the visible C10H8(+) has 13 discrete absorption bands which fall between 6800 and 4500 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBs at 6520 and 6151 A, other strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in Ne, wavelengths which fall very close to the strongest DIB at 4430 A. If C16H10(+) or a closely related pyrene-like ion, is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. An intense, very broad UV-to-visible continuum is reported which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR radiation.

  19. Experimental Electronic Spectroscopy of Two PAHs: Naphthalene and 2-METHYL Naphthalene

    NASA Astrophysics Data System (ADS)

    Friha, H.; Feraud, G.; Pino, T.; Brechignac, Ph.; Parneix, P.; Dhaoudi, Z.; Jaidane, N.; Galila, H.; Troy, T.; Schmidt, T.

    2011-06-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) was suggested in the mid-80's. Since then, their important role in the physico-chemical evolution of the ISM has been confirmed. Interstellar PAHs have been in particular proposed as possible carriers of some Diffuse Interstellar Bands (DIBs). These absorption bands are seen in the spectra of reddened stars from the visible to the near infrared and constitute a major astrophysical issue. Our purpose is to obtain electronic spectra of gas phase PAHs which will be used to probe their participation to the interstellar extinction curve from the visible (DIBs) to the UV (bump). For this goal PAHs cations represent an excellent set of target species. A new way of forming PAH+-Ar_n clusters cations has been implemented in the experimental set-up 'ICARE' at ISMO (Orsay) giving us the capability to measure the electronic spectra of cold PAH cations in the gas phase through the "Ar tagging" trick. Two molecules have been investigated in this way: naphthalene (C_1_0H_8) and 2- methyl naphthalene (C_1_1H_1_0). Clusters of naphthalene and (or 2-methyl-naphthalene) with Ar atoms are first formed in a supersonic jet, before being hit by a 281 nm laser beam which photo-ionizes the clusters which are then injected in a molecular beam through a skimmer. A tunable laser beam crossing downstream photo-dissociates the cations. The bare PAH fragments are detected using a Time-Of-Flight spectrometer while scanning the visible laser wavelength from 470 to 690 nm.

  20. Assessment of hydrocarbons concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at Karachi coast.

    PubMed

    Siddiqi, Hina A; Ansari, Fayyaz A; Munshi, Alia B

    2009-01-01

    On 27 July 2003, Tasman Spirit spilled 31,000 tonnes of crude oil into the sea at the Karachi coast. This disaster badly affected the marine life (Flora and Fauna.) Present research has been proposed to ascertain the level of Polycyclic Aromatic hydrocarbons (PAHs) contamination in different fisheries including Fishes, Crustaceans; Crabs and Shrimps, Mollusks and Echinoderms along with passing time. Heavier components of crude oil such as Polycyclic Aromatic Hydrocarbons (PAHs) appear to cause most damages as these are relatively unreactive and persist in water. High concentrations of toxic PAHs were observed in all the fisheries and shellfishes caught form oil-impacted area. In this study fishes were found most contaminated than shellfishes i.e. summation operator 16 PAH = 1821.24 microg/g and summation operator 1164.34 microg/g, respectively. Naphthalene was found in the range of 0.042-602.23 microg/g. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were detected in the range 0.008-80.03 microg/g, fluoranthene, pyrene, benzo(a)anthracene and chrysene 0.0008-221.32 microg/g, benzo(b) fluoranthene, benzo(k)fluoranthene and benzo(a) pyrene 0.0005-7.71 microg/g, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene 0.02-503.7 microg/g. Dibenzo(a,h)anthracenre was not detected in any specie.

  1. Ultra preconcentration of polycyclic aromatic hydrocarbons in smoked bacon by a combination of SPE and DLLME.

    PubMed

    Liu, Xiaofang; Zhou, Shu; Zhu, Quanfei; Ye, Yong; Chen, Huaixia

    2014-09-01

    A sample pretreatment method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was established for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in smoked bacon samples. In the SPE-DLLME process, three PAHs including naphthalene (Naph), phenanthrene (Phen) and pyrene (Pyr) were extracted from samples and transferred into C18 SPE cartridge. The target analytes were subsequently eluted with 1.2 ml of acetonitrile-dichloromethane (5:1, v/v) mixture solution. The eluent was injected directly into the 5.0 ml ultrapure water in the subsequent DLLME procedure. The sedimented phase was concentrated under a gentle nitrogen flow to 120.0 µl. Finally, the analytes in the extraction solvent were determined by high-performance liquid chromatography with a ultra-violet detector. Some important extraction parameters affecting the performance, such as the sample solution flow rate, breakthrough volume, salt addition as well as the type and volume of the elution solvent were optimized. The developed method provided an ultra enrichment factors for PAHs ranged from 3478 to 3824. The method was applied for the selective extraction and sensitive determination of PAHs in smoked bacon samples. The limits of detection (S/N = 3) were 0.05, 0.01, 0.02 μg kg(-1) for Naph, Phen, Pyr, respectively. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    PubMed

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.

    PubMed

    Shahsavari, Esmaeil; Adetutu, Eric M; Taha, Mohamed; Ball, Andrew S

    2015-05-15

    Rhizoremediation, the use of the plant rhizosphere and associated microorganisms represents a promising method for the clean up of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) including phenanthrene and pyrene, two model PAHs. Although numerous studies have been published reporting the degradation of phenanthrene and pyrene, very few evaluate the microbial basis of the rhizoremediation process through the application of molecular tools. The aim of this study was to investigate the effect of wheat on the degradation of two model PAHs (alone or in combination) and also on soil bacterial, fungal and nidA gene (i.e. a key gene in the degradation of pyrene) communities. The addition of wheat plants led to a significant enhancement in the degradation of both phenanthrene and pyrene. In pyrene-contaminated soils, the degradation rate increased from 15% (65 mg/kg) and 18% (90 mg/kg) in unplanted soils to 65% (280 mg/kg) and 70% (350 mg/kg) in planted treatments while phenanthrene reduction was enhanced from 97% (394 mg/kg) and 87% (392 mg/kg) for unplanted soils to 100% (406 mg/kg) and 98% (441 mg/kg) in the presence of wheat. PCR-DGGE results showed that the plant root let to some changes in the bacterial and fungal communities; these variations did not reflect any change in hydrocarbon-degrading communities. However, plate counting, traditional MPN and MPN-qPCR of nidA gene revealed that the wheat rhizosphere led to an increase in the total microbial abundance including PAH degrading organisms and these increased activities resulted in enhanced degradation of phenanthrene and pyrene. This clearer insight into the mechanisms underpinning PAH degradation will enable better application of this environmentally friendly technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms

    NASA Astrophysics Data System (ADS)

    Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural attenuation of environmental contaminants. Understanding of diversity and physiology of anaerobic PAH degradation will contribute to remediation efforts of low-oxygen environments such as aquifers or river sediments.

  5. Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells

    NASA Astrophysics Data System (ADS)

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.

  6. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE PAGES

    Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...

    2018-04-01

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  7. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-12-15

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m 2 )/day. The estimated one-year total flux of phenanthrene was -7.9×10 5 (ng/m 2 )/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, Mitra C.; James Minick, D.; Truong, Lisa

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  9. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix-isolated neutral PAHs and related molecules should be useful for the search for these species in dense clouds on the basis of observed absorption band positions. Furthermore, these data permit determination of column densities to better than a factor of 3 for PAHs in dense clouds. Column density determination of detected aromatics to better than a factor of 3 will, however, require good knowledge about the nature of the matrix in which the PAH is embedded and laboratory studies of relevant samples.

  10. Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru — Comparison of different fuel types used for cooking☆

    PubMed Central

    Adetona, Olorunfemi; Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C.; Aguilar-Villalobos, Manuel; Needham, Larry L.; Hall, Daniel B.; Cassidy, Brandon E.; Naeher, Luke P.

    2016-01-01

    Women and children in developing countries are often exposed to high levels of air pollution including polycyclic aromatic hydrocarbons (PAHs), which may negatively impact their health, due to household combustion of biomass fuel for cooking and heating. We compared creatinine adjusted hydroxy-PAH (OH-PAH) concentrations in pregnant women in Trujillo, Peru who cook with wood to levels measured in those who cook with kerosene, liquefied petroleum gas or a combination of fuels. Seventy-nine women were recruited for the study between May and July 2004 in the first trimester of their pregnancy. Urine samples were collected from the subjects in the first, second and third trimesters for OH-PAH analyses. The concentrations of the OH-PAHs were compared across the type of fuel used for cooking and pregnancy trimesters. The relationships between OH-PAHs levels in the first trimester and concurrently measured personal exposures to PM2.5, carbon monoxide and nitrogen dioxide together with their indoor and outdoor air concentrations were also investigated. Women cooking with wood or kerosene had the highest creatinine adjusted OH-PAH concentrations compared with those using gas, coal briquette or a combination of fuels. Concentrations of creatinine adjusted 2-hydroxy-fluorene, 3-hydroxy-fluorene, 1-hydroxy-fluorene, 2-hydroxy-phenanthrene and 4-hydroxy-phenanthrene were significantly higher (p<0.05) in women who used wood or kerosene alone compared with women who used liquefied petroleum gas (LPG), coal briquette or a combination of fuels. An increase in the concentrations of creatinine adjusted 9-hydroxy-fluorene, 1-hydroxy-phenanthrene, 2-hydroxy-phenanthrene, 4-hydroxy-phenanthrene and 1-hydroxy-pyrene in the third trimesters was also observed. Weak positive correlation (Spearman correlation coefficient, ρ<0.4; p<0.05) was observed between all first trimester creatinine adjusted OH-PAHs and indoor (kitchen and living room), and personal 48-h TWA PM2.5. Women who cooked exclusively with wood or kerosene had higher creatinine adjusted OH-PAH levels in their urine samples compared to women who cooked with LPG or coal briquette. PMID:23314038

  11. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, (207/206)Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.

    PubMed

    Vane, C H; Chenery, S R; Harrison, I; Kim, A W; Moss-Hayes, V; Jones, D G

    2011-03-13

    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and (207/206)Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg(-1), total PAHs from 19 to 16,163 μg kg(-1) and total PCBs between less than 4.3 to 1217 μg kg(-1). Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965-1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg(-1), while (207/206)Pb isotope ratios spanned 0.838-0.876, indicative of various proportions of 'background', British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores.

  12. Screening and determination of polycyclic aromatic hydrocarbons in seafoods using QuEChERS-based extraction and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Gratz, Samuel R; Ciolino, Laura A; Mohrhaus, Angela S; Gamble, Bryan M; Gracie, Jill M; Jackson, David S; Roetting, John P; McCauley, Heather A; Heitkemper, Douglas T; Fricke, Fred L; Krol, Walter J; Arsenault, Terri L; White, Jason C; Flottmeyer, Michele M; Johnson, Yoko S

    2011-01-01

    A rapid, sensitive, and accurate method for the screening and determination of polycyclic aromatic hydrocarbons (PAHs) in edible seafood is described. The method uses quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based extraction and HPLC with fluorescence detection (FLD). The method was developed and validated in response to the massive Deepwater Horizon oil spill in the Gulf of Mexico. Rapid and highly sensitive PAH screening methods are critical tools needed for oil spill response; they help to assess when seafood is safe for harvesting and consumption. Sample preparation involves SPE of edible seafood portions with acetonitrile, followed by the addition of salts to induce water partitioning. After centrifugation, a portion of the acetonitrile layer is filtered prior to analysis via HPLC-FLD. The chromatographic method uses a polymeric C18 stationary phase designed for PAH analysis with gradient elution, and it resolves 15 U.S. Environmental Protection Agency priority parent PAHs in fewer than 20 min. The procedure was validated in three laboratories for the parent PAHs using spike recovery experiments at PAH fortification levels ranging from 25 to 10 000 microg/kg in oysters, shrimp, crab, and finfish, with recoveries ranging from 78 to 99%. Additional validation was conducted for a series of alkylated homologs of naphthalene, dibenzothiophene, and phenanthrene, with recoveries ranging from 87 to 128%. Method accuracy was further assessed based on analysis of National Institute of Standards and Technology Standard Reference Material 1974b. The method provides method detection limits in the sub to low ppb (microg/kg) range, and practical LOQs in the low ppb (microg/kg) range for most of the PAH compounds studied.

  13. Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires.

    PubMed

    Olivella, M A; Ribalta, T G; de Febrer, A R; Mollet, J M; de Las Heras, F X C

    2006-02-15

    Extensive forest fires occurred in Catalonia, northern Spain, in 1994. In our study, concentrations and profiles of 12 parent polycyclic aromatic hydrocarbons (PAHs) were determined in riverine waters, ash and sediment samples at nine sampling sites (W1-W9) and at three sampling dates from Llobregat hydrographic basin: in August, 1994, one month after the extensive forest fires; in September, 1994, after the first heavy autumn rainfalls and in January, 1995, six months after forest fires. In August 1994, the total concentrations of 12 PAHs measured in riverine waters varied from 2 ng/l to 336 ng/l. In September 1994, the total PAH concentrations decreased to 0.2-31 ng/l and in January 1995, from 9 ng/l to 73 ng/l. In August, the composition pattern of PAHs showed a distribution dominated by 4-ring PAHs (pyrene, chrysene+triphenylene, benzo(a)anthracene) at W3-W6, W8 and W9 and 3-ring PAHs (phenanthrene) at W1, W2 and W7. In September, a preference by 3-ring PAHs (phenanthrene) at all sampling sites except W5 was shown and in January was clearly dominated by 4-ring PAHs (chrysene+triphenylene, pyrene, benzo(a)anthracene) at all sampling sites. In ash and sediment samples, the total concentrations of 12 PAHs ranged from 1.3 ng/g to 19 ng/g. The dominant compound was phenanthrene.

  14. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri; Ni, Chi-Kung

    2011-05-14

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.

  15. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Enhanced arsenic uptake and polycyclic aromatic hydrocarbon (PAH)-dissipation using Pteris vittata L. and a PAH-degrading bacterium.

    PubMed

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong

    2018-05-15

    This study examined the effects of P. vittata and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation. Bacterial inoculation substantially increased As accumulation in plants by 27.8% (frond) and 27.5% (root) at 60d, respectively, compared with the non-inoculated treatment, although temporal change of As translocation and reduction in plants was observed. Bacterial inoculation positively affected plants by improving growth, nutrition and antioxidative activities, and helped to modify soil As availability to the plants, which may benefit in plant tolerance and As accumulation. Plant and bacteria association enhanced phenanthrene dissipation from the soil, with the highest dissipation rate of 96.4% at 60d in the rhizosphere, which might be associated with enhanced bacterial population and activity inspired by the growth of plant. The result reveals that combination of P. vittata and PAH-degrading bacteria can promote As accumulation and phenanthrene dissipation, and can be exploited as a promising strategy for As and PAH co-contamination remediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2016-11-01

    Bioremediation of polycyclic aromatic hydrocarbons (PAHs) is extremely challenging when they coexist with heavy metals. This constrain has led to adsorption-based techniques that help immobilize the metals and reduce toxicity. However, the adsorbents can also non-selectively bind the organic compounds, which reduces their bioavailability. In this study we developed a surface-engineered organoclay (Arquad ® 2HT-75-bentonite-palmitic acid) which enhanced bacterial proliferation and adsorbed cadmium, but elevated phenanthrene bioavailability. Adsorption models of single and binary solutes revealed that the raw bentonite adsorbed cadmium and phenanthrene non-selectively at the same binding sites and sequestrated phenanthrene. In contrast, cadmium selectively bound to the deprotonated state of carboxyl groups in the organoclay and phenanthrene on the outer surface of the adsorbent led to a microbially congenial microenvironment with a higher phenanthrene bioavailability. This study provided valuable information which would be highly important for developing a novel clay-modulated bioremediation technology for cleaning up PAHs under mixed-contaminated situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers.

    PubMed Central

    Popp, W; Vahrenholz, C; Schell, C; Grimmer, G; Dettbarn, G; Kraus, R; Brauksiepe, A; Schmeling, B; Gutzeit, T; von Bülow, J; Norpoth, K

    1997-01-01

    OBJECTIVES: To investigate the specificity of biological monitoring variables (excretion of phenanthrene and pyrene metabolites in urine) and the usefulness of some biomarkers of effect (alkaline filter elution, 32P postlabelling assay, measurement of sister chromatid exchange) in workers exposed to polycyclic aromatic hydrocarbons (PAHs). METHODS: 29 coke oven workers and a standardised control group were investigated for frequencies of DNA single strand breakage, DNA protein cross links (alkaline filter elution assay), sister chromatid exchange, and DNA adducts (32P postlabelling assay) in lymphocytes. Phenanthrene and pyrene metabolites were measured in 24 hour urine samples. 19 different PAHs (including benzo(a)pyrene, pyrene, and phenanthrene) were measured at the workplace by personal air monitoring. The GSTT1 activity in erythrocytes and lymphocyte subpopulations in blood was also measured. RESULTS: Concentrations of phenanthrene, pyrene, and benzo(a)pyrene in air correlated well with the concentration of total PAHs in air; they could be used for comparisons of different workplaces if the emission compositions were known. The measurement of phenanthrene metabolites in urine proved to be a better biological monitoring variable than the measurement of 1-hydroxypyrene. Significantly more DNA strand breaks in lymphocytes of coke oven workers were found (alkaline filter elution assay); the DNA adduct rate was not significantly increased in workers, but correlated with exposure to PAHs in a semiquantitative manner. The number of sister chromatid exchanges was lower in coke oven workers but this was not significant; thus counting sister chromatid exchanges was not a good variable for biomonitoring of coke oven workers. Also, indications for immunotoxic influences (changes in lymphocyte subpopulations) were found. CONCLUSIONS: The measurement of phenanthrene metabolites in urine seems to be a better biological monitoring variable for exposure to PAHs than measurement of hydroxypyrene. The alkaline filter elution assay proved to be the most sensitive biomarker for genotoxic damage, whereas the postlabelling assay was the only one with some specificity for DNA alterations caused by known compounds. PMID:9155778

  19. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase.

    PubMed

    Hernández-Vega, Juan C; Cady, Brian; Kayanja, Gilbert; Mauriello, Anthony; Cervantes, Natalie; Gillespie, Andrea; Lavia, Lisa; Trujillo, Joshua; Alkio, Merianne; Colón-Carmona, Adán

    2017-01-05

    Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H 2 O 2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium.

    PubMed

    Chen, Baoliang; Ding, Jie

    2012-08-30

    To assess the "bioaccessible" pool of mycelia-bound polycyclic aromatic hydrocarbons (PAHs) and to quantify its biodegradation kinetics in soil, a soil-slurry system containing mycelial pellets of Phanerochaete chrysosporium as a separable biophase was set up. In sterilized and unsterilized soil-slurry, the distribution and dissipation of phenanthrene and pyrene in soil, fungal body of P. chrysosporium and water were independently quantified over the incubation periods. Biosorption and biodegradation contributions to bio-dissipation of dissolved- and sorbed-PAHs were identified. The biodegradation kinetics of PAHs by allochthonous P. chrysosporium and soil wild microorganisms was higher than those predicted by a coupled desorption-biodegradation model, suggesting both allochthonous and wild microorganisms could access sorbed-PAHs. The obvious hysteresis of PAHs in soil reduced their biodegradation, while the biosorbed-PAHs in P. chrysosporium body as an interim pool exhibited reversibly desorption and were almost exhausted via biodegradation. Both biosorption and direct biodegradation of PAHs in soil slurry were stimulated by allochthonous P. chrysosporium. After 90-day incubation, the respective biodegradation percentages for phenanthrene and pyrene were 63.8% and 51.9% in the unsterilized soil without allochthonous microorganisms, and then increased to 94.9% and 90.6% when amended with live P. chrysosporium. These indicate that allochthonous and wild microorganisms may synergistically attack sorbed-PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    PubMed

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stigmastane and hopanes as conserved biomarkers for estimating oil biodegradation in a former refinery plant-contaminated soil.

    PubMed

    Gagni, Simona; Cam, Darinn

    2007-05-01

    In the last decade, a refinery plant located in Lido Adriano, East Ravenna (Italy) has been subject to mineral oil contamination. The mineral crude oil, extracted from the offshore in Adriatic sea, consisted of 78% aliphatics, cyclic alkanes and saturated polycyclic hydrocarbons, 9% aromatics, polycyclic aromatic hydrocarbons (PAHs) and alkylated derivatives, and 13% of tars/asphaltenes. Analysis of soil after 10 years of natural attenuation revealed a complete depletion of linear (n-C(9)-C(24)), light aromatics (C1-C3/benzenes) and PAHs (C2/naphthalene, C1/phenanthrene); besides a substantial degradation of isoprenoids prystane and phytane, branched and cyclic alkanes. The remaining contaminants which withstood to natural degradation was saturated polycyclic hydrocarbons (perhydro-PAH derivatives), unsaturated polycyclic hydrocarbons (tetrahydro, dihydro-PAH derivatives), terpanes, steranes and unidentified compounds. Such residues resulted in 80% reduction of its concentration after two months of laboratory treatment. Samples were extracted by organic solvents, separated by silica/alumina gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Identification and quantification of aliphatic, cyclic alkanes, typical PAHs, terpanes and steranes were carried out to chromatograms of M/Z=85, 83, individual M/Zs, M/Z=191 and 217, respectively. The present work shows that, among numerous biomarkers present in the source oil, stigmastane and two isomers of hopane showed invariable concentrations after laboratory experiments that mimic natural biodegradation in the field, so they can be used as conserved internal biomarkers. These are very useful tools to assess alterations in less stable classes of saturated compounds contained in petroleum. Marked degradation of perhydro, tetrahydro, dihydro-PAH derivatives in the laboratory treatment has been evidenced.

  3. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar.

    PubMed

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2018-07-03

    This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.

  4. Sulfate-Reducing Naphthalene Degraders Are Picky Eaters.

    PubMed

    Wolfson, Sarah J; Porter, Abigail W; Kerkhof, Lee J; McGuinness, Lora M; Prince, Roger C; Young, Lily Y

    2018-06-25

    Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source. Pristine coastal sediments were obtained from the Jacques Cousteau National Estuarine Research Reserve in Tuckerton, New Jersey, an ecological reserve which has no direct input or source of hydrocarbons. After an initial exposure to naphthalene, primary anaerobic transfer cultures completely degraded 500 µM naphthalene within 139 days. Subsequent transfer cultures mineralized naphthalene within 21 days with stoichiometric sulfate loss. Enriched cultures efficiently utilized only naphthalene and 2-methylnaphthalene from the hydrocarbon mixtures in crude oil. To determine the microorganisms responsible for naphthalene degradation, stable isotope probing was utilized on cultures amended with fully labeled 13 C-naphthalene as substrate. Three organisms were found to unambiguously synthesize 13 C-DNA from 13 C-naphthalene within 7 days. Phylogenetic analysis revealed that 16S rRNA genes from two of these organisms are closely related to the known naphthalene degrading isolates NaphS2 and NaphS3 from PAH-contaminated sites. A third 16S rRNA gene was only distantly related to its closest relative and may represent a novel naphthalene degrading microbe from this environment.

  5. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Kruså, M.; Krecl, P.; Johansson, C.; Gustafsson, Ã.-.

    2009-05-01

    Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive") versus fossil fuel (14C "dead") combustion. Here, the first compound-specific radiocarbon analysis (CSRA) of atmospheric polycyclic aromatic hydrocarbons (PAHs) was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in using residential wood combustion (RWC) means that this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from -138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass) contribution, which was constrained to 71-87% for the individual PAHs. Indeno[cd]pyrene plus benzo[ghi]perylene had an fbiomass of 71%, while fluoranthene and phenanthrene (gas phase) had the highest biomass contribution at 87%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon) fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs established that RWC is the dominating source of atmospheric PAHs to this region of the boreal zone with some variations among RWC contributions to specific PAHs.

  6. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.

  7. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    PubMed

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  8. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    PubMed Central

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  9. Heterologous Expression of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes from a Novel Pyrene-Degrading Betaproteobacterium

    PubMed Central

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene. PMID:22427500

  10. A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant

    NASA Astrophysics Data System (ADS)

    Brette, Fabien; Shiels, Holly A.; Galli, Gina L. J.; Cros, Caroline; Incardona, John P.; Scholz, Nathaniel L.; Block, Barbara A.

    2017-01-01

    The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.

  11. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish.

    PubMed

    Geier, Mitra C; James Minick, D; Truong, Lisa; Tilton, Susan; Pande, Paritosh; Anderson, Kim A; Teeguardan, Justin; Tanguay, Robert L

    2018-04-06

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. We constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilization (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters.

    PubMed

    Sauret, Caroline; Séverin, Tatiana; Vétion, Gilles; Guigue, Catherine; Goutx, Madeleine; Pujo-Pay, Mireille; Conan, Pascal; Fagervold, Sonja K; Ghiglione, Jean-François

    2014-11-01

    By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil

    PubMed Central

    Thomas, François; Cébron, Aurélie

    2016-01-01

    Over the last decades, understanding of the effects of plants on soil microbiomes has greatly advanced. However, knowledge on the assembly of rhizospheric communities in aged-contaminated industrial soils is still limited, especially with regard to transcriptionally active microbiomes and their link to the quality or quantity of carbon sources. We compared the short-term (2–10 days) dynamics of bacterial communities and potential PAH-degrading bacteria in bare or ryegrass-planted aged-contaminated soil spiked with phenanthrene, put in relation with dissolved organic carbon (DOC) sources and polycyclic aromatic hydrocarbon (PAH) pollution. Both resident and active bacterial communities (analyzed from DNA and RNA, respectively) showed higher species richness and smaller dispersion between replicates in planted soils. Root development strongly favored the activity of Pseudomonadales within the first 2 days, and of members of Actinobacteria, Caulobacterales, Rhizobiales, and Xanthomonadales within 6–10 days. Plants slowed down the dissipation of phenanthrene, while root exudation provided a cocktail of labile substrates that might preferentially fuel microbial growth. Although the abundance of PAH-degrading genes increased in planted soil, their transcription level stayed similar to bare soil. In addition, network analysis revealed that plants induced an early shift in the identity of potential phenanthrene degraders, which might influence PAH dissipation on the long-term. PMID:26903971

  14. Measurement and estimated health risks of semivolatile organic compounds (PCBs, PAHs, pesticides, and phthalates) in ambient air at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, G.W.; Cooper, A.T.; Blanton, M.L.

    1997-09-01

    Air samples for polychlorinated biphenyls (PCBs), chlorinated pesticides, phthalate plasticizers, and polycyclic aromatic hydrocarbons (PAHs) were collected at three Hanford Site locations (300-Area South Gate, southeast of 200-East Area, and a background location near Rattlesnake Springs). Samples were collected using high-volume air samplers equipped with a glass fiber filter and polyurethane foam plug sampling train. Target compounds were extracted from the sampling trains and analyzed using capillary gas chromatography with either electron capture detection or mass selective detection. Twenty of the 28 PCB congeners analyzed were found above the detection limits, with 8 of the congeners accounting for over 80%more » of the average PCB concentrations. The average sum of all individual PCB congeners ranged from 500-740 pg/m{sup 3}, with little apparent difference between the sampling locations. Twenty of the 25 pesticides analyzed were found above the detection limits, with endosulfan I, endosulfan II, and methoxychlor having the highest average concentrations. With the exception of the endosulfans, all other average pesticide concentrations were below 100 pg/m{sup 3}. There was little apparent difference between the air concentrations of pesticides measured at each location. Sixteen of the 18 PAHs analyzed were found above the detection limit. Phenanthrene, fluoranthene, pyrene, fluorene, chrysene, benzo(b)fluoranthene, and naphthalene were the only PAHs with average concentrations above 100 pg/m{sup 3}. Overall, the 300 Area had higher average PAH concentrations compared to the 200-East Area and the background location at Rattlesnake Springs; however, the air concentrations at the 300-Area also are influenced by sources on the Hanford Site and from nearby communities.« less

  15. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar

    NASA Astrophysics Data System (ADS)

    Hauswirth, Scott C.; Miller, Cass T.

    2014-10-01

    The remediation of former manufactured gas plant (FMGP) sites contaminated with tar DNAPLs (dense non-aqueous phase liquids) presents a significant challenge. The tars are viscous mixtures of thousands of individual compounds, including known and suspected carcinogens. This work investigates the use of combinations of mobilization, solubilization, and chemical oxidation approaches to remove and degrade tars and tar components in porous medium systems. Column experiments were conducted using several flushing solutions, including an alkaline-polymer (AP) solution containing NaOH and xanthan gum (XG), a surfactant-polymer (SP) solution containing Triton X-100 surfactant (TX100) and XG, an alkaline-surfactant-polymer (ASP) solution containing NaOH, TX100, and XG, and base-activated sodium persulfate both with and without added TX100. The effectiveness of the flushing solutions was assessed based on both removal of polycyclic aromatic hydrocarbon (PAH) mass and on the reduction of dissolved-phase PAH concentrations. SP flushes of 6.6 to 20.9 PV removed over 99% of residual PAH mass and reduced dissolved-phase concentrations by up to two orders of magnitude. ASP flushing efficiently removed 95-96% of residual PAH mass within about 2 PV, and significantly reduced dissolved-phase concentrations of several low molar mass compounds, including naphthalene, acenaphthene, fluorene, and phenanthrene. AP flushing removed a large portion of the residual tar (77%), but was considerably less effective than SP and ASP in terms of the effect on dissolved PAH concentrations. Persulfate was shown to oxidize tar components, primarily those with low molar mass, however, the overall degradation was relatively low (30-50% in columns with low initial tar saturations), and the impact on dissolved-phase concentrations was minimal.

  16. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    PubMed

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of < or = 2.5 microm (accounting for 93% of the total mass). The peak in 2.5-10 microm was clear for cooking lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  17. Polycyclic Aromatic Hydrocarbons In Edible Mushrooms from Niger Delta, Nigeria: Carcinogenic and Non-Carcinogenic Health Risk Assessment

    PubMed

    Igbiri, Sorbari; Udowelle, Nnaemeka Arinze; Ekhator, Osazuwa Clinton; Asomugha, Rose Ngozi; Igweze, Zelinjo Nkeiruka; Orisakwe, Orish Ebere

    2017-02-01

    In the oil-rich Niger Delta, hydrocarbon pollution and oil spillages, gas flaring and sundry anthropogenic activities constitute sources of polycyclic aromatic hydrocarbons (PAHs), with food contamination playing a major role in human exposure. In this study we assessed PAH levels in wild and cultivated edible mushroom species consumed by the general population from the oil producing Niger Delta, Nigeria. The concentrations of USEPA-16 PAHs were determined by gas chromatography and carcinogenic and non-carcinogenic health risks were calculated. The concentrations of USEPA-16 PAHs ranged from 0.02 mg/kg – 3.37 mg/kg. The dietary intake of carcinogenic and non-carcinogenic USEPA-16 PAHs (Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Phenanthrene, Flourene, Flouranthene, Pyrene, Benzo[a]Anthracene, Chrysene, Benzo[a]Pyrene, Benzo[b]Flouranthene, Benzo[K]Flouranthene, Benzo[g,h,i] Perylene, Dibenz[a,h]Anthracene and Ideno[1,2,3-cd]Pyrene) for adults, adolescents and seniors ranged from 0.00 – 0.05 mg/kg/day, 0.00 – 0.06 mg/kg/day and 0.00 – 0.07 mg/kg/day. The BaPeq ranged from 0.02 – 2.76 with margin of exposure MOE values of BaP ranging from 3,500,000 to 700,000, 3,500,000 and 3,500,000 to 7,000,000 for adults, adolescents and seniors indicating very insignificant health risk. The incremental lifetime cancer risk was within the safe range of 1.56x10-8 – 1.73x10-6 with the highest calculated risk found for wild Pleurotus ostreatus mushroom species from the study area. Creative Commons Attribution License

  18. Molecular modelling investigations on the possibility of phenanthrene dimers to be the primary nuclei of soot

    NASA Astrophysics Data System (ADS)

    Wei, Mingrui; Wu, Sheng; Li, Fan; Zhang, Dongju; Zhang, Tingting; Guo, Guanlun

    2017-11-01

    Pyrene dimerisation was successfully used to model the beginning of soot nucleation in some simulation models. However, the quantum mechanics (QM) calculations proved that the binding energy of a PAH dimer with three six-member rings was similar to that of a pyrene dimer. Meanwhile, the high concentration of phenanthrene at flame conditions indicated high probability of collisions among them. The small difference of the binding energy and high concentration indicated that PAHs structurally smaller than pyrene also could be involved in soot inception. Hence, binary collisions of phenanthrene were simulated to find out whether phenanthrene dimers can serve as soot primary nuclei or not by using non-equilibrium molecular dynamics (MD). Three temperatures, six collision orientations and 155 initial translational velocities (ITVs) were considered. The results indicated that the number of dimers with lifetime over 10 ps which can serve as soot nuclei decreased from 52 at 1000 K to 17 at 1600 K, and further to 6 at 2400 K, which means that low temperature was more favourable for phenanthrene to form soot nuclei. Meanwhile, no soot nuclei were formed at the high velocity region (HVR), compared to 43 and 9 at low and middle velocity regions (LVR and MVR), respectively, when temperature was 1000 K. Also, no soot nuclei were formed at HVR when the temperature was raised to 1600 K and 2400 K. This indicated that HVR was unfavourable for phenanthrene to form soot nuclei. The results computationally further illustrated that small PAHs such as phenanthrene could serve as soot primary nuclei, since they have similar mole fractions in some flames. This may be useful for future soot simulation models.

  19. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    PubMed

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.

  20. Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology.

    PubMed

    Alcantara, T; Pazos, M; Gouveia, S; Cameselle, C; Sanroman, M A

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity to decontaminate polluted soils with phenanthrene as a model PAH using a combination of two technologies: electrokinetic remediation and Fenton process. Kaolinite was used as a model sample that was artificially polluted at the laboratory at an initial concentration of phenanthrene of 500 mg kg(-1) of dried kaolinite. The standard electrokinetic process resulted in negligible removal of phenanthrene from the kaolinite sample. Faster and more efficient degradation of this compound can be promoted by introduction of a strong oxidant into the soil such as hydroxyl radicals. For this reason, the Fenton reactions have been induced in several experiments in which H(2)O(2) (10%) was used as flushing solution, and kaolinite polluted with iron was used. When anode and cathode chambers were filled with H(2)O(2) (10%), the kaolinite pH is maintained at an acid value around 3.5 without pH control and an overall removal and destruction efficiency of phenanthrene of 99% was obtained in 14 days by applying a voltage gradient of 3 V cm(-1). Therefore, it is evident that a combined technology of electrokinetic remediation and Fenton reaction is capable of simultaneously removing and degrading of PAHs in polluted model samples with kaolinite.

  1. Bioremoval of priority polycyclic aromatic hydrocarbons by a microbial community with high sorption ability.

    PubMed

    Sanches, Sandra; Martins, Mónica; Silva, Ana F; Galinha, Claudia F; Santos, Maria A; Pereira, Inês A C; Crespo, Maria Teresa Barreto

    2017-02-01

    The treatment of large volumes of wastewater during oil refining is presently a challenge. Bioremediation has been considered an eco-friendly approach for the removal of polycyclic aromatic hydrocarbons (PAHs), which are one of the most hazardous groups of organic micropollutants. However, it is crucial to identify native PAH-removing microorganisms for the development of an effective bioremediation process. This study reports the high potential of an anaerobic microbial consortium enriched from a petrochemical refinery wastewater to remove two priority PAHs-acenaphthene and phenanthrene. Seventy-seven percent of acenaphthene was removed within 17 h, whereas phenanthrene was no longer detected after 15 h. Bioremoval rates were extremely high (0.086 and 0.156 h -1 for acenaphthene and phenanthrene, respectively). The characterization of the microbial communities by next-generation sequencing and fluorescence in situ hybridization showed that the PAH-removing consortium was mainly composed by bacteria affiliated to Diaphorobacter and Paracoccus genera, independently of the PAH tested. Moreover, besides biodegradation, biosorption was a relevant mechanism involved in the removal of both PAHs, which is an important finding since biosorption is less expensive than biodegradation and can be carried out with dead biomass. Although biodegradation is the most commonly reported biological mechanism for PAH removal, this study demonstrated that biosorption by this microbial community may be extremely efficient for their removal. Given the outstanding ability of this microbial consortium to quickly remove the compounds addressed, it could be further applied for the bioremediation of PAHs in refinery wastewaters and other contaminated environments.

  2. Toxicity and photoactivation of PAH mixtures in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.; Ferraro, S.; Lamberson, J.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10more » d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.« less

  3. Development of miniaturized submersible fluorometers for the detection of aromatic hydrocarbons in marine waters

    NASA Astrophysics Data System (ADS)

    Tedetti, Marc; Bachet, Caroline; Joffre, Pascal; Ferretto, Nicolas; Guigue, Catherine; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic contaminants in aquatic environments. Due to their physico-chemical properties, PAHs are persistent and mobile, can strongly bioaccumulate in food chains and are harmful to living organisms. They are thus recognized by various international organizations as priority contaminants and are included in the list of 45 priority regulated substances by the European Union. Because of their aromatic structure, PAHs are "optically active" and have inherent fluorescence properties in the ultraviolet (UV) spectral domain (200-400 nm). Therefore, UV fluorescence spectroscopy has been successfully used to develop PAH sensors (i.e. UV fluorometers). Currently, five UV submersible fluorometers are commercially available for in situ measurements of PAHs: EnviroFlu-HC (TriOS Optical Sensors, Germany), Hydrocarbon Fluorometer (Sea & Sun Technology, Germany), HydroC ™ / PAH (CONTROS, Germany), UviLux AquaTracka (Chelsea Technology Group, UK) and Cyclops-7 (Turner Designs, US). These UV fluorometers are all dedicated to the measurement of phenanthrene (λEx /λEm: 255/360 nm), one of the most abundant and fluorescent PAHs found in the aquatic environment. In this study, we developed original, miniaturized submersible fluorometers based on deep UV light-emitting diodes (LEDs) for simultaneous measurements of two PAHs of interest: the MiniFluo-UV 1 for the detection of phenanthrene (PHE, at λEx /λEm: 255/360 nm) and naphthalene (NAP, at λEx /λEm: 270/340 nm), and the MiniFluo-UV 2 for the detection of fluorene (FLU, at λEx /λEm: 255/315 nm) and pyrene (PYR, at λEx /λEm: 270/380 nm). The MiniFluo-UV sensors have several features: measurements of two PAHs at the same time, small size (puck format, 80 x 60 mm), very low energy consumption (500 mW at 12V), LED monitoring, analog and numerical communication modes. The two MiniFluo-UV sensors were first tested in the laboratory: 1) on standard solutions of PHE, NAP, FLU and PYR in the range 0.1-100 µg l-1 and 2) on a water soluble fraction (WSF) of crude oil diluted in 0.2 µm filtered seawater (0 to 50% of WSF in seawater). Then, the MiniFluo-UV sensors were mounted onto a conductivity temperature depth (CTD) vertical profiler and tested at sea. Several profiles were performed in the Bay of Marseilles, in different harbours and hydrocarbon-impacted sites. The MiniFluo-UV measurements performed in the laboratory and in the field were associated with spectrofluorometric (EEM/PARAFAC) and/or chromatographic (GC-MS) analyses. The result obtained show that the MiniFluo-UV are pertinent and efficient tool for monitoring hydrocarbon pollutions in the marine environment. This work is a contribution of three projects labelled by the Competitivity Cluster Mer PACA: FUI SEA EXPLORER, DGCIS - Eco industries VASQUE (PI: ACSA-ALCEN, Meyreuil, France) and ANR - ECOTECH IBISCUS (PI: M. Goutx, MIO, Marseille, France).

  4. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation.

    PubMed

    Dubrovskaya, Ekaterina; Pozdnyakova, Natalia; Golubev, Sergey; Muratova, Anna; Grinev, Vyacheslav; Bondarenkova, Anastasiya; Turkovskaya, Olga

    2017-02-01

    Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Kruså, M.; Krecl, P.; Johansson, C.; Gustafsson, Ã.-.

    2008-12-01

    Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive") versus fossil fuel (14C "dead") combustion. Here, the first compound-specific radiocarbon analysis (CSRA) of atmospheric polycylic aromatic hydrocarbons (PAHs) was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in residential wood combustion means than this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from -138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass) contribution that was constrained to a range of 71% for indeno[cd]pyrene+benzo[ghi]perylene to 87% for the gas phase phenanthrene and particulate fluoranthene, respectively. Indeno[cd]pyrene plus benzo[ghi]perylene, known to be enhanced in gasoline-powered motor vehicle exhaust compared to diesel exhaust, had the lowest contribution of biomass combustion of the measured PAHs by 9%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon) fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs demonstrate the non-uniformity of biomass combustion contribution to different PAHs even in a location with limited local emission sources and illustrates that regulatory efforts would not evenly reduce all PAHs.

  6. Evaluation of PAH contamination in soil treated with solid by-products from shale pyrolysis.

    PubMed

    Nicolini, Jaqueline; Khan, Muhammad Y; Matsui, M; Côcco, Lílian C; Yamamoto, Carlos I; Lopes, Wilson A; de Andrade, Jailson B; Pillon, Clenio N; Arizaga, Gregorio G Carbajal; Mangrich, Antonio S

    2015-01-01

    The aim of this work was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils to which solid shale materials (SSMs) were added as soil conditioners. The SSMs were derived from the Petrosix pyrolysis process developed by Petrobras (Brazil). An improved ultrasonic agitation method was used to extract the PAHs from the solid samples (soils amended with SSMs), and the concentrations of the compounds were determined by gas chromatography coupled to mass spectrometry (GC-MS). The procedure provided satisfactory recoveries, detection limits, and quantification limits. The two-, three-, and four-ring PAHs were most prevalent, and the highest concentration was obtained for phenanthrene (978 ± 19 μg kg(-1) in a pyrolyzed shale sample). The use of phenanthrene/anthracene and fluoranthene/pyrene ratios revealed that the PAHs were derived from petrogenic rather than pyrogenic sources. The measured PAH concentrations did not exceed national or international limit values, suggesting that the use of SSMs as soil conditioners should not cause environmental damage.

  7. Distribution of radioactivity in the chondrichthyes Squalus acanthias and the osteichthyes salmo gairdneri following intragastric administration of (9-/sup 14/C)phenanthrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solbakken, J.E.; Palmork, K.H.

    1980-12-01

    The fate of polycyclic hydrocarbons (PAH) in marine animals has received increasing attention in the last decade. The present studies dealing with spiny dogfish (Squalus acanthias) and rainbow trout (Salmo gairdneri) are part of a series of experiments with different marine organisms. All the experiments were performed under the same laboratory conditions using intragastric administration of the PAH-component, /sup 14/C-labelled phenanthrene. Thus it is possible to compare species differences of disposition of PAH in various marine organisms. The most pronounced differences in the disposition of phenanthrene between bony fish and cartilaginous fish in our studies are that the maximum valuemore » of radioactivity in the liver of cartilaginous fish occurred several days later than the corresponding value in bony fish. Furthermore, the radioactivity in cartilaginous fish was retained at a high level beyond 672 h (28 days), a time at which the radioactivity in bony fish is near the background values.« less

  8. Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures

    PubMed Central

    Näslund Andréasson, Sara; Mahteme, Haile; Sahlberg, Bo; Anundi, Helena

    2012-01-01

    Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed. PMID:22685482

  9. Unimolecular reaction energies for polycyclic aromatic hydrocarbon ions.

    PubMed

    West, Brandi; Rodriguez Castillo, Sarah; Sit, Alicia; Mohamad, Sabria; Lowe, Bethany; Joblin, Christine; Bodi, Andras; Mayer, Paul M

    2018-03-07

    Imaging photoelectron photoion coincidence spectroscopy was employed to explore the unimolecular dissociation of the ionized polycyclic aromatic hydrocarbons (PAHs) acenaphthylene, fluorene, cyclopenta[d,e,f]phenanthrene, pyrene, perylene, fluoranthene, dibenzo[a,e]pyrene, dibenzo[a,l]pyrene, coronene and corannulene. The primary reaction is always hydrogen atom loss, with the smaller species also exhibiting loss of C 2 H 2 to varying extents. Combined with previous work on smaller PAH ions, trends in the reaction energies (E 0 ) for loss of H from sp 2 -C and sp 3 -C centres, along with hydrocarbon molecule loss were found as a function of the number of carbon atoms in the ionized PAHs ranging in size from naphthalene to coronene. In the case of molecules which possessed at least one sp 3 -C centre, the activation energy for the loss of an H atom from this site was 2.34 eV, with the exception of cyclopenta[d,e,f]phenanthrene (CPP) ions, for which the E 0 was 3.44 ± 0.86 eV due to steric constraints. The hydrogen loss from PAH cations and from their H-loss fragments exhibits two trends, depending on the number of unpaired electrons. For the loss of the first hydrogen atom, the energy is consistently ca. 4.40 eV, while the threshold to lose the second hydrogen atom is much lower at ca. 3.16 eV. The only exception was for the dibenzo[a,l]pyrene cation, which has a unique structure due to steric constraints, resulting in a low H loss reaction energy of 2.85 eV. If C 2 H 2 is lost directly from the precursor cation, the energy required for this dissociation is 4.16 eV. No other fragmentation channels were observed over a large enough sample set for trends to be extrapolated, though data on CH 3 and C 4 H 2 loss obtained in previous studies is included for completeness. The dissociation reactions were also studied by collision induced dissociation after ionization by atmospheric pressure chemical ionization. When modeled with a simple temperature-based theory for the post-collision internal energy distribution, there was reasonable agreement between the two sets of data.

  10. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism.

    PubMed

    Gong, Beini; Wu, Pingxiao; Ruan, Bo; Zhang, Yating; Lai, Xiaolin; Yu, Langfeng; Li, Yongtao; Dang, Zhi

    2018-05-05

    Natural and cost-effective materials such as minerals can serve as supportive matrices to enhance biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study we evaluated and compared the regulatory role of two common soil minerals, i.e. kaolinite and quartz in phenanthrene (a model PAH) degradation by a PAH degrader Sphingomonas sp. GY2B and investigated the underlying mechanism. Overall kaolinite was more effective than quartz in promoting phenanthrene degradation and bacterial growth. And it was revealed that a more intimate association was established between GY2B and kaolinite. Si and O atoms on mineral surface were demonstrated to be involved in GY2B-mineral interaction. There was an higher polysaccharide/lipid content in the EPS (extracellular polymeric substances) secreted by GY2B on kaolinite than on quartz. Altogether, these results showed that differential bacterial growth, enzymatic activity, EPS composition as well as the interface interaction may explain the effects minerals have on PAH biodegradation. It was implicated that different interface interaction between different minerals and bacteria can affect microbial behavior, which ultimately results in different biodegradation efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viamajala, S.; Peyton, B. M.; Richards, L. A.

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energymore » of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.« less

  12. Stability issues in the determination of 19 urinary (free and conjugated) monohydroxy polycyclic aromatic hydrocarbons.

    PubMed

    Gaudreau, Éric; Bérubé, René; Bienvenu, Jean-François; Fleury, Normand

    2016-06-01

    Data on the stability of monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs; metabolites of PAHs) in urine are needed in order to effectively study the effects of PAHs in the body, but the relevant data are not available in the literature. Therefore, in this work, we investigated the stability of OH-PAHs in urine. For each OH-PAH studied, the free form (as opposed to the conjugated form) comprised <10 % of the total OH-PAH in urine samples obtained from a normal population, except for 9-OH-phenanthrene (where the free form represented 22.2 % of the total 9-OH-phenanthrene). 1-Naphthol and 9-OH-phenanthrene were found to be less stable in their free forms in urine than in their conjugated forms when the urine samples were stored at 4 °C or room temperature. Free 3-OH-fluoranthene was also very unstable at 4 °C or room temperature. The conjugated forms of the OH-PAHs were more stable than their corresponding free forms. However, the free and conjugated forms of all the OH-PAHs were stable in urine at -20 °C and -80 °C. A freeze and thaw assay also revealed that freezing and thawing had minimal impact on the stability of the OH-PAHs in urine. For the derivatized extracts, storing the samples under an argon atmosphere at 4 °C was found to maintain sample integrity. In order to measure the stabilities of 19 hydroxylated metabolites of PAHs in urine, we developed a method with sensitivity in the low pg/mL range using nine labeled internal standards. This method combined enzymatic deconjugation with liquid-liquid extraction, derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), and gas chromatography/tandem mass spectrometry (GC-MS/MS). Graphical abstract Stability of the conjugated forms of the OH-PAHs versus free forms (e.g. 1-naphthol).

  13. Yields of Bacterial Cells from Hydrocarbons

    PubMed Central

    Wodzinski, Richard S.; Johnson, Marvin J.

    1968-01-01

    A strain of Nocardia and one of Pseudomonas, both isolated on pristane (2,6,10,14-tetramethylpentadecane), gave cell yields of approximately 100% on n-octadecane and pristane. Both organisms grew more rapidly on the n-octadecane than on the pristane. A mixed culture, isolated on 3-methylheptane, whose two components were identified as species of Pseudomonas and of Nocardia, gave approximately 100% cell yields and grew with generation times of about 5 hr on n-heptane, n-octane, and 2-methylheptane. The generation time on 3-methylheptane was 8.6 hr and the cell yield was only 79%. A strain of Pseudomonas isolated from naphthalene enrichments and one from phenanthrene enrichments both gave a cell yield of 50% on naphthalene. The phenanthrene isolate gave a cell yield of 40% on phenanthrene. A Nocardia species isolated on benzene gave a 79% cell yield on benzene. The generation times of the bacteria isolated on aromatic hydrocarbons were related to the solubility of the aromatic hydrocarbons on which they were grown; the more insoluble hydrocarbons gave slower growth. PMID:5726161

  14. Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cochran, Richard E.; Jeong, Haewoo; Haddadi, Shokouh; Fisseha Derseh, Rebeka; Gowan, Alexandra; Beránek, Josef; Kubátová, Alena

    2016-03-01

    The 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) are the most abundant of PAHs in air particulate matter (PM). Thus we have investigated heterogeneous oxidation of 3- and 4-ring PAHs in a small-scale flow reactor using quartz filter as a support. Four representative PAHs, anthracene, phenanthrene, pyrene, and fluoranthene, were exposed to either NO2, O3 or NO2+O3 (NO3/N2O5) with a goal to identify and attempt quantification of major product distribution. A combination of gas chromatography with mass spectrometry (GC-MS) with/without derivatization and liquid chromatography with high resolution MS (LC-HRMS) was used for identification. For the first time, a comprehensive characterization of a broad range of products enabled identifying ketone/diketone, aldehyde, hydroxyl, and carboxylic acid PAH derivatives. Exposure to NO3/N2O5 (formed by reacting NO2 with O3, a more powerful reactant than either O3 or NO2) produced additional compounds not observed with either oxidant alone. Multiple isomers of nitrofluoranthene and, for the first time, nitrophenanthrene were identified. In addition hydroxy-nitro-PAH derivatives were observed for the reaction of anthracene with NO3/N2O5. Monitoring of specific common ions such as those of 176 and 205 m/z attributed to carbonyl phenanthrene and deprotonated phenanthrene ions respectively was shown to be a useful tool for identification of multiple pyrene oxidation products.

  15. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    PubMed

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  16. Polycyclic aromatic hydrocarbons in US and Swedish smokeless tobacco products

    PubMed Central

    2013-01-01

    Background Debate about the health implications of using smokeless tobacco products (STPs) has prompted considerable interest in characterising their levels of toxic and carcinogenic components. In the present study seventy smokeless tobacco products from the US and Sweden, categorized as chewing tobacco, dry and moist snuff, hard and soft pellets, plug, and loose and portion snus, were analysed for twenty one polycyclic aromatic hydrocarbons (PAHs). The tested brands represented 80-90% of the 2008 market share for the major STP categories in these two countries. Results There were significant differences in the total and individual PAH concentrations in the different styles of product. Substantially higher levels of total PAHs (10–60 fold) were found in moist and dry snuff and soft pellets than in the other smokeless tobacco styles. The individual PAH concentrations followed the same patterns as total PAHs except for naphthalene, for which the highest concentrations were found in snus and moist snuff. Good correlations were obtained between benzo[a]pyrene (B[a]P) and all the other PAHs except naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, providing evidence for the first time that it can be used as a good marker for PAHs in STPs. Results were generally in good agreement with two previous studies of PAHs in STPs, except for naphthalene for which significantly lower concentrations were found than previously reported. Analysis of the ratios of different PAHs confirmed that the use of fire-cured tobaccos in the snuffs and soft pellet were the major source of PAHs in these product styles, and provided, for the first time, some indications as to the source of PAHs in the other STP styles, including petrogenic and other combustion sources. Conclusions This study confirms the presence of PAHs in STPs, and identifies substantial differences between the levels in different STP categories. Since previous studies of naphthalene concentrations in STPs differed so markedly from those found in this study, it is recommended that further work on PAH determination is undertaken to investigate the source of this discrepancy. PMID:24011230

  17. Petroleum pollution in mangrove forests sediments from Qeshm Island and Khamir Port-Persian Gulf, Iran.

    PubMed

    Ebrahimi-Sirizi, Zohreh; Riyahi-Bakhtiyari, Alireza

    2013-05-01

    The concentrations of total polycyclic aromatic hydrocarbons (PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. PAHs concentrations ranged from 259 to 5,376 ng g(-1) dry weight with mean and median values of 1,585 and 1,146 ng g(-1), respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median.

  18. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil.

    PubMed

    Trzesicka-Mlynarz, D; Ward, O P

    1995-06-01

    A mixed culture, isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAHs), grew on and degraded fluoranthene in aqueous media supplemented with glucose, yeast extract, and peptone. Increased complex nitrogen levels in the medium promoted bacterial growth and a greater extent of fluoranthene degradation. Amendment of the media with high glucose levels also diminished specific fluoranthene degradation. The mixed culture was capable of degrading a range of other PAHs, including benzo[a]pyrene, anthracene, phenanthrene, acenaphthene, and fluorene. The mixed culture contained four predominant isolates, all of which were Gram-negative rods, three of which were identified as Pseudomonas putida, Flavobacterium sp., and Pseudomonas aeruginosa. Better degradation of a defined PAH mixture was observed with the mixed culture than with individual isolates. A reconstituted culture, prepared by combining the four individual isolates, manifested a similar PAH biodegradation performance to the original mixed culture. When compared with the mixed culture, individual isolates exhibited a relatively good capacity to remove more water-soluble PAHs (acenaphthene, fluorene, phenanthrene, fluoranthene). In contrast, removal of less water-soluble PAHs (anthracene and pyrene) was low or negligible with isolated cultures compared with the mixed culture.

  19. Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana.

    PubMed

    Daso, Adegbenro P; Akortia, Eric; Okonkwo, Jonathan O

    2016-06-01

    The concentrations of eighteen (18) polycyclic aromatic hydrocarbons (PAHs), including the 16 USEPA's priority PAHs as well as two alkyl-substituted naphthalenes were determined in dumpsite soils collected from different sampling sites within the Agbogbloshie e-waste dismantling site in Accra, Ghana. Following their isolation with ultrasonic-assisted extraction technique, the concentrations of the PAHs were determined by gas chromatography mass spectrometry (GC-MS). Loss-on-ignition (LOI) method was employed for the determination of total organic carbon (TOC) of the soil samples. The mean Σ18PAHs obtained were 3006, 5627, 3046, 5555, and 7199 ng g(-1) dry weight (dw) for sampling sites A (mosque), B (dismantling site), C (residential house/police station), D (personal computer repairers' shop) and E (e-waste open burning area), respectively. In all cases, the prevalence of phenanthrene, fluoranthene and pyrene was generally observed across the sampling sites. In this study, PAHs with two to three rings and four to six rings exhibited strong positive correlations, whereas BbF and BkF showed weak positive and negative correlations with other PAHs investigated. With the exception of BbF and BkF, all the PAHs had moderate to strong positive correlations with the TOC. Benzo[a]pyrene equivalent (BaPeq) concentration is a useful indicator of the carcinogenic potency of environmental matrices and these ranged between 111 and 454 ng g(-1), which are generally below the 'safe' level of 600 ng g(-1) established for the protection of the environment and human health. Interestingly, the seven carcinogenic PAHs were the major contributors to the BaPeq concentrations accounting between 97.7 and 98.3 %. Despite the minimal risk to cancer via exposure to the investigated dumpsite soil as indicated in the present study, the prolonged exposure to these pollutants via various exposure pathways may result in increased risk to cancer over time. The application of several methodological approaches for PAH source apportionment, including the use of molecular diagnostic ratios, mostly implicated pyrogenic processes as the main sources of PAHs into the investigated dumpsite soils. Furthermore, their compositional profiles across the sampling sites also suggest similar sources of PAHs into the dumpsite soil.

  20. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.

    PubMed

    Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan

    2015-12-01

    Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56%) rather than by the dose (10.64%), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42%) rather than by type (0.21%). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.

  1. Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential.

    PubMed

    Jiménez, Núria; Viñas, Marc; Guiu-Aragonés, Cèlia; Bayona, Josep M; Albaigés, Joan; Solanas, Anna M

    2011-08-01

    A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C(15)-C(27)) and polycyclic aromatic hydrocarbons (C(0)- to C(2)- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75-98% for higher molecular-weight alkanes (C(28)-C(40)) and to 55-80% for the C(3) derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C(3)-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.

  2. [Polycyclic aromatic hydrocarbons and soluble organic fraction in fine particles from solid fraction of biodiesel exhaust fumes].

    PubMed

    Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2012-01-01

    This paper presents the results of investigations into the distribution of fine particles in the biodiesel exhaust fumes (bio-DEP), as well as into the content of polycyclic aromatic hydrocarbons (PAHs) and soluble organic fraction (SOF) in the study fractions. Samples of biodiesel B20 and B40 exhaust combustion fumes were generated at the model station composed of a diesel engine from Diesel TDI 2007 Volkswagen. Sioutas personal cascade impactor (SPCI) with Teflon filters and low-pressure impactor ELIPI (Dekati Low Pressure Impactor) were used for sampling diesel exhaust fine particles. The analysis of PAHs adsorbed on particulate fractions was performed by high performance liquid chromatography with fluorescence detection (HPLC/FL). For the determination of dry residue soluble organic fraction of biodiesel exhaust particles the gravimetric method was used. The combustion exhaust fumes of 100% ON contained mainly naphthalene, acenaphthalene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene and chrysene, whilst the exhaust of B40-single PAHs of 4 and 5 rings, such as chrysene, benzo(k)fluoranthene, dibenzo (ah)anthracene and benzo(ghi)perylene. The total content of PAHs in diesel exhaust particles averaged 910 ng/m3 for 100% ON and 340 ng/m3 for B40. The concentrations of benzo(a)antarcene were at the levels of 310 ng/m3 (100% ON) and 90 ng/m3 (B40). The investigations indicated that a fraction < 025 microm represents the main component of diesel exhaust particles, regardless of the used fuel. Bioester B 100 commonly added to diesel fuel (ON) causes a reduction of the total particulates emission and thus reduces the amount of toxic substances adsorbed on their surface.

  3. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  4. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigation of hydrophobic contaminants in an urban slough system using passive sampling - Insights from sampling rate calculations

    USGS Publications Warehouse

    McCarthy, K.

    2008-01-01

    Semipermeable membrane devices (SPMDs) were deployed in the Columbia Slough, near Portland, Oregon, on three separate occasions to measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the slough. Concentrations of PAHs and OCs in SPMDs showed spatial and seasonal differences among sites and indicated that unusually high flows in the spring of 2006 diluted the concentrations of many of the target contaminants. However, the same PAHs - pyrene, fluoranthene, and the alkylated homologues of phenanthrene, anthracene, and fluorene - and OCs - polychlorinated biphenyls, pentachloroanisole, chlorpyrifos, dieldrin, and the metabolites of dichlorodiphenyltrichloroethane (DDT) - predominated throughout the system during all three deployment periods. The data suggest that storm washoff may be a predominant source of PAHs in the slough but that OCs are ubiquitous, entering the slough by a variety of pathways. Comparison of SPMDs deployed on the stream bed with SPMDs deployed in the overlying water column suggests that even for the very hydrophobic compounds investigated, bed sediments may not be a predominant source in this system. Perdeuterated phenanthrene (phenanthrene-d10). spiked at a rate of 2 ??g per SPMD, was shown to be a reliable performance reference compound (PRC) under the conditions of these deployments. Post-deployment concentrations of the PRC revealed differences in sampling conditions among sites and between seasons, but indicate that for SPMDs deployed throughout the main slough channel, differences in sampling rates were small enough to make site-to-site comparisons of SPMD concentrations straightforward. ?? Springer Science+Business Media B.V. 2007.

  6. Biodegradation in seawater of PAH and alkylphenols from produced water of a North Sea platform.

    PubMed

    Lofthus, Synnøve; Almås, Inger K; Evans, Peter; Pelz, Oliver; Brakstad, Odd Gunnar

    2018-09-01

    Operational planned discharges of produced water (PW) to the marine environment from offshore oil production installations, contain low concentrations of dispersed oil compounds, like polycyclic aromatic hydrocarbons (PAHs) and alkylated phenols (APs). Biotransformation in natural seawater (SW) of naphthalenes/PAHs and phenol/APs in field-collected PW from a North Sea platform was investigated in this biodegradation study. The PW was diluted in SW from a Norwegian fjord, and the biodegradation study was performed in slowly rotating carousels at 13 °C over a period of 62 days. Naphthalenes/PAHs and phenol/APs biotransformation was determined by first-order rate kinetics, after normalization against the recalcitrant biomarker 17α(H),21β(H)-Hopane. The results from this study showed total biotransformation half-lives ranging from 10 to 19 days for groups of naphthalenes and PAHs, while half-lives for APs (C0- to C9-alkylated) were 10-14 days. Biotransformation half-lives of single compounds ranged from 8 to >100 days for naphthalenes and PAHs (median 16 days), and from 5 to 70 days (median 15 days) for phenols and APs. Four of the tested PAHs (chrysene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene) and one AP (4-tert-butylphenol) showed biotransformation half-lives >50 days. This is one of a few studies that has investigated the potential for biodegradation of PW in natural SW. Methods and data from this study may be used as a part of Risk Based Approaches (RBA) for assessments of environmental fate of PW released to the marine environment and as part of the persistence related to risk. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.

    PubMed

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn

    2014-11-01

    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides information on the response of soil bacterial, archaeal and fungal communities during the degradation of three priority pollutants and contributes to a knowledge base that can inform the development of effective bioremediation strategies for contaminated sites.

  8. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard.

    PubMed

    Patel, Vilas; Patel, Janki; Madamwar, Datta

    2013-09-15

    A phenanthrene-degrading bacterial consortium (ASP) was developed using sediment from the Alang-Sosiya shipbreaking yard at Gujarat, India. 16S rRNA gene-based molecular analyses revealed that the bacterial consortium consisted of six bacterial strains: Bacillus sp. ASP1, Pseudomonas sp. ASP2, Stenotrophomonas maltophilia strain ASP3, Staphylococcus sp. ASP4, Geobacillus sp. ASP5 and Alcaligenes sp. ASP6. The consortium was able to degrade 300 ppm of phenanthrene and 1000 ppm of naphthalene within 120 h and 48 h, respectively. Tween 80 showed a positive effect on phenanthrene degradation. The consortium was able to consume maximum phenanthrene at the rate of 46 mg/h/l and degrade phenanthrene in the presence of other petroleum hydrocarbons. A microcosm study was conducted to test the consortium's bioremediation potential. Phenanthrene degradation increased from 61% to 94% in sediment bioaugmented with the consortium. Simultaneously, bacterial counts and dehydrogenase activities also increased in the bioaugmented sediment. These results suggest that microbial consortium bioaugmentation may be a promising technology for bioremediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    PubMed

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  10. UV-Visible Spectra of PAHs and Derivatives Seeded in Supersonic Jet. Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Salma, Bejaoui; Salama, Farid

    2018-06-01

    Laboratory absorption spectra of Polycyclic Aromatic Hydrocarbons (PAHs) and PAH derivatives measured under astrophysical relevant conditions are crucial to test the PAHs-DIBs hypothesis as well as the PAH model for the IR emission bands. Our dedicated experimental setup on the COsmic SImulation Chamber (COSmIC) provides an excellent platform to study neutral and ionized PAHs under the low temperature and pressure conditions that are representative of interstellar environments [1]. In this work, we study the effect of the substitution of CH bond(s) by a nitrogen atom(s) on the electronic spectra of phenanthrene. The electronic transitions associated with the lower excited states of neutral phenanthrene (C14H10) and phenanthridine (C13H9N) are measured in gas phase in the 315-345 nm region. Molecules are seeded in a supersonic expansion of argon gas and the absorption spectra are measured using the Cavity Ring Down Spectroscopy (CRDS) technique. Additional measurements of the absorption spectra of phenanthrene, phenantridine and 1,10-phenanthroline (C12H8N2) isolated in 10 K argon matrices are also performed. The comparison between the CRDS spectra with the absorption of the matrix-isolated molecules highlight the matrix-induced perturbations in band position, profiles and broadening and illustrates the need of gas phase measurements for more accurate comparisons with astronomical spectra.[1] Salama, F., Galazutdinov, G., Krelowski, et al. ApJ 728, 154[FS1] (2011).[2] A. Tielens, ApJ 526 Pt 1265–273 (2008),Acknowledgements: This research is supported by the APRA Program of NASA SMD

  11. Biological Monitoring of Occupational Exposure to Polycyclic Aromatic Hydrocarbons at an Electric Steel Foundry in Tunisia.

    PubMed

    Campo, Laura; Hanchi, Mariem; Olgiati, Luca; Polledri, Elisa; Consonni, Dario; Zrafi, Ines; Saidane-Mosbahi, Dalila; Fustinoni, Silvia

    2016-07-01

    Occupational exposures during iron and steel founding have been classified as carcinogenic to humans, and the exposure to polycyclic aromatic hydrocarbons (PAHs) in this industrial setting may contribute to cancer risk. The occupational exposure to PAHs was assessed in 93 male workers at an electric steel foundry in Tunisia by biomonitoring, with the aims of characterizing the excretion profile and investigating the influence of job title and personal characteristics on the biomarkers. Sixteen 2-6 ring unmetabolized PAHs (U-PAHs) and eight hydroxylated PAH metabolites (OHPAHs) were analyzed by gas chromatography-triple quadrupole tandem mass spectrometry and liquid chromatography triple quadrupole tandem mass spectrometry, respectively. Among U-PAHs, urinary naphthalene (U-NAP) was the most abundant compound (median level: 643ng l(-1)), followed by phenanthrene (U-PHE, 18.5ng l(-1)). Urinary benzo[a]pyrene (U-BaP) level was <0.30ng l(-1) Among OHPAHs, 2-hydroxynaphthalene (2-OHNAP) was the most abundant metabolite (2.27 µg l(-1)). Median 1-hydroxypyrene (1-OHPYR) was 0.52 µg l(-1) Significant correlations among urinary biomarkers were observed, with Pearson's r ranging from 0.177 to 0.626. 1-OHPYR was correlated to benzo[a]pyrene, but not to five- and six-rings PAHs. A multiple linear regression model showed that job title was a significant determinant for almost all U-PAHs. In particular, employees in the steel smelter workshop had higher levels of high-boiling U-PAHs and lower levels of low-boiling U-PAHs than those of workers with other job titles. Among OHPAHs, this model was significant only for naphthols and 1-hydroxyphenanthrene (1-OHPHE). Smoking status was a significant predictor for almost all biomarkers. Among all analytes, U-PHE and 1-OHPHE were the less affected by tobacco smoke, and they were significantly correlated with both low- and high-molecular-weight compounds, and their levels were related to job titles, so they could be proposed as suitable biomarkers of PAH exposure at steel foundries. Based on 1-OHPYR levels, our findings show that occupational exposure of these workers was similar to that reported in recent studies of electric steel foundry workers. The multianalytic approach is useful in revealing different exposure levels among job titles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Naphthalene biodegradation in temperate and arctic marine microcosms.

    PubMed

    Bagi, Andrea; Pampanin, Daniela M; Lanzén, Anders; Bilstad, Torleiv; Kommedal, Roald

    2014-02-01

    Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop(®) system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day(-1) for temperate and 0.068 day(-1) for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.

  13. Linking of Microorganisms to Phenanthrene Metabolism in Soil by Analysis of 13C-Labeled Cell Lipids

    PubMed Central

    Johnsen, Anders R.; Winding, Anne; Karlson, Ulrich; Roslev, Peter

    2002-01-01

    Phenanthrene-metabolizing soil microbial communities were characterized by examining mineralization of [14C]phenanthrene, by most-probable-number (MPN) counting, by 16S-23S spacer DNA analysis of the numerically dominant, culturable phenanthrene-degrading isolates, and by examining incorporation of [13C]phenanthrene-derived carbon into sterols and polar lipid fatty acids (PLFAs). An unpolluted agricultural soil, a roadside soil diffusely polluted with polycyclic aromatic hydrocarbons (PAHs), and two highly PAH-polluted soils from industrial sites were analyzed. Microbial phenanthrene degraders were not detected by MPN counting in the agricultural soil and the roadside soil. In the industrial soils, phenanthrene degraders constituted 0.04 and 3.6% of the total number of CFU. 16S-23S spacer DNA analysis followed by partial 16S DNA sequencing of representative isolates from one of the industrial soils showed that one-half of the isolates belonged to the genus Sphingomonas and the other half were closely related to an unclassified beta-proteobacterium. The 13C-PLFA profiles of the two industrial soils were relatively similar and resembled the profiles of phenanthrene-degrading Sphingomonas reference strains and unclassified beta-proteobacterium isolates but did not match the profiles of Pseudomonas, Mycobacterium, or Nocardia reference strains. The 13C-PLFA profiles of phenanthrene degraders in the agricultural soil and the roadside soil were different from each other and different from the profiles of the highly polluted industrial soils. Only in the roadside soil were 10me/12me18:0 PLFAs enriched in 13C, suggesting that actinomycetes metabolized phenanthrene in this soil. The 13C-PLFA profiles of the unpolluted agricultural soil did not resemble the profiles of any of the reference strains. In all of the soils investigated, no excess 13C was recovered in the 18:2ω6,9 PLFA, suggesting that fungi did not contribute significantly to assimilation of [13C]phenanthrene. PMID:12450834

  14. Infrared Spectroscopy of Naphthalene Aggregation and Cluster Formation in Argon Matrices

    NASA Technical Reports Server (NTRS)

    Roser, J. E.; Allamondola, L. J.

    2011-01-01

    Fourier-transform mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 micron emission plateau and the blue shading of the 12.7 micron emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects.

  15. Dynamics of Bacterial Communities in Two Unpolluted Soils after Spiking with Phenanthrene: Soil Type Specific and Common Responders

    PubMed Central

    Ding, Guo-Chun; Heuer, Holger; Smalla, Kornelia

    2012-01-01

    Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils. PMID:22934091

  16. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    PubMed Central

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells. PMID:20860818

  17. Urinary naphthol metabolites and chromosomal aberrations in 5 yr old children

    PubMed Central

    Orjuela, Manuela A.; Liu, XinHua; Miller, Rachel L.; Warburton, Dorothy; Tang, DeLiang; Jobanputra, Vaidehi; Hoepner, Lori; Suen, Ida Hui; Diaz-Carreno, Silvia; Li, Zheng; Sjodin, Andreas; Perera, Frederica P.

    2012-01-01

    Background Exposure to naphthalene, an IARC-classified possible carcinogen and polycyclic aromatic hydrocarbon (PAH), is widespread, though resulting health effects are poorly understood. Metabolites of naphthalene, 1- and 2-naphthol, are measurable in urine and are biomarkers of personal exposure. Chromosomal aberrations (CAs), including translocations, are established markers of cancer risk and a bio-dosimeter of clastogenic exposures. Although prenatal (maternal) PAH exposure predicts CAs in cord blood, few studies have examined CAs in school-age children and none has examined their association with metabolites of specific PAHs. Methods Using Whole Chromosome Paint Fluorescent in Situ Hybridization, we documented CAs including translocations, in 113 five year old urban minority children and examined their association with concurrent concentrations of PAH metabolites measured in urine. Results We report that in lymphocytes, the occurrence and frequency of CAs including translocations are associated with levels of urinary 1- and 2-naphthol. When doubling the levels of urinary naphthols, gender-adjusted Odds Ratio (OR) for CAs are 1.63 (95%CI: 1.21, 2.19) and 1.44 (95%CI: 1.02, 2.04) for 1-and 2-naphthol respectively; and for translocations: OR=1.55 (95%CI: 1.11-2.17) and 1.92 (95%CI: 1.20-3.08) for 1- and 2-naphthol respectively. Conclusion Our results demonstrate that markers of exposure to naphthalene in children are associated with translocations in a dose related manner, and that naphthalene may be a clastogen. Impact Indoor exposure to elevated levels of naphthalene is prevalent in large regions of the world. This study is the first to present an association between a marker of naphthalene exposure and a pre-carcinogenic effect in humans. PMID:22573794

  18. Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaodong Huang; Dixon, D.G.; Greenberg, B.M.

    1993-06-01

    The toxicity of polycyclic aromatic hydrocarbons (PAHs) can be enhanced by both biotic and abiotic processes. This is exemplified by light, which, by virtue of the extensive [pi]-orbital systems of PAHs, can be a major factor in PAH toxicity. Light activation of PAHs is known to occur via photosensitization reactions and potentially by photomodification of the chemicals to more toxic species. To examine the modes of PAH action in the light and determine if the photomodified compounds are hazardous, the authors investigated the photoinduced toxicity of anthracene, phenanthrene and benzo[a]pyrene to the aquatic higher plant Lemna gibba (a duckweed). Toxicitymore » end points were inhibition of growth and extent of chlorosis. Light did indeed activated the phytotoxicity of PAHs, with UV radiation more effective than visible light. Dose-response curves based on chemical concentration and light intensity revealed the order of phytotoxic strength to be anthracene > phenanthrene > benzo[a]pyrene. To explore whether photomodified PAHs were contributing to toxicity, the chemicals were irradiated before toxicity testing. The rates of photomodification of the three PAHs were rapid, and the relative velocities were coincident with the order of toxic strength. Furthermore, the photomodified PAHs were more hazardous to Lemna than the intact compounds. Because interpretations of the potential impacts of PAHs in the environment are based mostly on measurements of the structurally intact chemicals, the severity of PAH hazards is possibly underestimated.« less

  19. Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer M. DeBruyn; Gary S. Sayler

    The Chattanooga Creek Superfund site (Chattanooga, TN) is one of the most polluted waterways in the southeastern U.S. with high polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments. PAHs associate with suspended solids in the water column, and may be redeposited onto the floodplain. These suspended particles represent an interesting but understudied environment for PAH-degrading microbial communities. This study tested the hypotheses that particle-associated bacterial (PAB) communities have genotypic potential (PAH-dioxygenase genes) and activity (naphthalene and pyrene mineralization), and can contribute to natural attenuation of PAHs in Chattanooga Creek. Upstream of the Superfund site, mineralization ranged from 0.2 to 2.0%more » of added {sup 14}C-naphthalene and 0 to 0.1% {sup 14}C-pyrene (after 40 h), with first order biodegradation rate constants (k{sub 1}) ranging from 1.09 to 9.18 x 10{sup -5} h{sup -1} and 0 to 1.13 x 10{sup -6} h{sup -1}, respectively. Mineralization was significantly greater in PAB communities within the contaminated zone, with 11.8 to 31.2% {sup 14}C-naphthalene (k{sup 1} 5.34 to 14.2 x 10-4 h{sup -1}) and 1.3 to 6.6% {sup 14}C-pyrene mineralized (k{sub 1} 2.89 to 15.0 x 10{sup -5} h{sup -1}). Abundances of nagAc (naphthalene dioxygenase) and nidA (pyrene dioxygenase) genes indicated that PAB communities harbored populations with genetic potential for both low- and high-molecular weight PAH degradation, and quantification of Mycobacterium 16S rDNA genes indicated that PAH-degrading mycobacteria are also prevalent in this environment. Phylogenetic comparisons (T-RFLPs) between PAB and sediments indicated these microbial communities were taxonomically distinct, but shared some functional similarities, namely PAH catabolic genotypes, mineralization capabilities, and community structuring along a contamination gradient. 38 refs., 4 figs., 2 tabs.« less

  20. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    PubMed

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Investigation of PAH Biomarkers in the Urine of Workers Exposed to Hot Asphalt

    PubMed Central

    Sobus, Jon R.; Mcclean, Michael D.; Herrick, Robert F.; Waidyanatha, Suramya; Onyemauwa, Frank; Kupper, Lawrence L.; Rappaport, Stephen M.

    2009-01-01

    Airborne emissions from hot asphalt contain mixtures of polycyclic aromatic hydrocarbons (PAHs), including several carcinogens. We investigated urinary biomarkers of three PAHs, namely naphthalene (Nap), phenanthrene (Phe), and pyrene (Pyr) in 20 road-paving workers exposed to hot asphalt and in 6 road milling workers who were not using hot asphalt (reference group). Our analysis included baseline urine samples as well as postshift, bedtime, and morning samples collected over three consecutive days. We measured unmetabolized Nap (U-Nap) and Phe (U-Phe) as well as the monohydroxylated metabolites of Nap (OH-Nap), Phe (OH-Phe), and Pyr (OH-Pyr) in each urine sample. In baseline samples, no significant differences in biomarker levels were observed between pavers and millers, suggesting similar background exposures. In postshift, bedtime, and morning urine samples, the high pairwise correlations observed between levels of all biomarkers suggest common exposure sources. Among pavers, levels of all biomarkers were significantly elevated in postshift samples, indicating rapid uptake and elimination of PAHs following exposure to hot asphalt (biomarker levels were not elevated among millers). Results from linear mixed-effects models of levels of U-Nap, U-Phe, OH-Phe, and OH-Pyr across pavers showed significant effects of work assignments with roller operators having lower biomarker levels than the other workers. However, no work-related effect was observed for levels of OH-Nap, apparently due to the influence of cigarette smoking. Biological half-lives, estimated from regression coefficients for time among pavers, were 8 h for U-Phe, 10 h for U-Nap, 13 h for OH-Phe and OH-Pyr, and 26 h for OH-Nap. These results support the use of U-Nap, U-Phe, OH-Phe, and OH-Pyr, but probably not OH-Nap, as short-term biomarkers of exposure to PAHs emanating from hot asphalt. PMID:19602500

  2. BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM CRUDE OIL IN SANDY-BEACH MICROCOSMS.

    EPA Science Inventory

    Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater...

  3. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences inmore » ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.« less

  4. Determination of polycyclic aromatic hydrocarbons in roasted coffee

    PubMed Central

    JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557

  5. Polycyclic Aromatic Hydrocarbon Distribution and Modification in the Sub-surface Plume Near the Deepwater Horizon Wellhead

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Joung, D.; Wade, T.

    2011-12-01

    A significant concern associated with oil spills is the toxicity associated with the polycyclic aromatic hydrocarbon (PAH) component. Ratios of various PAH's have also been used as indicators of oil sources. During a late May/early June cruise, 57 samples for PAH analysis were collected in the vicinity of the Deepwater Horizon wellhead. Most samples were from the previously reported sub-surface oil plume, centered near 1100 m depth. PAH concentrations ranged up to 117 μg/L and rapidly diminished in the subsurface with distance from the wellhead. The Macondo well oil was observed to be rich in naphthalenes. Within a few km of the wellhead, the percentage of methyl-naphthalenes in the sub-surface plume was generally higher than in the source, suggesting preferential solubilization of this low molecular weight fraction. However, the percentage rapidly decreased away from the well also suggesting rapid destruction or removal of the naphthalenes. The pyrogenic index (Wang et al.) was <0.05 for all samples, indicating a petroleum origin. For a few samples, some other PAH ratios (e.g., MP/P and P/A ratios) suggested a combustion origin. However, these ratios also tended to vary both with percent methyl-naphthalenes and distance from the wellhead, suggesting anomalous ratios originating from solubilization/degradation effects. We also obtained a more limited set of surface water samples, generally avoiding the most contaminated areas as well as areas of oil burning. For these surface water samples, similar trends were observed as at depth, probably resulting from selective volatilization and photo-degradation. Overall, the data illustrate how environmental factors lead both to reduced concentrations and fractionation of the PAH's.

  6. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  7. Initial environmental impacts of the Obed Mountain coal mine process water spill into the Athabasca River (Alberta, Canada).

    PubMed

    Cooke, Colin A; Schwindt, Colin; Davies, Martin; Donahue, William F; Azim, Ekram

    2016-07-01

    On October 31, 2013, a catastrophic release of approximately 670,000m(3) of coal process water occurred as the result of the failure of the wall of a post-processing settling pond at the Obed Mountain Mine near Hinton, Alberta. A highly turbid plume entered the Athabasca River approximately 20km from the mine, markedly altering the chemical composition of the Athabasca River as it flowed downstream. The released plume traveled approximately 1100km downstream to the Peace-Athabasca Delta in approximately four weeks, and was tracked both visually and using real-time measures of river water turbidity within the Athabasca River. The plume initially contained high concentrations of nutrients (nitrogen and phosphorus), metals, and polycyclic aromatic hydrocarbons (PAHs); some Canadian Council of Ministers of the Environmental (CCME) Guidelines were exceeded in the initial days after the spill. Subsequent characterization of the source material revealed elevated concentrations of both metals (arsenic, lead, mercury, selenium, and zinc) and PAHs (acenaphthene, fluorene, naphthalene, phenanthrene, and pyrene). While toxicity testing using the released material indicated a relatively low or short-lived acute risk to the aquatic environment, some of the water quality and sediment quality variables are known carcinogens and have the potential to exert negative long-term impacts. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char.

    PubMed

    Nguyen, Thanh H; Cho, Hyun-Hee; Poster, Dianne L; Ball, William P

    2007-02-15

    Sorption isotherms for five aromatic hydrocarbons were obtained with a natural wood char (NC1) and its residue after solvent extraction (ENC1). Substantial isotherm nonlinearity was observed in all cases. ENC1 showed higher BET surface area, higher nitrogen-accessible micropore volume, and lower mass of extractable organic chemicals, including quantifiable polycyclic aromatic hydrocarbons (PAHs),while the two chars showed identical surface oxygen/ carbon (O/C) ratio. For two chlorinated benzenes that normally condense as liquids at the temperatures used, sorption isotherms with NC1 and ENC1 were found to be statistically identical. For the solid-phase compounds (1,4-dichlorobenzene (1,4-DCB) and two PAHs), sorption was statistically higher with ENC1, thus demonstrating sorption effects due to both (1) authigenic organic content in the sorbentand (2)the sorbate's condensed state. Polanyi-based isotherm modeling, pore size measurements, and comparisons with activated carbon showthe relative importance of adsorptive pore filling and help explain results. With both chars, maximum sorption increased in the order of decreasing molecular diameter: phenanthrene < naphthalene < 1,2-dichlorobenzene/1,2,4-trichlorobenzene < 1,4-DCB. Comparison of 1,4- and 1,2-DCB shows that the critical molecular diameter was apparently more important than the condensed state, suggesting that 1,4-DCB sorbed in the liquid state for ENC1.

  9. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    PubMed

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  10. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    PubMed

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air.

    PubMed Central

    Boström, Carl-Elis; Gerde, Per; Hanberg, Annika; Jernström, Bengt; Johansson, Christer; Kyrklund, Titus; Rannug, Agneta; Törnqvist, Margareta; Victorin, Katarina; Westerholm, Roger

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion. Domestic wood burning and road traffic are the major sources of PAHs in Sweden. In Stockholm, the sum of 14 different PAHs is 100-200 ng/m(3) at the street-level site, the most abundant being phenanthrene. Benzo[a]pyrene (B[a]P) varies between 1 and 2 ng/m(3). Exposure to PAH-containing substances increases the risk of cancer in humans. The carcinogenicity of PAHs is associated with the complexity of the molecule, i.e., increasing number of benzenoid rings, and with metabolic activation to reactive diol epoxide intermediates and their subsequent covalent binding to critical targets in DNA. B[a]P is the main indicator of carcinogenic PAHs. Fluoranthene is an important volatile PAH because it occurs at high concentrations in ambient air and because it is an experimental carcinogen in certain test systems. Thus, fluoranthene is suggested as a complementary indicator to B[a]P. The most carcinogenic PAH identified, dibenzo[a,l]pyrene, is also suggested as an indicator, although it occurs at very low concentrations. Quantitative cancer risk estimates of PAHs as air pollutants are very uncertain because of the lack of useful, good-quality data. According to the World Health Organization Air Quality Guidelines for Europe, the unit risk is 9 X 10(-5) per ng/m(3) of B[a]P as indicator of the total PAH content, namely, lifetime exposure to 0.1 ng/m(3) would theoretically lead to one extra cancer case in 100,000 exposed individuals. This concentration of 0.1 ng/m(3) of B[a]P is suggested as a health-based guideline. Because the carcinogenic potency of fluoranthene has been estimated to be approximately 20 times less than that of B[a]P, a tentative guideline value of 2 ng/m(3) is suggested for fluoranthene. Other significant PAHs are phenanthrene, methylated phenanthrenes/anthracenes and pyrene (high air concentrations), and large-molecule PAHs such as dibenz[a,h]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene (high carcinogenicity). Additional source-specific indicators are benzo[ghi]perylene for gasoline vehicles, retene for wood combustion, and dibenzothiophene and benzonaphthothiophene for sulfur-containing fuels. PMID:12060843

  12. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan.

    PubMed

    Doong, Ruey-An; Lin, Yu-Tin

    2004-04-01

    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (

  13. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    PubMed

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Profile distribution of polycyclic aromatic hydrocarbons in soils of drained peatlands after wildfires (Moscow region, Russia)

    NASA Astrophysics Data System (ADS)

    Tsibart, Anna; Gennadiev, Alexander; Koshovskii, Timur; Kovach, Roman

    2014-05-01

    Polycyclic aromatic compounds (PAHs) are formed in different natural and anthropogenic processes and could be found in many landscape components. These compounds are carcinogenic and belong to the group of persistent organic pollutants. The anthropogenic sources of PAHs are well-studied, but insufficient data are available on the hightemperature production of PAHs in natural processes. For example, natural fires are frequently related to the PAHs sources in landscapes, but very little factual data are on this topic. The soils of drained peatlands affected by catastrophic wildfires of 2010 and 2002 were studied in the Eastern part of Moscow Region (Russia). A total of 14 profiles of histosols and histic podsols were investigated. These series included soils of plots subjected to fires of different intensities and age, as well as soils of the background plots. Soil samples were taken from genetic horizons and from every 10 cm. The samples were analyzed for the contents of 14 prevailing individual compounds: fluorene, naphthalene, phenanthrene, chrysene, pyrene, anthracene, tetraphene, benz[a]pyrene, benzo[ghi]perylene, benzo[e]pyrene, coronene, dibenztiophene, triphenilene, benz(k)fluorantene. Morfological properties of soils after wildfires on drained peatlands were changed dramatically, the horizons of ash and char instead of organic layers were formed. These new horizons differ in the capability of PAHs accumulation. The char horizons have the highest concentrations of PAHs - up to 300 ng/g because of incomplete burning of organic matter in this sites, and the ash horizons, where the complete burning occured, contain only 10 ng/g PAHs. The highest concentrations of PAHs in soil profiles were detected after recent fires, and in cases of thick peat layers. After the combustion of peat chrysene, benz[a]pyrene, benz[e]pyrene, benzo[ghi]perylene, benz(k)fluorantene and tetraphene accumulated in soils. This is mainly the group of 4-6-nuclear compounds. The formation of high-molecular weight compounds is possible during smoldering process under a low oxygen supply. The oxygen deficit acts as a factor of the organic fragments recombination and PAHs production; therefore, relatively large amounts of PAHs are formed in peat fires. Moreover the peat fires occur directly in the soil layer; therefore, larger amounts of the resulting PAHs remain in the soils of the fire sites. The migration of low-molecular weight compounds occures in histic podsols, in histosols PAHs accumalate only in upper organic horizons. The research was conducted with the support of Russian Geographical Society.

  15. COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS

    EPA Science Inventory

    Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surfa...

  16. CLASSIFICATION OF PAH-DEGRADING BACTERIA BY PAH UTILIZATION PATTERNS AND THE COMPARISON OF METABOLIC PRODUCTS

    EPA Science Inventory

    Bacterial strains capable of using either phenanthrene, fluoranthene, or pyrene as sole carbon and energy sources were isolated from 16 different soil samples collected from the United States, Germany, and Norway. Thirty one strains were isolated on fluoranthene and the other twe...

  17. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill.

    PubMed

    Ke, L; Wong, Teresa W Y; Wong, Y S; Tam, Nora F Y

    2002-01-01

    The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m x 10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2,135 ng g(-1), and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2,135 (30 days) to 1,196 ng g(-1) (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3-0.4).

  18. Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars.

    PubMed

    He, Yan; Xia, Wen; Li, Xinfeng; Lin, Jiajiang; Wu, Jianjun; Xu, Jianming

    2015-03-01

    A pot experiment was conducted to reveal the removal of two polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, PHE, and pyrene, PYR) during rice cultivation in a paddy field. The rhizosphere effect on facilitating dissipation of PAHs varied simultaneously as a function of soil properties, PAH types, cultivation time, and genotypes within rice cultivars, with differences performed for PYR but not PHE. Changes in soil PLFA profiles evidenced that the growth of rice roots modified the dominant species within rhizosphere microbial communities and induced a selective enrichment of Gram-negative aerobic bacteria capable of degrading, thereby resulting in the differentiated dissipation of PYR. While the insignificant differences in PHE dissipation might be attributed to its higher solubility and availability under flooded condition that concealed the differences in improvement of bioavailability for microorganisms between rhizosphere and non-rhizosphere, and between both soils and both rice cultivars. Our findings illustrate that the removal of PAHs in paddy soils was more complex relative to those in dryland soils. This was possibly due to the specialty of rice roots for oxygen secretion that provides development of redox heterogeneous microbial habitats at root-soil interface under flooded condition.

  19. Effects of inoculation of PAH-degrading bacteria and arbuscular mycorrhizal fungi on responses of ryegrass to phenanthrene and pyrene.

    PubMed

    Wu, Fuyong; Yu, Xiezhi; Wu, Shengchun; Wong, Minghung

    2014-01-01

    In order to investigate the effects of soil microorganisms on biochemical and physiological response of plants to PAHs, PAH-degrading bacteria (Acinetobacter sp.) and/or arbuscular mycorrhizal fungus (Glomus mosseae) were inoculated with ryegrass (Lolium multiflorum) under four different concentrations of phenanthrene and pyrene (0, 50 + 50, 100 + 100, 200 + 200 mg kg(-1)) in soils. Acinetobacter sp. played limited roles on the growth of ryegrass, chlorophyll content, water soluble carbohydrate content, malondialdehyde (MDA) content, activities of superoxide dismutase (SOD) and peroxidase (POD) in shoot. By contrast, G. mosseae significantly (P < 0.01) increased ryegrass growth, partially by improving the photosynthetic activity through increasing the chlorophyll content in shoot. G. mosseae also significantly decreased MDA content in shoot. However, G. mosseae significantly increased SOD activity in shoot, which seemed to be resulted from significantly higher pyrene concentrations in shoot. The present study suggested that AM fungi could reduce the damage of cell membranes caused by free radicals, which may be one of the mechanisms involved in mycorrhizal alleviation of plant stress under PAHs. The present study indicated that the dual inoculation was superior to single inoculation in remediating PAHs contaminated soils.

  20. ORGANIC COSOLVENT EFFECTS ON THE SORPTION AND TRANSPORT OF NEUTRAL ORGANIC CHEMICALS

    EPA Science Inventory

    Soil column miscible displacement techniques were used to investigate the effects of an organic cosolvent (methanol) on the sorption and transport of three neutral organic chemicals; naphthalene, phenanthrene, and the herbicide diuron, through a sandy surface soil. A two-domain, ...

  1. Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-Model simulations for prediction of bioremediation success.

    PubMed

    Rein, Arno; Adam, Iris K U; Miltner, Anja; Brumme, Katja; Kästner, Matthias; Trapp, Stefan

    2016-04-05

    Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations for predicting the success of remediation actions. First, we provide growth parameters for Mycobacterium rutilum and Mycobacterium pallens growing on phenanthrene (PHE) or pyrene (PYR) degraded the PAH completely at all investigated concentrations. Maximum metabolic rates vmax and growth rates μ were similar for the substrates PHE and PYR and for both strains. The investigated Mycobacterium species were not superior in PHE degradation to strains investigated earlier with this method. Real-world degradation scenario simulations including diffusive flux to the microbial cells indicate: that (i) bioaugmentation only has a small, short-lived effect; (ii) Increasing sorption shifts the remaining PAH to the adsorbed/sequestered PAH pool; (iii) mobilizing by solvents or surfactants resulted in a significant decrease of the sequestered PAH, and (iv) co-metabolization e.g. by compost addition can contribute significantly to the reduction of PAH, because active biomass is maintained at a high level by the compost. The model therefore is a valuable contribution to the assessment of potential remediation action at PAH-polluted sites. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    PubMed

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Polycyclic Aromatic Hydrocarbon Exposure and Wheeze in a Cohort of Children with Asthma in Fresno, CA

    PubMed Central

    Gale, Sara L.; Noth, Elizabeth M.; Mann, Jennifer; Balmes, John; Hammond, S. Katharine; Tager, Ira B.

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are found widely in the ambient air and result from combustion of various fuels and industrial processes. PAHs have been associated with adverse human health effects such as cognitive development, childhood IQ, and respiratory health. The Fresno Asthmatic Children’s Environment Study (FACES) enrolled 315 children ages 6-11 years with asthma in Fresno, CA and followed the cohort from 2000 to 2008. Subjects were evaluated for asthma symptoms in up to three 14-day panels per year. Detailed ambient pollutant concentrations were collected from a central site and outdoor pollutants were measured at 83 homes for at least one 5-day period. Measurements of particle-bound PAHs were used with land use regression models to estimate individual exposures to PAHs with 4-, 5- or 6-member rings (PAH456) and phenanthrene for the cohort (approximately 22 000 individual daily estimates). We used a cross-validation based algorithm for model fitting and a generalized estimated equation approach to account for repeated measures. Multiple lags and moving averages of PAH exposure were associated with increased wheeze for each of the three types of PAH exposure estimates. The odds ratios for asthmatics exposed to PAHs (ng/m3) ranged from 1.01 (95% CI, 1.00-1.02) to 1.10 (95% CI, 1.04-1.17)]. This trend for increased wheeze persisted among all PAHs measured. Phenanthrene was found to have a higher relative impact on wheeze. These data provide further evidence that PAHs contribute to asthma morbidity. PMID:22549720

  4. Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA.

    PubMed

    Gale, Sara L; Noth, Elizabeth M; Mann, Jennifer; Balmes, John; Hammond, S Katharine; Tager, Ira B

    2012-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are found widely in the ambient air and result from combustion of various fuels and industrial processes. PAHs have been associated with adverse human health effects such as cognitive development, childhood IQ, and respiratory health. The Fresno Asthmatic Children's Environment Study enrolled 315 children aged 6-11 years with asthma in Fresno, CA and followed the cohort from 2000 to 2008. Subjects were evaluated for asthma symptoms in up to three 14-day panels per year. Detailed ambient pollutant concentrations were collected from a central site and outdoor pollutants were measured at 83 homes for at least one 5-day period. Measurements of particle-bound PAHs were used with land-use regression models to estimate individual exposures to PAHs with 4-, 5-, or 6-member rings (PAH456) and phenanthrene for the cohort (approximately 22,000 individual daily estimates). We used a cross-validation-based algorithm for model fitting and a generalized estimated equation approach to account for repeated measures. Multiple lags and moving averages of PAH exposure were associated with increased wheeze for each of the three types of PAH exposure estimates. The odds ratios for asthmatics exposed to PAHs (ng/m(3)) ranged from 1.01 (95% CI, 1.00-1.02) to 1.10 (95% CI, 1.04-1.17). This trend for increased wheeze persisted among all PAHs measured. Phenanthrene was found to have a higher relative impact on wheeze. These data provide further evidence that PAHs contribute to asthma morbidity.

  5. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  6. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less

  7. Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Petkewich, M.D.; Bradley, P.M.

    1998-01-01

    Shallow, anaerobic groundwater near a former manufactured-gas plant (MGP) in Charleston, South Carolina, USA, contains mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs, respectively). Between 1994 and 1997, a combination of field, laboratory, and numerical-flow and transport-model investigations were made to assess natural attenuation processes affecting MAH and PAH distributions. This assessment included determination of adsorption coefficients (K(ad)) and first-order biodegradation rate constants (K(bio)) using aquifer material from the MGP site and adjacent properties. Naphthalene adsorption (K(ad) = 1.35 x 10-7 m3/mg) to aquifer sediments was higher than toluene adsorption (K(ad) = 9.34 x 10-10 m3/mg), suggesting preferential toluene transport relative to naphthalene. However, toluene and benzene distributions measured in January 1994 were smaller than the naphthalene distribution. This scenario can be explained, in part, by the differences between biodegradation rates of the compounds. Aerobic first-order rate constants of 14C-toluene, 14C-benzene, and 14C-naphthalene degradation were similar (-0.84, -0.03, and 0.88 day-1, respectively), but anaerobic rate constants were higher for toluene and benzene (-0.002 and -0.00014 day-1, respectively) than for naphthalene (-0.000046 day-1). Both areal and cross-sectional numerical simulations were used to test the hypothesis suggested by these rate differences that MAH compounds will be contained relative to PAHs. Predictive simulations indicated that the distributions of toluene and benzene reach steady-state conditions before groundwater flow lines discharge to an adjacent surface-water body, but do discharge low concentrations of naphthalene. Numerical predictions were 'audited' by measuring concentrations of naphthalene, toluene, and benzene at the site in early 1997. Measured naphthalene and toluene concentrations were substantially reduced and the areal extent of contamination smaller than was both observed in January 1994 and predicted for 1997. Measured 1997 benzene concentrations and distribution were shown to be relatively unchanged from those measured in 1994, and similar to predictions for 1997.The natural attenuation processes affecting mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs, respectively) distributions in groundwater near a former manufactured-gas plant in South Carolina, USA was evaluated. This assessment included determination of adsorption coefficients and first-order biodegradation rate constants. Detailed results obtained in the study are presented.

  8. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r 2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  9. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications.

  10. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications. PMID:25222697

  11. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  12. Spatial distribution and temporal trends of polycyclic aromatic hydrocarbons (PAHs) in water and sediment from Songhua River, China.

    PubMed

    Zhao, Xuesong; Ding, Jing; You, Hong

    2014-02-01

    The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.

  13. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater.

    PubMed

    Kalmykova, Yuliya; Björklund, Karin; Strömvall, Ann-Margret; Blom, Lena

    2013-03-01

    Partitioning of organic pollutants is essential to their fate, mobility and removal from water and soil. To study the partitioning behavior of selected alkylphenols, bisphenol A, phthalates and polycyclic aromatic hydrocarbons (PAHs), a method for separating the truly dissolved and colloidal phase of organic pollutants was developed, verified and applied to samples of landfill leachate and stormwater from urban areas and waste-sorting sites. Alkylphenols, bisphenol A, phthalates and PAHs were detected in all the untreated samples (total concentrations), most of the filtered samples and frequently in the colloid-bound phase. Concentrations of alkylphenols and PAHs in urban stormwater were one order of magnitude lower than in the landfill leachates and stormwater from waste-sorting sites. The difference between total, dissolved and colloid-bound concentrations in the water samples was not statistically significant for any phenols or phthalates, but for three of the PAHs; naphthalene (mostly dissolved), phenanthrene and fluoranthene (mostly particulate). These results indicate that in landfill leachates and stormwaters, organic pollutants are predominantly attached to colloids and/or truly dissolved in contrast to their expected strong sorption to particulate matter. Occurrence and concentrations of pollutants in dissolved and colloid-bound phases correlated negatively with the K(OW). However, even highly hydrophobic compounds were frequently detected in filtered samples, i.e. the dissolved phases, and it is suggested that the organic content in the colloids decreases the compounds' partition to particles. The results confirm that the K(OW) values of specific organic pollutants well describe the compounds partition-binding process to dissolved organic carbon (DOC) colloids. Our findings call for a re-assessment of the organic pollutants' mobility and associated risks. This knowledge can also serve as a base for selecting efficient treatment methods for stormwater and landfill leachates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Benz[a]anthracene Biotransformation and Production of Ring Fission Products by Sphingobium sp. Strain KK22

    PubMed Central

    Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Hamamura, Natsuko

    2013-01-01

    A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter−1 benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter−1) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(−)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended. PMID:23686261

  15. Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols.

    PubMed

    Gregoris, Elena; Argiriadis, Elena; Vecchiato, Marco; Zambon, Stefano; De Pieri, Silvia; Donateo, Antonio; Contini, Daniele; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2014-04-01

    Air samples were collected in Venice during summer 2009 and 2012 to measure gas and particulate concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs). PCB-11, considered a marker for non-Aroclor contamination of the environment, was found for the first time in the Venetian lagoon and in Europe. An investigation on sources has been conducted, evidencing traffic as the major source of PAHs, whereas PCBs have a similar composition to Aroclor 1248 and 1254; in 2009 a release of PCN-42 has been hypothesized. Toxicological evaluation by TCA and TEQ methods, conducted for the first time in Venice air samples, identified BaP, PCB-126 and PCB-169 as the most important contributors to the total carcinogenic activity of PAHs and the total dioxin-like activity of PCBs and PCNs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Yu, Z.Q.; Xiao, B.H.

    2009-08-15

    Phenanthrene and naphthalene sorption isotherms were measured for three different series of kerogen materials using completely mixed batch reactors. Sorption isotherms were nonlinear for each sorbate-sorbent system, and the Freundlich isotherm equation fit the sorption data well. The Freundlich isotherm linearity parameter n ranged from 0.192 to 0.729 for phenanthrene and from 0.389 to 0.731 for naphthalene. The n values correlated linearly with rigidity and aromaticity of the kerogen matrix, but the single-point, organic carbon-normalized distribution coefficients varied dramatically among the tested sorbents. A dual-mode sorption equation consisting of a linear partitioning domain and a Langmuir adsorption domain adequately quantifiedmore » the overall sorption equilibrium for each sorbent-sorbate system. Both models fit the data well, with r{sup 2} values of 0.965 to 0.996 for the Freundlich model and 0.963 to 0.997 for the dual-mode model for the phenanthrene sorption isotherms. The dual-mode model fitting results showed that as the rigidity and aromaticity of the kerogen matrix increased, the contribution of the linear partitioning domain to the overall sorption equilibrium decreased, whereas the contribution of the Langmuir adsorption domain increased. The present study suggested that kerogen materials found in soils and sediments should not be treated as a single, unified, carbonaceous sorbent phase.« less

  17. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    PubMed

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-05

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid.

  18. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.

    PubMed

    Xiong, Bijing; Zhang, Youchi; Hou, Yanwei; Arp, Hans Peter H; Reid, Brian J; Cai, Chao

    2017-09-01

    The inoculation of rice straw biochar with PAH-degrading Mycobacterium gilvum (1.27 × 10 11  ± 1.24 × 10 10  cell g -1 ), and the subsequent amendment of this composite material to PAHs contaminated (677 mg kg -1 ) coke plant soil, was conducted in order to investigate if would enhance PAHs biodegradation in soils. The microbe-biochar composite showed superior degradation capacity for phenanthrene, fluoranthene and pyrene. Phenanthrene loss in the microbe-biochar composite, free cell alone and biochar alone treatments was, respectively, 62.6 ± 3.2%, 47.3 ± 4.1% and non-significant (P > 0.05); whereas for fluoranthene loss it was 52.1 ± 2.3%; non-significant (P > 0.05) and non-significant (P > 0.05); and for pyrene loss it was 62.1 ± 0.9%; 19.7 ± 6.5% and 13.5 ± 2.8%. It was hypothesized that the improved remediation was underpinned by i) biochar enhanced mass transfer of PAHs from the soil to the carbonaceous biochar "sink", and ii) the subsequent degradation of the PAHs by the immobilized M. gilvum. To test this mechanism, a surfactant (Brij 30; 20 mg g -1 soil), was added to impede PAHs mass transfer to biochar and sorption. The surfactant increased solution phase PAH concentrations and significantly (P < 0.05) reduced PAH degradation in the biochar immobilized M. gilvum treatments; indicating the enhanced degradation occurred between the immobilized M. gilvum and biochar sorbed PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the North China Plain.

    PubMed

    Wang, Xilong; Liu, Shuzhen; Zhao, Jingyu; Zuo, Qian; Liu, Wenxin; Li, Bengang; Tao, Shu

    2014-04-01

    The present study examined deposition fluxes of aerosol particles and 15 polycyclic aromatic hydrocarbons (PAHs) associated with the particles in the North China Plain. The annual mean deposition fluxes of aerosol particles and 15 PAHs were 0.69 ± 0.46 g/(m(2) ×d) and 8.5 ± 6.2 μg/(m(2) ×d), respectively. Phenanthrene, fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the dominant PAHs bound to deposited aerosol particles throughout the year. The total concentration of 15 PAHs in the deposited aerosol particles was the highest in winter but lowest in spring. The highest PAH concentration in the deposited aerosol particles in winter was because the heating processes highly increased the concentration in atmospheric aerosol particles. Low temperature and weak sunshine in winter reduced the degradation rate of deposited aerosol particle-bound PAHs, especially for those with low molecular weight. The lowest PAH concentration in deposited aerosol particles in spring resulted from the frequently occurring dust storms, which diluted PAH concentrations. The mean deposition flux of PAHs with aerosol particles in winter (16 μg/[m(2) ×d]) reached 3 times to 5 times that in other seasons (3.5-5.0 μg/[m(2) ×d]). The spatial variation of the deposition flux of PAHs with high molecular weight (e.g., benzo[a]pyrene) was consistent with their concentrations in the atmospheric aerosol particles, whereas such a phenomenon was not observed for those with low molecular weight (e.g., phenanthrene) because of their distinct hydrophobicity, Henry's law constant, and the spatially heterogeneous meteorological conditions. © 2013 SETAC.

  20. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    PubMed

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  1. Regional-scale simulation of transport and transformations of semi-volatile polycyclic aromatic hydrocarbons (PAHs) in East Asia: diurnal variations investigation

    NASA Astrophysics Data System (ADS)

    Mu, Qing; Lammel, Gerhard; Cheng, Yafang

    2015-04-01

    Semi-volatile PAHs are major pollutants of urban air, mostly regionally transported and reaching remote environments[1]. Some semi-volatile PAHs are carcinogenic. About 22% of global PAHs emissions are in China. The transport and sinks (atmospheric reactions, deposition) of semi-volatile PAHs in East Asia are studied using a modified version of the Weather Research and Forecasting model coupled with chemistry (WRF/Chem [2]). For this purpose, PAHs' gas and particulate phase chemical reactions and dry and wet deposition processes are included. We use emissions of 2008 [3] which include technical combustion processes (coal, oil, gas, waste and biomass) and open fires and apply diurnal time functions as those of black carbon. The model was run for phenanthrene (3-ring PAH, p = 1.5×10-2 Pa at 298 K) and benzo(a)pyrene (5-ring PAH, p = 7×10-7 Pa) for July 2013 with hourly output and 27 km horizontal grid spacing. The comparison of model predicted phenanthrene concentrations with measurements at a rural site near Beijing (own data, unpublished) validates the model's ability to simulate diurnal variations of gaseous PAHs. The model's performance is better in simulating day time than night time gaseous PAHs. The concentrations of PAHs had experienced significant diurnal variations in rural and remote areas of China. Elevated concentration levels of 40-60 ng m-3 for phenanthrene and 1-10 ng m-3 for benzo(a)pyrene are predicted in Shanxi, Guizhou, the North China Plain, the Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. References [1] Keyte, I.J., Harrison, R.M., and Lammel, G., 2013: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review, Chem. Soc. Rev., 42, 9333-9391. [2] Grell, G.A, Peckham, S.E, Schmitz, R, McKeen, S.A, Frost, G, Skamarock, W.C, and Eder, B., 2005: Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957-6975. [3] Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G. F., Wang, B., Zhang, Y. Y., Chen, Y. C., Lu, Y., Chen, H., Li, T. C., Sun, K., Li, B. G., Liu, W. X., Liu, J. F., and Tao, S., 2013: Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions, Environ. Sci. Technol., 47, 6415-6424.

  2. Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1: Matrix-isolated naphthalene and perdeuterated naphthalene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Sandford, S. A.; Allamandola, Louis J.

    1994-01-01

    Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8(+), and its fully deuterated analog, C10D8(+), between 4000 and 200/cm. Ions are generated by in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8(+) ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7/cm. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7/cm band has not previously been reported. C10D8(+) ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1/cm. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8(+). Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.

  3. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium.

    PubMed

    Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui

    2018-04-25

    With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.

  4. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus.

    PubMed

    Pozdnyakova, Natalia; Dubrovskaya, Ekaterina; Chernyshova, Marina; Makarov, Oleg; Golubev, Sergey; Balandina, Svetlana; Turkovskaya, Olga

    2018-05-01

    The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6.

    PubMed

    Ma, Zhao; Liu, Juan; Dick, Richard P; Li, Hui; Shen, Di; Gao, Yanzheng; Waigi, Michael Gatheru; Ling, Wanting

    2018-05-08

    Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L -1 ) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L -1 ) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L -1 ) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Secondary Organic Aerosol Formation from the Photooxidation of Naphthalene

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Chen, Y.; Wenger, J.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that are released into the atmosphere as a by-product of combustion processes. The gas-phase PAHs can be chemically transformed via reaction with the hydroxyl radical to produce a range of oxidised organic compounds and other pollutants such as ozone and secondary organic aerosol (SOA). Epidemiological studies have established that exposure to this type of air pollution is associated with damaging effects on the respiratory and cardiovascular systems, and can lead to asthma, oxidative stress, health deterioration and even death. The major anthropogenic source of SOA in urban areas is believed to be aromatic hydrocarbons, which are present in automobile fuels and are used as solvents. As a result, research is currently being performed on the characterisation of SOA produced from aromatic hydrocarbons such as toluene, the xylenes and trimethylbenzenes. However, significant amounts of PAHs are also released into urban areas from automobile emissions and the combustion of fossil fuels for home heating. Naphthalene is regularly cited as the most abundant PAH in polluted urban air, with typical ambient air concentrations of 0.05 - 0.20 parts per billion (ppbV) in European cities, comparable to the xylenes. Since naphthalene reacts in an analogous manner to monocyclic aromatic compounds then it is also expected to make a significant contribution to ambient SOA. However, the yield and chemical composition of SOA produced from the atmospheric degradation of naphthalene is not well known. In this presentation, the effects of NOx level and relative humidity on the SOA formation from the phootooixdation of naphthalene will be presented. A series of experiments has been performed in a large atmospheric simulation chamber equipped with a gas chromatograph and analyzers for monitoring nitrogen oxides (NOx) and ozone. SOA formation from the photooxidation of naphthalene was measured using a scanning mobility particle sizer. The effect of NOx concentration on SOA formation was evaluated by varying the initial naphthalene and NOx concentrations. The results clearly show that a higher hydrocarbon to NOx ratio produces a higher yield of SOA. The SOA mass yields were also found to increase as the relative humidity was raised from 0 to 50%. A recently developed denuder-filter sampling technique was used to investigate the gas/particle partitioning behavior of the photooxidation products. This work is the first study of the formation of SOA from naphthalene and the results will be compared to those obtained from other aromatic compounds.

  7. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves.

    PubMed

    Jin, Liqiao; Che, Xingkai; Zhang, Zishan; Li, Yuting; Gao, Huiyuan; Zhao, Shijie

    2017-02-01

    Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is widely distributed in the environment and seriously affects the growth and development of plants. To clarify the mechanisms of the direct effects of phenanthrene on the plant photosynthetic apparatus, we measured short-term phenanthrene-treated cucumber leaves. Phenanthrene inhibited Rubisco carboxylation activity, decreasing photosynthesis rates (Pn). And phenanthrene inhibited photosystem II (PSII) activity, thereby blocking photosynthetic electron transport. The inhibition of the light and dark reactions decreased the photosynthetic electron transport rate (ETR) and increased the excitation pressure (1-qP). Under high light, the maximum photochemical efficiency of photosystem II (F v /F m ) in phenanthrene-treated cucumber leaves decreased significantly, but photosystem I (PSI) activity (Δ I/I o ) did not. Phenanthrene also caused a J-point rise in the OJIP curve under high light, which indicated that the acceptor side of PSII Q A to Q B electron transfer was restricted. This was primarily due to the net degradation of D1 protein, which is caused by the accumulation of reactive oxygen species (ROS) in phenanthrene-treated cucumber leaves under high light. This study demonstrated that phenanthrene could directly inhibit photosynthetic electron transport and Rubisco carboxylation activity to decrease net Pn. Under high light, phenanthrene caused the accumulation of ROS, resulting in net increases in D1 protein degradation and consequently causing PSII photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Cheikyula, J Orkuma; Koyama, Jiro; Uno, Seiichi

    2008-06-01

    Japanese flounder (Paralichthys olivaceus), red sea bream (Pagrus major), and Java medaka (Oryzias javanicus) were exposed to water borne polycyclic aromatic hydrocarbons (PAHs) for 10 days to compare PAH bioconcentration and P450 enzyme induction by ethoxyresorufin-O-deethylase (EROD) activity for use in oil spill biomonitoring in Asian waters. Target exposure concentration for phenanthrene, pyrene, and chrysene were 30 microg/L each, while benzo[a]pyrene was 3.0 microg/L. Phenanthrene and pyrene were accumulated in the flounder and red sea bream; chrysene was found only in the livers of the red sea bream, while Java medaka accumulated the high molecular weight benzo[a]pyrene along with the other PAHs. Total PAH concentrations increased with duration of exposure in the red sea bream from 184+/-37 ng/g wet weight (w.w.) in day 2 to 572+/-72 ng/g (w.w.) in day 10; It, however, decreased in the other two species. Among the three fish species, Java medaka had the highest initial total PAH concentration of 388+/-62 ng/g (w.w.); this was, however, reduced to the lowest final concentration of 52.3+/-3 ng/g (w.w.). It also had the highest EROD activity of 4.2+/-2.8 n mol/min/mg protein compared to the lowest of 0.11+/-0.03 n mol/min/mg protein in the Japanese flounder. Java medaka with high EROD activity induction and bioaccumulation of all PAHs will be suitable for PAH biomonitoring in Asian waters. Due to its high PAH bioconcentration red sea bream is also recommended for consideration for biomonitoring and PAH chronic toxicity tests.

  9. [Transport and differentiation of polycyclic aromatic hydrocarbons in air from Dashiwei karst Sinkholes in Guangxi, China].

    PubMed

    Kong, Xiang-Sheng; Qi, Shi-Hua; Sun, Qian; Huang, Bao-Jian

    2012-12-01

    The typical karst Dashiwei Sinkholes located in Leye County, Guangxi were chosen as the study object. The air samples from the opening of Dashiwei Sinkholes to the underground river profiles were collected by polyurethane foam passive samplers (PUF-PAS), and the meteorological parameters were observed. The 16 PAHs were analyzed using GC-MS. The results showed that the total PAHs concentration in air in Dashiwei Sinkholes ranged from 33.76 ng x d(-1) to 150.86 ng x d(-1), with an average of 80.36 ng x d(-1). The mean concentrations in the cliff, the bottom and the underground river profiles were 67.17, 85.36 and 101.67 ng x d(-1), respectively. The 2-3 rings PAHs (including phenanthrene, anthracene, napnthalene and fluorene) accounted for 87.97% of the total of PAHs. The transport and accumulation processes of PAHs in air in Dashiwei Sinkholes were: the ground to the cliff section to the bottom section and then to the underground river, and the total PAHs concentrations showed an obvious increasing tendency with the decrease in altitude or increase in the length of the underground river. Low molecular weight PAHs compounds (including phenanthrene, anthracene, flourene and fluoranthene) in air went through differentiation at the bottom of the west peak, the bottom of the sinkhole and the underground river. The primary sources of PAHs were pyrogenic sources with atmosphere transport. Ambient temperature was the predominating factor influencing the transport and accumulation of gas phase PAHs in Dashiwei Sinkholes, following by wind speed, wind direction and relative humidity. Relative humidity and the temperature were the predominating factors influencing the differentiation, following by wind speed and wind direction. As a whole, a "cold trapping effect" of POPs was showed obviously in Dashiwei Sinkholes.

  10. Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches

    PubMed Central

    Coppotelli, Bibiana Marina; Madueño, Laura; Loviso, Claudia Lorena; Macchi, Marianela; Neme Tauil, Ricardo Martin; Valacco, María Pía; Morelli, Irma Susana

    2017-01-01

    The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31–43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in contaminant and intermediate metabolite degradation than a generalist strain (Sphingobium sp. AM). PMID:28886166

  11. Chronic toxicity of phenanthrene to the marine polychaete worm, Nereis (Neanthes) arenaceodentata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, V.L. Jr.; Dillon, T.M.

    1996-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment. While environmental concentrations are generally below acutely, lethal levels, chronic, low level exposures may result in subtle sublethal effects. PAHs accumulate in bottom sediments and may represent a hazard to the benthos. Polychaetes are important members of this community. The objective of this study is to evaluate the chronic sublethal effects of one PAH, phenanthrene (PHN), on the polychaete worm, Nereis arenaceodentata. PHN was selected because of its high toxicity to marine invertebrates relative to other PAHs. The response of bivalves to heavy metals and other toxins has usually beenmore » determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals is uncertain. To obtain constant results. Preston employed plastic spacers to hold the valves apart. This obviates the observation of valve position as an index of response, and some other method is required. Electromyography of intact mussels is one such index, and is shown to be a simple, effective and quantitative measurement of activity. Experiments are reported on the effects of added mercury on salt water and fresh water species. Parts of this Nvork have appeared in brief form.« less

  12. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    PubMed

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  13. Ultraviolet Irradiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason; Sandford, Scott A.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The polycyclic aromatic hydrocarbon (PAH) naphthalene was exposed to ultraviolet radiation in H2O ice under astrophysical conditions, and the products were analyzed using infrared spectroscopy and high performance liquid chromatography. As we found in our earlier studies on the photoprocessing of coronene in H2O ice, aromatic alcohols and ketones (quinones) were formed. The regiochemistry of the reactions is described and leads to specific predictions of the relative abundances of various oxidized naphthalenes that should exist in meteorites if interstellar ice photochemistry influenced their aromatic inventory. Since oxidized PAHs are present in carbon-rich meteorites and interplanetary dust particles (IDPs), and ubiquitous in and fundamental to biochemistry, the delivery of such extraterrestrial molecules to the early Earth may have played a role in the origin and evolution of life.

  14. Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance.

    PubMed

    Saha, Mahua; Togo, Ayako; Mizukawa, Kaoruko; Murakami, Michio; Takada, Hideshige; Zakaria, Mohamad P; Chiem, Nguyen H; Tuyen, Bui Cach; Prudente, Maricar; Boonyatumanond, Ruchaya; Sarkar, Santosh Kumar; Bhattacharya, Badal; Mishra, Pravakar; Tana, Touch Seang

    2009-02-01

    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.

  15. Appraisement, source apportionment and health risk of polycyclic aromatic hydrocarbons (PAHs) in vehicle-wash wastewater, Pakistan.

    PubMed

    Qamar, Zahir; Khan, Sardar; Khan, Anwarzeb; Aamir, Muhammad; Nawab, Javed; Waqas, Muhammad

    2017-12-15

    Vehicle-wash wastewater (VWW) contains elevated concentrations of different petrochemicals including polycyclic aromatic hydrocarbons (PAHs), a carcinogenic group of organic compounds. This study investigates the discharge of PAHs present in the untreated wastewater of vehicle-wash stations (VWS) located in district Peshawar, Pakistan. The data obtained was being novel with the detection of 16 USEPA PAHs (both individuals and total) and compared with earlier studies and international standards. The ∑16PAHs in wastewater from light vehicle-wash stations (LVWS) and heavy vehicle-wash stations (HVWS) ranged from 245-429μg/l and 957-1582μg/l, respectively. A significant difference (p<0.01) was observed in PAHs discharged from LVWS and HVWS. The projected ∑16PAHs discharge from both HVWS (92% of total generated PAHs) and LVWS (8%) was about 5109.9 g per annum. According to PAH diagnostic ratios, PAHs were both petrogenic (chrysene/benz(a)anthracene, low molecular weight/high molecular weight) and pyrogenic (phenanthrene/anthracene, fluoranthene/pyrene, fluoranthene/fluoranthene+pyrene) in origin. The highest toxic equivalent quotient (TEQ) value was shown by benzo(a)pyrene (21.6μg/l) followed by dibenz(ah)anthracene (9.81μg/l) in wastewater from HVWS. However, in LVWS the case was reversed with highest value (7.54μg/l) for dibenz(ah)anthracene followed by benzo(a)pyrene (3.54μg/l). The lowest TEQ value was indicated for phenanthrene (0.007μg/l) in wastewater of LVWS, while pyrene showed the lowest value (0.007μg/l) in wastewater of HVWS. The results indicated that VWS contribute significant amount of PAHs each year, which is of great concern regarding water quality, ecological and human health risk. This is the first systematic and comprehensive research related with generation of PAHs load per day, week, month and annum from VWS, their source apportionment and health effects in Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    PubMed

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of a Naphthalene Dioxygenase Endowed with an Exceptionally Broad Substrate Specificity Toward Polycyclic Aromatic Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouanneau,Y.; Meyer, C.; Jakoncic, J.

    In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five rings. The components of this enzyme were separately purified and characterized. The oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and one mononuclear Fe center per {alpha} subunit, based on EPR measurements and iron assay. Steady-state kinetic measurements revealed that the enzyme had a relatively low apparent Michaelis constant for naphthalene (K{sub m} = 0.92 {+-} 0.15 {mu}M) and an apparent specificity constant of 2.0 {+-} 0.3 M{sup -1} s{sup -1}.more » Naphthalene was converted to the corresponding 1,2-dihydrodiol with stoichiometric oxidation of NADH. On the other hand, the oxidation of eight other PAHs occurred at slower rates and with coupling efficiencies that decreased with the enzyme reaction rate. Uncoupling was associated with hydrogen peroxide formation, which is potentially deleterious to cells and might inhibit PAH degradation. In single turnover reactions, ht-PhnI alone catalyzed PAH hydroxylation at a faster rate in the presence of organic solvent, suggesting that the transfer of substrate to the active site is a limiting factor. The four-ring PAHs chrysene and benz[a]anthracene were subjected to a double ring-dihydroxylation, giving rise to the formation of a significant proportion of bis-cis-dihydrodiols. In addition, the dihydroxylation of benz[a]anthracene yielded three dihydrodiols, the enzyme showing a preference for carbons in positions 1,2 and 10,11. This is the first characterization of a dioxygenase able to dihydroxylate PAHs made up of four and five rings.« less

  18. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mebel, Alexander M.; Georgievskii, Yuri; Jasper, Ahren W.

    2016-01-01

    Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allenemore » and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.« less

  19. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India.

    PubMed

    Patel, Vilas; Jain, Siddharth; Madamwar, Datta

    2012-03-01

    Naphthalene degrading bacterial consortium (DV-AL) was developed by enrichment culture technique from sediment collected from the Alang-Sosiya ship breaking yard, Gujarat, India. The 16S rRNA gene based molecular analyzes revealed that the bacterial consortium (DV-AL) consisted of four strains namely, Achromobacter sp. BAB239, Pseudomonas sp. DV-AL2, Enterobacter sp. BAB240 and Pseudomonas sp. BAB241. Consortium DV-AL was able to degrade 1000 ppm of naphthalene in Bushnell Haas medium (BHM) containing peptone (0.1%) as co-substrate with an initial pH of 8.0 at 37°C under shaking conditions (150 rpm) within 24h. Maximum growth rate and naphthalene degradation rate were found to be 0.0389 h(-1) and 80 mg h(-1), respectively. Consortium DV-AL was able to utilize other aromatic and aliphatic hydrocarbons such as benzene, phenol, carbazole, petroleum oil, diesel fuel, and phenanthrene and 2-methyl naphthalene as sole carbon source. Consortium DV-AL was also efficient to degrade naphthalene in the presence of other pollutants such as petroleum hydrocarbons and heavy metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. [Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].

    PubMed

    Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa

    2015-06-01

    In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.

  1. Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD9.

    PubMed

    Dutta, Kunal; Shityakov, Sergey; Khalifa, Ibrahim; Mal, Arpan; Moulik, Satya Priya; Panda, Amiya Kumar; Ghosh, Chandradipa

    2018-05-18

    Polycyclic aromatic hydrocarbons (PAHs) belong to a diverse group of environmental pollutants distributed ubiquitously in the environment. The carcinogenic properties of PAHs are the main causes of harm to human health. The green technology, biodegradation have become convenient options to address the environmental pollution. In this study, we analyzed the biodegradation potential of naphthalene with secondary carbon supplements (SCSs) in carbon deficient media (CSM) by Pseudomonas putida strain KD9 isolated from oil refinerary waste. The rigid-flexible molecular docking method revealed that the mutated naphthalene 1,2-dioxygenase had lower affinity for naphthalene than that found in wild type strain. Moreover, analytical methods (HPLC, qRT-PCR) and soft agar chemotaxis suggest sucrose (0.5 wt%) to be the best chemo-attractant and it unequivocally caused enhanced biodegradation of naphthalene (500 mg L -1 ) in both biofilm-mediated and shake-flask biodegradation methods. In addition, the morphological analysis detected from microscopy clearly showed KD9 to change its size and shape (rod to pointed) during biodegradation of naphthalene in CSM as sole source of carbon and energy. The forward versus side light scatter plot of the singlet cells obtained from flow cytometry suggests smaller cell size in CSM and lower florescence intensity of the total DNA content of cells. This study concludes that sucrose may be used as potential bio-stimulation agent. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii.

    PubMed

    Seo, Jong-Su; Keum, Young-Soo; Harada, Renee M; Li, Qing X

    2007-07-11

    Nineteen bacterial strains were isolated from petroleum-contaminated soil in Hilo, HI, and characterized by two different spray-plated methods, turbidity test in liquid medium, and 16S rRNA gene sequence analysis. Analysis of the soil showed 13 polycyclic aromatic hydrocarbons (PAHs) in a range from 0.6 to 30 mg/kg of dry weight each and 12 PAH metabolites. Five distinct bacterial strains (C3, C4, P1-1, JS14, and JS19b1) selected from preliminary plating and turbidity tests were further tested for PAH degradation through single PAH degradation assay. Strains C3, C4, and P1-1 degraded phenanthrene (40 mg/L) completely during 7 days of incubation. Strain JS14 degraded fluoranthene (40 mg/L) completely during 10 days of incubation. Strain JS19b1 degraded 100% of phenanthrene (40 mg/L) in 7 days, 77% of fluorene (40 mg/L) in 14 days, 97% of fluoranthene (40 mg/L) in 10 days, and 100% of pyrene (40 mg/L) in 14 days. Turbidity tests showed that strains P1-1, JS14, and JS19b1 utilized several organophosphorus pesticides as growth substrate. P1-1 can degrade carbofenothion, chlorfenvinphos, diazinon, fonofos, and pirimiphos-methyl. JS14 can transform chlorfenvinphos and diazinon. JS19b1 can break down diazinon, pirimiphos-methyl, and temephos.

  3. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure

    PubMed Central

    Kang-Sickel, Juei-Chuan C.; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E.; Egeghy, Peter; Rappaport, Stephen M.; Toennis, Christine A.; Li, Wang; Borisova, Tatyana; French, John E.; Nylander-French, Leena A.

    2014-01-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+−) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure. PMID:21961652

  4. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure.

    PubMed

    Kang-Sickel, Juei-Chuan C; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E; Egeghy, Peter; Rappaport, Stephen M; Toennis, Christine A; Li, Wang; Borisova, Tatyana; French, John E; Nylander-French, Leena A

    2011-11-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+-) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure.

  5. Removal efficiency of polycyclic aromatic hydrocarbons and phthalate esters by surface flow wetland in Shunyi district, Beijing

    NASA Astrophysics Data System (ADS)

    Li, Binghua; Liu, Licai; Han, Li; Yang, Yong

    2017-03-01

    The surface flow wetland (SFW) system was located on Shunyi district, Beijing. It was built to treat industrial wastewater and domestic sewage, which were looked as its influent. Here sixteen polycyclic aromatic hydrocarbons (PAHs) and six phthalate esters (PAEs) were detected by gas chromatography-mass spectrometry (GC-MS).To determine treatment effect of SFW system, concentrations of targeted compounds in the influent were compared with those in the effluent. Results showed typical compounds of industrial wastewater were naphthalene (NAP), phenanthrene (PHE), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and their concentrations were ranged from 122.6 ng.L-1 to 760.6 ng.L-1. However typical compounds of domestic sewage were NAP, anthracene (ANT), PHE, DBP, diethyl phthalate (DEP), DEHP, and their concentrations were ranged from 280 ng.L-1 to 7998.1 ng.L-1. Typical compounds of effluent were NAP, PHE, DBP, DEHP, and their concentrations changed between 4.2 ng.L-1 and 1430.74 ng.L-1. The removal rate of those compounds were 10% ~ 99%, and nineteen compounds removal rate reached above 70%.Therefore, it can be concluded that SFW system had a strong effect on the removal of these compounds.

  6. Change of PAHs with evolution of paddy soils from prehistoric to present over the last six millennia in the Yangtze River Delta region, China.

    PubMed

    Zhang, Jin; Cornelia, Mueller-Niggemann; Wang, Minyan; Cao, Zhihong; Luo, Xiping; Wong, Minghung; Chen, Wei

    2013-04-01

    To evaluate the influence of hydroponics management on soil organic components with evolution of paddy soil over the last six millennia, PAHs, as a biomarker, as well as total organic carbon content were used to explore changes of paddy soil organic carbon in two entirely buried ancient paddy soil profiles. The results showed that hydroponics management can cause organic carbon deposition in rice paddy. The changing of total PAH concentrations was not always in accordance with the changing of total organic carbon contents in layers of the buried ancient paddy soils. The PAHs in 6280 BP prehistoric paddy soil layer was 3-ring>5-ring>4-ring>6-ring, while in layers of the present paddy soil and the prehistoric upland were 3-ring>4-ring>5-ring>6-ring. The contribution of phenanthrene to total PAHs in two profiles and the increasing ratio of phenanthrene to alkylated PAHs from parent material/6280 BP prehistoric upland to 6280 BP paddy suggested substantial increase of the anthropogenic influence of hydroponics management on rice paddy soil. And in view of the (14)C age and bioremains in the two profiles, it was only possible for PAHs to be derived from hydroponics management with evolution of the paddy soils form the Neolithic age. Cadalene could be used as an indicator for biological sources of PAHs released by rice plant residues, and benzo[g,h,i]fluoranthene and benzo[g,h,i]perylene for pyrogenic sources released by field vegetation fires. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    NASA Technical Reports Server (NTRS)

    Williams, Richard M.; Leone, Stephen R.

    1994-01-01

    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.

  8. Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation.

    PubMed

    Lisowska, K; Długoński, J

    1999-01-01

    Nine fungal strains showing ability of cortexolone hydroxylation to epicortisol and/or cortisol were screened in this work for anthracene and phenanthrene elimination (250 mg/l). All of the strains (Cylindrocladium simplex IM 2358, C. simplex IM 2358/650, Monosporium olivaceum IM 484, Curvularia lunata IM 2901, C. lunata IM 2901/366, C. tuberculata IM 4417, Cunninghamella elegans IM 1785, C. elegans IM 1785/21Gp, C. elegans IM 1785/10Gi) significantly removed anthracene and phenanthrene. During incubation with anthracene formation of intermediate products was observed. The amount of the main intermediate product, identified as 9, 10-anthraquinone, was not greater than 22.2% of the anthracene introduced to the fungal cultures. C. elegans IM 1785/21Gp was the best degrader of both anthracene and phenanthrene, removing 81.6 and 99.4% of these compounds after 7 days, respectively. Phenanthrene removal by C. elegans IM 1785/21Gp was preceded by PAHs accumulation in mycelium and growth inhibition. Elimination of phenanthrene started after one day of incubation and was related to the fungus growth.

  9. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    ERIC Educational Resources Information Center

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  10. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, A.; Jansson, J.

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and thismore » reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.« less

  11. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkay, T.; Navon-Venezia, S.; Ron, E.Z.

    Alasan, a high-molecular-weight bioemulsifier complex of an anionic polysaccharide and proteins that is produced by Acinetobacter radioresistent KA53 enhanced the aqueous solubility and biodegradation rates of polyaromatic hydrocarbons (PAHs). In the presence of 500 {micro}g of alasan ml{sup {minus}1}, the apparent aqueous solubilities of phenanthrene, fluoranthene, and pyrene were increased 6.6-, 25.7-, and 19.8-fold, respectively. Physicochemical characterization of the solubilization activity suggested that alasan solubilizes PAHs by a physical interaction, most likely of a hydrophobic nature, and that this interaction is slowly reversible. Moreover, the increase in apparent aqueous solubility of PAHs does not depend on the conformation of alasanmore » and is not affected by the formation of multimolecular aggregates of alasan above its saturation concentration. The presence of alasan more than doubled the rate of [{sup 14}C]fluoranthene mineralization and significantly increased the rate of [{sup 14}C]phenanthrene mineralization by Sphingomonas paucimobilis EPA505. The results suggest that alasan-enhanced solubility of hydrophobic compounds has potential applications in bioremediation.« less

  12. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene

    NASA Astrophysics Data System (ADS)

    Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.

    2016-08-01

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.

  13. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  14. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene.

    PubMed

    Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M

    2016-08-28

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.

  15. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    PubMed

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  16. Studies of the effect of selected nondonor solvents on coal liquefaction yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.

    The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less

  17. Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene:phenanthrene, pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d10, and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  18. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  19. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  20. Thermal decomposition of electronic wastes: Mobile phone case and other parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molto, Julia, E-mail: julia.molto@ua.es; Egea, Silvia; Conesa, Juan Antonio

    Highlights: > Pyrolysis and combustion of different parts of mobile phones produce important quantities of CO and CO{sub 2}. > Naphthalene is the most abundant PAH obtained in the thermal treatment of mobile phones. > Higher combustion temperature increases the chlorinated species evolved. - Abstract: Pyrolysis and combustion runs at 850 {sup o}C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regardingmore » semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.« less

  1. PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA

    NASA Astrophysics Data System (ADS)

    Galarneau, E.; Makar, P. A.; Zheng, Q.; Narayan, J.; Zhang, J.; Moran, M. D.; Bari, M. A.; Pathela, S.; Chen, A.; Chlumsky, R.

    2013-07-01

    The off-line Eulerian AURAMS chemical transport model was adapted to simulate the atmospheric fate of seven PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene + triphenylene, and benzo[a]pyrene. The model was then run for the year 2002 with hourly output on a~grid covering southern Canada and the continental USA with 42 km horizontal grid spacing. Model predictions were compared to ~ 5000 24 h average PAH measurements from 45 sites, eight of which also provided data on particle/gas partitioning which had been modelled using two alternative schemes. This is the first known regional modelling study for PAHs over a North American domain and the first modelling study at any scale to compare alternative particle/gas partitioning schemes against paired field measurements. Annual average modelled total (gas + particle) concentrations were statistically indistinguishable from measured values for fluoranthene, pyrene and benz[a]anthracene whereas the model underestimated concentrations of phenanthrene, anthracene and chrysene + triphenylene. Significance for benzo[a]pyrene performance was close to the statistical threshold and depended on the particle/gas partitioning scheme employed. On a day-to-day basis, the model simulated total PAH concentrations to the correct order of magnitude the majority of the time. Model performance differed substantially between measurement locations and the limited available evidence suggests that the model spatial resolution was too coarse to capture the distribution of concentrations in densely populated areas. A more detailed analysis of the factors influencing modelled particle/gas partitioning is warranted based on the findings in this study.

  2. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not extractable using cyclodextrin. Hence, while cyclodextrin extraction may serve as a good proxy for microbial bioavailability, our results suggest that it may not serve as a good proxy for earthworm bioavailability. 1H NMR metabolomics therefore offers considerable promise as a novel, molecular-level method to directly monitor earthworm bioavailability of potentially toxic and persistent compounds in the environment.

  3. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination.

    PubMed

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K; Naidu, Ravi

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30mgL(-1) metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10mgL(-1)), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72-78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP-bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks.

    PubMed

    Yang, Xiaoxia; Ren, Dong; Sun, Wenwen; Li, Xiaoman; Huang, Bin; Chen, Rong; Lin, Chan; Pan, Xuejun

    2015-05-01

    The concentrations, distribution, possible sources, and cancer risks of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles (TSPs) and surface soils collected from the same sampling spots were compared in Kunming, China. The total PAH concentrations were 9.35-75.01 ng/m(3) and 101.64-693.30 ng/g dry weight (d.w.), respectively, in TSPs and surface soils. Fluoranthene (FLA), pyrene (PYR), chrysene (CHR), and phenanthrene (PHE) were the abundant compounds in TSP samples, and phenanthrene (PHE), fluorene (FLO), fluoranthene (FLA), benzo[b]fluoranthene (BbF), and benzo[g,h,i]perylene (BghiP) were the abundant compounds in surface soil samples. The spatial distribution of PAHs in TSPs is closely related to the surrounding environment, which varied significantly as a result of variations in source emission and changes in meteorology. However, the spatial distribution of PAHs in surface soils is supposed to correlate with a city's urbanization history, and high levels of PAHs were always observed in industry district, or central or old district of city. Based on the diagnostic ratios and principal component analysis (PCA), vehicle emissions (especially diesel-powered vehicles) and coal and wood combustion were the main sources of PAHs in TSPs, and the combustion of wood and coal, and spills of unburnt petroleum were the main sources of PAHs in the surface soils. The benzo[a]pyrene equivalent concentration (BaPeq) for the TSPs and surface soil samples were 0.16-2.57 ng/m(3) and 11.44-116.03 ng/g d.w., respectively. The incremental lifetime cancer risk (ILCR) exposed to particulate PAHs ranged from 10(-4) to 10(-3) indicating high potential of carcinogenic risk, and the ILCR exposed to soil PAHs was from 10(-7) to 10(-6) indicating virtual safety. These presented results showed that particle-bound PAHs had higher potential carcinogenic ability for human than soil PAHs. And, the values of cancer risk for children were always higher than for adults, which demonstrated that children were sensitive to carcinogenic effects of PAHs.

  5. Evidence that Polycyclic Aromatic Hydrocarbons in Two Carbonaceous Chondrites Predate Parent-Body Formation

    NASA Technical Reports Server (NTRS)

    Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.

    2003-01-01

    Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.

  6. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    PubMed

    Carratalá, A; Moreno-González, R; León, V M

    2017-01-01

    The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m -3 ) and chlorpyrifos (4900 pg m -3 ). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Polycyclic aromatic hydrocarbons in some grounded coffee brands.

    PubMed

    Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali

    2013-08-01

    Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.

  10. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment.

    PubMed

    An, Chun-jiang; Huang, Guo-he; Wei, Jia; Yu, Hui

    2011-11-01

    This study investigated the effect of short-chain organic acids on biosurfactant-enhanced mobilization of phenanthrene in soil-water system. The desorption characteristics of phenanthrene by soils were assessed in the presence of rhamnolipid and four SCOAs, including acetic acid, oxalic acid, tartaric acid and citric acid. The tests with rhamnolipid and different organic acids could attain the higher desorption of phenanthrene compared to those with only rhamnolipid. Among the different combinations, the series with rhamnolipid and citric acid exhibited more significant effect on the desorption performance. The removal of phenanthrene using rhamnolipid and SCOAs gradually increased as the SCOA concentration increased up to a concentration of 300 mmol/L. The effects of pH, soil dissolved organic matter and ionic strength were further evaluated in the presence of both biosurfactant and SCOAs. The results showed that the extent of phenanthrene desorption was more significant at pH 6 and 9. Desorption of phenanthrene was relatively lower in the DOM-removed soils with the addition of biosurfactant and SCOAs. The presence of more salt ions made phenanthrene more persistent on the solid phase and adversely affected its desorption from contaminated soil. The results from this study may have important implications for soil washing technologies used to treat PAH-contaminated soil and groundwater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter.

    PubMed

    Jia, Hanzhong; Li, Li; Fan, Xiaoyun; Liu, Mingdeng; Deng, Wenye; Wang, Chuanyi

    2013-07-15

    In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Concentrations of polynuclear aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois, 2001-02

    USGS Publications Warehouse

    Kay, Robert T.; Arnold, Terri L.; Cannon, William F.; Graham, David; Morton, Eric; Bienert, Raymond

    2003-01-01

    Polynuclear aromatic hydrocarbon (PAH) compounds are ubiquitous in ambient surface soils in the city of Chicago, Illinois. PAH concentrations in samples collected in June 2001 and January 2002 were typically in the following order from highest to lowest: fluoranthene, pyrene, benzo(b)fluoranthene, phenanthrene, benzo(a)pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and anthracene. Naphthalene, acenaphthene, acenaphthylene, and fluorene were consistently at the lowest concentrations in each sample. Concentrations of the PAH compounds showed variable correlation. Concentrations of PAH compounds with higher molecular weights typically show a higher degree of correlation with other PAH compounds of higher molecular weight, whereas PAH compounds with lower molecular weights tended to show a lower degree of correlation with all other PAH compounds. These differences indicate that high and low molecular-weight PAHs behave differentl y once released into the environment. Concentrations of individual PAH compounds in soils typically varied by at least three orders of magnitude across the city and varied by more than an order of magnitude over a distance of about 1,000 feet. Concentrations of a given PAH in ambient surface soils are affected by a variety of site-specific factors, and may be affected by proximity to industrial areas. Concentrations of a given PAH in ambient surface soils did not appear to be affected the organic carbon content of the soil, proximity to non-industrial land use, or proximity to a roadway. The concentration of the different PAH compounds in ambient surface soils appears to be affected by the propensity for the PAH compound to be in the vapor or particulate phase in the atmosphere. Lower molecular-weight PAH compounds, which are primarily in the vapor phase in the atmosphere, were detected in lower concentrations in the surface soils. Higher molecular-weight PAH compounds, which are present primarily in the particulate phase in the atmosphere, tended to be in higher concentrations in the surface soils. The apparent effect of the PAH phase in the atmosphere on the concentration of a PAH in ambient surface soils indicates that atmospheric settling of particulate matter is an important source of the PAH compounds in ambient surface soils in Chicago. The distribution of PAH compounds within the city was complex. Comparatively high concentrations were detected near Lake Michigan in the northern part of the city, in much of the western part of the city, and in isolated areas in the southern part of the city. Concentrations were lower in much of the northwestern, south-central, southwestern, and far southern parts of the city. The arithmetic mean concentration of arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium was from 2 to 6 times higher in ambient surface soils in the city of Chicago than in soils from surrounding agricultural areas. The arithmetic mean concentration of lead in Chicago soils was about 20 times higher. Concentrations of calcium and magnesium above those of surrounding agricultural areas appear to be related to the effects of dolomite bedrock on the chemical composition of the soil. Elevated concentrations of the remaining elements listed above indicate a potential anthropogenic source(s) of these elements in Chicago soils.

  13. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste.

    PubMed

    Dutta, Kunal; Shityakov, Sergey; Das, Prangya P; Ghosh, Chandradipa

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L -1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life ( t 1/2 ) and degradation rate constant ( k ) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg -1 soil), t 1/2  = 10.44 days -1 . However, the biodegradation by un-inoculated control soil was found slower ( t 1/2  = 140 days -1 ) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (-9.90 kcal mol -1 ) than wild type (-8.18 kcal mol -1 ) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nah Ac has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.

  14. Horizontal Transfer of phnAc Dioxygenase Genes within One of Two Phenotypically and Genotypically Distinctive Naphthalene-Degrading Guilds from Adjacent Soil Environments

    PubMed Central

    Wilson, Mark S.; Herrick, James B.; Jeon, Che Ok; Hinman, David E.; Madsen, Eugene L.

    2003-01-01

    Several distinct naphthalene dioxygenases have been characterized to date, which provides the opportunity to investigate the ecological significance, relative distribution, and transmission modes of the different analogs. In this study, we showed that a group of naphthalene-degrading isolates from a polycyclic aromatic hydrocarbon (PAH)-contaminated hillside soil were phenotypically and genotypically distinct from naphthalene-degrading organisms isolated from adjacent, more highly contaminated seep sediments. Mineralization of 14C-labeled naphthalene by soil slurries suggested that the in situ seep community was more acclimated to PAHs than was the in situ hillside community. phnAc-like genes were present in diverse naphthalene-degrading isolates cultured from the hillside soil, while nahAc-like genes were found only among isolates cultured from the seep sediments. The presence of a highly conserved nahAc allele among gram-negative isolates from the coal tar-contaminated seep area provided evidence for in situ horizontal gene transfer and was reported previously (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). Natural horizontal transfer of the phnAc sequence was also suggested by a comparison of the phnAc and 16S ribosomal DNA sequences of the hillside isolates. Analysis of metabolites produced by cell suspensions and patterns of amplicons produced by PCR analysis suggested both genetic and metabolic diversity among the naphthalene-degrading isolates of the contaminated hillside. These results provide new insights into the distribution, diversity, and transfer of phnAc alleles and increase our understanding of the acclimation of microbial communities to pollutants. PMID:12676698

  15. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.

  16. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.

    2018-05-01

    SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

  17. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. Part 2; The Members of the Thermodynamically Most Favorable Series through Coronene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo-[ghi]perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  18. Exposure of Firefighters to Particulates and Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Baxter, C. Stuart; Hoffman, Joseph D.; Knipp, Michael J.; Reponen, Tiina; Haynes, Erin N.

    2015-01-01

    Firefighting continues to be among the most hazardous yet least studied occupations in terms of exposures and their relationship to occupational disease. Exposures are complex, involving mixtures of particles and chemicals such as polycyclic aromatic hydrocarbons (PAHs). Adverse health effects associated with these agents include elevated incidences of coronary heart disease and several cancers. PAHs have been detected at fire scenes, and in the firehouse rest area and kitchen, routinely adjoining the truck bay, and where firefighters spend a major part of each shift. An academic-community partnership was developed with the Cincinnati Fire Department with the goal of understanding active firefighters' airborne and dermal PAH exposure. PAHs were measured in air and particulates, and number and mass concentrations, respectively, of submicron (0.02–1 μm) and PM2.5 (2.5 μm diameter and less) particles during overhaul events in two firehouses and a University of Cincinnati administrative facility as a comparison location. During overhaul firefighters evaluate partially combusted materials for re-ignition after fire extinguishment and commonly remove Self-Contained Breathing Apparatus (SCBA). Face and neck wipes were also collected at a domestic fire scene. Overhaul air samples had higher mean concentrations of PM2.5 and submicron particles than those collected in the firehouse, principally in the truck bay and kitchen. Among the 17 PAHs analyzed, only naphthalene and acenaphthylene were generally detectable. Naphthalene was present in 7 out of 8 overhaul activities, in 2 out of 3 firehouse (kitchen and truck bay) samples, and in none collected from the control site. In firefighter face and neck wipes a greater number of PAHs were found, several of which have carcinogenic activity, such as benzofluoranthene, an agent also found in overhaul air samples. Although the concentration for naphthalene, and all other individual PAHs, was very low, the potential simultaneous exposure to multiple chemicals even in small quantities in combination with high ultrafine particle exposure deserves further study. It is recommended that personal respiratory and skin protection be worn throughout the overhaul process. PMID:24512044

  19. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  20. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms.

    PubMed

    Kleinteich, Julia; Seidensticker, Sven; Marggrander, Nikolaj; Zarfl, Christiane

    2018-02-07

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics.

  1. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms

    PubMed Central

    Kleinteich, Julia; Marggrander, Nikolaj; Zarfl, Christiane

    2018-01-01

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics. PMID:29414906

  2. Fate of phenanthrene, pyrene and benzo[a]pyrene during biodegradation of crude oil added to two soils.

    PubMed

    Smith, M J; Lethbridge, G; Burns, R G

    1999-04-15

    The release of 14CO2 from 9-[14C]phenanthrene, 4,5,9,10-[14C]pyrene and 7-[14C]benzo[a]pyrene, added to Brent/Fortes crude oil and mixed into a pristine sand soil (0.40% organic C) and a pristine organic soil (22.9% organic C), was determined. After 244 days at 25 degrees C, 11.1 +/- 3.5% (sand) and 17.1 +/- 0.30% (organic) phenanthrene-14C and 9.77 +/- 2.8% (sand) and 5.86 +/- 1.4% (organic) benzo[a]pyrene-14C was released. After 210 days, 3.65 +/- 0.5% (sand) and 4.43 +/- 0.33% (organic) pyrene-14C was released. Inoculation of these two soils with DC1 and PD2 (bacteria capable of accelerating the phenanthrene and pyrene mineralisation in soil in the absence of crude oil) either at day 0 or after release as 14CO2 by indigenous degraders had ceased, failed to increase or initiate further mineralisation. Thus, aged PAH residues were non-bioavailable to these metabolically competent degrading microorganisms. At the end of the first period of incubation (210 days or 244 days), the total aromatic hydrocarbons recovered using Soxhlet extraction was 0.18% (sand) and 42.8% (organic) compared with approximately 100% from bio-inhibited soils. This confirmed that the indigenous microbiological activity not only caused a limited amount of PAH mineralisation but also reduced the extractability of residues, possibly due to the generation of metabolites which were chemisorbed and bound (and non extractable) in 'aged' soils.

  3. Comparison of Biomarkers of Tobacco Exposure between Premium and Discount Brand Cigarette Smokers in the NHANES 2011-2012 Special Sample.

    PubMed

    Wasserman, Emily J; Reilly, Samantha M; Goel, Reema; Foulds, Jonathan; Richie, John P; Muscat, Joshua E

    2018-05-01

    Background: Increased cigarette costs have inadvertently strengthened the appeal of discounted brands to price-sensitive smokers. Although smokers perceive discounted brands as having poorer quality, little is known about their delivery of toxic tobacco smoke constituents compared with premium-branded tobacco products. Methods: We investigated the differences between discount and premium brand smokers using the National Health and Nutrition Examination Survey 2011-2012 Special Smoker Sample. Our analyses focused on demographic differences and 27 biomarkers of harmful and potentially harmful constituents (HPHC) listed by the FDA, including volatile organic compounds, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronide [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronide; reported as total NNAL (tNNAL)], metals, and polycyclic aromatic hydrocarbons (PAHs). Data were analyzed using linear regression models adjusting for potential confounders. Results: A total of 976 non-tobacco users and 578 recent cigarette smokers were eligible for analysis, of which 141 (26.0% weighted) smoked discount brand cigarettes and 437 (74.0% weighted) smoked premium. Discount brand smokers were older, predominantly non-Hispanic white, and had higher serum cotinine. Discount brand smokers had significantly higher levels of 13 smoking-related biomarkers, including tNNAL, uranium, styrene, xylene, and biomarkers of exposure to PAHs (naphthalene, fluorene, and phenanthrene), compared with premium brand smokers. Conclusions: These findings suggest that discount cigarette use is associated with higher exposure to several carcinogenic and toxic HPHCs. Impact: These results may have important regulatory implications for product standards, as higher exposures could lead to a greater degree of harm. Cancer Epidemiol Biomarkers Prev; 27(5); 601-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. Polycyclic Aromatic Hydrocarbon Degradation of Phytoplankton-Associated Arenibacter spp. and Description of Arenibacter algicola sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium

    PubMed Central

    Rhodes, Glenn; Mishamandani, Sara; Berry, David; Whitman, William B.; Nichols, Peter D.; Semple, Kirk T.; Aitken, Michael D.

    2014-01-01

    Pyrosequencing of the bacterial community associated with a cosmopolitan marine diatom during enrichment with crude oil revealed several Arenibacter phylotypes, of which one (OTU-202) had become significantly enriched by the oil. Since members of the genus Arenibacter have not been previously shown to degrade hydrocarbons, we attempted to isolate a representative strain of this genus in order to directly investigate its hydrocarbon-degrading potential. Based on 16S rRNA sequencing, one isolate (designated strain TG409T) exhibited >99% sequence identity to three type strains of this genus. On the basis of phenotypic and genotypic characteristics, strain TG409T represents a novel species in the genus Arenibacter, for which the name Arenibacter algicola sp. nov. is proposed. We reveal for the first time that polycyclic aromatic hydrocarbon (PAH) degradation is a shared phenotype among members of this genus, indicating that it could be used as a taxonomic marker for this genus. Kinetic data for PAH mineralization rates showed that naphthalene was preferred to phenanthrene, and its mineralization was significantly enhanced in the presence of glass wool (a surrogate for diatom cell surfaces). During enrichment on hydrocarbons, strain TG409T emulsified n-tetradecane and crude oil, and cells were found to be preferentially attached to oil droplets, indicating an ability by the strain to express cell surface amphiphilic substances (biosurfactants or bioemulsifiers) as a possible strategy to increase the bioavailability of hydrocarbons. This work adds to our growing knowledge on the diversity of bacterial genera in the ocean contributing to the degradation of oil contaminants and of hydrocarbon-degrading bacteria found living in association with marine eukaryotic phytoplankton. PMID:24212584

  5. PAHs in corn grains submitted to drying with firewood.

    PubMed

    de Lima, Rafael Friedrich; Dionello, Rafael Gomes; Peralba, Maria do Carmo Ruaro; Barrionuevo, Simone; Radunz, Lauri Lourenço; Reichert Júnior, Francisco Wilson

    2017-01-15

    Grain drying using firewood as fuel for air heating, with direct fire, is still widely used in Brazil. The combustion of organic material, such as wood, can generate polycyclic aromatic hydrocarbons (PAHs) which are known to have carcinogenic potential. In the present work corn grain drying was carried out at three drying air temperatures: 60°C, 60/80°C and 80°C. Following the drying process, the presence and quantification of PAH in the corn grains was investigated. After extracting the PAHs of the matrix, the material was subjected to analysis by gas chromatography with mass detector. he results showed the presence of seven compounds: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of prenatal polycyclic aromatic hydrocarbons exposure on birth outcomes: the Polish mother and child cohort study.

    PubMed

    Polanska, Kinga; Dettbarn, Gerhard; Jurewicz, Joanna; Sobala, Wojciech; Magnus, Per; Seidel, Albrecht; Hanke, Wojciech

    2014-01-01

    The aim of this study was to assess the impact of PAH exposure on various anthropometric measures of birth outcomes. The study population consisted of 210 nonsmoking pregnant women. Urine samples collected between 20th and 24th week of pregnancy were used for analysis of the following PAH metabolites: 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrene (1-, 2-, 3-, 4-, and 9-OH-PHE), 1-hydroxypyrene (1-OH-PYR), 1,6 + 1,8-dihydroxypyrene (DI-OH-PYR), phenanthrene trans-1,2-dihydrodiol (PHE-1,2-diol), and phenanthrene trans-9,10-dihydrodiol (PHE-9,10-diol) by gas chromatography-mass spectrometry. Environmental tobacco smoke exposure (ETS) was assessed by cotinine level in saliva using a stable isotope dilution LC-ESI-MS/MS method. The mean PAH metabolite concentrations were in the range of 0.15 µg/g creatinine for 9-OH-PHE to 5.9 µg/g creatinine for PHE-9,10-diol. It was shown that none of the individual PAH exposure markers demonstrate a statistically significant influence on birth outcomes. Interestingly a statistically significant association was found between the sum of OH-PHE along with cotinine level and the cephalization index after adjusting for potential confounders (P = 0.04). This study provides evidence that combined exposure of pregnant women to common environmental pollutants such as PAH and ETS might adversely affect fetal development. Thus, reduction of human exposure to these mixtures of hazardous compounds would in particular result in substantial health benefits for newborns.

  7. A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China.

    PubMed

    Liu, Guoqing; Tong, Yongpeng; Luong, John H T; Zhang, Hong; Sun, Huibin

    2010-04-01

    Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m( - 3), respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.

  8. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B.

    PubMed

    Liu, Shasha; Guo, Chuling; Dang, Zhi; Liang, Xujun

    2017-03-01

    Previous study concerning the effects of surfactants on phenanthrene biodegradation focused on observing the changes of cell characteristics of Sphingomonas sp. GY2B. However, the impact of surfactants on the expression of bacterial proteins, controlling phenanthrene transport and catabolism, remains obscure. To overcome the knowledge gap, comparative proteomic approaches were used to investigate protein expressions of Sphingomonas sp. GY2B during phenanthrene biodegradation in the presence and absence of a nonionic surfactant, Tween80. A total of 23 up-regulated and 19 down-regulated proteins were detected upon Tween80 treatment. Tween80 could regulate ion transport (e.g. H + ) in cell membrane to provide driving force (ATP) for the transmembrane transport of phenanthrene thus increasing its uptake and biodegradation by GY2B. Moreover, Tween80 probably increased GY2B vitality and growth by inducing the expression of peptidylprolyl isomerase to stabilize cell membrane, increasing the abundances of proteins involved in intracellular metabolic pathways (e.g. TCA cycle), as well as decreasing the abundances of translation/transcription-related proteins and cysteine desulfurase, thereby facilitating phenanthrene biodegradation. This study may facilitate a better understanding of the mechanisms that regulate surfactants-enhanced biodegradation of PAHs at the proteomic level. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Polycyclic aromatic hydrocarbons in sediments and mussels of Corral Bay, south central Chile.

    PubMed

    Palma-Fleming, Hernan; P, Adalberto J Asencio; Gutierrez, Elena

    2004-03-01

    PAHs were measured in sediments and mussels (Mytilus chilensis) from Carboneros and Puerto Claro, located in Corral Bay, Valdivia. According to the ratio of phenanthrene/anthracene and fluoranthene/pyrene concentrations, these sites are medium polluted with PAHs originating mainly from pyrolytic sources. Fluoranthene was the major component measured in mussels (3.1-390 ng g(-1) dry weight) and sediments (6.9-74.1 ng g(-1) dry weight). In general, mussels were mainly exposed to the dissolved fraction of the lower molecular weight PAHs (tri- and tetra-aromatics) while the higher molecular ring systems (penta- and hexa-aromatics) were more bioavailable to sediments. Mussel PAHs content was relatively constant, with the exception of the 1999 summer season (March), when higher concentration values were found in both sites; however, PAHs residues in sediments showed a temporal variation.

  10. Biomonitoring of polycyclic aromatic compounds in the urine of mining workers occupationally exposed to diesel exhaust.

    PubMed

    Seidel, Albrecht; Dahmann, Dirk; Krekeler, Horst; Jacob, Juergen

    2002-02-01

    Diesel exhaust is considered a probable human carcinogen by the IARC. Biomonitoring of workers occupationally exposed to diesel exhaust was performed to determine their internal burden of diesel associated aromatic compounds. Personal air sampling also allowed to determine the exposure of the miners at their work place towards several polycyclic aromatic hydrocarbons (PAH) and nitro-arenes, the latter of which are thought to be specific constituents of diesel exhaust. For biomonitoring the urine of 18 underground salt miners was collected during and after their shift for 24-hours. half of the 18 miners were smokers. The urinary levels of 1-hydroxypyrene and hydroxylated phenanthrene metabolites were determined as biomarkers of PAH exposure, whereas urinary levels of some aromatic amines were chosen to monitor exposure towards specific nitro-arenes from diesel exhaust like 1-nitropyrene and 3-nitrobenzanthrone and to monitor the human burden by these compounds from inhaled cigarette smoke. Non-smoking workers exposed to diesel exhaust excrete an average level of about 4 micrograms phenanthrene metabolites, whereas the urinary levels in smokers were up to 3-fold higher. In summary the results indicate that (i) diesel exposure led to an increase of PAH metabolism in the workers examined, most probably by an induction of cytochrome P450 (ii) smokers could be identified in accordance with earlier studies by their increased ratio of phenanthrene metabolites derived from 1,2- and 3,4-oxidation and their higher amounts of excreted 1-naphthylamine, and (iii) the excreted amounts of aromatic amines found as metabolites of the nitro-arenes were about 5- to 10-fold higher as one might expect from the levels determined by personal air sampling at the workplace of the individuals.

  11. PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA

    NASA Astrophysics Data System (ADS)

    Galarneau, E.; Makar, P. A.; Zheng, Q.; Narayan, J.; Zhang, J.; Moran, M. D.; Bari, M. A.; Pathela, S.; Chen, A.; Chlumsky, R.

    2014-04-01

    The offline Eulerian AURAMS (A Unified Regional Air quality Modelling System) chemical transport model was adapted to simulate airborne concentrations of seven PAHs (polycyclic aromatic hydrocarbons): phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene + triphenylene, and benzo[a]pyrene. The model was then run for the year 2002 with hourly output on a grid covering southern Canada and the continental USA with 42 km horizontal grid spacing. Model predictions were compared to ~5000 24 h-average PAH measurements from 45 sites, most of which were located in urban or industrial areas. Eight of the measurement sites also provided data on particle/gas partitioning which had been modelled using two alternative schemes. This is the first known regional modelling study for PAHs over a North American domain and the first modelling study at any scale to compare alternative particle/gas partitioning schemes against paired field measurements. The goal of the study was to provide output concentration maps of use to assessing human inhalation exposure to PAHs in ambient air. Annual average modelled total (gas + particle) concentrations were statistically indistinguishable from measured values for fluoranthene, pyrene and benz[a]anthracene whereas the model underestimated concentrations of phenanthrene, anthracene and chrysene + triphenylene. Significance for benzo[a]pyrene performance was close to the statistical threshold and depended on the particle/gas partitioning scheme employed. On a day-to-day basis, the model simulated total PAH concentrations to the correct order of magnitude the majority of the time. The model showed seasonal differences in prediction quality for volatile species which suggests that a missing emission source such as air-surface exchange should be included in future versions. Model performance differed substantially between measurement locations and the limited available evidence suggests that the model's spatial resolution was too coarse to capture the distribution of concentrations in densely populated areas. A more detailed analysis of the factors influencing modelled particle/gas partitioning is warranted based on the findings in this study.

  12. PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil).

    PubMed

    Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins

    2018-06-01

    The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.

  13. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa

    PubMed Central

    2014-01-01

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively. PMID:24406158

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, B.T.

    In the present study, acute and chronic toxicities of five PAHs (naphthalene, anthracene, benz(a)anthracene, pyrene, and benzo(a)pyrene) and an oxygenated PAH derivative (anthrone) were determined in a terrestrial insect, Acheta domesticus (L.), with emphasis on the influence of route of entry on toxicity. Hexamethylphosphoric triamide (hempa) was included in the chronic tests since this chemosterilant is a useful reference compound for investigations of reproductive effects of chemicals in insects.

  15. Laboratory evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin

    1993-01-01

    The infrared absorption from neutrals and cations of four PAHs - naphthalene, anthracene, pyrene, and perylene - integrated over the spectral regions corresponding to the interstellar bands are compared with astronomical observations. It is found that the interstellar bands cannot be explained solely on the basis of neutral PAH species, but that cations must be a significant, and in some cases dominant, component.

  16. CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS

    EPA Science Inventory

    A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

  17. Effect of linear alkyl benzene sulfonates (LAS) on the fate of phenanthrene in a model ecosystem (water-lava-plant-air).

    PubMed

    Jiang, Xia; Jin, Xiang-can; Yan, Chang-zhou; Yediler, Ayfer; Ou, Zi-qing; Kettrup, Antonius

    2004-01-01

    Advanced closed chamber system was used to study the fate of phenanthrene (3-rings PAHs) in the presence of linear alkylbenzene sulphonates (LAS). The results showed mineralization and metabolism of phenanthrene are fast in the "culture solution-lava-plant-air" model ecological system. The distribution proportions of applied 14C-activity in this simulative ecological system were 41%-45%, 14% to 10% and 1% in plant, lava and culture solution respectively, and 18% to 29%, 11% to 8% recovered in the forms of VOCs and CO2. Main parts of the applied 14C-activity exist in two forms, one is polar metabolites (25%) which mainly distribute in the root (23%), the other is unextractable part (23%) which have been constructed into plant root (8.98%), shoot (0.53%) or bonded to lava (13.2%). The main metabolites of phenanthrene were polar compounds (25% of applied 14C-activity), and small portion of 14C-activity was identified as non-polar metabolites (6% of applied 14C-activity) and apparent phenanthrene (1.91% of applied 14C-activity). Phenanthrene and its metabolites can be taken up through plant roots and translocated to plant shoots. The presence of LAS significantly increased the the concentration of 14C-activity in the plant and production of VOCs, at the same time it decreased the phenanthrene level in the plant and the production of CO2 at the concentration of 200 mg/L.

  18. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Carpenter, Roy

    1983-06-01

    Polycyclic aromatic (PAH) and aliphatic hydrocarbon compositions, organic carbon, nitrogen and lignin contents were determined in whole, unfractionated sediment from the Washington continental shelf and in discrete sediment fractions separated by particle size and density. At least 20 to 25% of perylene and PAH derived from pyrolytic processes and 50% of the retene measured in whole sediment are contained within organic C- and lignin-rich panicles of density ≤ 1.9 g/cc. These particles, which include primarily vascular plant remains and bits of charcoal, comprise less than 1% of the total sediment weight. In contrast, a series of methylated phenanthrene homologs, possibly of fossil origin, are concentrated in some component of the more dense, lithic matrix of the sediment. Equilibrium models of PAH sorption/desorption from aqueous phase onto small particles of high surface area do not appear applicable to the behavior of the major PAH types identified in this aquatic environment.

  19. A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Yadav, Jagjit S.

    2011-01-01

    The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates. PMID:22164262

  20. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Lastly, determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment.« less

  1. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    DOE PAGES

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; ...

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Lastly, determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment.« less

  2. The influence of smoking in traditional conditions on content of polycyclic aromatic hydrocarbons in Petrovská klobása

    NASA Astrophysics Data System (ADS)

    Škaljac, S.; Petrović, Lj; Jokanović, M.; Tomović, V.; Tasić, T.; Ivić, M.; Šojić, B.; Ikonić, P.; Džinić, N.

    2017-09-01

    The aim of this study was to determine the content of 13 polycyclic aromatic hydrocarbons (acenaphthylene, fluorene, phenanthrene, anthracene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene and benzo[ghi]perylene) the from Environmental Protection Agency list (US-EPA PAH) in traditional dry fermented sausage Petrovská klobása. Sausages were smoked in traditional conditions and samples for analyses were taken on day 0 of production (0), at the end of drying (T1) and at the end of the storage period (T2). The highest total content of 13 US-EPA PAHs was determined in sausages at the end of the storage period (73.5 μg/kg). Phenanthrene was the most abundant of the PAHs in all examined sausage samples (0-4.90 μg/kg T1-18.0 μg/kg and T2-26.3 μg/kg). Benzo[a]pyrene, with a maximum allowed content in smoked meat products of 2 µg/kg (EC No. 835/2011), was below the limit of detection in all examined samples. Also, PAH4 (the total content of benz[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) with a maximum allowed content in smoked meat products of 12 µg/kg (EC No. 835/2011), was below the limit of detection in all examined sausage samples. According to the results obtained in this study, and in regard to the European regulation on PAHs content, the dry fermented sausage Petrovská klobása, smoked in traditional conditions, was safe for consumers.

  3. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    NASA Astrophysics Data System (ADS)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  4. Changes of biomarkers with oral exposure to benzo(a)pyrene, phenanthrene and pyrene in rats.

    PubMed

    Kang, Hwan Goo; Jeong, Sang Hee; Cho, Myung Haing; Cho, Joon Hyoung

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in air and food. Among PAHs, benzo(a)pyrene(BaP), phenanthrene (PH) and pyrene (PY) are considered to be important for their toxicity or abundance. To investigate the changes of biomarkers after PAH exposure, rats were treated with BaP (150 microg/kg) alone or with PH (4,300 microg/kg) and PY (2,700 microg/kg) (BPP group) by oral gavage once per day for 30 days. 7-ethoxyresorufin-O-deethylase activity in liver microsomal fraction was increased in only BaP groups. The highest concentration (34.5 ng/g) of BaP, was found in muscle of rats treated with BaP alone at 20 days of treatment; it was 23.6 ng/g in BPP treated rats at 30 days of treatment. The highest PH concentration was 47.1 ng/g in muscle and 118.8 ng/g in fat, and for PY it was 29.7 ng/g in muscle and 219.9 ng/g in fat, in BPP groups. In urine, 114-161 ng/ml 3-OH-PH was found, while PH was 41-69 ng/ml during treatment. 201-263 ng/ml 1-OH-PY was found, while PH was 9-17 ng/ml in urine. The level of PY, PH and their metabolites in urine was rapidly decreased after withdrawal of treatment. This study suggest that 1-OH-PY in urine is a sensitive biomarker for PAHs; it was the most highly detected marker among the three PAHs and their metabolites evaluated during the exposure period and for 14 days after withdrawal.

  5. Changes of biomarkers with oral exposure to benzo(a)pyrene, phenanthrene and pyrene in rats

    PubMed Central

    Kang, Hwan Goo; Cho, Myung Haing; Cho, Joon Hyoung

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in air and food. Among PAHs, benzo(a)pyrene(BaP), phenanthrene (PH) and pyrene (PY) are considered to be important for their toxicity or abundance. To investigate the changes of biomarkers after PAH exposure, rats were treated with BaP (150 µg/kg) alone or with PH (4,300 µg/kg) and PY (2,700 µg/kg) (BPP group) by oral gavage once per day for 30 days. 7-ethoxyresorufin-O-deethylase activity in liver microsomal fraction was increased in only BaP groups. The highest concentration (34.5 ng/g) of BaP, was found in muscle of rats treated with BaP alone at 20 days of treatment; it was 23.6 ng/g in BPP treated rats at 30 days of treatment. The highest PH concentration was 47.1 ng/g in muscle and 118.8 ng/g in fat, and for PY it was 29.7 ng/g in muscle and 219.9 ng/g in fat, in BPP groups. In urine, 114-161 ng/ml 3-OH-PH was found, while PH was 41-69 ng/ml during treatment. 201-263 ng/ml 1-OH-PY was found, while PH was 9-17 ng/ml in urine. The level of PY, PH and their metabolites in urine was rapidly decreased after withdrawal of treatment. This study suggest that 1-OH-PY in urine is a sensitive biomarker for PAHs; it was the most highly detected marker among the three PAHs and their metabolites evaluated during the exposure period and for 14 days after withdrawal. PMID:17993750

  6. Comparison of phenanthrene removal by Aspergillus niger ATC 16404 (filamentous fungi) and Pseudomonas putida KT2442 (bacteria) in enriched nutrient-liquid medium

    NASA Astrophysics Data System (ADS)

    Hamzah, N.; Kamil, N. A. F. M.; Singhal, N.; Padhye, L.; Swift, S.

    2018-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) is one of the persistent and carcinogenic pollutants that needs to be eliminated from the environment. The study on degradation of PAHs by bacteria is thoroughly discussed in literature. Many strains of bacteria were chosen in order to eliminate the PAHs compound in the environment. However, there are less study on the filamentous fungi although fungi appears to be an abundant population and as dominant group in PAHs contaminated soil habitats [1], [2]. This study was conducted to determine and compare the Phenanthrene (PHE) removal by fungi and bacteria in excessive nutrient-liquid culture. Then, the survival for both strains was investigated in the presence of PHE and finally, the analysis on the fungi-PHE interaction was carried out. In condition of excessive nutrient, the removal of PHE was evaluated for fungi and bacteria in batch experiment for 5 days. PHE removal for A.niger and P.putida were found to be 97% and 20% respectively after 5 days. The presence of PHE was negatively inhibits the grow of the bacteria and the fungus. The PHE uptake mechanism for A.niger was observed to be a passive transport mechanism with 45 μg per g fungus dry weight within 24 hr of incubation. As a conclusion, filamentous fungi have the potent role in the removal of PHE as well as bacteria but depending on the strains and the condition of the environment. Fungi is known to co-metabolize the PHE meanwhile, PHE can be used as sole carbon for bacteria. This preliminary result is significant in understanding the bacteria-fungi-PHE interaction to enhance the degradation of PAHs for co-culture study in the future.

  7. Effect of artificial root exudates on the sorption and desorption of PAHs in meadow brown soils

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    2017-10-01

    The batch equilibrium experiment was conducted to investigate the effect of artificial root exudates on sorption and desorption of phenanthrene and pyrene. The result showed sorption isotherms were fitted well to the Freundlich equation with the treatment of artificial root exudates. Fructose had the most obvious effect on sorption. The artificial root exudates improved desorption of PAHs, while low molecular weight organic acids were better than serine and fructose. The capability of sorption and desorption was strengthened with the increase of organic acids concentration. And the DOM in the solution might be the most important factor of the adsorption of PAHs in solid phase.

  8. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011

  9. A Novel Phenanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli

    PubMed Central

    Saito, Atsushi; Iwabuchi, Tokuro; Harayama, Shigeaki

    2000-01-01

    Nocardioides sp. strain KP7 grows on phenanthrene but not on naphthalene. This organism degrades phenanthrene via 1-hydroxy-2-naphthoate, o-phthalate, and protocatechuate. The genes responsible for the degradation of phenanthrene to o-phthalate (phd) were found by Southern hybridization to reside on the chromosome. A 10.6-kb DNA fragment containing eight phd genes was cloned and sequenced. The phdA, phdB, phdC, and phdD genes, which encode the α and β subunits of the oxygenase component, a ferredoxin, and a ferredoxin reductase, respectively, of phenanthrene dioxygenase were identified. The gene cluster, phdAB, was located 8.3 kb downstream of the previously characterized phdK gene, which encodes 2-carboxybenzaldehyde dehydrogenase. The phdCD gene cluster was located 2.9 kb downstream of the phdB gene. PhdA and PhdB exhibited moderate (less than 60%) sequence identity to the α and β subunits of other ring-hydroxylating dioxygenases. The PhdC sequence showed features of a [3Fe-4S] or [4Fe-4S] type of ferredoxin, not of the [2Fe-2S] type of ferredoxin that has been found in most of the reported ring-hydroxylating dioxygenases. PhdD also showed moderate (less than 40%) sequence identity to known reductases. The phdABCD genes were expressed poorly in Escherichia coli, even when placed under the control of strong promoters. The introduction of a Shine-Dalgarno sequence upstream of each initiation codon of the phdABCD genes improved their expression in E. coli. E. coli cells carrying phdBCD or phdACD exhibited no phenanthrene-degrading activity, and those carrying phdABD or phdABC exhibited phenanthrene-degrading activity which was significantly less than that in cells carrying the phdABCD genes. It was thus concluded that all of the phdABCD genes are necessary for the efficient expression of phenanthrene-degrading activity. The genetic organization of the phd genes, the phylogenetically diverged positions of these genes, and an unusual type of ferredoxin component suggest phenanthrene dioxygenase in Nocardioides sp. strain KP7 to be a new class of aromatic ring-hydroxylating dioxygenases. PMID:10735855

  10. Seasonal variation of polycyclic aromatic hydrocarbons concentrations in urban streams at Niterói City, RJ, Brazil.

    PubMed

    Ribeiro, Angelo Morgado; da Rocha, Camila Coimbra Martins; Franco, Caroline Fernandes Jaegger; Fontana, Luiz Francisco; Pereira Netto, Annibal D

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were determined in water samples collected in two streams and a lake located at Niteroi City, Rio de Janeiro State, Brazil between October 2008 and September 2009. Samples were extracted using liquid-liquid extraction and analyzed using high performance liquid chromatography with fluorescence detection. The limits of quantification were sufficiently low to accomplish PAH determination below the maximum concentration levels established by the Brazilian (50 ng/L) and USEPA legislations, with recoveries larger than 81.6%. Phenanthrene, fluoranthene, pyrene and benz[a]anthracene predominated among PAHs. Total concentrations of PAHs were well correlated with rainfall indicating a possible role of runoff to local pollution of water by PAHs and showed a seasonal variation in wet and dry seasons. Our results highlight the contribution of the widespread streams located around Guanabara Bay to the PAH burden found in its waters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Pulsed Discharge Nozzle Cavity Ring Down Spectroscopy of Cold PAH Ions

    NASA Technical Reports Server (NTRS)

    Biennier, Ludovic; Salama, Farid; Allamandola, Louis J.; Scherer, James J.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.

  12. Monitoring of atmospheric gaseous and particulate polycyclic aromatic hydrocarbons in South African platinum mines utilising portable denuder sampling with analysis by thermal desorption-comprehensive gas chromatography-mass spectrometry.

    PubMed

    Geldenhuys, G; Rohwer, E R; Naudé, Y; Forbes, P B C

    2015-02-06

    Concentrations of diesel particulate matter and polycyclic aromatic hydrocarbons (PAHs) in platinum mine environments are likely to be higher than in ambient air due to the use of diesel machinery in confined environments. Airborne PAHs may be present in gaseous or particle phases each of which has different human health impacts due to their ultimate fate in the body. Here we report on the simultaneous sampling of both phases of airborne PAHs for the first time in underground platinum mines in South Africa, which was made possible by employing small, portable denuder sampling devices consisting of two polydimethylsiloxane (PDMS) multi-channel traps connected in series separated by a quartz fibre filter, which only require small, battery operated portable personal sampling pumps for air sampling. Thermal desorption coupled with comprehensive gas chromatography-mass spectrometry (TD-GC×GC-TofMS) was used to analyse denuder samples taken in three different platinum mines. The samples from a range of underground environments revealed that PAHs were predominantly found in the gas phase with naphthalene and mono-methylated naphthalene derivatives being detected at the highest concentrations ranging from 0.01 to 18 μg m(-3). The particle bound PAHs were found in the highest concentrations at the idling load haul dump vehicle exhausts with a dominance of fluoranthene and pyrene. Particle associated PAH concentrations ranged from 0.47 to 260 ng m(-3) and included benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene. This work highlights the need to characterise both phases in order to assess occupational exposure to PAHs in this challenging sampling environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluation of Upland Disposal of Richmond Harbor, California, Sediment from Santa Fe Channel

    DTIC Science & Technology

    1993-07-01

    15 concern were salt, metals, tributyltin ( TBT ), pesticides (particularly DDT and its derivatives), and polycyclic aromatic hydrocarbons (PAHs). Test...Battelle Northwest for tetrabutyltin (TETBT), tributyltin ( TBT ), dibutyltin (DBT), monobutyltin (MBT), naphthalene, acenaphthylene, acenaphthene...RANK TBT D1-1 t Richmond, Anaerobic, Kinetic, Tributyltin , day 1, Rep 1 RANS PAN D5-3 : Richmond, Anaerobic, Sequential, PAHs, day 5, Rep 3. RO-14-5

  14. Evaluation of ultraviolet spectrophotometry for simultaneous analysis of alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthrenes and total aromatics in mid-distillate fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Seng, G. T.

    1982-01-01

    A rapid ultraviolet spectrophotometric method for the simultaneous determination of aromatics in middistillate fuels was developed and evaluated. In this method, alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthracenes and total aromatics were determined from ultraviolet spectra of the fuels. The accuracy and precision were determined using simulated standard fuels with known compositions. The total aromatics fraction accuracy was 5% for a Jet A type fuel and 0.6% for a broadened properties jet turbine type fuel. Precision, expressed as relative standard deviations, ranged from 2.9% for the alkylanthracenes/phenanthrenes to 15.3% for the alkylbenzenes. The accuracy, however, was less for actual fuel samples when compared to the results obtained by a mass spectrometric method. In addition, the ASTM D-1840 method for naphthalenes by ultraviolet spectroscopy was evaluated.

  15. Airborne Measurements of atmospheric PAH's across Europe

    NASA Astrophysics Data System (ADS)

    Davison, B.; Jaward, F.; Jones, K.; Lee, R.

    2003-04-01

    Atmospheric measurements of PAHs were taken aboard the DRL Falcon 20 during May 2001. A sampling system was designed to work aboard this aircraft platform. Particulate PAHs were collected on a glass fiber filter (GFF) with their gaseous component concentrated on a polyurethane foam sheets located behind the filter. Typically sampling volumes of between 20-50m^3 were collected which equated to a collection time of about 30minutes. In this way the distance travelled was kept within an acceptable level, about 60 nautical miles. The average concentrations of the data set for phenanthrene was 450 pg m-3 while values for many of the heavier PAH marker compounds used in the UK such as benzo(a)pyrene, diben(ah)anthracene were below the detection limits on all flights. The results will be discussed with consideration of location, altitude and airmass trajectory.

  16. Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L.

    NASA Astrophysics Data System (ADS)

    Zambrano García, A.; Medina Coyotzin, C.; Rojas Amaro, A.; López Veneroni, D.; Martínez, L. Chang; Sosa Iglesias, G.

    2009-09-01

    Mezquital Valley (MV), a Mexican wastewater-based agricultural and industrial region, is a "hot spot" of regulated air pollutants emissions, but the concurrent unregulated ones, like hazardous metals and polycyclic aromatic hydrocarbons (PAH), remain undocumented. A biomonitoring survey with the epiphytic Tillandsia recurvata was conducted there to detect spatial patterns and potential sources of 20 airborne elements and 15 PAH. The natural δ13C and δ15N ratios of this plant helped in source identification. The regional mean concentration of most elements was two (Cr) to over 40 times (Ni, Pb, V) higher than reported for Tillandsia in other countries. Eleven elements, pyrene and chrysene had 18-214% higher mean concentration at the industrial south than at the agricultural north of MV. The total quantified PAH (mean, 572 ng g-1; range, 143-2568) were composed by medium (65%, phenanthrene to chrysene), low (28%, naphthalene to fluorene) and high molecular weight compounds (7%, Benzo(b)fluoranthene to indeno(1,2,3-cd)pyrene). The δ13C (mean, -14.6‰; range, -15.7‰ to -13.7‰) was consistently lower than -15‰ near the major petroleum combustion sources. The δ15N (mean, -3.0‰; range, -9.9‰ to 3.3‰) varied from positive at agriculture/industrial areas to negative at rural sites. Factor analysis provided a five-factor solution for 74% of the data variance: 1) crustal rocks, 39.5% (Al, Ba, Cu, Fe, Sr, Ti); 2) soils, 11.3%, contrasting contributions from natural (Mg, Mn, Zn) and saline agriculture soils (Na); 3) cement production and fossil fuel combustion, 9.8% (Ca, Ni, V, chrysene, pyrene); 4) probable agricultural biomass burning, 8.1% (K and benzo(g,h,i)perylene), and 5) agriculture with wastewater, 5.2% (δ15N and P). These results indicated high deposition of bioaccumulative air pollutants at MV, especially at the industrial area. Since T. recurvata reflected the regional differences in exposition, it is recommended as a biomonitor for comparisons within and among countries where it is distributed: southern USA to Argentina.

  17. Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L.

    NASA Astrophysics Data System (ADS)

    Zambrano García, A.; Medina Coyotzin, C.; Rojas Amaro, A.; López Veneroni, D.; Martínez, L. Chang; Sosa Iglesias, G.

    2009-03-01

    Mezquital Valley (MV), a Mexican wastewater-based agricultural and industrial region, is a ''hot spot'' of regulated air pollutants emissions, but the concurrent unregulated ones, like hazardous metals and polycyclic aromatic hydrocarbons (PAH), remain undocumented. A biomonitoring survey with the epiphytic Tillandsia recurvata was conducted there to detect spatial patterns and potential sources of 20 airborne elements and 15 PAH. The natural δ13C and δ15N ratios of this plant helped in source identification. The regional mean concentrations of most elements was two (Cr) to over 40 times (Ni, Pb, V) higher than reported for Tillandsia in other countries. Eleven elements, pyrene and chrysene had 18-214% higher mean concentration at the industrial south than at the agricultural north of MV. The total quantified PAH (mean, 572 ng g-1; range, 142.6-2568) were composed by medium (65%, phenanthrene to chrysene), low (28%, naphthalene to fluorene) and high molecular weight compounds (7%, Benzo(b)fluoranthene to indeno(1,2,3-cd)pyrene). The δ13C (mean, -14.6‰; range, -5.7 to -13.7‰) was lower (<-15‰) near the major petroleum combustion sources. The δ15N (mean, -3.0‰; range, -9.9 to 3.3‰) varied from positive at agriculture/industrial areas to negative at rural sites. Factor analysis provided a five-factor solution for 74% of the data variance: (1) crustal rocks, 39.5% (Al, Ba, Cu, Fe, Sr, Ti); (2) soils, 11.3%, contrasting contributions from natural (Mg, Mn, Zn) and saline agriculture soils (Na); (3) cement production and fossil fuel combustion, 9.8% (Ca, Ni, V, chrysene, pyrene); (4) probable agricultural biomass burning, 8.1% (K and benzo(g,h,i)perylene), and (5) agriculture with wastewater, 5.2% (δ15N and P). These results indicated high deposition of bioaccumulative air pollutants at MV, especially at the industrial area. Since T. recurvata reflected the regional differences in exposition, it is recommended as a biomonitor for comparisons within and among countries where it is distributed: southern USA to Argentina.

  18. Comparison of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenylethers, and organochlorine pesticides in Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural reefs along the California coast

    USGS Publications Warehouse

    Gale, Robert W.; Tanner, Michael J.; Love, Milton S.; Nishimoto, Mary M.; Schroeder, Donna M.

    2013-01-01

    Recently, the relative exposure of Pacific sanddab (Citharichthys sordidus) to polycyclic aromatic hydrocarbons (PAHs) at oil-production platforms was reported, indicating negligible exposure to PAHs and no discernible differences between exposures at platforms and nearby natural areas sites. In this report, the potential for chronic PAH exposure in fish is reported, by measurement of recalcitrant, higher molecular weight PAHs in tissues of fish previously investigated for PAH metabolites in bile. A total of 34 PAHs (20 PAHs, 11 alkylated PAHs, and 3 polycyclic aromatic thiophenes) were targeted. In addition, legacy contaminants—polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs),—and current contaminants, polybrominated diphenylethers (PBDEs) linked to endocrine disruption, were measured by gas chromatography with electron-capture or mass spectrometric detection, to form a more complete picture of the contaminant-related status of fishes at oil production platforms in the Southern California Bight. No hydrocarbon profiles or unresolved complex hydrocarbon background were found in fish from platforms and from natural areas, and concentrations of aliphatics were low less than 100 nanograms per gram (ng/g) per component]. Total-PAH concentrations in fish ranged from 15 to 37 ng/g at natural areas and from 8.7 to 22 ng/g at platforms. Profiles of PAHs were similar at all natural and platform sites, consisting mainly of naphthalene and methylnaphthalenes, phenanthrene, fluoranthene, and pyrene. Total-PCB concentrations (excluding non-ortho-chloro-substituted congeners) in fish were low, ranging from 7 to 22 ng/g at natural areas and from 10 to 35 ng/g at platforms. About 50 percent of the total-PCBs at all sites consisted of 11 congeners: 153 > 138/163/164 > 110 > 118 > 15 > 99 > 187 > 149 > 180. Most OCPs, except dichlorodiphenyltrichloroethane (DDT)-related compounds, were not detectable or were at concentrations of less than 1 ng/g in fish. p,p′-dichlorodiphenyltrichloroethane (p,p′-DDE) ranged from 5.6 to 33 ng/g at natural areas and from 17 to 76 ng/g at platforms, and comprised greater than 90 percent of the total-DDT concentrations at all sites. The only detectable PBDE congeners were PBDE-47 and PBDE-100, the total concentrations of which ranged from 0.4 to 1.8 ng/g at natural areas and from 0.5 to 3.0 ng/g at platforms. Total-PAH, -PCB, and -DDT concentrations were compared with other Southern California Bight studies involving shoreline mussel, (Mytilus Species, Kimbrough and others, 2008) and near shore sampling (Pacific sanddab, Schiff and Allen, 2000). At corresponding sites, only total-PCB concentrations agreed well with results from this study; total-DDT concentrations were generally much lower than concentrations documented in previous studies for samples collected nearer to shore by sewage treatment outfalls or 14 years earlier or closer in time to when DDT production was halted (1970). Natural areas and platforms in the Bight do not appear to be affected by harbor or urban pollution. Platforms were no more polluted than the nearby natural areas, with these locations exhibiting only low concentrations of PAHs, PCBs, DDTs, and other contaminants.

  19. Remediation of soil-bound polynuclear aromatic hydrocarbons using nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, IckTae; Ghosh, Mriganka; Cox, C.

    1996-12-31

    The solubilization and biodegradation of soil-bound PAHs from a manufactured gas plant (MGP) site soil was investigated using surfactants. Three nonionic polyoxyethylene (POE) surfactants, Triton X-100, Tween 80, and Brij 35, were used. The fate of four PAHs, phenanthrene, anthracene, pyrene, and benzo(a)pyrene were monitored during the remediation process. The measured concentrations of solubilized PAHs agreed well with those estimated using micelle-water partitioning coefficient, K{sub m}, and Raoult`s law. The solubilization of soil-bound PAHs by surfactants is a slow, nonequilibrium process. Diffusion of PAH molecules within the weathered soil-tar matrix is proposed as the rate-limiting step in solubilizing PAHs frommore » such soils. A radial diffusion model is used to describe solubilization of PAHs by surfactant washing. The model predicts experimental results fairly well at low surfactant dosages while at high dosages it somewhat overestimates the extent of solubilization. Biodegradation studies were performed using a natural consortium of microorganisms enriched from PAH-contaminated soils. Surfactants enhanced biodegradation of PAHs except for Tween 80. However, biodegradation of surfactants themselves appear to attenuate the beneficial effects of surfactant-mediated bioremediation.« less

  20. Analysis of Particulate and Chemical Residue Resulting from Exposure to Burning and Abrading Composite Materials

    DTIC Science & Technology

    2013-05-31

    21 Figure 15. Example of a Possible Foreign Object Observed in a Small Number of Slides. This Object May Be a Hair, Thread, or Plant Material that...h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 16 Distribution A. Approved for public release...material during sampling. These were subject to particle analysis as described above in order to estimate the coverage ratio and particle density of

  1. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

    USGS Publications Warehouse

    Piatt, Joseph J.; Backhus, Debera A.; Capel, Paul D.; Eisenreich, Steven J.

    1996-01-01

    Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 °C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (Kd) increased 1.1−1.6 times with a decrease in temperature of 22 °C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 °C. Desorption rate constants (k2) decreased 1.2−2.6 times with a decrease in temperature of 22 °C. Times to equilibrium were at least 40 h. The magnitude of observed Kd and k2 values and the effect of temperature on Kd (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (foc = 0.02%) on the sediments. The temperature dependence of Kd and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and-treat times could be decreased because increased temperature decreases both retardation and tailing.

  2. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust.

    PubMed Central

    Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D

    2000-01-01

    We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as a real-time dosimeter to indicate when respiratory protection is advisable. PMID:11017890

  3. Application of solid-phase microextraction method to determine bioavailable fraction of PAH in hazardous waste.

    PubMed

    Jefimova, J; Irha, N; Mägi, R; Kirso, U

    2012-10-01

    The solid-phase microextraction (SPME) method was developed to determine PAH free dissolved concentration (C(free)) in field leachates from hazardous waste disposal. SPME technique, involving a 100-μm polydimethylsiloxane (PDMS) fiber coupled to GC-MS was optimized for determination of C(free). The following PAH were found in bioavailable form: acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, with C(free) varying between 2.38 and 62.35 ng/L. Conventional solvent extraction was used for measurement of total concentration (C(total)) in the same samples, and ranging from 1.26 to 77.56 μg/L. Determining C(free) of the hydrophobic toxic pollutants could give useful information for risk assessment of the hazardous waste.

  4. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria.

    PubMed

    Leglize, Pierre; Alain, Saada; Jacques, Berthelin; Corinne, Leyval

    2008-03-01

    Bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil is affected by PAH sorption to solid phase. We studied the influence of activated carbon (AC) on phenanthrene (PHE) mineralization by five degrading bacterial strains isolated from contaminated soil. PHE adsorption on AC was important and reduced PHE aqueous concentration up to 90%. PHE degradation was improved in the presence of activated carbon with three of the bacterial strains, named NAH1, MATE3 and MATE7, which produced biofilms, whereas it was not improved with the two other ones, which did not produce biofilms, MATE10 and MATE12. Monitoring PHE distribution during incubation showed that aqueous PHE concentration was significantly higher with the biofilm-producing NAH1 than with MATE10. Bacterial adhesion on AC was also investigated. The precoating of AC with PHE increased NAH1 and MATE3 adhesion to the solid surface (>16 and >13%, respectively). Bacterial properties, such as biofilm production and adhesion to AC capacity seemed to be related to their ability to optimize PHE degradation by improving PHE diffusion and reducing diffusion path length.

  5. Peat fires as source of polycyclic aromatic hydrocarbons in soils

    NASA Astrophysics Data System (ADS)

    Tsibart, Anna

    2013-04-01

    Polycyclic aromatic hydrocarbons (PAHs) arrive from pyrogenic sources including volcanism and the combustion of oil products and plant materials. The production of PAHs during the combustion of plant materials was considered in a number of publications, but their results were mainly obtained in laboratory experiments. Insufficient data are available on the hightemperature production of PAHs in environmental objects. For example, natural fires are frequently related to the PAH sources in landscapes, but very little factual data are available on this topic. On Polistovskii reserve (Russia, Pskov region) the soil series were separated depending on the damage to the plants; these series included soils of plots subjected to fires of different intensities, as well as soils of the background plots. The series of organic and organomineral soils significantly differed in their PAH distributions. In this series, the concentration of PAHs in the upper horizons of the peat soils little varied or slightly decreased, but their accumulation occurred at a depth of 5-10 or 10-20 cm in the soils after the fires. For example, in the series of high moor soils, the content of PAHs in the upper horizons remained almost constant; significant differences were observed in the subsurface horizons: from 2 ng/g in the background soil to 70 ng/g after the fire. In the upper horizons of the oligotrophic peat soils under pine forests, the total PAH content also varied only slightly. At the same time, the content of PAHs in the soil series increased from 15 to 90 ng/g with the increasing pyrogenic damage to the plot. No clear trends of the PAH accumulation were recorded in the organomineral soils. The content of PAHs in the soddy-podzolic soil subjected to fire slightly decreased (from 20 to 10 ng/g) compared to the less damaged soil. In peat fires, the access of oxygen to the fire zone is lower than in forest fires. The oxygen deficit acts as a factor of the organic fragments recombination and PAH production; therefore, larger amounts of PAHs are formed in peat fires. In addition, the peat fires occur directly in the soil layer; therefore, larger amounts of the resulting polyarenes remain in the soils of the fire sites. PAHs also can be formed at the heating of organic matter on the areas adjacent to the fire sites. After the combustion of peat in fires, phenanthrene, chrysene, benz[a]pyrene, and tetraphene accumulate in soils. This is mainly the group of 4-nuclear compounds with the participation of 3-nuclear phenanthrene and 5-nuclear benz[a]pyrene. The formation of high-molecular weight compounds like benz[a]pyrene and, in some places, benzo[ghi]perylene is possible during smoldering under a low oxygen supply.

  6. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium.

    PubMed

    Huang, Haiying; Wu, Kejia; Khan, Aman; Jiang, Yiming; Ling, Zhenmin; Liu, Pu; Chen, Yong; Tao, Xuanyu; Li, Xiangkai

    2016-05-01

    Combined pollutants with polycyclic aromatic hydrocarbons (PAHs) and heavy metals have been identified as toxic and unmanageable contaminates. In this work, Pseudomonas gessardii strain LZ-E isolated from wastewater discharge site of a petrochemical company degrades naphthalene and reduces Cr(VI) simultaneously. 95% of 10mgL(-1) Cr(VI) was reduced to Cr(III) while 77% of 800mgL(-1) naphthalene was degraded when strain LZ-E was incubated in BH medium for 48h. Furthermore, naphthalene promotes Cr(VI) reduction in strain LZ-E as catechol and phthalic acid produced in naphthalene degradation are able to reduce Cr(VI) abiotically. An aerated bioreactor system was setup to test strain LZ-E's remediation ability. Strain LZ-E continuously remediated naphthalene and Cr(VI) at rates of 15mgL(-1)h(-1) and 0.20mgL(-1)h(-1) of 800mgL(-1) naphthalene and 10mgL(-1) Cr(VI) addition with eight batches in 16days. In summary, strain LZ-E is a potential applicant for combined pollution remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures.

    PubMed

    Li, Helian; Qu, Ronghui; Li, Chao; Guo, Weilin; Han, Xuemei; He, Fang; Ma, Yibing; Xing, Baoshan

    2014-07-01

    Wheat straw biochars produced at 400, 600 and 800°C (BC400, BC600 and BC800) were used to selectively adsorb PAHs from soil washing effluents. For soil washing effluents contained Phenanthrene (PHE), Fluoranthene (FLU), Pyrene (PYR) and Triton X-100 (TX100), biochars at 2 (for BC800) or 6 g L(-1) (for BC400 and BC600) can remove 71.8-98.6% of PAHs while recover more than 87% of TX100. PAH removals increase with increasing biochar dose. However, excess biochar is detrimental to the recovery of surfactant. For a specific biochar dose, PAH removal and TX100 loss increase with increasing pyrolytic temperature. For BC400 and BC600, PAH removal follows the order of PHE>FLU>PYR, while the order is reversed with PYR>FLU>PHE for BC800. Biochars have much higher sorption affinity for PAHs than for TX100. It is therefore suggested that biochar is a good alternative for selective adsorption of PAHs and recovery of TX100 in soil washing process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

    PubMed

    Yu, Kai; Huang, Linyue; Lou, Lan-Lan; Chang, Yue; Dong, Yanling; Wang, Huan; Liu, Shuangxi

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded.

  9. Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China.

    PubMed

    Cai, Jing; Gao, Shutao; Zhu, Like; Jia, Xuwei; Zeng, Xiangying; Yu, Zhiqiang

    2017-11-10

    This study was conducted to investigate the pollutant status and the retention mechanism of polycyclic aromatic hydrocarbons (PAHs) in soils and sediment from bank-water-level-fluctuating zone (WLFZ)-water systems in Hanfeng Lake, Three Gorges, China. The concentrations of the 16 PAHs ranged from 21.8 to 1324 ng g -1 dry wt for all 20 soil and sediment samples. These concentration levels were remarkably lower than those in soils and sediment collected domestically and worldwide. PAHs with two and three rings were found to be dominant in all the samples, with phenanthrene being most abundant. The spatial distribution of PAHs in bank soil, WLFZ soil, and sediment implied that the transfer and fate of PAHs in the bank soil-WLFZ soil-sediment systems were influenced by both water dynamic factors and physicochemical properties of PAHs. Diagnostic ratio analysis and principal component analysis suggested that the PAHs in the areas of Hanfeng Lake were primarily (>75%) derived from coal combustion and vehicle emissions . Use of natural gas, improving gasoline/diesel quality and phasing out old and nonstandard vehicles and ships are proposed to control PAH contamination and protect drinking water safety in the region.

  10. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils.

    PubMed

    Crampon, M; Bureau, F; Akpa-Vinceslas, M; Bodilis, J; Machour, N; Le Derf, F; Portet-Koltalo, F

    2014-01-01

    The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2-3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi.

  11. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees.

    PubMed

    Mueller, Kevin E; Shann, Jodi R

    2006-08-01

    While trees have demonstrated potential in phytoremediation of several organic contaminants, little is known regarding their ability to impact the common soil contaminant PAHs. Several species of native North American trees were planted in soil artificially contaminated with three PAHs. Plant biomass, PAH dissipation, and microbial mineralization were monitored over the course of one year and environmental conditions were allowed to follow typical seasonal patterns. PAH dissipation and mineralization were not affected by planting. Extensive and rapid loss of PAHs was observed and attributed to high bioavailability and microbial activity in all treatments. The rate of this loss may have masked any significant planting effects. Anthracene was found to be more recalcitrant than pyrene or phenanthrene. Parallel soil aging studies indicated that sequestration to soil components was minimal. Contrary to common inferences in literature, amendment with decaying fine roots inhibited PAH degradation by the soil microbial community. Seasonal variation in environmental factors and rhizosphere dynamics may have also reduced or negated the effect of planting and should be taken into account in future phytoremediation trials. The unique root traits of trees may pose a challenge to traditional thought regarding PAH dissipation in the rhizosphere of plants.

  12. Mechanisms for naphthalene removal during electrolytic aeration.

    PubMed

    Goel, Ramesh K; Flora, Joseph R V; Ferry, John

    2003-02-01

    Batch tests were performed to investigate chemical and physical processes that may result during electrolytic aeration of a contaminated aquifer using naphthalene as a model contaminant. Naphthalene degradation of 58-66% took place electrolytically and occurred at the same rates at a pH of 4 and 7. 1,4-naphthoquinone was identified as a product of the electrolysis. Stripping due to gases produced at the electrodes did not result in any naphthalene loss. Hydrogen peroxide (which may be produced at the cathode) did not have any effect on naphthalene, but the addition of ferrous iron (which may be present in aquifers) resulted in 67-99% disappearance of naphthalene. Chlorine (which may be produced from the anodic oxidation of chloride) can effectively degrade naphthalene at pH of 4, but not at a pH of 7. Mono-, di- and poly chloronaphthalenes were identified as oxidation products. Ferric iron coagulation (due to the oxidation of ferrous iron) did not significantly contribute to naphthalene loss. Overall, electrolytic oxidation and chemical oxidation due to the electrolytic by-products formed are significant abiotic processes that could occur and should be accounted for if bioremediation of PAH-contaminated sites via electrolytic aeration is considered. Possible undesirable products such as chlorinated compounds may be formed when significant amounts of chlorides are present.

  13. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants.

    PubMed

    Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2014-07-01

    As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    NASA Astrophysics Data System (ADS)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity in the matrix that may evolve with reaction progress). Saturated FAMEs were not reactive with ozone (kO 3 range = 0.004 ± 0.003 to 0.012 ± 0.026 hr-1), but compared to PAHs, up to two times higher kO 3 was measured for the unsaturated FAMEs (range 0.087 ± 0.015 to 0.329 ± 0.023 hr-1) during PAH + FAMEs exposures. These changes in substrate composition during atmospheric aging would be expected to affect PAH diffusivity and therefore heterogeneous reactivity over time. The factor of 1.2-8 decreased heterogeneous reactivity of PAHs in the presence of the FAMEs mix and the B20 PM matrix suggests that the presence of FAMEs in the diesel fuel supply may lead to increased PAH atmospheric lifetimes and longer range PAH transport. Predictive methods to quantify changes in PAH reactivity with gas-phase oxidants as a function of substrate composition and characteristics (viscosity, polarity, degree of unsaturation) are needed as biodiesel is increasingly present in our diesel engine fuel supply from a variety of feedstocks at different blend ratios.

  15. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten

    In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstratesmore » nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.« less

  17. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    PubMed

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bence, A.E.; Burns, W.A.

    A procedure has been developed that discriminates Exxon Valdez crude from other sources of hydrocarbons found in Prince Williams Sound and the Gulf of Alaska. The procedure uses polycyclic aromatic hydrocarbon (PAH) distributions, measured by gas chromatography/mass spectrometry (GC/MS), to fingerprint sample extracts. The relative abundances of alkylated phenanthrenes, dibenzothiophenes, and chrysenes are used to differentiate Exxon Valdez crude and its weathering products from other hydrocarbons. Saturate fraction distributions are used to confirm the PAH identification whenever possible. The procedure has been applied to the more than 1,500 PAH analyses of tissues reported by the Oil Spill Health Task Force,more » formed after the spill to assess subsistence food safety, and nearly 4,700 PAH analyses of biological samples in PWSOIL, the government`s damage-assessment chemistry database. These two datasets constitute the largest collection of hydrocarbon analyses of biological samples form the spill-impact zone. 70 refs., 14 figs., 8 tabs.« less

  19. Solid-state surface luminescence of polycyclic aromatic hydrocarbons adsorbed on cellulose diacetate matrices

    NASA Astrophysics Data System (ADS)

    Rogacheva, Svetlana M.; Shipovskaya, Anna B.; Volkova, Elena V.; Khurshudyan, Grachia N.; Suska-Malawska, Malgorzata; Gubina, Tamara I.

    2018-04-01

    The spectral-kinetic characteristics of luminescence of 17 polycyclic aromatic hydrocarbons (PAH) sorbed from a "water-organic solvent" medium on cellulose diacetate (CDA) matrices were studied. A significant increase in the fluorescence signal on the CDA matrix was observed for 13 PAHs in comparison with aqueous solutions. The highest detection sensitivity was found for pyrene, benzo(a)pyrene, and benzo(k)fluoranthene. The fluorescence spectra of two PAH indicator pairs (anthracene-phenanthrene and pyrene-fluoranthene) used to control toxicant emission sources were studied with the simultaneous presence of isomers in the analyte, depending on the excitation wavelength. For both isomer pairs, it has been found that the spectra of their solid-state luminescence overlap insignificantly, the characteristic peaks do not coincide and do not overlap, the sensitivities of detection are close to each other, which makes it possible to consider this technique as promising to control PAH contamination sources.

  20. Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

    2003-12-01

    Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

  1. Priority PAHs in orthodox black tea during manufacturing process.

    PubMed

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-08-01

    Orthodox black tea is obtained from fresh leaves followed by withering, rolling, fermentation and drying. The presence of 16 priority polycyclic aromatic hydrocarbons (PAHs) was studied in fresh leaves and at various stages of manufacturing. Benzo(a)pyrene (2A: probable human carcinogen) was found in dried tea leaves only whereas, naphthalene (2B: probable human carcinogen) was present during all the stages of manufacturing. Dry tea leaves showed higher content of total 16 PAHs (∑PAHs) about 3 and 211 times than present in withered and dried leaves, respectively. Chrysene, benzo[g,h,i]perylene, indendo[1,2,3-c,d]pyrene, dibenzo[a,h]pyrene and benzo[a]antracene were not found during manufacturing stages of tea.

  2. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.

    PubMed

    Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong

    2017-09-02

    Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.

  3. Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils.

    PubMed

    Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C

    2001-07-01

    An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor.

  4. Soils impacted by PAHs: Would the stabilized organic matter be a green tool for the immobilization of these noxious compounds?

    PubMed

    Dores-Silva, Paulo R; Cotta, Jussara A O; Landgraf, Maria D; Rezende, Maria O O

    2018-05-04

    The objective of this study was to investigate the role of stabilized organic matter (vermicompost) and tropical soils in the sorption of naphthalene, anthracene and benzo[a]pyrene. The results obtained for the three compounds were extrapolated for the priority polycyclic aromatic hydrocarbons (PAHs) pollutants according to Environmental Protection Agency (US EPA). To evaluate the sorption process, high performance liquid chromatography was employed and the data was fitted by Freundlich isotherms. The results suggest that the sorption effect generally increases with the number of benzene rings of the PAHs, and that the persistence of PAHs in the environment is possibly related to the number of benzene rings in the PAH molecule. In addition, the pH of the vermicompost can strongly affect the adsorption process in this matrix.

  5. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    NASA Astrophysics Data System (ADS)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  6. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: concentration, distribution, source, and risk assessment.

    PubMed

    Wang, Yan; Tian, Zhongjing; Zhu, Haolin; Cheng, Zhineng; Kang, Meiling; Luo, Chunling; Li, Jun; Zhang, Gan

    2012-11-15

    This study determined the concentrations of PAHs generated from e-waste recycling activities and their potential impacts on soil, vegetation, and human health. The total PAH concentrations in soils and plants ranged from 127 to 10,600 and 199 to 2420 ng/g, respectively. Samples from an e-waste burning site had higher PAH concentrations than samples from adjacent locations. The PAHs in plants varied with plant species and tissue, and Lactuca sativa L. contained the highest PAHs of all the vegetable species. Various land use types showed different PAH concentrations in soils, with vegetable fields showing higher concentrations than paddy fields. Low molecular weight PAHs, such as phenanthrene, were the predominant congeners in soils, whereas high molecular weight PAHs, such as fluoranthene, pyrene, and benzo[a]anthracene, were enriched in plants relative to soils. Dissimilar PAH profiles in soil and the corresponding vegetation indicated that the uptake of PAHs by plants was selective. A source analysis showed that the contamination by PAHs originated primarily from the open burning of e-waste. The total daily intakes of PAHs and carcinogenic PAHs through vegetables at the e-waste dismantling site were estimated to be 279 and 108 ng/kg/d, respectively, indicating that the consumption of vegetables grown near e-waste recycling sites is risky and should be completely avoided. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    PubMed

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S.; Werner, D.; Luthy, R.G.

    Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/smore » for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.« less

  9. MECHANISTIC RELATIONSHIPS AMONG PCDDS/FS, PCNS, PAHS, CLPHS, AND CLBZS IN MUNICIPAL WASTE INCINERATION

    EPA Science Inventory

    An extensive investigation was done to understand polychlorinated dibenzo-p-dioxin and furan (PCDD/F) formation mechanisms and their relationship with other organic compounds. PCDD/F, chlorophenols, chlorobenzenes, polyaromatic hydrocarbons and polychlorinated naphthalenes were ...

  10. HISTORICAL MONITORING OF BIOMARKERS OF EXPOSURE OF BROWN BULLHEAD

    EPA Science Inventory

    Biomarkers of exposure to chemical contamination, benzo(a)pyrene (BAP) and naphthalene (NAPH) type metabolites were measured in brown bullhead from a heavily polycyclic aromatic hydrocarbon (PAH) contaminated section of the Black River, Ohio during and immediately after remedial ...

  11. The polycyclic aromatic hydrocarbons benzo[a]pyrene and phenanthrene inhibit intestinal lipase activity in rainbow trout (Oncorhynchus mykiss).

    PubMed

    de Gelder, Stefan; Sæle, Øystein; de Veen, Bas T H; Vos, Joëlle; Flik, Gert; Berntssen, Marc H G; Klaren, Peter H M

    2017-08-01

    Elevated levels of polycyclic aromatic hydrocarbons (PAHs) are detected in aquafeeds where fish oils are (partially) replaced by vegetable oils. The highly lipophilic PAHs solubilize readily in oil droplets and micelles in the intestinal lumen that can affect enzymatic lipid digestion by altering lipase activity. We therefore investigated the effect of two PAHs, benzo[a]pyrene (BaP) and phenanthrene (PHE), on bile salt-activated lipase (BAL) activity in desalted luminal extracts of the proximal intestine of rainbow trout (Oncorhynchus mykiss) using the triacylglycerides rapeseed oil and fish oil as substrates. The hydrolysis of rapeseed oil and fish oil measured at a calculated substrate concentration of 2.2mM, increased linearly up to 30min at 15°C. Substrate dependency under initial velocity conditions was described by simple Michaelis-Menten kinetics with a K m value of 1.2mM for rapeseed and fish oil. Rapeseed oil hydrolysis was inhibited by 1nM BaP and 10nM PHE. The hydrolysis of fish oil was only inhibited by 10μM BaP. The in vitro lipase activity data were corroborated by TLC/HPLC analysis of the reaction products, showing that in the presence of BaP and PHE, 46-80% less free fatty acids (FFA) were hydrolysed from rapeseed and fish oil triacylglycerides. The presence of low concentrations of BaP and PHE decreased rapeseed oil hydrolysis by BAL whereas fish oil hydrolysis was not affected. The replacement of fish oil by rapeseed oil in aquafeeds introduces PAHs that could affect lipid digestion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-06

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality.

  13. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    PubMed

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.

  14. The Determination of Sediment Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability using Direct Pore Water Analysis by Solid-Phase Microextraction (SPME)

    DTIC Science & Technology

    2010-08-01

    available). It is assumed after this method is formally published that various standard vendors will offer other sources than the current single standard... single isomer. D Alkyl PAHs used to determine the SPME-GC/MS relative response factors including alkyl naphthalenes (1-methyl-, 2-methyl-, 1,2...Flag all compound results in the sample which were estimated above the upper calibration level with an “E” qualifier. 15. Precision and Bias 15.1 Single

  15. Modular, Metal-Catalyzed Cycloisomerization Approach to Angularly Fused Polycyclic Aromatic Hydrocarbons and Their Oxidized Derivatives

    PubMed Central

    Thomson, Paul F.; Parrish, Damon; Pradhan, Padmanava; Lakshman, Mahesh K.

    2015-01-01

    Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey–Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the ortho-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO− to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives. PMID:26196673

  16. Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia.

    PubMed

    Bright, D A; Healey, N

    2003-01-01

    This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs--nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile organics. Unlike many other organic contaminants, the concentrations of petroleum hydrocarbon derived substances in biosolids has not decreased within the last decade or more in the WWTPs studied, and--unlike persistent chlorinated compounds--the associated PAHs and other hydrocarbon constituents merit careful consideration, especially in the context of repeated land-application of biosolid.

  17. Characterization of Air Toxics from an Oil-Fired Firetube Boiler.

    PubMed

    Miller, C Andrew; Ryan, Jeffrey V; Lombardo, Tony

    1996-08-01

    Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants from the combustion of four fuel oils (a #2 oil, a #5 oil, a low sulfur #6 oil, and a high sulfur #6 oil). Measurements of carbon monoxide, nitrogen oxides, particulate matter, and sulfur dioxide stack gas concentrations were made for each oil. Flue gases were also sampled to determine levels of volatile and semivolatile organic compounds and of metals. Analytical procedures were used to provide more detailed information regarding the emissions rates for carbonyls (aldehydes and ketones), and polycyclic aromatic hydrocarbons (PAHs) in addition to the standard analyses for volatile and semivolatile organics. Metals emissions were greater than organic emissions for all oils tested, by an order of magnitude. Carbonyls dominated the organic emissions, with emission rates more than double the remaining organics for all four oils tested. Formaldehyde made up the largest percentage of carbonyls, at roughly 50% of these emissions for three of the four oils, and approximately 30% of the carbonyl emissions from the low sulfur #6 oil. Naphthalene was found to be the largest part of the PAH emissions for three of the four oils, with phenanthrene being greatest for the #2 fuel oil. The flue gases were also sampled for polychlorinated dibenzodioxins and polychlorinated dibenzofurans; however, inconsistent levels were found between repeat tests. For the boiler tested, no single hazardous air pollutant (HAP) was emitted at a rate which would require control under Title III of the Clean Air Act Amendments of 1990. The fuel emitting the largest amount of HAPs was the high sulfur #6 oil, which had a total HAP emission rate of less than 100 lb (45 kg)/year, based on operation for a full year at a firing rate of 1.25 x 106 Btu/hr (50% load of the unit tested).

  18. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx

    2009-06-01

    The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.

  19. INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN H2O+NH3 ICE

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.

    We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.

  20. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.

    PubMed

    She, Bojia; Tao, Xueqin; Huang, Ting; Lu, Guining; Zhou, Zhili; Guo, Chuling; Dang, Zhi

    2016-03-01

    Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp. GY2B were investigated in the present study. Results showed that the addition of NBC could improve the phenanthrene removal by Sphingomonas sp. GY2B, with removal efficiencies increased by 10.29-18.56% in comparison to the control at 24h, and phenanthrene was almost completely removed at 48h. With the presence of low dose of NBC (20 and 50mgL(-1)), strain GY2B displayed a better growth at 6h, suggesting that NBC was beneficial to the growth of GY2B and thus resulting in the quick removal of phenanthrene from water. However, the growth of strain GY2B in high dose of NBC (200mgL(-1)) was inhibited at 6h, and the inhibition could be attenuated and eliminated after 12h. NBC-effected phenanthrene solubility experiment suggested that NBC makes a negligible contribution to the solubilization of phenanthrene in water. Results of electronic microscopy analysis (SEM and TEM) indicated NBC may interact with the cell membrane, causing the enhanced membrane permeability and then NBC adsorbed on the membrane would enter into the cells. The findings of this work would provide important information for the future usage and long-term environmental risk assessment of NBC. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Trends in polycyclic aromatic hydrocarbon concentrations in the great lakes atmosphere.

    PubMed

    Sun, Ping; Blanchard, Pierrette; Brice, Kenneth A; Hites, Ronald A

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo[a]pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer.

  2. Occurrence and Risk Assessment of PAHs in Surface Sediments from Western Arctic and Subarctic Oceans

    PubMed Central

    Lin, Yan; Cai, Minggang; Zhang, Jingjing; Zhang, Yuanbiao; Kuang, Weiming; Liu, Lin; Huang, Peng; Ke, Hongwei

    2018-01-01

    In the fourth Chinese National Arctic Research Expedition (from July to September, 2010), 14 surface sediment samples were collected from the Bering Sea, Chukchi Sea, and Canadian Basin to examine the spatial distributions, potential sources, as well as ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The ∑PAH (refers to the sum of 16 priority PAHs) concentration range from 27.66 ng/g to 167.48 ng/g (dry weight, d.w.). Additionally, the concentrations of ∑PAH were highest in the margin edges of the Canadian Basin, which may originate from coal combustion with an accumulation of Canadian point sources and river runoff due to the surface ocean currents. The lowest levels occurred in the northern of Canadian Basin, and the levels of ∑PAH in the Chukchi Sea were slightly higher than those in the Being Sea. Three isomer ratios of PAHs (Phenanthrene/Anthracene, BaA/(BaA+Chy), and LMW/HMW) were used to investigate the potential sources of PAHs, which showed the main source of combustion combined with weaker petroleum contribution. Compared with four sediment quality guidelines, the concentrations of PAH are much lower, indicating a low potential ecological risk. All TEQPAH also showed a low risk to human health. Our study revealed the important role of the ocean current on the redistribution of PAHs in the Arctic. PMID:29649142

  3. Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms

    PubMed Central

    Fida, Tekle Tafese; Breugelmans, Philip; Lavigne, Rob; Coronado, Edith; Johnson, David R.; van der Meer, Jan Roelof; Mayer, Antonia P.; Heipieper, Hermann J.; Hofkens, Johan

    2012-01-01

    Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity. PMID:23001650

  4. Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia.

    PubMed

    Jamal, Mamdoh T; Pugazhendi, Arulazhagan

    2018-06-01

    A halophilic bacterial consortium was enriched from Red Sea saline water and sediment samples collected from Abhor, Jeddah, Saudi Arabia. The consortium potentially degraded different low (above 90% for phenanthrene and fluorene) and high (69 ± 1.4 and 56 ± 1.8% at 50 and 100 mg/L of pyrene) molecular weight polycyclic aromatic hydrocarbons (PAHs) at different concentrations under saline condition (40 g/L NaCl concentration). The cell hydrophobicity (91° ± 1°) and biosurfactant production (30 mN/m) confirmed potential bacterial cell interaction with PAHs to facilitate biodegradation process. Co-metabolic study with phenanthrene as co-substrate during pyrene degradation recorded 90% degradation in 12 days. The consortium in continuous stirred tank reactor with petroleum refinery wastewater showed complete and 90% degradation of low and high molecular weight PAHs, respectively. The reactor study also revealed 94 ± 1.8% chemical oxygen demand removal by the halophilic consortium under saline condition (40 g/L NaCl concentration). The halophilic bacterial strains present in the consortium were identified as Ochrobactrum halosaudis strain CEES1 (KX377976), Stenotrophomonas maltophilia strain CEES2 (KX377977), Achromobacter xylosoxidans strain CEES3 (KX377978) and Mesorhizobium halosaudis strain CEES4 (KX377979). Thus, the promising halophilic consortium was highly recommended to be employed in petroleum saline wastewater treatment process.

  5. DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy ofmore » the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.« less

  6. Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Holly M.; Scott, Richard P.; Holmes, Darrell

    Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside other PAH exposure assessment methodologies. Wristbands were used within an established Columbia Center for Children’s Environmental Health birth cohort and compared to two traditional personal PAH exposure assessment methods: biological sampling with urine and active air monitoring with samplers (i.e. polyurethane foam (PUF) and filter) housed in backpacks. All samplers were deployed simultaneously on 22 pregnant women for 48-hours. Each woman provided one spot urine sample atmore » the end of the 48-hour period. Sixty-two and 20 PAHs were quantified in the wristbands and PUF/filter, respectively; and eight hydroxy-PAH (OH-PAH) metabolites were quantified in the urine. PAHs in the PUF/filter and OH-PAHs correlate significantly for two of the eight comparisons (rs=0.53 and p=0.01; rs=0.44 and p=0.04). PAHs in the wristband and OH-PAHs correlate significantly for four of the eight comparisons; 1-OH-phenanthrene and 1-OH-pyrene strongly correlate with the parent PAHs in the wristband (rs=0.76 and p=<0.0001; rs=0.66 and p=0.0009). These results suggest wristbands are more closely associated with OH-PAHs in urine than active personal air monitoring methods.« less

  7. Polycyclic aromatic hydrocarbons in the leaves of twelve plant species along an urbanization gradient in Shanghai, China.

    PubMed

    Liang, Jing; Fang, Hailan; Zhang, Taolin; Wang, Xingxiang

    2017-04-01

    Plants, particularly their leaves, play an important role in filtering both gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs). However, many studies have focused on the accumulation and adsorption functions of plant leaves, possibly underestimating the effects that plants have on air quality. Therefore, eight tree species from different locations in Shanghai were selected to assess PAH filtering (via adsorption and capture) using washed and unwashed plant leaves. The differences in the total PAH contents in the washed leaves were constant for the different species across the different sampling sites. The PAH levels decreased in the following order: industrial areas > traffic areas > urban areas > background area. The PAH compositions in the different plant leaves were dominated by fluorene (Fle), phenanthrene (Phe), anthracene (Ant), chrysene (Chr), fluoranthene (Flu), and pyrene (Pyr); notably, Phe accounted for 49.4-76.7% of the total PAHs. By comparing the PAH contents in the washed leaves with the PAH contents in the unwashed leaves, Pittosporum tobira (P. tobira), Ginkgo biloba (G. biloba), and Platanus acerifolia (P. acerifolia) were found to be efficient species for adsorbing PAHs, while Osmanthus fragrans (O. fragrans), Magnolia grandiflora (M. grandiflora), and Prunus cerasifera Ehrh. (P. cerasifera Ehrh.) were efficient species for capturing PAHs. The efficiencies of the plant leaves for the removal of PAHs from air occurred in the order of low molecular weight > medium molecular weight > high molecular weight PAHs.

  8. BENZO[A]PYRENE AND BENZO[C]PHENANTHRENE: THE EFFECT OF STRUCTURE ON THE BINDING OF WATER MOLECULES TO THE DIOL EPOXIDES

    EPA Science Inventory

    ABSTRACT
    The interaction with water of the diol epoxides (DEs) of both a planar and a non-planar PAH have been examined using molecular dynamics. To determine probable water locations around the DE for later use in the study of DE protonation, molecular dynamics simulations u...

  9. Mutagenicity, Stable DNA Adducts, and Abasic Sites Induced in Salmonella by Phananthro[3,4-b]- and Phenanthro[4,3-b]thiophenes, Sulfur Analogs of Benzo[c]phenanthrene

    EPA Science Inventory

    Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, yet little is known of the biological significance of exposure to these compounds. Some are mutagenic and carcinogenic, but only a few have ...

  10. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils.

  11. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum.

    PubMed

    Yin, Shanshan; Tang, Mengling; Chen, Fangfang; Li, Tianle; Liu, Weiping

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a type of ubiquitous pollutant with the potential ability to cause endocrine disruption that would have an adverse health impact on the general population. To assess the maternal exposure to PAHs in neonates and evaluate the possible impact of PAHs on reproductive hormone levels, the concentration of PAHs and reproductive hormone levels in the umbilical cord serum of 98 mother-infant pairs in the Shengsi Islands were investigated. The median concentration of total PAHs was determined to be 164 (Inter-Quartile Range, IQR 93.6-267) ng g -1 lipid, and 68% of the PAHs were lower-molecule congeners. The highest level was found for pyrene (PYR) and naphthalene (NAP), which contributed 54.6% of all the PAHs present in the samples. The exposure to PAHs negatively affected estradiol (E2) and Anti-Mullerian hormones (AMH) and positively affected FSH in the umbilical cord serum. The result expanded the database of the human burden of PAHs and suggested that PAHs can act as a type of Endocrine-Disrupting Chemical (EDC). These results may help to understand the complex pathways involved in disorders of human reproductive health associated with prenatal exposure to PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    PubMed

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  13. Using slow-release permanganate candles to remediate PAH-contaminated water.

    PubMed

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve

    2012-11-30

    Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Theoretical approach to the innovative mutation of naphthalene 1,2-dioxygenase: a molecular dynamics and docking study.

    PubMed

    Librando, Vito; Pappalardo, Matteo

    2014-08-01

    Polycyclic aromatic hydrocarbons are a family of ubiquitous pollutants whose environmental behavior has been widely studied. Different bacterial species are able to decompose hydrocarbons by using them as a food source. One of the best-studied enzymes is naphthalene 1,2-dioxygenase (NDO). A practical way to optimize the degradation process is by mutating the protein involved, increasing both the degradation capacity of the enzyme and its ability to work under extreme environmental conditions of high temperature and low pH. Herein, we describe the study of NDO using molecular dynamics and docking calculations to discover new mutants with high degrading capabilities. We modeled eleven new mutants of NDO. The results indicate that increasing the size of the active site cavity in the mutants allowed for the insertion of high molecular weight PAHs. Additionally, the physicochemical properties of the NDO active sites make the sites well suited to interactions with PAHs, so most amino-acid modifications should not result in significantly altered behavior of NDO.

  15. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings.

    PubMed

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2015-06-01

    A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Spatial and temporal variation of freely dissolved PAHs in an urban river undergoing Superfund remediation

    PubMed Central

    Sower, GJ; Anderson, K.A.

    2014-01-01

    Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a pre-cap average of 440 ± 422 ng/L to 8 ± 3 ng/L post-capping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/ pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. PMID:19174872

  17. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    PubMed

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  18. π-Extended Star-Shaped Polycyclic Aromatic Hydrocarbons based on Fused Truxenes: Synthesis, Self-Assembly, and Facilely Tunable Emission Properties.

    PubMed

    Cheng, Cheng; Jiang, Yi; Liu, Cheng-Fang; Zhang, Jian-Dong; Lai, Wen-Yong; Huang, Wei

    2016-12-19

    A new set of star-shaped polycyclic aromatic hydrocarbons (PAHs) based on naphthalene-fused truxenes, TrNaCn (n=1-4), were synthesized and characterized. The synthesis involved a microwave-assisted six-fold Suzuki coupling reaction, followed by oxidative cyclodehydrogenation. Multiple dehydrocyclization products could be effectively isolated in a single reaction, thus suggesting that the oxidative cyclodehydrogenation reaction involved a stepwise ring-closing process. The thermal, optical, and electrochemical properties and the self-assembly behavior of the resulting oxidized samples were investigated to understand the impact of the ring-fusing process on the properties of the star-shaped PAHs. Distinct bathochromic shift of the absorption maxima (λ max ) revealed that the molecular conjugation extended with the stepwise ring-closing reactions. The optical band-gap energy of these PAHs varied significantly on increasing the number of fused rings, thereby resulting in readily tunable emissive properties of the resultant star-shaped PAHs. Interestingly, the generation of rigid "arms" by using perylene analogues caused TrNaC2 and TrNaC3 to show significantly enhanced photoluminescence quantum yields (PLQYs) in solution (η=0.65 and 0.66, respectively) in comparison with those of TrNa and TrNaC1 (η=0.08 and 0.16, respectively). Owing to strong intermolecular interactions, the TrNa precursor was able to self-assemble into rod-like microcrystals, which could be facilely identified by the naked eye, whilst TrNaC1 self-assembled into nanosheets once the naphthalene rings had fused. This study offers a unique platform to gain further insight into-and a better understanding of-the photophysical and self-assembly properties of π-extended star-shaped PAHs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  20. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    PubMed

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  1. Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Dissolved Phase, Suspended Particulate Matter and Sediment from Weihe River in Northwest China

    PubMed Central

    Chen, Yuyun; Jia, Rui; Yang, Shengke

    2015-01-01

    Weihe River is a typical river located in the arid and semi-arid regions of Northwest China. In this study, the distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in Weihe River were investigated. The concentrations of ∑PAHs ranged from 351 to 4427 ng/L with a mean value of 835.4 ng/L in water dissolved phase (WDP), from 3557 ng/L to 147,907 ng/L with a mean value of 20,780 ng /L in suspended particulate matter (SPM), and from 362 to 15,667 ng/g dry weight (dw) with a mean value of 2000 ng/g dw in sediment, respectively. The concentrations of PAHs in Weihe River were higher compared with other rivers in the world. In both WDP and sediment, the highest concentrations of ∑PAHs were observed in the middle reach, while the lowest concentrations of ∑PAHs were found in the lower reach. For SPM, however, the PAHs concentrations in the lower reach were highest and the PAHs concentrations in the upper reach were lowest. The ratios of anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene) reflected a pattern of both pyrolytic and petrogenic input of PAHs in Weihe River. The potential ecosystem risk assessment indicated that harmful biological impairments occur frequently in Weihe River. PMID:26561824

  2. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    PubMed

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  3. Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1.

    PubMed

    Al-Hawash, Adnan B; Zhang, Xiaoyu; Ma, Fuying

    2018-03-25

    Petroleum pollution inevitably occurs at any stage of oil production and exerts a negative impact on the environment. Some microorganisms can degrade petroleum hydrocarbons (PHs). Polluted sludge of Rumaila oil field was use to isolate the highly efficient hydrocarbon-degrading fungal strain. Aspergillus sp. RFC-1 was obtained and its degradation ability for petroleum hydrocarbons was evaluated through surface adsorption, cell uptake, hydrophobicity, surface tension, biosurfactant production, and emulsification activity. In addition, the degradation mechanism was investigated. The results indicated the strain RFC-1 showed high removal activity for PHs, including biodegradation, adsorption, and emulsifiability. On the day 7 of incubation, the removal efficiencies of crude oil, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) reached 60.3%, 97.4%, 84.9%, and 90.7%, respectively. Biodegradation efficiencies of crude oil, NAP, PHE, and PYR were 51.8%, 84.6%, 50.3%, and 55.1%, respectively. Surface adsorption and cell absorption by live mycelial pellets followed a decreasing order: PYR ≥ PHE > NAP > crude oil. Adsorption by heat-killed mycelial pellets increased within 40 and 10 min for crude oil and PAHs, respectively, and remained constant thereafter. Effects of cell surface hydrophobicity, surface tension, and emulsification index were discussed. Intra- and extracellular enzymes of strain RFC-1 played important roles in PHs degradation. The strain RFC-1 is a prospective strain for removing PHs from aqueous environments. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.

    PubMed

    Li, Chun-Hua; Wong, Yuk-Shan; Wang, Hong-Yuan; Tam, Nora Fung-Yee

    2015-04-01

    Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3. Copyright © 2015. Published by Elsevier B.V.

  5. Polycyclic Aromatic Hydrocarbon (pah) In The Bulk Precipitation of The Seine Estuary, France

    NASA Astrophysics Data System (ADS)

    Motelay-Massei, A.; Ollivon, D.; Garban, B.; Chevreuil, M.

    The evolution of industry and the rising of population have resulted in deep changes in the quality of the environment. Nowadays much more often the attention of analysts is focused on the presence of organic pollutants in precipitation, such as polycyclic aromatic hydrocarbons or pesticides. Atmospheric inputs play a significant role in semivolatile chemicals cycling and alter so the hydrological cycle. PAHs are semi- volatile organic contaminants of great environmental concern because of their car- cinogenic properties. PAHs are produced primarily during incomplete combustion of fossil fuels and wood. Major sources of PAHs to urban atmosphere include au- tomobile traffic, home heating, municipal incinerators and industrial emissions. De- spite their production in urban and industrial sites, PAHs occur at high concentra- tions in rural areas due to their persistence and ability to be transported over long distances. The aim of this investigation was to obtain information about occurrence of organic trace components in precipitation in the Seine Estuary. It was also of in- terest to investigate the spatial and temporal variability of PAHs in the bulk (wet and dry) deposition occurring in the estuary region and to estimate PAH deposition flux on watershed (urban, industrial or rural). Precipitation samples were collected at four locations in the Seine Estuary: the first is an industrial site (Le Havre), two are urban sites (Rouen, representative of urban area influenced by heavy traffic and Notre-Dame de Gravenchon, near from an industrial center) and the last one is ru- ral (Evreux). Each of the sites is located close to a meteorological station. Sam- pling is performed weekly since March 2001. In our analytical conditions, "total PAH" includes 15 compounds: naphthalene (NAP), acenaphtene (ACE), phenanthrene (PHE), anthracene (ANT), fluoranthene (FTH), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a,h)anthracene (DahA), benzo(g,h,i)perylene (BghiP) and indeno(1,2,3-cd)pyrene (IcdP). 130 precipitation samples were analyzed from March to October 2001. Analytical results indicated that PAHs were present in pre- cipitation in frequent basis. In spring the concentration of the PAHs varied between 4 ng.L-1 (Rouen, 14-21 May 2001) and 493 ng.L-1 (Le Havre, 14-21 May 2001) and were normally distributed. These values show good agreement with those measured in other sites in Europe. In addition the profile of the compounds was also similar. PHE 1 (18 to 24 %), FTH (18 to 22 %), PYR (10 to 13 %) were find in the highest concen- tration again. NAP contributed as much as 8 % to the total deposition at Le Havre, Rouen and Evreux and as 15 % at Notre-Dame de Gravenchon. This is probably due to relatively high solubility in water of NAP. Clouds arriving at our sites may contain NAP from distant as well as from local sources. The PAHs considered as carcinogenic (BaA, BbF, BkF, BaP, DahA, IcdP) by the International Association for Research on Cancer represent 14 to 25% of total PAHs. Wet deposition rates are also estimated: total fluxes ranged from 11 (Notre-Dame de Gravenchon) to 40 µg.m-2 (Le Havre) quarterly. This study assesses the seasonal and spatial variability in atmospheric de- position fluxes of these contaminants in the Seine Estuary. Spatial influences were observed and indicate both localized and long-range atmospheric source inputs and, indirectly, influence of direction and speed of winds. In addition, fluxes of PAHs seem to follow seasonal patterns, with increasing concentrations during the colder months of the year. These results highlighted the non-negligible contribution of atmospheric deposition to micropollutants supply to the watershed and consequently groundwater. Moreover, these chemical compounds, due to their high stability and residence times, could be used as tracers in the environment. 2

  6. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase.

    PubMed

    Bai, Hongzhen; Zhou, Jun; Zhang, Hongjian; Tang, Guping

    2017-02-01

    Photodegradation via titanium dioxide (TiO 2 ) has been used to remove polycyclic aromatic hydrocarbons (PAHs) from environmental media broadly. In this study, a series of TiO 2 -graphene composites (P25-GR) with different GR weight ratios were synthesized via hydrothermal reaction of graphene oxide (GO) and P25. Their structures were characterized and the proprieties were tested in aqueous phase. Phenanthrene (PHE), fluoranthene (FLAN), and benzo[a]pyrene (BaP) were selected as models of PAHs. The experiment indicated that P25-2.5%GR exhibited enhancement in both adsorption and photodegradation, ∼80% of PAHs were removed after 2h photocatalysis. The influence of photodegradation rate was studied, including PAHs initial concentration and pH. Aromatic intermediates were identified during the reaction process and the degradation pathways were portrayed. This work explored the enhanced photocatalysis performance was attributed to the PAH-selective adsorbability and the strong electron transfer ability of the composite. The analysis of the degradation intermediates confirmed that the reaction proceeded with the formation of free radicals, leading to the gradual PAH mineralization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy.

    PubMed

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2017-04-01

    Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PAHs sensitivity of picophytoplankton populations in the Red Sea.

    PubMed

    Kottuparambil, Sreejith; Agusti, Susana

    2018-04-25

    In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2003-01-01

    In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that allmore » small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.« less

  11. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region

    PubMed Central

    De La Torre-Roche, Roberto J.; Lee, Wen-Yee; Campos-Díaz, Sandra I.

    2009-01-01

    Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS)was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 µg kg−1. Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes. PMID:18768257

  12. FISH BILIARY POLYCYCLIC AROMATIC HYDROCARBON METABOLITES ESTIMATED BY FIXED-WAVELENGTH FLUORESCENCE: COMPARISON WITH HPLC-FLUORESCENT DETECTION

    EPA Science Inventory

    Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...

  13. Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air.

    PubMed

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2016-07-19

    Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk.

  14. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa.

    PubMed

    Muratova, Anna; Dubrovskaya, Ekaterina; Golubev, Sergey; Grinev, Vyacheslav; Chernyshova, Marina; Turkovskaya, Olga

    2015-09-01

    We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.

  16. Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women.

    PubMed

    Nethery, Elizabeth; Wheeler, Amanda J; Fisher, Mandy; Sjödin, Andreas; Li, Zheng; Romanoff, Lovisa C; Foster, Warren; Arbuckle, Tye E

    2012-01-01

    Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.

  17. Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions.

    PubMed

    Sakulthaew, Chainarong; Comfort, Steve D; Chokejaroenrat, Chanat; Li, Xu; Harris, Clifford E

    2015-12-01

    Ozone (O3) is a chemical oxidant capable of transforming polycyclic aromatic hydrocarbons (PAHs) in urban runoff within minutes but complete oxidation to CO2 can take days to weeks. We developed and tested a flow-through system that used ozone to quickly transform PAHs in a runoff stream and then removed the ozone-transformed PAHs via adsorption to carbon nano-onions (CNOs). To quantify the efficacy of this approach, (14)C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 unlabeled PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained CNOs to adsorb the ozone-transformed PAHs and allowed clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, biodegradable products back into solution. Control treatments confirmed that parent PAH structures (i.e., non-ozonated) were not biologically degraded following CNO adsorption and that O3-transformed PAHs were not released from the CNOs in the absence of bacteria. These results support the combined use of ozone, carbon nano-onions with subsequent biological degradation as a means of removing PAHs from urban runoff or a commercial waste stream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  19. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  20. Distribution of polycyclic aromatic hydrocarbons in the food web of a high mountain lake, Pyrenees, Catalonia, Spain.

    PubMed

    Vives, Ingrid; Grimalt, Joan O; Ventura, Marc; Catalan, Jordi

    2005-06-01

    We investigated the contents of polycyclic aromatic hydrocarbons (PAHs) in the food web organisms included in the diet of brown trout from a remote mountain lake. The preferential habitat and trophic level of the component species have been assessed from the signature of stable isotopes (delta13C and delta15N). Subsequently, the patterns of accumulation and transformation of these hydrocarbons in the food chain have been elucidated. Most of the food web organisms exhibit PAH distributions largely dominated by phenanthrene, which agrees with its predominance in atmospheric deposition, water, and suspended particles. Total PAH levels are higher in the organisms from the littoral habitat than from the deep sediments or the pelagic water column. However, organisms from deep sediments exhibit higher proportions of higher molecular weight PAH than those in other lake areas. Distinct organisms exhibit specific features in their relative PAH composition that point to different capacities for uptake and metabolic degradation. Brown trout show an elevated capacity for metabolic degradation because they have lower PAH concentrations than food and they are enriched strongly in lower molecular weight compounds. The PAH levels in trout highly depend on organisms living in the littoral areas. Fish exposure to PAH, therefore, may vary from lake to lake according to the relative contribution of littoral organisms to their diet.

  1. Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes.

    PubMed

    McDonough, Carrie A; Khairy, Mohammed A; Muir, Derek C G; Lohmann, Rainer

    2014-07-15

    Polyethylene passive samplers (PEs) were used to measure concentrations of gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water throughout the lower Great Lakes during summer and fall of 2011. Atmospheric Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in downtown Cleveland (OH). Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH concentrations correlated strongly with population within 3-40 km of the sampling site depending on the compound considered, suggesting that urban centers are a primary source of gaseous PAHs (except retene) in the lower Great Lakes region. The significance of distant population (within 20 km) versus local population (within 3 km) increased with subcooled liquid vapor pressure. Most dissolved aqueous PAHs did not correlate significantly with population, nor were they consistently related to river discharge, wastewater effluents, or precipitation. Air-water exchange calculations implied that diffusive exchange was a source of phenanthrene to surface waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water fluxes with temperature suggested that the significance of urban centers as sources of dissolved PAHs via diffusive exchange may decrease in warmer months.

  2. Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice-wheat continuous cropping soils close to five industrial parks of Suzhou, China.

    PubMed

    Li, Yong; Long, Ling; Ge, Jing; Yang, Li-Xuan; Cheng, Jin-Jin; Sun, Ling-Xiang; Lu, Changying; Yu, Xiang-Yang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are likely to threaten human health and ecosystem though the food chain, therefore, it is worth to pay more attention to soil contamination by PAHs. In this study, the presence, distribution and risk assessment of 16 priority PAHs in rice-wheat continuous cropping soils close to industrial parks of Suzhou were firstly investigated. The concentrations of the total PAHs ranged from 125.99 ng/g to 796.65 ng/g with an average of 352.94 ng/g. Phenanthrene (PHE), fluoranthene (FLT), benzo [a] anthracene (BaA) and pyrene (PYR) were the major PAHs in those soil samples. The highest level of PAHs was detected in the soils around Chemical plant and Steelworks, followed by Printed wire board, Electroplate Factory and Paper mill. The composition of PAHs in the soils around Chemical plant was dominated by 3-ring PAHs, however, the predominant compounds were 4, 5-ring PAHs in the soils around other four factories. Meanwhile, the concentration of the total PAHs in the soils close to the factories showed a higher level of PAHs in November (during rice harvest) than that in June (during wheat harvest). Different with other rings of PAHs, 3-ring PAHs in the soils around Chemical plant and Steelworks had a higher concentration in June. The results of principal component analysis and isomeric ratio analysis suggested that PAHs in the studied areas mainly originated from biomass, coal and petroleum combustion. The risk assessment indicated that higher carcinogenic risk was found in those sites closer to the industrial park. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrated ecological and chemical food web accumulation modeling explains PAH temporal trends during regime shifts in a shallow lake.

    PubMed

    Kong, Xiangzhen; He, Wei; Qin, Ning; Liu, Wenxiu; Yang, Bin; Yang, Chen; Xu, Fuliu; Mooij, Wolf M; Koelmans, Albert A

    2017-08-01

    Shallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce. We developed a contaminant fate model which is linked to an ecosystem model (PCLake) for shallow lakes. This integrated model was successful in simulating long-term dynamics (1953-2012) of representative polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic components in a large shallow lake (Chaohu in China), which has undergone regime shifts in this period. Historical records from sediment cores were used to evaluate the model. The model revealed that regime shifts in shallow lakes had a strong impact on the fate of less hydrophobic compounds due to the large storage capacity of macrophytes, which accumulated up to 55.6% of phenanthrene in the clear state. The abrupt disappearance of macrophytes after the regime shift resulted in a sudden change in phenanthrene distribution, as the sediment became the major sink. For more hydrophobic compounds such as benzo(a)pyrene, the modeled impact of the regime shift was negligible for the whole environment, yet large for biotic compartments. This study is the first to provide a full mechanistic analysis of the impact of regime shifts on the fate of PAHs in a real lake ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.

    PubMed

    Sun, Ran; Belcher, Richard W; Liang, Jianqiang; Wang, Li; Thater, Brian; Crowley, David E; Wei, Gehong

    2015-07-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  5. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin.

    PubMed

    Wu, Minghui; Xu, Yongan; Ding, Wenbo; Li, Yuanyuan; Xu, Heng

    2016-08-01

    Bioremediation of areas co-contaminated with metals and polycyclic aromatic hydrocarbons (PAHs) by mushrooms has attracted considerable attention in recent years. In this study, Pleurotus eryngii was introduced for the removal of Mn and phenanthrene (Phe) from potato liquid medium (PDL) simultaneously. Effects of Tween 80 and saponin on P. eryngii growth together with Mn uptake as well as Phe removal were investigated. Although pollutants had a negative effect on mycelial morphology and growth, P. eryngii could still tolerate and remove Mn and Phe. Tween 80 increased removal of Mn and Phe through increase of P. eryngii growth, Phe solubility, pollutants bioavailability, and specific surface area of mycelium pellets, moreover, the activities of manganese peroxidase (MnP) and laccase, which played an important role on PAHs biodegradation. The maximal removal of Mn and Phe was achieved (92.17 and 93.85 % after 15 days incubation, respectively) with 0.6 g L(-1) Tween 80. Treatments with saponin markedly inhibited P. eryngii growth (50.17-66.32 % lower relative to control) due to its fungistatic activity. Nevertheless, saponin could slightly enhance Phe removal through increasing solubility of Phe, and Phe removal rate varied from 80.53 to 87.06 % in saponin treatments. Joint stress of Mn and Phe induced a strong antioxidative response, and superoxide dismutase (SOD) activity decreased in surfactants-treated mycelium compared with control. Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms.

  6. Development and certification of a coal fly ash certified reference material for selected polycyclic aromatic hydrocarbons.

    PubMed

    Cao, X; Xu, X; Cui, W; Xi, Z

    2001-08-01

    The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.

  7. PAH bioconcentration in Mytilus sp from Sinclair Inlet, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, J.; Young, D.; Ozretich, R.

    1995-12-31

    Approximately 20 polynuclear aromatic hydrocarbons (PAH) were measured by GC/MS in seawater and whole soft tissues of the intertidal mussel Mytilus sp. collected in July 1991 within and around Puget Sound`s Sinclair Inlet. Low variability was observed in the water concentrations collected over three days at control sites, yielding reliable values for the exposure levels experienced by this bioindicator mollusk. Mean water concentrations of acenaphthene, phenanthrene, and fluoranthene in the control region were 2.7 {+-} 0.8, 2.8 {+-} 0.8, and 3.1 {+-} 0.7 ng/liter, respectively. Levels measured near sites of vessel activity were higher but much more variable; this reducedmore » the reliability of the tissue/water bioconcentration factors (BCF) obtained from these samples. An empirical model relating values of Log BCF and Log Kow for the control zone samples supports the utility of this estuarine bioindicator for monitoring general levels of PAH in nearshore surface waters.« less

  8. Trends in polycyclic aromatic hydrocarbon concentrations in the Great Lakes atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Sun; Pierrette Blanchard; Kenneth A. Brice

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo(a)pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The major sources of PAHs in and around Chicago are vehicle emissions, coalmore » and natural gas combustion, and coke production. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer. 36 refs., 4 figs., 1 tab.« less

  9. Study of the plasma proteome of Atlantic cod (Gadus morhua): Effect of exposure to two PAHs and their corresponding diols.

    PubMed

    Skogland Enerstvedt, Karianne; Sydnes, Magne O; Pampanin, Daniela M

    2017-09-01

    Occurrence of polycyclic aromatic hydrocarbon (PAH) contamination in the marine environment represents a risk to marine life and humans. In this study, plasma samples from Atlantic cod (Gadus morhua) were analysed by shotgun mass spectrometry to investigate the plasma proteome in response to exposure to single PAHs (naphthalene or chrysene) and their corresponding metabolites (dihydrodiols). In total, 369 proteins were identified and ranked according to their relative abundance. The levels of 12 proteins were found significantly altered in PAH exposed fish and are proposed as new biomarker candidates. Eleven proteins were upregulated, primarily immunoglobulin components, and one protein was downregulated (antifreeze protein type IV.) The uniformity of the upregulated proteins suggests a triggered immune response in the exposed fish. Overall, the results provide valuable knowledge for future studies of the Atlantic cod plasma proteome and generate grounds for establishing new plasma protein biomarkers for environmental monitoring of PAH related exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge.

    PubMed

    Gworek, Barbara; Klimczak, Katarzyna; Kijeńska, Marta; Gozdowski, Dariusz

    2016-10-01

    The study was focused on two goals: (i) the confirmation of the existence of a general relation between the content of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and in plants growing in it, regardless of the type and content of sewage sludge, and (ii) if so, the answer to the question whether the uptake of PAHs by plants depends on their type. To realize the set aims, the contents of PAHs in four differentiated plant species were measured, two belonging to the Monocotyledones and two belonging to Dicotyledones group, growing in municipal and industrial sewage sludge in two locations. All the investigations were carried out during the period of 3 years. The results clearly demonstrated that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The relation between accumulation coefficient of PAHs in plant material vs. the content of PAH in sewage sludge was of exponential character. The results indicate that in case of four- and five-ring PAHs, the root uptake mechanism from soil solution occurs, regardless of the type and origin of sewage sludge and the type of plant. For three-ring PAHs, we can assume for Monocotyledones that the root uptake mechanism occurs because we observe a significant correlation between the content of fluorene, phenanthrene, and anthracene in plant material and in the sewage sludge. For Dicotyledones, the correlation is insignificant, and in this case probably two mechanisms occur-the uptake by roots and by leaves.

  11. Time trends of polycyclic aromatic hydrocarbon exposure in New York City from 2001 to 2012: assessed by repeat air and urine samples.

    PubMed

    Jung, Kyung Hwa; Liu, Bian; Lovinsky-Desir, Stephanie; Yan, Beizhan; Camann, David; Sjodin, Andreas; Li, Zheng; Perera, Frederica; Kinney, Patrick; Chillrud, Steven; Miller, Rachel L

    2014-05-01

    Exposure to air pollutants including polycyclic aromatic hydrocarbons (PAH), and specifically pyrene from combustion of fuel oil, coal, traffic and indoor sources, has been associated with adverse respiratory health outcomes. However, time trends of airborne PAH and metabolite levels detected via repeat measures over time have not yet been characterized. We hypothesized that PAH levels, measured repeatedly from residential indoor and outdoor monitors, and children׳s urinary concentrations of PAH metabolites, would decrease following policy interventions to reduce traffic-related air pollution. Indoor PAH (particle- and gas-phase) were collected for two weeks prenatally (n=98), at age 5/6 years (n=397) and age 9/10 years (n=198) since 2001 and at all three age-points (n=27). Other traffic-related air pollutants (black carbon and PM2.5) were monitored indoors simultaneous with PAH monitoring at ages 5/6 (n=403) and 9/10 (n=257) between 2005 and 2012. One third of the homes were selected across seasons for outdoor PAH, BC and PM2.5 sampling. Using the same sampling method, ambient PAH, BC and PM2.5 also were monitored every two weeks at a central site between 2007 and 2012. PAH were analyzed as semivolatile PAH (e.g., pyrene; MW 178-206) (∑8PAH(semivolatile): Including pyrene (PYR), phenanthrene (PHEN), 1-methylphenanthrene (1-MEPH), 2-methylphenanthrene (2-MEPH), 3-methylphenanthrene (3-MEPH), 9-methylphenanthrene (9-MEPH), 1,7-dimethylphenanthrene (1,7-DMEPH), and 3,6-dimethylphenanthrene (3,6-DMEPH)) and the sum of eight nonvolatile PAH (∑8PAH(nonvolatile): Including benzo[a]anthracene (BaA), chrysene/iso-chrysene (Chry), benzo[b]fluoranthene (BbFA), benzo[k]fluoranthene (BkFA), benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (IP), dibenzo[a,h]anthracene (DahA), and benzo[g,h,i]perylene (BghiP); MW 228-278). A spot urine sample was collected from children at child ages 3, 5, 7 and 9 between 2001 and 2012 and analyzed for 10 PAH metabolites. Modest declines were detected in indoor BC and PM2.5 levels between 2005 and 2012 (Annual percent change [APC]=-2.08% [p=0.010] and -2.18% [p=0.059] for BC and PM2.5, respectively), while a trend of increasing pyrene levels was observed in indoor and outdoor samples, and at the central site during the comparable time periods (APC=4.81%, 3.77% and 7.90%, respectively; p<0.05 for all). No significant time trend was observed in indoor ∑8PAH(nonvolatile) levels between 2005 and 2012; however, significant opposite trends were detected when analyzed seasonally (APC=-8.06% [p<0.01], 3.87% [p<0.05] for nonheating and heating season, respectively). Similarly, heating season also affected the annual trends (2005-2012) of other air pollutants: the decreasing BC trend (in indoor/outdoor air) was observed only in the nonheating season, consistent with dominating traffic sources that decreased with time; the increasing pyrene trend was more apparent in the heating season. Outdoor PM2.5 levels persistently decreased over time across the seasons. With the analyses of data collected over a longer period of time (2001-2012), a decreasing trend was observed in pyrene (APC=-2.76%; p<0.01), mostly driven by measures from the nonheating season (APC=-3.54%; p<0.01). In contrast, levels of pyrene and naphthalene metabolites, 1-hydroxypyrene and 2-naphthol, increased from 2001 to 2012 (APC=6.29% and 7.90% for 1-hydroxypyrene and 2-naphthol, respectively; p<0.01 for both). Multiple NYC legislative regulations targeting traffic-related air pollution may have led to decreases in ∑8PAH(nonvolatile) and BC, especially in the nonheating season. Despite the overall decrease in pyrene over the 2001-2012 periods, a rise in pyrene levels in recent years (2005-2012), that was particularly evident for measures collected during the heating season, and 2-naphthol, indicates the contribution of heating oil combustion and other indoor sources to airborne pyrene and urinary 2-naphthol. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A urinary metabolite of phenanthrene as a biomarker of polycyclic aromatic hydrocarbon metabolic activation in workers exposed to residual oil fly ash.

    PubMed

    Kim, Jee Young; Hecht, Stephen S; Mukherjee, Sutapa; Carmella, Steven G; Rodrigues, Ema G; Christiani, David C

    2005-03-01

    Residual oil fly ash is a chemically complex combustion product containing a significant component of potentially carcinogenic transition metals and polycyclic aromatic hydrocarbons (PAH). Various biomarkers of PAH exposure have been investigated previously, most notably 1-hydroxypyrene (1-OHP), in urine. In this study, we assessed the utility of r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (trans, anti-PheT), a metabolite of phenanthrene, to detect occupational PAH exposure. Urine samples collected across the workweek were analyzed for 1-OHP and trans, anti-PheT in boilermakers (n = 20) exposed to residual oil fly ash. Median baseline urinary trans, anti-PheT concentrations were 0.50 microg/g creatinine in current tobacco smokers and 0.39 microg/g creatinine in nonsmokers. Median baseline urinary 1-OHP concentrations in smokers and nonsmokers were 0.31 and 0.13 microg/g creatinine, respectively. To study further the effect of smoking exposure on the urinary PAH markers, urinary cotinine was used. Although urinary trans, anti-PheT and 1-OHP concentrations were correlated (Spearman r = 0.63; P < 0.001) for all subjects, the regression coefficient between log-transformed trans, anti-PheT and log 1-OHP was statistically significant only for subjects with low levels of urinary cotinine or for nonsmokers. Each 1-unit increase in log 1-OHP was associated with a 0.77-unit increase (95% confidence interval, 0.45-1.09) in log trans, anti-PheT in subjects with low levels of urinary cotinine (P < 0.001). In these subjects, dichotomized occupational exposure status was a significant predictor of log trans, anti-PheT (P = 0.02) but not of log 1-OHP (P = 0.2). In conclusion, we found that urinary trans, anti-PheT was detected in levels comparable with 1-OHP in occupationally exposed workers, particularly nonsmokers. This study shows that urinary trans, anti-PheT may be an effective biomarker of uptake and metabolic activation of PAHs.

  13. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH) Biodegradation

    PubMed Central

    Piccolo, Alessandro; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants. PMID:25152928

  14. [Health risk assessment of coke oven PAHs emissions].

    PubMed

    Bo, Xin; Wang, Gang; Wen, Rou; Zhao, Chun-Li; Wu, Tie; Li, Shi-Bei

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) produced by coke oven are with strong toxicity and carcinogenicity. Taken typical coke oven of iron and steel enterprises as the case study, the dispersion and migration of 13 kinds of PAHs emitted from coke oven were analyzed using AERMOD dispersion model, the carcinogenic and non-carcinogenic risks at the receptors within the modeling domain were evaluated using BREEZE Risk Analyst and the Human Health Risk Assessment Protocol for Hazardous Waste Combustion (HHRAP) was followed, the health risks caused by PAHs emission from coke oven were quantitatively evaluated. The results indicated that attention should be paid to the non-carcinogenic risk of naphthalene emission (the maximum value was 0.97). The carcinogenic risks of each single pollutant were all below 1.0E-06, while the maximum value of total carcinogenic risk was 2.65E-06, which may have some influence on the health of local residents.

  15. Natural attenuation and biosurfactant-stimulated bioremediation of estuarine sediments contaminated with diesel oil.

    PubMed

    Bayer, Débora M; Chagas-Spinelli, Alessandra C O; Gavazza, Sávia; Florencio, Lourdinha; Kato, Mario T

    2013-09-01

    We evaluated the bioremediation, by natural attenuation (NA) and by natural attenuation stimulated (SNA) using a rhamnolipid biosurfactant, of estuarine sediments contaminated with diesel oil. Sediment samples (30 cm) were put into 35 cm glass columns, and the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency were monitored for 111 days. Naphthalene percolated through the columns more than the other PAHs, and, in general, the concentrations of the lower molecular weight PAHs, consisting of two and three aromatic rings, changed during the first 45 days of treatment, whereas the concentrations of the higher molecular weight PAHs, consisting of four, five, and six rings, were more stable. The higher molecular weight PAHs became more available after 45 days, in the deeper parts of the columns (20-30 cm). Evidence of degradation was observed only for some compounds, such as pyrene, with a total removal efficiency of 82 and 78 % in the NA and SNA treatments, respectively, but without significant difference. In the case of total PAH removal, the efficiencies were significantly different of 82 and 67 %, respectively.

  16. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives.

    PubMed

    Nzila, Alexis

    2018-05-07

    The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Identification and quantification of phencyclidine pyrolysis products formed during smoking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue, L.P.; Scimeca, J.A.; Thomas, B.F.

    As a result of frequent phencyclidine (PCP) abuse, pyrolysis studies were conducted to further investigate its fate during smoking. Marijuana placebo cigarettes were impregnated with /sup 3/H-PCP HCl and burned under conditions simulating smoking. Mainstream smoke was passed through glass wool filters as well as acidic and basic traps. Approximately 90% of the starting material could be accounted for in the first glass wool trap and cigarette holder. HPLC and GC/MS analysis of methanol extracts of these glass wool traps revealed the presence of 1-phenyl-1-cyclohexene (47% of the starting material) > PCP (40%) > piperidine (15%) > N-acetylpiperidine (9%). Itmore » was not possible to fully account for the remainder of the piperidine moiety. It has been reported that at high temperatures PCP is converted to numerous polynuclear aromatic compounds which include styrene, ..cap alpha..-methylstyrene, naphthalene, 2-methyl-naphthalene, 1-methylnaphthalene, biphenyl, cyclohexylbenzene, acenaphthene, phenanthrene, and anthracene. These compounds were not formed from PCP under smoking conditions.« less

  18. Fate and Transport of Polycyclic Aromatic Hydrocarbons in Upland Irish Headwater Lake Catchments

    PubMed Central

    Scott, Heidi E. M.; Aherne, Julian; Metcalfe, Chris D.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a concern due to their carcinogenicity and propensity for transboundary atmospheric transport. Ireland is located on the western periphery of Europe and assumed to receive clean Atlantic air. As such, it has been used as an atmospheric reference for comparison to other regions. Nonetheless, few studies have evaluated concentrations of PAHs within the Irish environment. In the current study, PAHs were measured at five upland (500–800 masl) headwater lake catchments in coastal regions around Ireland, remote from industrial point source emissions. Semipermeable membrane devices were deployed in lakes for a 6-month period in July 2009, and topsoils were sampled from each catchment during October 2010. The concentrations of PAHs were low at most study sites with respect to other temperate regions. Homologue groups partitioned between lake and soil compartments based on their molecular weight were: “lighter” substances, such as Phenanthrene and Fluorene, were found in higher proportions in lakes, whereas “heavier” compounds, such as Chrysene and Benz[a]anthracene, were more prominent in soils. Concentrations of PAHs were highest at the east coast sites, potentially due to contributions from historical transboundary and regional combustion sources. PMID:23346024

  19. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.

    PubMed

    Wei, Ran; Ni, Jinzhi; Li, Xiaoyan; Chen, Weifeng; Yang, Yusheng

    2017-03-01

    Pot experiments were used to compare the dissipation and phytoremediation effect of alfalfa (Medicago sativa L.) for polycyclic aromatic hydrocarbons (PAHs) in a freshly spiked soil and two field-contaminated soils with different soil organic carbon (SOC) contents (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC). In spiked soils, the dissipation rates of phenanthrene and pyrene were greater than 99.5 and 94.3%, respectively, in planted treatments and 95.0 and 84.5%, respectively, in unplanted treatments. In field-contaminated Anthrosols, there were limited but significant reductions of 10.2 and 15.4% of total PAHs in unplanted and planted treatments, respectively. In field-contaminated Phaeozems, there were no significant reductions of total PAHs in either unplanted or planted treatments. A phytoremediation effect was observed for the spiked soils and the Anthrosols, but not for the Phaeozems. The results indicated that laboratory tests with spiked soils cannot reflect the real state of field-contaminated soils. Phytoremediation efficiency of PAHs in field-contaminated soils was mainly determined by the content of SOC. Phytoremediation alone has no effect on the removal of PAHs in field-contaminated soils with high SOC content.

  20. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  1. Polycyclic aromatic hydrocarbons at fire stations: firefighters' exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2017-02-05

    This work characterizes levels of eighteen polycyclic aromatic hydrocarbons (PAHs) in the breathing air zone of firefighters during their regular work shift at eight Portuguese fire stations, and the firefighters' total internal dose by six urinary monohydroxyl metabolites (OH-PAHs). Total PAHs (ΣPAHs) concentrations varied widely (46.4-428ng/m 3 ), mainly due to site specificity (urban/rural) and characteristics (age and layout) of buildings. Airborne PAHs with 2-3 rings were the most abundant (63.9-95.7% ΣPAHs). Similarly, urinary 1-hydroxynaphthalene and 1-hydroxyacenaphthene were the predominant metabolites (66-96% ΣOH-PAHs). Naphthalene contributed the most to carcinogenic ΣPAHs (39.4-78.1%) in majority of firehouses; benzo[a]pyrene, the marker of carcinogenic PAHs, accounted with 1.5-10%. Statistically positive significant correlations (r≥0.733, p≤0.025) were observed between ΣPAHs and urinary ΣOH-PAHs for firefighters of four fire stations suggesting that, at these sites, indoor air was their major exposure source of PAHs. Firefighter's personal exposure to PAHs at Portuguese fire stations were well below the existent occupational exposure limits. Also, the quantified concentrations of post-shift urinary 1-hydroxypyrene in all firefighters were clearly lower than the benchmark level (0.5μmol/mol) recommended by the American Conference of Governmental Industrial Hygienists. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene.

    PubMed

    Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M

    2015-12-14

    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

  3. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.

    2015-12-14

    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less

  4. Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay - An Antarctic specially managed area.

    PubMed

    Montone, Rosalinda C; Taniguchi, Satie; Colabuono, Fernanda I; Martins, César C; Cipro, Caio Vinícius Z; Barroso, Hileia S; da Silva, Josilene; Bícego, Márcia C; Weber, Rolf R

    2016-05-15

    Persistent organic pollutants were assessed in fat samples of the Gentoo (Pygoscelis papua), Chinstrap (Pygoscelis antarcticus) and Adélie (Pygoscelis adeliae) penguins collected during the austral summers of 2005/06 and 2006/07 in Admiralty Bay, King George Island, Antarctica. The predominant organic pollutants were PCB (114 to 1115), polycyclic aromatic hydrocarbons (PAHs) (60.1 to 238.7), HCB (<0.3 to 132.2) and BDE-47 (<1.0 to 10.7) in ng g(-1) wet weight. The mean concentrations of the majority of organic pollutants were similar among the three species of penguins. Chicks of all three species showed similar profiles of PCB congeners, with predominance of lower chlorinated compounds. The distribution of PAHs was similar in all birds, with a predominance of naphthalene and alkyl-naphthalene, which are the main constituents of arctic diesel fuel. These data contribute to the monitoring of the continued exposure to organic pollutants in the Antarctic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling the fate of PAH added with composts in amended soil according to the origin of the exogenous organic matter.

    PubMed

    Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Garnier, Patricia

    2018-03-01

    A new model that was able to simulate the behaviours of polycyclic aromatic hydrocarbons (PAH) during composting and after the addition of the composts to agricultural soil is presented here. This model associates modules that describe the physical, biological and biochemical processes involved in PAH dynamics in soils, along with a module describing the compost degradation resulting in PAH release. The model was calibrated from laboratory incubations using three 14 C-PAHs, phenanthrene, fluoranthene and benzo(a)pyrene, and three different composts consisting of two mature and one non-mature composts. First, the labelled PAHs were added to the compost over 28days, and spiked composts were then added to the soil over 55days. The model calculates the proportion of biogenic and physically bound residues in the non-extractable compartment of PAHs at the end of the compost incubation to feed the initial conditions of the model for soil amended with composts. For most of the treatments, a single parameter set enabled to simulate the observed dynamics of PAHs adequately for all the amended soil treatments using a Bayesian approach. However, for fluoranthene, different parameters that were able to simulate the growth of a specific microbial biomass had to be considered for mature compost. Processes that occurred before the compost application to the soil strongly influenced the fate of PAHs in the soil. Our results showed that the PAH dissipation during compost incubation was higher in mature composts because of the higher specific microbial activity, while the PAH dissipation in amended soil was higher in the non-mature compost because of the higher availability of PAHs and the higher co-metabolic microbial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The relative abundance and seasonal distribution correspond with the sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River, Pakistan.

    PubMed

    Hussain, Imran; Syed, Jabir Hussain; Kamal, Atif; Iqbal, Mehreen; Eqani, Syed-Ali-Mustjab-Akbar-Shah; Bong, Chui Wei; Taqi, Malik Mumtaz; Reichenauer, Thomas G; Zhang, Gan; Malik, Riffat Naseem

    2016-06-01

    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.

  7. Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China.

    PubMed

    Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F

    2013-04-01

    This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.

  8. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed Central

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-01-01

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate. PMID:29051449

  9. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-08-15

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.

  10. Spatial and temporal variation of freely dissolved polycyclic aromatic hydrocarbons in an urban river undergoing Superfund remediation.

    PubMed

    Sower, Gregory James; Anderson, Kim A

    2008-12-15

    Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a precap average of 440 +/- 422 ng/L to 8 +/- 3 ng/L postcapping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values.

  11. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.).

    PubMed

    Liao, Changjun; Liang, Xujun; Lu, Guining; Thai, Truonggiang; Xu, Wending; Dang, Zhi

    2015-02-01

    Understanding the uptake of organic pollutants by plants is an important part of the assessment of risks from crops grown on contaminated soils. This study was an investigation of the effects of surfactants added to PAHs-contaminated soil on the uptake and accumulation of PAHs in maize tissues during phytoremediation. The accumulation of phenanthrene (PHE) and pyrene (PYR) by maize plant was not influenced significantly by the surfactant amendment to the soil. The distribution of PHE and PYR in maize tissues was not positively correlated with the corresponding lipid contents. Remarkably, the concentrations of PHE (20.9 ng g(-1)) and PYR (0.9 ng g(-1)) in maize grain were similar to or even much lower than those in some foods. Moreover, surfactants could enhance the removal of pollutants from contaminated soil during phytoremediation, which might be due to surfactant desorption ability and microbial activity in soil. The study suggests that use of maize plant with surfactant is an alternative technology for remediation of PAHs-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    PubMed

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  13. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.

    PubMed

    Wang, Congying; Wang, Ziyu; Li, Zengbo; Ahmad, Riaz

    2017-02-01

    A two-liquid-phase system (TLPS), which consisted of soil slurry and silicone oil, was employed to extract polycyclic aromatic hydrocarbons (PAHs) in four long-term contaminated soils in order to assess the bioavailability of PAHs. Extraction kinetics of six PAHs viz. phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthrancene were selected to investigate as they covered the susceptible and recalcitrant PAHs in soil. A parallel experiments were also carried out on the microbial degradation of these PAHs in soil with and without biostimulation (by adding (NH 4 ) 2 HPO 4 ). The rapidly desorbed fraction of fluoranthene, as indicated by the two-fraction model, was found the highest, ranging from 21.4% to 37.4%, whereas dibenzo(a,h)anthrancene was the lowest, ranging from 8.9% to 20.5%. The rapid desorption of selected PAHs was found to be finished within 24 h. The rapidly desorbed fraction of PAHs investigated using TLPS, was significantly correlated (R 2  = 0.95) with that degraded by microorganisms in biostimulation treatment. This suggested that the TLPS-assisted extraction could be a promising technique in determining the bioavailability of aged PAHs in contaminated soils. It also suggested that applying sufficient nutrients in bioremediation of field contaminated soils is crucial. Further work is required to test its application to more hydrophobic organic pollutants in long-term contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biotechnological procedures to select white rot fungi for the degradation of PAHs.

    PubMed

    Lee, Hwanhwi; Jang, Yeongseon; Choi, Yong-Seok; Kim, Min-Ji; Lee, Jaejung; Lee, Hanbyul; Hong, Joo-Hyun; Lee, Young Min; Kim, Gyu-Hyeok; Kim, Jae-Jin

    2014-02-01

    White rot fungi are essential in forest ecology and are deeply involved in wood decomposition and the biodegradation of various xenobiotics. The fungal ligninolytic enzymes involved in these processes have recently become the focus of much attention for their possible biotechnological applications. Successful bioremediation requires the selection of species with desirable characteristics. In this study, 150 taxonomically and physiologically diverse white rot fungi, including 55 species, were investigated for their performance in a variety of biotechnological procedures, such as dye decolorization, gallic acid reaction, ligninolytic enzymes, and tolerance to four PAHs, phenanthrene, anthracene, fluoranthene, and pyrene. Among these fungi, six isolates showed the highest (>90%) tolerance to both individual PAH and mixed PAHs. And six isolates oxidized gallic acid with dark brown color and they rapidly decolorized RBBR within ten days. These fungi revealed various profiles when evaluated for their biotechnological performance to compare the capability of degradation of PAHs between two groups selected. As the results demonstrated the six best species selected from gallic acid more greatly degraded four PAHs than the other isolates selected via tolerance test. It provided that gallic acid reaction test can be performed to rank the fungi by their ability to degrade the PAHs. Most of all, Peniophora incarnata KUC8836 and Phlebia brevispora KUC9033 significantly degraded the four PAHs and can be considered prime candidates for the degradation of xenobiotic compounds in environmental settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs.

    PubMed

    Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang

    2018-08-15

    The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Polycyclic aromatic hydrocarbons in soil of the Canadian River floodplain in Oklahoma

    USGS Publications Warehouse

    Sartori, F.; Wade, T.L.; Sericano, J.L.; Mohanty, B.P.; Smith, K.A.

    2010-01-01

    The accumulation of polycyclic aromatic hydrocarbons (PAH) in soil, plants, and water may impart negative eff ects on ecosystem and human health. We quantified the concentration and distribution of 41 PAH (n = 32), organic C, total N, and S (n = 140) and investigated PAH sources using a chronosequence of floodplain soils under a natural vegetation succession. Soil samples were collected between 0- and 260-cm depth in bare land (the control), wetland, forest, and grassland areas near a closed municipal landfill and an active asphalt plant (the contaminant sources) in the north bank of the Canadian River near Norman, OK. Principal component, cluster, and correlation analyses were used to investigate the spatial distribution of PAH, in combination with diagnostic ratios to distinguish pyrogenic vs. petrogenic PAH suites. Total PAH concentration (??PAH) had a mean of 1300 ng g-1, minimum of 16 ng g-1, and maximum of 12,000 ng g-1. At 0- to 20-cm depth, ??PAH was 3500 ?? 1600 ng g-1 (mean ?? 1 SE) near the contaminant sources. The most common compounds were nonalkylated, high molecular weight PAH of pyrogenic origin, i.e., fluoranthene (17%), pyrene (14%), phenanthrene (9%), benzo(b)fluoranthene (7%), chrysene (6%), and benzo(a)anthracene (5%). ??PAH in the control (130 ?? 23 ng g -1) was comparable to reported concentrations for the rural Great Plains. Perylene had a unique distribution pattern suggesting biological inputs. The main PAH contamination mechanisms were likely atmospheric deposition due to asphalt production at the 0- to 20-cm depth and past landfill operations at deeper depths. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil.

    PubMed

    Oleszczuk, Patryk; Godlewska, Paulina; Reible, Danny D; Kraska, Piotr

    2017-08-01

    The aim of the present study was to determine the effect of activated carbon (AC) or biochars on the bioaccessibility (C bioacc ) of polycyclic aromatic hydrocarbons (PAHs) in soils vegetated with willow (Salix viminalis). The study determined the effect of willow on the C bioacc PAHs and the effect of the investigated amendments on changes in dissolved organic carbon (DOC), crop yield and the content of PAHs in plants. PAH-contaminated soil was amended with 2.5 wt% AC or biochar. Samples from individual plots with and without plants were collected at the beginning of the experiment and after 3, 6, 12 and 18 months. The C bioacc PAHs were determined using sorptive bioaccessibility extraction (SBE) (silicon rods and hydroxypropyl-β-cyclodextrin). Both AC and biochar caused a decrease in the C bioacc PAHs. Immediately after adding AC, straw-derived biochar or willow-derived biochar to the soil, the reduction in the sum of 16 (Σ16) C bioacc PAHs was 70.3, 38.0, and 29.3%, respectively. The highest reduction of C bioacc was observed for 5- and 6-ring PAHs (from 54.4 to 100%), whereas 2-ring PAHs were reduced only 8.0-25.4%. The reduction of C bioacc PAHs increased over time. Plants reduced C bioacc in all soils although effects varied by soil treatment and PAH. Willow grown in AC- and biochar-amended soil accumulated less phenanthrene than in the control soil. The presence of AC in the soil also affected willow yield and shoot length and DOC was reduced from 53.5 to 66.9% relative to unamended soils. In the biochars-amended soil, no changes in soil DOC content were noted nor effects on willow shoot length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?

    PubMed

    Zhang, Yueqing; Johnson, Andrew C; Su, Chao; Zhang, Meng; Jürgens, Monika D; Shi, Yajuan; Lu, Yonglong

    2017-07-01

    Freshwater aquatic organisms can be exposed to hundreds of persistent organic pollutants (POPs) discharged by natural and anthropogenic activities. Given our limited resources it is necessary to identify, from the existing evidence, which is the greatest threat so that control measures can be targeted wisely. The focus of this study was to rank POPs according to the relative risk they represent for aquatic organisms in rivers in the Bohai Region, China. A list of 14 POPs was compiled based on the available data on their presence in these rivers and ecotoxicological data. Those that were widely detected were benzo[a]pyrene, p,p'-DDE, p,p'-DDT, endrin, fluoranthene, heptachlor, hexabromocyclododecane, hexachlorobenzene, α-hexachlorocyclohexane, γ-hexachlorocyclohexane, naphthalene, perfluorooctanoic acid, perfluorooctane sulfonate and phenanthrene. Effect concentrations were compiled for Chinese relevant and standard test species and compared with river aqueous concentrations. Only bed-sediment concentrations were available so water levels were calculated based on the known local sediment organic carbon concentration and the K oc . The POPs were ranked on the ratio between the median river and median effect concentrations. Of the POPs studied, fluoranthene was ranked as the highest threat, followed by phenanthrene, naphthalene and p,p'-DDE. The risk from p,p'-DDE may be magnified due to being highly bioaccumulative. However, the greatest overlap between river concentrations and effect levels was for lindane. Overall, fish was the most sensitive species group to the risks from POPs. Hotspots with the highest concentrations and hence risk were mainly associated with watercourses draining in Tianjin, the biggest city in the Bohai Region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.

    PubMed

    Peng, Hongbo; Zhang, Di; Pan, Bo; Peng, Jinhui

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs), with diverse sources and acute toxicity, are categorized as priority pollutants. Previous studies have stated that the hydrophobic effect controls PAH sorption, but no study has been conducted to quantify the exact contribution of the hydrophobic effect. Considering the well-defined structure of carbon nanotubes and their stable chemical composition in organic solvents, three multi-walled carbon nanotubes (MWCNTs) were selected as a model adsorbent. Phenanthrene (PHE) and its degradation intermediates 9-phenanthrol (PTR) and 9, 10-phenanthrenequinone (PQN) were used as model adsorbates. To quantify the contribution of the hydrophobic effect for these three chemicals, the effect of organic solvent (methanol and hexadecane) was investigated. Adsorption isotherms for PHE, PTR and PQN were well fitted by the Freundlich isotherm model. A positive relationship between adsorption affinities of these three chemicals and specific surface area (SSA) was observed in hexadecane but not in water or methanol. Other factors should be included other than SSA. Adsorption of PQN on MWCNTs with oxygen functional groups was higher than that on pristine MWCNTs due to π-π EDA interactions. The contribution of hydrophobic effect was 50%-85% for PHE, suggesting that hydrophobic effect was the predominant mechanism. This contribution was lower than 30% for PTR/PQN on functionalized MWCNTs. Hydrogen bonds control the adsorption of PTR, and π-π bonding interactions control PQN sorption after screening out the hydrophobic effect in hexadecane. Hydrophobic effect is the control mechanism for nonpolar chemicals, while functional groups of CNTs and solvent types control the adsorption of polar compounds. Extended work on quantifying the relationship between chemical structure and the contribution of the hydrophobic effect will provide a useful technique for PAH fate modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.

    PubMed

    Chatterjee, Kuntal; Dopfer, Otto

    2017-12-13

    Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.

  1. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs.

    PubMed

    Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi

    2002-05-01

    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.

  2. 75 FR 51569 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ..., naphthalene, PAH, methylene chloride, and ethylbenzene. EPA described the health effects of these HAP and..., published on June 15, 2004 (69 FR 33474). More detail on the health effects of these HAP and other HAP... temperature of the stationary RICE exhaust so that the catalyst inlet temperature is between 450 and 1,350...

  3. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis.

    PubMed

    Ko, Jae Hac; Wang, Jingchen; Xu, Qiyong

    2018-05-21

    Polycyclic aromatic hydrocarbons (PAHs) not only present a risk to human health when released into the air, but also can be precursors to form particulate matter (PM) during sewage sludge pyrolysis. In this study, 16 EPA PAHs in PM (ΣPAH PM ) during sewage sludge pyrolysis were investigated with increasing temperature (200 o C-1000 °C) and holding time under different operation conditions [inert gas flow rate (IGFR) (200-800 mL/min) and heating rate (5-20 °C/min)]. ΣPAH PM varied with temperature, IGFR, and heating rate, and ranged from 597 (±41) μg/g to 3240 (±868) μg/g. ΣPAH PM decreased with increasing IGFR but increased with rapid heating rate. Among PAHs species in PM, naphthalene (Nap) was commonly detected at low temperature ranges in all tested conditions. Chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IND), and benzo[g,h,i]perylene (BghiP) in PM became abundant at high temperature with a low IGFR. At high temperature ranges with high volatile conditions (rapid heating rate and low IGFR), PAH formation and growth reactions were considerable, resulting in the formation of heavy PAHs in PM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel (Mytilus galloprovincialis) and eel (Anguilla anguilla) from Bizerte lagoon, Tunisia, and associated human health risk assessment

    NASA Astrophysics Data System (ADS)

    Barhoumi, Badreddine; El Megdiche, Yassine; Clérandeau, Christelle; Ameur, Walid Ben; Mekni, Sabrine; Bouabdallah, Sondes; Derouiche, Abdelkader; Touil, Soufiane; Cachot, Jérôme; Driss, Mohamed Ridha

    2016-08-01

    The aim of this study is to measure PAHs concentrations in mussels (Mytilus galloprovincialis) and fish (Anguilla anguilla) from the Bizerte lagoon (north Tunisia), and evaluate their distribution and sources, in order to provide a baseline of the state of PAH contamination in this lagoon and assess their human health risk. For this purpose, several native mussel and fish specimens were collected and analyzed using a high-performance liquid chromatography method with fluorescence detection for 15 EPA priority PAHs. PAHs levels in mussels and fish ranged from 107.4 to 430.7 ng g-1 dw and 114.5-133.7 ng g-1 dw, respectively. Naphthalene was the major component measured in mussels (31.5-272.6 ng g-1 dw) and fish (57.9-68.6 ng g-1 dw) and all specimens were classified as moderately contaminated. The PAHs composition pattern was similar for both species and was dominated by the presence of PAHs with 2- to 3-rings. The study of PAH ratios indicated a mixed petrogenic/pyrolytic origin. The health risks by consumption of these species was assessed and showed to present no threat to public health concerning PAH intakes. The results of this study would provide a useful aid for sustainable marine management in the region.

  5. PAH and OPAH Flux during the Deepwater Horizon Incident

    PubMed Central

    Tidwell, Lane G.; Allan, Sarah E.; O'Connell, Steven G.; Hobbie, Kevin A.; Smith, Brian W.; Anderson, Kim A.

    2016-01-01

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and diffusive flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 6.6 and 210 ng/m3 and 0.02 and 34 ng/m3 respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs was shown to be at least partially influenced by the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi at nominal rates of 56,000 and 42,000 ng/m2/day in the summer. Naphthalene was the PAH with the highest observed volatilization rate of 52,000 ng/m2/day in June 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology. PMID:27391856

  6. Uptake of PAHs into polyoxymethylene and application to oil-soot (lampblack)-impacted soil samples.

    PubMed

    Hong, Lei; Luthy, Richard G

    2008-05-01

    Polyoxymethylene (POM) is a polymeric material used increasingly in passive sampling of hydrophobic organic contaminants such as PAHs and PCBs in soils and sediments. In this study, we examined the sorption behavior of 12 PAH compounds to POM and observed linear isotherms spanning two orders of magnitude of aqueous concentrations. Uptake kinetic studies performed in batch systems for up to 54 d with two different volume ratios of POM-to-aqueous phase were evaluated with coupled diffusion and mass transfer models to simulate the movement of PAHs during the uptake process and to assess the physicochemical properties and experimental conditions that control uptake rates. Diffusion coefficients of PAHs in POM were estimated to be well correlated with diffusants' molecular weights as D(POM) proportional, variant(MW)(-3), descending from 2.3 x 10(-10) cm(2) s(-1) for naphthalene to 7.0 x 10(-11) cm(2) s(-1) for pyrene. The uptake rates for PAHs with log K(ow)<5.8 were controlled by the POM phase and the hydrophobicity of PAH compounds. For more hydrophobic PAH compounds, the aqueous boundary layer played an increasingly important role in determining the overall mass transfer rate. The POM partitioning technique was demonstrated to agree well with two other procedures for measuring PAH soil-water distribution coefficients in oil-soot (lampblack) containing soil samples.

  7. Magnetic micro-solid-phase-extraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Naing, Nyi Nyi; Yau Li, Sam Fong; Lee, Hian Kee

    2016-04-01

    A novel sorbent, magnetic chitosan functionalized graphene oxide (MCFG) was synthesized and used in the micro-solid-phase-extraction (μ-SPE) and gas chromatography-mass spectrometric (GC-MS) analysis of polycyclic aromatic hydrocarbons (PAHs) from water. Through the use of the magnetic sorbent, the μ-SPE device also functioned as a stir bar during extraction. Three types of MCFG were prepared using glutaraldehyde cross-linked chitosan and graphene oxide with different amounts of magnetic nanoparticles (Fe3O4) (0.05g, 0.07g and 0.1g). The material was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Parameters affecting the extraction such as the type of sorbent, extraction and desorption times, volume of sample solution and type of desorption solvent were optimized. Under the most favourable conditions, the highest extraction was obtained by using the composite prepared with 0.1g of Fe3O4. For the latter material as sorbent, the linearity of the analytes was in the range of 0.01 and 100μgL(-1) for naphthalene, fluoranthene and pyrene while acenaphthylene and phenanthrene exhibited linearity in the range of 0.05 and 100μgL(-1). For fluorene and anthracene, the linearity range was from 0.01 to 50μgL(-1). The coefficients of determination (r(2)) associated with the above linear ranges were higher than 0.987. The limits of detection from GC-MS analysis of the seven PAHs were in the range 0.2-1.8ngL(-1); limits of quantification were between 0.8 and 5.9ngL(-1) while the relative standard deviations (RSDs) varied from 2.1 to 8.2%. The recoveries of the method for the compounds at spiking levels of 1 and 5μgL(-1) were in the range 67.5-106.9% with RSDs below 15%. The enrichment factors were found to be in between 67 and 302. The developed method afforded an interesting and innovative approach using MCFG as an efficient and promising sorbent. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less

  9. Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China

    PubMed Central

    SHEN, Guofeng; TAO, Shu; WEI, Siye; ZHANG, Yanyan; WANG, Rong; WANG, Bin; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Yuanchen; CHEN, Han; YANG, Yifeng; WANG, Wei; WANG, Xilong; LIU, Wenxin; SIMONICH, Staci L. M.

    2012-01-01

    Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study, the EFs of 28 pPAHs (EFPAH28), 9 nPAHs (EFPAHn9) and 4 oPAHs (EFPAHo4) were measured for residential combustion of 27 wood fuels in rural China. The measured EFPAH28, EFPAHn9, and EFPAHo4 for brushwood were 86.7±67.6, 3.22±1.95×10−2, and 5.56±4.32 mg/kg, which were significantly higher than 12.7±7.0, 8.27±5.51×10−3, and 1.19±1.87 mg/kg for fuel wood combustion (p < 0.05). Sixteen U.S. EPA priority pPAHs contributed approximately 95% of the total of the 28 pPAHs measured. EFs of pPAHs, nPAHs, and oPAHs were positively correlated with one another. Measured EFs varied obviously depending on fuel properties and combustion conditions. The EFs of pPAHs, nPAHs, and oPAHs were significantly correlated with modified combustion efficiency and fuel moisture. Nitro-naphthalene and 9-fluorenone were the most abundant nPAHs and oPAHs identified. Both nPAHs and oPAHs showed relatively high tendencies to be present in the particulate phase than pPAHs due to their lower vapor pressures. The gas-particle partitioning of freshly emitted pPAHs, nPAHs and oPAHs was primarily controlled by organic carbon absorption. PMID:22765266

  10. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.

    PubMed

    Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J

    2012-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Long; Kaiser, Ralf I.; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Joshi, Dharati; Veber, Gregory; Fischer, Felix R.; Mebel, Alexander M.

    2018-05-01

    For the past decades, the hydrogen-abstraction/acetylene-addition (HACA) mechanism has been instrumental in attempting to untangle the origin of polycyclic aromatic hydrocarbons (PAHs) as identified in carbonaceous meteorites such as Allende and Murchison. However, the fundamental reaction mechanisms leading to the synthesis of PAHs beyond phenanthrene (C14H10) are still unknown. By exploring the reaction of the 4-phenanthrenyl radical (C14H9•) with acetylene (C2H2) under conditions prevalent in carbon-rich circumstellar environments, we show evidence of a facile, isomer-selective formation of pyrene (C16H10). Along with the hydrogen-abstraction/vinylacetylene-addition (HAVA) mechanism, molecular mass growth processes from pyrene may lead through systematic ring expansions not only to more complex PAHs, but ultimately to 2D graphene-type structures. These fundamental reaction mechanisms are crucial to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our Galaxy.

  12. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil.

    PubMed

    Wang, Haizhen; Lou, Jun; Gu, Haiping; Luo, Xiaoyan; Yang, Li; Wu, Laosheng; Liu, Yong; Wu, Jianjun; Xu, Jianming

    2016-07-01

    A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.

  13. Construction of PAH-degrading mixed microbial consortia by induced selection in soil.

    PubMed

    Zafra, German; Absalón, Ángel E; Anducho-Reyes, Miguel Ángel; Fernandez, Francisco J; Cortés-Espinosa, Diana V

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils through the biostimulation and bioaugmentation processes can be a strategy for the clean-up of oil spills and environmental accidents. In this work, an induced microbial selection method using PAH-polluted soils was successfully used to construct two microbial consortia exhibiting high degradation levels of low and high molecular weight PAHs. Six fungal and seven bacterial native strains were used to construct mixed consortia with the ability to tolerate high amounts of phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP) and utilize these compounds as a sole carbon source. In addition, we used two engineered PAH-degrading fungal strains producing heterologous ligninolytic enzymes. After a previous selection using microbial antagonism tests, the selection was performed in microcosm systems and monitored using PCR-DGGE, CO 2 evolution and PAH quantitation. The resulting consortia (i.e., C1 and C2) were able to degrade up to 92% of Phe, 64% of Pyr and 65% of BaP out of 1000 mg kg -1 of a mixture of Phe, Pyr and BaP (1:1:1) after a two-week incubation. The results indicate that constructed microbial consortia have high potential for soil bioremediation by bioaugmentation and biostimulation and may be effective for the treatment of sites polluted with PAHs due to their elevated tolerance to aromatic compounds, their capacity to utilize them as energy source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Removal Efficiency and Risk Assessment of Polycyclic Aromatic Hydrocarbons in a Typical Municipal Wastewater Treatment Facility in Guangzhou, China.

    PubMed

    Liu, Zhineng; Li, Qing; Wu, Qihang; Kuo, Dave T F; Chen, Shejun; Hu, Xiaodong; Deng, Mingjun; Zhang, Haozhi; Luo, Min

    2017-08-01

    The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) were examined in an inverted A²/O wastewater treatment plant (WWTP) located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal). Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities ( TEQ BaP ) were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.

  15. Fish biliary PAH metabolites estimated by fixed-wavelength fluorescence as an indicator of environmental exposure and effects

    USGS Publications Warehouse

    Yang, X.; Peterson, D.S.; Baumann, P.C.; Lin, E.L.C.

    2003-01-01

    Biliary polynuclear aromatic hydrocarbon (PAH) metabolites have been studied since the mid 1980s as an indicator of exposure of fish to PAHs. However, the measurements of PAH metabolites are often costly and time-consuming. A simple and rapid method, fixed-wavelength fluorescence (FF), was used to measure the concentrations of benzo(a)pyrene (B[a]P)-type and naphthalene (NAPH)-type PAH metabolites in the bile of brown bullheads (Ameiurus nebulosus) collected from Old Woman Creek, Ottawa River, Cuyahoga River-harbor and Cuyahoga River-upstream. The biliary PAH metabolites in fish from the less contaminated Old Woman Creek were significantly lower than those from the industrially contaminated Ottawa and Cuyahoga rivers. The levels of biliary PAH metabolites were found to be related to the PAH sediment contamination for the four sites except Cuyahoga River-upstream, and to the prevalence of fish barbel abnormalities and external raised lesions observed in all rivers except Ottawa. Statistical analysis revealed a significant association between the occurrence of barbel abnormalities and concentrations of biliary NAPH-type metabolites and between the occurrence of raised lesions and concentrations of B[a]P-type metabolites. This study provides added evidence that FF is an effective bile analysis method for determining the exposure of fish to PAHs. This study also indicates that the measurement of PAH metabolites could help establish causal relationship between the chemical exposure and effects such as barbel abnormalities and raised lesions.

  16. Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    The use of metal-tolerant polyaromatic hydrocarbon (PAH)-degrading bacteria is viable for mitigating metal inhibition of organic compound biodegradation in the remediation of mixed contaminated sites. Many microbial growth media used for toxicity testing contain high concentrations of metal-binding components such as phosphates that can reduce solution-phase metal concentrations thereby underestimate the real toxicity. In this study, we isolated two PAHs-degrading bacterial consortia from long-term mixed contaminated soils. We have developed a new mineral medium by optimising the concentrations of medium components to allow the bacterial growth and at the same time maintain high bioavailable metal (Cd(2+) as a model metal) in the medium. This medium has more than 60 % Cd as Cd(2+) at pH 6.5 as measured by an ion selective electrode and visual MINTEQ model. The Cd-tolerant patterns of the consortia were tested and minimum inhibitory concentration (MIC) derived. The consortium-5 had the highest MIC of 5 mg l(-1) Cd followed by consortium-9. Both cultures were able to completely metabolise 200 mg l(-1) phenanthrene in less than 4 days in the presence of 5 mg l(-1) Cd. The isolated metal-tolerant PAH-degrading bacterial cultures have great potential for bioremediation of mixed contaminated soils.

  17. Efficiency of butyl rubber sorbent to remove the PAH toxicity.

    PubMed

    Okay, O S; Özdemir, P; Yakan, S D

    2011-01-01

    Large amounts of polycyclic aromatic hydrocarbons (PAHs) have been released to the marine environment as a result of oil spills and from other sources including wastewaters, surface runoff, industrial processes, atmospheric deposition, biosynthesis, and natural events such as forest fires. PAHs have been known to affect a variety of biological processes and can be potent cell mutagens/carcinogens and toxic. In this study, PAH toxicity removal was investigated by using a novel macroporous butyl rubber (BR) sorbent. To find out the toxicity removal efficiency of the sorbents, the toxicity tests with Vibrio fisheri (luminescence bacteria) and Phaeodactylum tricornutum (marine algae) were applied to the acenaphthene (Ace) and phenanthrene (Phen) solutions in seawater (Ace: 500- 1000 μg/L; Phen; 100-1000 μg/L) before and after sorbent applications. Additionally, lysosomal stability and filtration rate biomarker techniques were applied to the mussels (Mytilus galloprovincialis) exposed to 1000 μg/L Phen solution and bioaccumulation was measured. The results showed that the toxicity of the PAH solutions decreased 50-100 percent depending on the concentration of the solutions and organisms. Phaeodactylum was found as the most sensitive organism to Phen and Ace. Since the application of BR sorbent removed the Phen from the solution, the bioaccumulated Phen amount in the mussels decreased accordingly.

  18. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system.

    PubMed

    Tauler, Margalida; Vila, Joaquim; Nieto, José María; Grifoll, Magdalena

    2016-04-01

    A novel biphasic system containing mineral medium and sand coated with a biologically weathered creosote-PAH mixture was developed to specifically enrich the high molecular weight polycyclic aromatic hydrocarbon (HMW PAH)-degrading community from a creosote-polluted soil. This consortium (UBHP) removed 70% of the total HMW PAHs and their alkyl-derivatives in 12 weeks. Based on a combined culture-dependent/independent approach, including clone library analysis, detection of catabolic genes, metabolomic profiles, and characterization of bacterial isolates, 10 phylotypes corresponding to five major genera (Sphingobium, Sphingomonas, Achromobacter, Pseudomonas, and Mycobacterium) were pointed out as key players within the community. In response to exposure to different single PAHs, members of sphingomonads were associated to the utilization of phenanthrene, fluoranthene, benzo[a]anthracene, and chrysene, while the degradation of pyrene was mainly associated to low-abundance mycobacteria. In addition to them, a number of uncultured phylotypes were detected, being of special relevance a group of Gammaproteobacteria closely related to a group previously associated with pyrene degradation that were here related to benzo(a)anthracene degradation. The overall environmental relevance of these phylotypes was confirmed by pyrosequencing analysis of the microbial community shift in the creosote-polluted soil during a lab-scale biostimulation.

  19. Polycyclic aromatic hydrocarbon in urban soils of an Eastern European megalopolis: distribution, source identification and cancer risk evaluation

    NASA Astrophysics Data System (ADS)

    Shamilishvily, George; Abakumov, Evgeny; Gabov, Dmitriy

    2018-05-01

    This study explores qualitative and quantitative composition of 15 priority polycyclic aromatic hydrocarbons (PAHs) in urban soils of some parkland, residential and industrial areas of the large industrial centre of Saint Petersburg (Russian Federation) in Eastern Europe. The aim of the study was to test the hypothesis on the PAH loading differences among urban territories with different land use scenarios. Benzo(a)pyrene toxic equivalency factors (TEFs) were used to calculate BaPeq in order to evaluate carcinogenic risk of soil contamination with PAHs. Results of the study demonstrated that soils within residential and industrial areas are characterized by common loads of PAHs generally attributed to high traffic activity in the city. Considerable levels of soil contamination with PAHs were noted. Total PAH concentrations ranged from 0.33 to 8.10 mg kg-1. A larger portion of high-molecular-weight PAHs along with determined molecular ratios suggest the predominance of pyrogenic sources, mainly attributed to combustion of gasoline, diesel and oil. Petrogenic sources of PAHs have a significant portion and define the predominance of low-molecular-weight PAHs associated with petroleum, such as phenanthrene. Derived concentrations of seven carcinogenic PAHs as well as calculated BaPeq were multiple times higher than reported in a number of other studies. The obtained BaPeq concentrations of the sum of 15 PAHs ranged from 0.05 to 1.39 mg kg-1. A vast majority of examined samples showed concentrations above the safe value of 0.6 mg kg-1 (CCME, 2010). However, estimated incremental lifetime risks posed to the population through distinct routes of exposure were in an acceptable range. One-way ANOVA results showed significant differences in total PAHs and the sum of seven carcinogenic PAH concentrations as well as in levels of FLU, PHE, FLT, PYR, BaA, CHR, BbF, BaP and BPE among parkland, residential and industrial land uses, suggesting the influence of the land use factor.

  20. Spectral Dissimilarities Between AZULENE(C10H_8) and NAPHTHALENE(C10H_8)

    NASA Astrophysics Data System (ADS)

    Baba, Masaaki

    2010-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are of great interest in the molecular structure and excited-state dynamics, and there have been extensive spectroscopic and theoretical studies. Azulene and naphthalene are bicyclic aromatic hydrocarbons composed of odd- and even-membered rings, respectively. First, they were discriminated by a theory of mutual polarizability. Naphthalene is an alternant hydrocarbon, but azulene is not. In contrast, spectral resemblances were found by John Platt et al., and were explained by their simple model of molecular orbital. However, the absorption and emission feature of the S_1 and S_2 states is completely different each other. We have investigated each rotational and vibrational structures, and radiative and nonradiative processes by means of high-resolution spectroscopy and ab initio calculation. The equilibrium structures in the S_0, S_1, and S_2 states are similar. This small structural change upon electronic excitation is common to PAH molecules composed of six-membered rings. The fluorescence quantum yield is high because radiationless transitions such as intersystem crossing (ISC) to the triplet state and internal conversion (IC) to the S_0 state are very slow in the S_1 state. In contrast, the S_1 state of azulene is nonfluorescent and the S_1 ← S_0 excitation energy is abnormally small. We consider that the potential energy curve of a b_2 vibration is shallower in the S_1 state, and therefore the vibronic coupling with the S_0 state is strong to enhance the IC process remarkably. This situation is, of course, due to its peculiar characteristics of odd-membered rings and molecular symmetry, which are completely different from the naphthalene molecule. C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. A, 191, 39 (1947) D. E. Mann, J. R. Platt, and H. B. Klevens, J. Chem. Phys., 17, 481 (1949) Y. Semba, M. Baba, et al., J. Chem. Phys., 131, 024303 (2009) K. Yoshida, M. Baba, et al., J. Chem. Phys., 130, 194304 (2009)

Top