Pair creation of higher dimensional black holes on a de Sitter background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Oscar J.C.; Lemos, Jose P.S.; CENTRA, Departamento de Fisica, F.C.T., Universidade do Algarve, Campus de Gambelas, 8005-139 Faro
We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically themore » pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime.« less
Phase transition in conservative diffusive contact processes
NASA Astrophysics Data System (ADS)
Fiore, Carlos E.; de Oliveira, Mário J.
2004-10-01
We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.
Klein tunneling phenomenon with pair creation process
NASA Astrophysics Data System (ADS)
Wu, G. Z.; Zhou, C. T.; Fu, L. B.
2018-01-01
In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.
Laser-assisted bremsstrahlung and electron-positron pair creation in relativistic laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loetstedt, Erik
2009-07-25
An electron submitted to a relativistically strong laser field emits Compton harmonics at frequencies satisfying the nonlinear Compton formula. We investigate the scenario when in addition to the laser field, also a nuclear Coulomb field is present to accelerate the electron. In this case we may speak about laser-assisted bremsstrahlung, with radiation resulting from the combined effect of the Coulomb and laser field. The theoretical method employed is fully relativistic quantum electrodynamics, where in particular the laser-dressed Dirac-Volkov propagator requires proper treatment. Electron-positron pair creation is a physical process related to bremsstrahlung by a crossing symmetry of quantum electrodynamics. Wemore » consider pair creation in the combined fields of a laser, a nucleus and a high-frequency photon. We show that the total number of created pairs is not affected by the laser, provided the energy of the high-energy photon exceeds the pair creation threshold, but that the differential cross section is strongly enhanced in a particular direction, making a small angle with the laser beam. The physical picture is that the electron-positron pair is created by the high-energy photon, and subsequently accelerated by the laser field.« less
Pulsar extinction. [astrophysics
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Baker, K.; Turk, J. S.
1975-01-01
Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.
Pair Creation Transparency in Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah A.
Pulsars are rapidly rotating, highly magnetized neutron stars that produce photon pulses in energies from radio to gamma-rays. The population of known gamma-ray pulsars has been increased nearly twenty-fold in the past six years since the launch of the Fermi Gamma-Ray Space Telescope; it now exceeds 145 sources and has defined an important part of Fermi's science legacy. In order to understand the detectability of pulsars in gamma-rays, it is important to consider not only the radiative mechanisms that produce gamma-rays, but the processes that can attenuate photons before they can leave the pulsar magnetosphere. Here I explore two such processes, one-photon magnetic pair creation and two-photon pair creation. Magnetic pair creation has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. Among the population characteristics well established for Fermi pulsars is the common occurrence of exponential turnovers in the spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. In this thesis, I explore such pair transparency constraints below the turnover energy and update earlier altitude bound determinations that have been deployed in various gamma-ray pulsar papers by the Fermi-LAT collaboration. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. Our analysis clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds we compute for Fermi pulsars are typically in the range of 2-7 stellar radii and provide key information on the emission altitude in radio quiet pulsars that do not possess double peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the detection by the atmospheric Cherenkov telescope MAGIC out to 350-400 GeV implying a lower bound of 310 km to the emission region, i.e., approximately 20% of the light cylinder radius. These results are also extended to the super-critical field domain, where it is found that emission in magnetars originating below around 10 stellar radii will not appear in the Fermi-LAT band. Two-photon pair creation becomes important at high altitudes and for photons produced by curvature radiation from charges flowing downward along magnetic field lines. Because the efficiency of two-photon pair creation does not depend on the local magnetic field strength, it can continue to be active in the weak-field regions far from the neutron star. It is found that two-photon pair creation can strongly attenuate photons emitted from downward-traveling charges except at very high altitudes of emission, but in the absence of rotational aberration, it is unable to produce significant opacity for upward-traveling charges unless unrealistically high neutron star surface temperatures are assumed.
The pair-production channel in atomic processes
NASA Astrophysics Data System (ADS)
Belkacem, Ali; Sørensen, Allan H.
2006-06-01
Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in atomic collisions when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy ion collisions. We review some of these studies.
Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ rays
NASA Astrophysics Data System (ADS)
Blackburn, T. G.; Marklund, M.
2018-05-01
Electron–positron pairs are produced through the Breit–Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit–Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today’s high-intensity laser facilities.
FAST TRACK COMMUNICATION: Open string pair creation from worldsheet instantons
NASA Astrophysics Data System (ADS)
Schubert, Christian; Torrielli, Alessandro
2010-10-01
Worldline instantons provide a particularly elegant way to derive Schwinger's well-known formula for the pair creation rate due to a constant electric field in quantum electrodynamics. In this communication, we show how to extend this method to the corresponding problem of open string pair creation.
NASA Astrophysics Data System (ADS)
Gordon, James; Semenoff, Gordon W.
2018-05-01
We revisit the problem of charged string pair creation in a constant external electric field. The string states are massive and creation of pairs from the vacuum is a tunnelling process, analogous to the Schwinger process where charged particle-anti-particle pairs are created by an electric field. We find the instantons in the worldsheet sigma model which are responsible for the tunnelling events. We evaluate the sigma model partition function in the multi-instanton sector in the WKB approximation which keeps the classical action and integrates the quadratic fluctuations about the solution. We find that the summation of the result over all multi-instanton sectors reproduces the known amplitude. This suggests that corrections to the WKB limit must cancel. To show that they indeed cancel, we identify a fermionic symmetry of the sigma model which occurs in the instanton sectors and which is associated with collective coordinates. We demonstrate that the action is symmetric and that the interaction action is an exact form. These conditions are sufficient for localization of the worldsheet functional integral onto its WKB limit.
Semiclassical fermion pair creation in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome
2015-12-17
We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.
Optical-vortex pair creation and annihilation and helical astigmatism of a nonplanar ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckenberg, N.R.; Vaupel, M.; Malos, J.T.
1996-09-01
The creation and annihilation of pairs of optical vortices have been studied in transitions between patterns produced in a photorefractive oscillator. Smooth metamorphosis between stable patterns occurs through pair creation or annihilation but can be modeled using superposition of modes taking into account lifting of degeneracy of helical modes by helical astigmatism of the resonator. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee
2018-06-01
We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.
The interactive evolution of human communication systems.
Fay, Nicolas; Garrod, Simon; Roberts, Leo; Swoboda, Nik
2010-04-01
This paper compares two explanations of the process by which human communication systems evolve: iterated learning and social collaboration. It then reports an experiment testing the social collaboration account. Participants engaged in a graphical communication task either as a member of a community, where they interacted with seven different partners drawn from the same pool, or as a member of an isolated pair, where they interacted with the same partner across the same number of games. Participants' horizontal, pair-wise interactions led "bottom up" to the creation of an effective and efficient shared sign system in the community condition. Furthermore, the community-evolved sign systems were as effective and efficient as the local sign systems developed by isolated pairs. Finally, and as predicted by a social collaboration account, and not by an iterated learning account, interaction was critical to the creation of shared sign systems, with different isolated pairs establishing different local sign systems and different communities establishing different global sign systems. Copyright © 2010 Cognitive Science Society, Inc.
Quasiparticle pair creation in unstable superflow
NASA Astrophysics Data System (ADS)
Elser, Veit
1995-06-01
Landau's instability mechanism in superflow is considered with special attention given to the role of nonuniformity in the flow. Linear stability analysis applied to the first in a series of approximate microscopic equations for the superfluid reveals a growth rate for Landau's instability proportional to the shear in the flow. In a quasiparticle description, the shear acts as a source of particle pair creation. The observation of roton-pair creation in experiments with electron bubbles in helium is offered as evidence of this phenomenon.
Pair creation energy and Fano factor of silicon measured at 185 K using 55 F e X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, Ivan V.; Neal, H.; O'Connor, P.
Here, the pair creation energy, ωω and the Fano factor of silicon were measured using a CCD sensor and X-rays from an 55Fe source. The measurements were performed at a sensor temperature of 185K. The pair creation energy was measured for X-rays in the 1.7–6.5 keV range. The measured pair creation energy is ω=(3.650 ± 0.009) eV at the MnK α line energy. The Fano factor at this energy is F = 0.128±0.001. The agreement with theory and previous measurements is satisfactory. The system gain was obtained from flat field exposures using the Poisson distribution properties. These results and themore » details of our measurement procedure are presented below.« less
Pair creation energy and Fano factor of silicon measured at 185 K using 55 F e X-rays
Kotov, Ivan V.; Neal, H.; O'Connor, P.
2018-06-14
Here, the pair creation energy, ωω and the Fano factor of silicon were measured using a CCD sensor and X-rays from an 55Fe source. The measurements were performed at a sensor temperature of 185K. The pair creation energy was measured for X-rays in the 1.7–6.5 keV range. The measured pair creation energy is ω=(3.650 ± 0.009) eV at the MnK α line energy. The Fano factor at this energy is F = 0.128±0.001. The agreement with theory and previous measurements is satisfactory. The system gain was obtained from flat field exposures using the Poisson distribution properties. These results and themore » details of our measurement procedure are presented below.« less
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Vasil'chenko, E.; Popov, A. I.
2018-04-01
Irradiation of alkali halide crystals creates pairs of Frenkel defects both in anion and cation sublattices. However, the particular nonimpact creation mechanisms (related to the decay of different electronic excitations) of cation Frenkel pairs are still unclear. At helium temperatures, there is yet no direct evidences of the creation of stable (long-lived) elemental cation defects. On the other hand, a number of complex structural defects containing cation vacancies and/or interstitials, were detected after irradiation of alkali halides at higher temperatures. Besides already proved mechanism related to the association of H and VK centers into trihalide molecules, the following possibilities of cation interstitial-vacancy pair creation are analyzed as well: (i) a direct decay of cation or anion excitons, (ii) the transformation of anion Frenkel pairs, formed at the decay of anion excitons or e-h recombination, into cation ones.
Quantum descriptions of singularities leading to pair creation. [of gravitons
NASA Technical Reports Server (NTRS)
Misner, C. W.
1974-01-01
A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.
Relativistic thermal plasmas - Effects of magnetic fields
NASA Technical Reports Server (NTRS)
Araki, S.; Lightman, A. P.
1983-01-01
Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.
Sauter-Schwinger pair creation dynamically assisted by a plane wave
NASA Astrophysics Data System (ADS)
Torgrimsson, Greger; Schneider, Christian; Schützhold, Ralf
2018-05-01
We study electron-positron pair creation by a strong and constant electric field superimposed with a weaker transversal plane wave which is incident perpendicularly (or under some angle). Comparing the fully nonperturbative approach based on the world-line instanton method with a perturbative expansion into powers of the strength of the weaker plane wave, we find good agreement—provided that the latter is carried out to sufficiently high orders. As usual for the dynamically assisted Sauter-Schwinger effect, the additional plane wave induces an exponential enhancement of the pair-creation probability if the combined Keldysh parameter exceeds a certain threshold.
Magnetic pair creation transparency in gamma-ray pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah A.
Magnetic pair creation, gamma → e+e- , is a key component in polar cap models of gamma-ray pulsars, and has informed assumptions about the still poorly understood radio emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 gamma-ray pulsars, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Fermi observations have established that the high-energy spectra of most of these pulsars have exponential turnovers in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide a physically motivated lower bound to the typical altitude of GeV band emission. This work computes pair creation opacities for photon propagation in neutron star magnetospheres. It explores the constraints that can be placed on the emission location of Fermi gamma-rays due to single-photon pair creation transparency below the turnover energy, as well as the limitations of this technique. These altitude bounds are typically in the range of 2--6 neutron star radii for the Fermi pulsar sample, and provide one of the few possible constraints on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles.
Reconstruction method for data protection in telemedicine systems
NASA Astrophysics Data System (ADS)
Buldakova, T. I.; Suyatinov, S. I.
2015-03-01
In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.
Missing energies at pair creation
NASA Technical Reports Server (NTRS)
El-Ela, A. A.; Hassan, S.; Bagge, E. R.
1985-01-01
Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.
Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond
NASA Astrophysics Data System (ADS)
Jakobi, I.; Momenzadeh, S. A.; Fávaro de Oliveira, F.; Michl, J.; Ziem, F.; Schreck, M.; Neumann, P.; Denisenko, A.; Wrachtrup, J.
2016-09-01
Coherently coupled pairs or multimers of nitrogen-vacancy defect electron spins in diamond have many promising applications especially in quantum information processing (QIP) but also in nanoscale sensing applications. Scalable registers of spin qubits are essential to the progress of QIP. Ion implantation is the only known technique able to produce defect pairs close enough to allow spin coupling via dipolar interaction. Although several competing methods have been proposed to increase the resulting resolution of ion implantation, the reliable creation of working registers is still to be demonstrated. The current limitation are residual radiation-induced defects, resulting in degraded qubit performance as trade-off for positioning accuracy. Here we present an optimized estimation of nanomask implantation parameters that are most likely to produce interacting qubits under standard conditions. We apply our findings to a well-established technique, namely masks written in electron-beam lithography, to create coupled defect pairs with a reasonable probability. Furthermore, we investigate the scaling behavior and necessary improvements to efficiently engineer interacting spin architectures.
NASA Astrophysics Data System (ADS)
Timokhin, A. N.; Arons, J.
2013-02-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current. The 1D results described here characterize the dependence of acceleration and pair creation on the magnitude and sign of current. The dependence on the spatial distribution of the current is a multi-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline possible relations of the electric field fluctuations observed in the polar flows (both with and without pair creation discharges) to direct emission of radio waves, as well as revive the possible relation of the observed limit cycle behaviour to microstructure in the radio emission. Actually modelling these effects requires the multi-dimensional treatment, to be reported in a later paper.
The instrumental genesis process in future primary teachers using Dynamic Geometry Software
NASA Astrophysics Data System (ADS)
Ruiz-López, Natalia
2018-05-01
This paper, which describes a study undertaken with pairs of future primary teachers using GeoGebra software to solve geometry problems, includes a brief literature review, the theoretical framework and methodology used. An analysis of the instrumental genesis process for a pair participating in the case study is also provided. This analysis addresses the techniques and types of dragging used, the obstacles to learning encountered, a description of the interaction between the pair and their interaction with the teacher, and the type of language used. Based on this analysis, possibilities and limitations of the instrumental genesis process are identified for the development of geometric competencies such as conjecture creation, property checking and problem researching. It is also suggested that the methodology used in the analysis of the problem solving process may be useful for those teachers and researchers who want to integrate Dynamic Geometry Software (DGS) in their classrooms.
NASA Astrophysics Data System (ADS)
Pan, Jinjin; Alice Collaboration
2017-09-01
The charge pair creation and transport processes in heavy-ion collisions are investigated experimentally by measurements of charge-dependent correlations of identified particle pairs, related to the Balance Function. The produced pair separation in rapidity is expected to be larger for hadrons arising from quark-antiquark pair creation in the early stages of the collision than for hadrons emerging from the later hadronization stage. Correlations are reported for charged-pion pairs in Pb-Pb, p-Pb and pp collisions at √{sNN } = 2.76, 5.02 and 7 TeV, respectively; and for charged-kaon pairs in Pb-Pb collisions at √{sNN } = 2.76 TeV. The correlations are measured as a function of relative rapidity Δy and azimuthal angle Δϕ , and are dominated by a peak centered at Δy = Δϕ = 0. We observe that the peak widths in Δy and Δϕ are narrower in higher multiplicity events in Pb-Pb, p-Pb, and pp collisions, which is consistent with the effects of radial flow, as well as the two-wave quark production mechanism. We investigate the charge transport and system evolution further by studying the Δϕ width of the peak as a function of Δy. Funded by the US Department of Energy.
NASA Technical Reports Server (NTRS)
Timokhin, A. N.; Arons, J.
2013-01-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current.
NASA Astrophysics Data System (ADS)
Khan, Enamul H.; Weber, Marc H.; McCluskey, Matthew D.
2013-07-01
Positron annihilation spectra reveal isolated zinc vacancy (VZn) creation in single-crystal ZnO exposed to 193-nm radiation at 100mJ/cm2 fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the VZn acceptor level at ˜100meV to the conduction band. The observed VZn density profile and hyperthermal Zn+ ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon—a novel photoelectronic process for controlled VZn creation in ZnO.
Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D
2013-07-05
Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.
Strangeness suppression of qq creation observed in exclusive reactions.
Mestayer, M D; Park, K; Adhikari, K P; Aghasyan, M; Pereira, S Anefalos; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fleming, J A; Forest, T A; Garillon, B; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Hakobyan, H; Hanretty, C; Hattawy, M; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Koirala, S; Kubarovsky, V; Kuleshov, S V; Lenisa, P; Levine, W I; Livingston, K; Lu, H Y; MacGregor, I J D; Mayer, M; McKinnon, B; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Peng, P; Phelps, W; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Protopopescu, D; Puckett, A J R; Raue, B A; Rimal, D; Ripani, M; Rizzo, A; Rosner, G; Roy, P; Sabatié, F; Saini, M S; Schott, D; Schumacher, R A; Simonyan, A; Sokhan, D; Strauch, S; Sytnik, V; Tang, W; Tian, Ye; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I
2014-10-10
We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.
Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas
Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander
2016-01-01
Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLoughlin, K.
2016-01-11
The overall aim of this project is to develop a software package, called MetaQuant, that can determine the constituents of a complex microbial sample and estimate their relative abundances by analysis of metagenomic sequencing data. The goal for Task 1 is to create a generative model describing the stochastic process underlying the creation of sequence read pairs in the data set. The stages in this generative process include the selection of a source genome sequence for each read pair, with probability dependent on its abundance in the sample. The other stages describe the evolution of the source genome from itsmore » nearest common ancestor with a reference genome, breakage of the source DNA into short fragments, and the errors in sequencing the ends of the fragments to produce read pairs.« less
Strangeness suppression of q q ¯ creation observed in exclusive reactions
Mestayer, M. D.; Park, K.; Adhikari, K. P.; ...
2014-10-10
In this study, we measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK +, pπ 0, and nπ +, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq¯ creation probabilities for the first time in exclusive two-body production, in which only a single qq¯ pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.
Strangeness Suppression of qq ¯ Creation Observed in Exclusive Reactions
NASA Astrophysics Data System (ADS)
Mestayer, M. D.; Park, K.; Adhikari, K. P.; Aghasyan, M.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Simonyan, A.; Sokhan, D.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2014-10-01
We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK+, pπ0, and nπ+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq ¯ creation probabilities for the first time in exclusive two-body production, in which only a single qq ¯ pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.
Strangeness suppression of q q ¯ creation observed in exclusive reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestayer, M. D.; Park, K.; Adhikari, K. P.
In this study, we measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK +, pπ 0, and nπ +, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq¯ creation probabilities for the first time in exclusive two-body production, in which only a single qq¯ pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.
High e+/e– ratio dense pair creation with 10 21W.cm –2 laser irradiating solid targets
Liang, E.; Clarke, T.; Henderson, A.; ...
2015-09-14
In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10 21 W.cm –2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10 10 with emerging pair density reaching ~10 15/cm 3 so that the pair skin depth becomes < pair jet transverse size.more » These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less
Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser
NASA Astrophysics Data System (ADS)
Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd
2013-10-01
We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.
Magnetic Pair Creation Transparency in Pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah; Baring, M. G.
2013-04-01
The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.
Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers
NASA Astrophysics Data System (ADS)
Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Lobet, Mathieu; Jequier, Sophie; Tikhonchuk, Vladimir
2016-10-01
Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. The authors acknowledge the financial support from the French National Research Agency (ANR) in the framework of ''The Investments for the Future'' programme IdEx Bordeaux - LAPHIA (ANR-10IDEX-03-02)-Project TULIMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, M.; Lynn, K.G.
1996-07-01
The positrons from {beta}{sup +} decaying sources loss energyat a much faster rate than they annihilate. As the energy of the positrons drops, core excitations, plasmon excitation, electron/hole pair creation, and phonon scattering are the dominant processes of further energy loss.
Generating polarization-entangled photon pairs using cross-spliced birefringent fibers.
Meyer-Scott, Evan; Roy, Vincent; Bourgoin, Jean-Philippe; Higgins, Brendon L; Shalm, Lynden K; Jennewein, Thomas
2013-03-11
We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.
Efficiency of Synchrotron Radiation from Rotation-powered Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisaka, Shota; Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp
2017-03-01
Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derivemore » the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.« less
Iconicity can ground the creation of vocal symbols
Perlman, Marcus; Dale, Rick; Lupyan, Gary
2015-01-01
Studies of gestural communication systems find that they originate from spontaneously created iconic gestures. Yet, we know little about how people create vocal communication systems, and many have suggested that vocalizations do not afford iconicity beyond trivial instances of onomatopoeia. It is unknown whether people can generate vocal communication systems through a process of iconic creation similar to gestural systems. Here, we examine the creation and development of a rudimentary vocal symbol system in a laboratory setting. Pairs of participants generated novel vocalizations for 18 different meanings in an iterative ‘vocal’ charades communication game. The communicators quickly converged on stable vocalizations, and naive listeners could correctly infer their meanings in subsequent playback experiments. People's ability to guess the meanings of these novel vocalizations was predicted by how close the vocalization was to an iconic ‘meaning template’ we derived from the production data. These results strongly suggest that the meaningfulness of these vocalizations derived from iconicity. Our findings illuminate a mechanism by which iconicity can ground the creation of vocal symbols, analogous to the function of iconicity in gestural communication systems. PMID:26361547
Iconicity can ground the creation of vocal symbols.
Perlman, Marcus; Dale, Rick; Lupyan, Gary
2015-08-01
Studies of gestural communication systems find that they originate from spontaneously created iconic gestures. Yet, we know little about how people create vocal communication systems, and many have suggested that vocalizations do not afford iconicity beyond trivial instances of onomatopoeia. It is unknown whether people can generate vocal communication systems through a process of iconic creation similar to gestural systems. Here, we examine the creation and development of a rudimentary vocal symbol system in a laboratory setting. Pairs of participants generated novel vocalizations for 18 different meanings in an iterative 'vocal' charades communication game. The communicators quickly converged on stable vocalizations, and naive listeners could correctly infer their meanings in subsequent playback experiments. People's ability to guess the meanings of these novel vocalizations was predicted by how close the vocalization was to an iconic 'meaning template' we derived from the production data. These results strongly suggest that the meaningfulness of these vocalizations derived from iconicity. Our findings illuminate a mechanism by which iconicity can ground the creation of vocal symbols, analogous to the function of iconicity in gestural communication systems.
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
NASA Astrophysics Data System (ADS)
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
Bell pair creation in current of Kondo-correlated dot
NASA Astrophysics Data System (ADS)
Sakano, Rui; Oguri, Akira; Nishikawa, Yunori; Abe, Eisuke
Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality. This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.
Asymptotic expansion of pair production probability in a time-dependent electric field
NASA Astrophysics Data System (ADS)
Arai, Takashi
2015-12-01
We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.
Dense gamma-ray and pair creation using ultra-intense lasers
NASA Astrophysics Data System (ADS)
Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd
2016-10-01
We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.
Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production
NASA Astrophysics Data System (ADS)
D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko
2017-10-01
Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.
Magnetic pair creation transparency in gamma-ray pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, Sarah A.; Baring, Matthew G., E-mail: ss16@rice.edu, E-mail: baring@rice.edu
2014-07-20
Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in themore » strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection by MAGIC out to 350-400 GeV implying a lower bound of 310 km to the emission region, i.e., approximately 20% of the light cylinder radius. These results are also extended to the super-critical field domain, where it is found that emission in neurton stars originating below around 10 stellar radii will not appear in the Fermi-LAT band.« less
Magnetic Pair Creation Transparency in Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah A.; Baring, Matthew G.
2014-07-01
Magnetic pair creation, γ → e + e -, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection by MAGIC out to 350-400 GeV implying a lower bound of 310 km to the emission region, i.e., approximately 20% of the light cylinder radius. These results are also extended to the super-critical field domain, where it is found that emission in magnetars originating below around 10 stellar radii will not appear in the Fermi-LAT band.
Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Baring, Matthew; Story, Sarah
The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.
Relativistically strong electromagnetic radiation in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.
Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less
Creating a medical English-Swedish dictionary using interactive word alignment.
Nyström, Mikael; Merkel, Magnus; Ahrenberg, Lars; Zweigenbaum, Pierre; Petersson, Håkan; Ahlfeldt, Hans
2006-10-12
This paper reports on a parallel collection of rubrics from the medical terminology systems ICD-10, ICF, MeSH, NCSP and KSH97-P and its use for semi-automatic creation of an English-Swedish dictionary of medical terminology. The methods presented are relevant for many other West European language pairs than English-Swedish. The medical terminology systems were collected in electronic format in both English and Swedish and the rubrics were extracted in parallel language pairs. Initially, interactive word alignment was used to create training data from a sample. Then the training data were utilised in automatic word alignment in order to generate candidate term pairs. The last step was manual verification of the term pair candidates. A dictionary of 31,000 verified entries has been created in less than three man weeks, thus with considerably less time and effort needed compared to a manual approach, and without compromising quality. As a side effect of our work we found 40 different translation problems in the terminology systems and these results indicate the power of the method for finding inconsistencies in terminology translations. We also report on some factors that may contribute to making the process of dictionary creation with similar tools even more expedient. Finally, the contribution is discussed in relation to other ongoing efforts in constructing medical lexicons for non-English languages. In three man weeks we were able to produce a medical English-Swedish dictionary consisting of 31,000 entries and also found hidden translation errors in the utilized medical terminology systems.
Creating a medical English-Swedish dictionary using interactive word alignment
Nyström, Mikael; Merkel, Magnus; Ahrenberg, Lars; Zweigenbaum, Pierre; Petersson, Håkan; Åhlfeldt, Hans
2006-01-01
Background This paper reports on a parallel collection of rubrics from the medical terminology systems ICD-10, ICF, MeSH, NCSP and KSH97-P and its use for semi-automatic creation of an English-Swedish dictionary of medical terminology. The methods presented are relevant for many other West European language pairs than English-Swedish. Methods The medical terminology systems were collected in electronic format in both English and Swedish and the rubrics were extracted in parallel language pairs. Initially, interactive word alignment was used to create training data from a sample. Then the training data were utilised in automatic word alignment in order to generate candidate term pairs. The last step was manual verification of the term pair candidates. Results A dictionary of 31,000 verified entries has been created in less than three man weeks, thus with considerably less time and effort needed compared to a manual approach, and without compromising quality. As a side effect of our work we found 40 different translation problems in the terminology systems and these results indicate the power of the method for finding inconsistencies in terminology translations. We also report on some factors that may contribute to making the process of dictionary creation with similar tools even more expedient. Finally, the contribution is discussed in relation to other ongoing efforts in constructing medical lexicons for non-English languages. Conclusion In three man weeks we were able to produce a medical English-Swedish dictionary consisting of 31,000 entries and also found hidden translation errors in the utilized medical terminology systems. PMID:17034649
NASA Astrophysics Data System (ADS)
Freitas, Nahuel; Paz, Juan Pablo
2018-03-01
We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017), 10.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.
Dual origin of pairing in nuclei
NASA Astrophysics Data System (ADS)
Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.
2016-11-01
The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Creation of electron-positron plasma with superstrong laser field
NASA Astrophysics Data System (ADS)
Narozhny, N. B.; Fedotov, A. M.
2014-05-01
We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e - e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exawatt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of ˜ 1026 W/cm2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3/ eℏ = 1.32 · 1016 V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promissory effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities ˜ 5 · 1025 W/cm2, creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength E ˜ E S is not accessible for a pair-creating electromagnetic field at all.
Neutrino Photoproduction on the Electron of a Hydrogen-Like Atom
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-10-01
The process of interaction of a photon with the bound electron of a hydrogen-like atom with creation of a neutrino pair γ +{(Ze)}^{\\ast \\ast}\\to \\overline{νν}+{(Ze)}^{\\ast } is considered here for the first time. This process can take place with and without a change in the energy of the pair relative to the energy of the "initial" photon due to atomic transitions. It is shown that in the case when the system of atoms is located in an equilibrium radiation field with temperature T << m e this process can be neglected in comparison with spontaneous emission of the hydrogen-like atom {(Ze)}^{\\ast}\\to (Ze)+ν\\overline{ν} , despite the smaller power of the expansion parameter ( Zα) < < 1, α = e 2/ ℏc ≈ 1/137 in the expressions for the cross sections and probabilities. Calculations have been performed for the first time using the density matrix, introduced in the previous paper, of the electron in the field of the nucleus in the leading approximation in (Zα).
Qubit Manipulations Techniques for Trapped-Ion Quantum Information Processing
NASA Astrophysics Data System (ADS)
Gaebler, John; Tan, Ting; Lin, Yiheng; Bowler, Ryan; Jost, John; Meier, Adam; Knill, Emanuel; Leibfried, Dietrich; Wineland, David; Ion Storage Team
2013-05-01
We report recent results on qubit manipulation techniques for trapped-ions towards scalable quantum information processing (QIP). We demonstrate a platform-independent benchmarking protocol for evaluating the performance of Clifford gates, which form a basis for fault-tolerant QIP. We report a demonstration of an entangling gate scheme proposed by Bermudez et al. [Phys. Rev. A. 85, 040302 (2012)] and achieve a fidelity of 0.974(4). This scheme takes advantage of dynamic decoupling which protects the qubit against dephasing errors. It can be applied directly on magnetic-field-insensitive states, and provides a number of simplifications in experimental implementation compared to some other entangling gates with trapped ions. We also report preliminary results on dissipative creation of entanglement with trapped-ions. Creation of an entangled pair does not require discrete logic gates and thus could reduce the level of quantum-coherent control needed for large-scale QIP. Supported by IARPA, ARO contract No. EAO139840, ONR, and the NIST Quantum Information Program.
Integrable dissipative exclusion process: Correlation functions and physical properties
NASA Astrophysics Data System (ADS)
Crampe, N.; Ragoucy, E.; Rittenberg, V.; Vanicat, M.
2016-09-01
We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic limit, it matches the value obtained from the associated macroscopic fluctuation theory.
To Converse with Creation: Saving California Indian Languages.
ERIC Educational Resources Information Center
Whittemore, Katharine
1997-01-01
Describes the Master-Apprentice Language Learning Program, which seeks to save endangered Native Californian languages by pairing speakers and nonspeakers and providing the pairs with materials, technical support, and personal support. Briefly discusses the history of American Indian genocide and language extinction in California. Includes…
NASA Astrophysics Data System (ADS)
Park, Su-Chan
2017-09-01
The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006), 10.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1990-01-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.
Dual origin of pairing in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idini, A.; Potel, G.; Barranco, F.
The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairingmore » interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.« less
Rewritable ferroelectric vortex pairs in BiFeO3
NASA Astrophysics Data System (ADS)
Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook
2017-08-01
Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.
Incoherent pair generation in a beam-beam interaction simulation
NASA Astrophysics Data System (ADS)
Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.
2006-03-01
This paper deals with two topics: the generation of incoherent pairs in two beam-beam simulation programs, GUINEA-PIG and CAIN, and the influence of the International Linear Collider (ILC) beam parameter choices on the background in the micro vertex detector (VD) induced by direct hits. One of the processes involved in incoherent pair creation (IPC) is equivalent to a four fermions interaction and its cross section can be calculated exactly with a dedicated generator, BDK. A comparison of GUINEA-PIG and CAIN results with BDK allows to identify and quantify the uncertainties on IPC background predictions and to benchmark the GUINEA-PIG calculation. Based on this simulation and different VD designs, the five currently suggested ILC beam parameter sets have been compared regarding IPC background induced in the VD by direct IPC hits. We emphasize that the high luminosity set, as it is currently defined, would constrain both the choices of magnetic field and VD inner layer radius.
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing fewer items than the DODT and emphasizing different content areas within the realm of osmosis and diffusion, better aligns with our curriculum. Creation of the ODCA involved removal of six DODT item pairs, modification of another six DODT item pairs, and development of three new item pairs addressing basic osmosis and diffusion concepts. Responses to ODCA items testing the same concepts as the DODT were remarkably similar to responses to the DODT collected from students 15 yr earlier, suggesting that student mastery regarding the mechanisms of diffusion and osmosis remains elusive. PMID:22135375
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
1981-12-01
A solvable three-dimensional polar cap model of pair creation and charged particle acceleration has been derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter determining the acceleration potential difference has been obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition has been identified. The predicted necessary condition for the transition is entirely consistent with observation.
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
A solvable three dimensional polar cap model of pair creation and charged particle acceleration is derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter CO determining the acceleration potential difference was obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition is identified. The predicted necessary condition for the transition is entirely consistent with observation.
Recursive model for the fragmentation of polarized quarks
NASA Astrophysics Data System (ADS)
Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.
2018-04-01
We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.
Field signature for apparently superluminal particle motion
NASA Astrophysics Data System (ADS)
Land, Martin
2015-05-01
In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.
Vortex creation during magnetic trap manipulations of spinor Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itin, A. P.; Space Research Institute, RAS, Moscow; Morishita, T.
2006-06-15
We investigate several mechanisms of vortex creation during splitting of a spinor Bose-Einstein condensate (BEC) in a magnetic double-well trap controlled by a pair of current carrying wires and bias magnetic fields. Our study is motivated by a recent MIT experiment on splitting BECs with a similar trap [Y. Shin et al., Phys. Rev. A 72, 021604 (2005)], where an unexpected fork-like structure appeared in the interference fringes indicating the presence of a singly quantized vortex in one of the interfering condensates. It is well known that in a spin-1 BEC in a quadrupole trap, a doubly quantized vortex ismore » topologically produced by a 'slow' reversal of bias magnetic field B{sub z}. Since in the experiment a doubly quantized vortex had never been seen, Shin et al. ruled out the topological mechanism and concentrated on the nonadiabatic mechanical mechanism for explanation of the vortex creation. We find, however, that in the magnetic trap considered both mechanisms are possible: singly quantized vortices can be formed in a spin-1 BEC topologically (for example, during the magnetic field switching-off process). We therefore provide a possible alternative explanation for the interference patterns observed in the experiment. We also present a numerical example of creation of singly quantized vortices due to 'fast' splitting; i.e., by a dynamical (nonadiabatic) mechanism.« less
On Stellar Flash Echoes from Circular Rings
NASA Astrophysics Data System (ADS)
Nemiroff, Robert; Mukherjee, Oindabi
2018-01-01
A flash -- or any episode of variability -- that occurs in the vicinity of a circular ring might be seen several times later, simultaneously, as echoes on the ring. Effective images of the flash are created and annihilated in pairs, with as many as four flash images visible concurrently. Videos detailing sequences of image pair creation, tandem motion, and subsequent image annihilation are shown, given simple opacity and scattering assumptions. It is proven that, surprisingly, images from a second pair creation event always annihilate with images from the first. Caustic surfaces between flash locations yielding two and four images are computed. Although such ring echos surely occur, their practical detection might be difficult as it could require dedicated observing programs involving sensitive photometry of extended objects. Potential flash sources include planetary and interstellar gas and dust rings near and around variable stars, flare stars, novae, supernovae, and GRBs. Potentially recoverable information includes size, distance, temporal history, and angular isotropy of both the ring and flash.
Medium effects in λK+ pair production by 2.83 GeV protons on nuclei
NASA Astrophysics Data System (ADS)
Paryev, E. Ya.; Hartmann, M.; Kiselev, Yu. T.
2017-12-01
We study ΛK+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu, Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton-nucleon and secondary pion-nucleon production processes, and processes associated with the creation of intermediate Σ0K+ pairs. The approach accounts for the initial proton and final Λ hyperon absorption, final K+ meson distortion in nuclei, target nucleon binding, and Fermi motion, as well as nuclear mean-field potential effects on these processes. We calculate the Λ momentum dependence of the absolute ΛK+ yield from the target nuclei considered, in the kinematical conditions of the ANKE experiment, performed at COSY, within the different scenarios for the Λ-nucleus effective scalar potential. We show that the above observable is appreciably sensitive to this potential in the low-momentum region. Therefore, direct comparison of the results of our calculations with the data from the ANKE-at-COSY experiment can help to determine the above potential at finite momenta. We also demonstrate that the two-step pion-nucleon production channels dominate in the low-momentum ΛK+ production in the chosen kinematics and, therefore, they have to be taken into account in the analysis of these data. Supported by the Ministry of Education and Science of the Russian Federation
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Nagirnyi, V.; Shablonin, E.; Vasil'chenko, E.
2016-07-01
The creation spectrum of stable F centres (being part of F-H pairs of Frenkel defects) by synchrotron radiation of 7-40 eV has been measured for highly pure NaCl single crystals at 12 K using a highly sensitive luminescent method. It is shown that the efficiency of F centre creation in a closely packed NaCl is low at the decay of anion or cation excitons (7.8-8.4 and 33.4 eV, respectively) or at the recombination of relaxed conduction electrons and valence holes. Only the recombination of nonrelaxed (hot) electrons with holes provides the energy exceeding threshold value EFD, which is sufficient for the creation of Frenkel defects at low temperature.
Particle-in-Cell Simulations of the Twisted Magnetospheres of Magnetars. I.
NASA Astrophysics Data System (ADS)
Chen, Alexander Y.; Beloborodov, Andrei M.
2017-08-01
The magnetospheres of magnetars are believed to be filled with electron-positron plasma generated by electric discharge. We present a first numerical experiment demonstrating this process in an axisymmetric magnetosphere with a simple threshold prescription for pair creation, which is applicable to the inner magnetosphere with an ultrastrong field. The {e}+/- discharge occurs in response to the twisting of the closed magnetic field lines by a shear deformation of the magnetar surface, which launches electric currents into the magnetosphere. The simulation shows the formation of an electric “gap” with an unscreened electric field ({\\boldsymbol{E}}\\cdot {\\boldsymbol{B}}\
Relativistic Collisions of Highly-Charged Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu, Dorin; Belkacem, Ali
1998-11-19
The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less
Coherence of beam arrays propagating in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2010-04-01
We analyze some recent publications addressing propagation of the partially coherent polarized beams and beam arrays in the turbulent atmosphere. We show that the published results are limited to the scalar propagation model, and are not particular to the beam polarization. Therefore these results are equally relevant for the scalar beam pairs and arrays discriminated by some parameters such as small frequency shift, time delay or geometry, but not necessary the polarization. We use the virtual incoherent source model to derive the general form of the mutual coherence function of the two Schell-type beams. We discuss some physical stochastic models that result in the creation of the Schell-type beams and beam arrays. New classes of the uniformly, nonuniformly and nonlocally coherent beam pairs emerge naturally from this analysis. Rigorous, Markov approximation-based, propagation model provides relatively simple analytic results for the second-order moments of the optical field of the partially-coherent individual beams and beam pairs. We examine the changes of the beam mutual coherence in the process of the free-space propagation and propagation through the turbulent atmosphere.
Desantis, Andrea; Haggard, Patrick
2016-01-01
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events. PMID:27982063
Desantis, Andrea; Haggard, Patrick
2016-12-16
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events.
Keister, Jeffrey W.; Cibik, Levent; Schreiber, Swenja; ...
2018-02-20
Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron–hole pair creation energy were determined, the latter with anmore » unprecedented relative uncertainty of 1%. Lastly, the linearity and X-ray scattering properties of the device are also described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keister, Jeffrey W.; Cibik, Levent; Schreiber, Swenja
Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron–hole pair creation energy were determined, the latter with anmore » unprecedented relative uncertainty of 1%. Lastly, the linearity and X-ray scattering properties of the device are also described.« less
Entanglement by Path Identity.
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-24
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
NASA Astrophysics Data System (ADS)
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-01
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
Cosmological perturbations in the entangled inflationary universe
NASA Astrophysics Data System (ADS)
Robles-Pérez, Salvador J.
2018-03-01
In this paper, the model of a multiverse made up of universes that are created in entangled pairs that conserve the total momentum conjugated to the scale factor is presented. For the background spacetime, assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the scalar field, whose quantum states become entangled too, are considered. They turn out to be in a quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables are expected to be caused by the creation of the universes in entangled pairs: a modification of the Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner universes. The later would be a distinctive feature of the creation of universes in entangled pairs.
Vacuum instability in Kaluza–Klein manifolds
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo
2018-05-01
The purpose of this work in to analyze particle creation in spaces with extra dimensions. We consider, in particular, a massive scalar field propagating in a Kaluza–Klein manifold subject to a constant electric field. We compute the rate of particle creation from vacuum by using techniques rooted in the spectral zeta function formalism. The results we obtain show explicitly how the presence of the extra-dimensions and their specific geometric characteristics, influence the rate at which pairs of particles and anti-particles are generated.
Recent Progress on Laser Produced Positron Research At LLN
NASA Astrophysics Data System (ADS)
Chen, Hui; Hermann, M.; Kalantar, D.; Kemp, A.; Link, A.; Jiang, S.; Martinez, D.; Park, J.; Remington, B.; Sherlock, M.; Williams, Gj; Beg, F.; Edghill, B.; Fedosejevs, R.; Kerr, S.; D'Humieres, E.; Fiuza, F.; Willingale, L.; Fiksel, G.; Nakai, N.; Arikawa, Y.; Morace, A.; Sentoku, Y.
2017-10-01
We report the recent results on laser-produced relativistic electron-positron plasma jets. This includes: the prepulse and material dependence of pair generation; time dependent positron acceleration and maximum achieved pair density. We will highlight the results from recent experiments on the Omega EP laser testing nanostructured target to increase pair yield. We will also report on a newly commissioned platform using the NIF ARC lasers which was developed for efficient pair creation using 10 ps laser duration at near relativistic laser intensity. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).
Extending or creating a new brand: evidence from a study on event-related potentials.
Jin, Jia; Wang, Cuicui; Yu, Liping; Ma, Qingguo
2015-07-08
Brand strategy is a critical problem in new product promotion. In relation to this, producers typically have two main options, namely, brand extension and new brand creation. The current study investigated the neural basis of evaluating these brand strategies at the brain level by using event-related potentials. The experiment used a word-pair paradigm, in which the first word was either a famous beverage brand name or a newly created brand, and the second word was a product name from one of the two product categories (beverage or household appliance). Therefore, four conditions existed as follows: a famous beverage brand paired with a beverage product (BB) or with a household appliance (BH) and a newly created brand paired with a beverage product (NB) or with a household appliance (NH). Behavioral results showed that brand extension obtained a higher acceptance rate than new brand creation under the beverage product category; however, a lower acceptance rate was observed under the household appliance category. Moreover, at the brain level, BB elicited lower N400 mean amplitude than the new brand product NB, whereas BH led to higher N400 amplitude than the new brand product NH. These results showed that the likelihood of accepting a product depended on the association between the brand name and product name, and that the N400 could serve as an index of brand strategy evaluation. In addition, this study also confirmed that brand extension is not always the best brand strategy; an inappropriate extension sometimes performed worse than the creation of a new brand.
Multi-exciton emission from solitary dopant states of carbon nanotubes.
Ma, Xuedan; Hartmann, Nicolai F; Velizhanin, Kirill A; Baldwin, Jon K S; Adamska, Lyudmyla; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han
2017-11-02
By separating the photons from slow and fast decays of single and multi-exciton states in a time gated 2 nd order photon correlation experiment, we show that solitary oxygen dopant states of single-walled carbon nanotubes (SWCNTs) allow emission of photon pairs with efficiencies as high as 44% of single exciton emission. Our pump dependent time resolved photoluminescence (PL) studies further reveal diffusion-limited exciton-exciton annihilation as the key process that limits the emission of multi-excitons at high pump fluences. We further postulate that creation of additional permanent exciton quenching sites occurring under intense laser irradiation leads to permanent PL quenching. With this work, we bring out multi-excitonic processes of solitary dopant states as a new area to be explored for potential applications in lasing and entangled photon generation.
Pair Production Constraints on Superluminal Neutrinos Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC; Gardner, Susan
2012-02-16
We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainlymore » makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.« less
Synthesizing skyrmion bound pairs in Fe-Gd thin films
Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; ...
2016-07-11
Here, we show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
Quantum cosmology of a conformal multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, Salvador J.
2017-09-01
This paper studies the cosmology of a homogeneous and isotropic spacetime endorsed with a conformally coupled massless scalar field. We find six different solutions of the Friedmann equation that represent six different types of universes, and all of them are periodically distributed along the complex time axis. From a classical point of view, they are then isolated, separated by Euclidean regions that represent quantum mechanical barriers. Quantum mechanically, however, there is a nonzero probability for the state of the universes to tunnel out through a Euclidean instanton and suffer a sudden transition to another state of the spacetime. We compute the probability of transition for this and other nonlocal processes like the creation of universes in entangled pairs and, generally speaking, in multipartite entangled states. We obtain the quantum state of a single universe within the formalism of the Wheeler-DeWitt equation and give the semiclassical state of the universes that describes the quantum mechanics of a scalar field propagating in a de Sitter background spacetime. We show that the superposition principle of the quantum mechanics of matter fields alone is an emergent feature of the semiclassical description of the universe that is not valid, for instance, in the spacetime foam. We use the third quantization formalism to describe the creation of an entangled pair of universes with opposite signs of the momentum conjugated to the scale factor. Each universe of the entangled pair represents an expanding spacetime in terms of the Wentzel-Kramers-Brillouin (WKB) time experienced by internal observers in their particle physics experiments. We compute the effective value of the Friedmann equation of the background spacetime of the two entangled universes, and thus, the effect that the entanglement would have in their expansion rates. We analyze as well the effects of the interuniversal entanglement in the properties of the scalar fields that propagate in each spacetime of the entangled pair. We find that the largest modes of the scalar field are unaware of the entanglement between the universes, but the effects can be significant for the lowest modes, allowing us to compute, in principle, detailed observational imprints of the multiverse in the properties of a single universe like ours.
Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative.
Folie, Brendan D; Haber, Jonah B; Refaely-Abramson, Sivan; Neaton, Jeffrey B; Ginsberg, Naomi S
2018-02-14
Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu
2014-11-01
We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less
Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin
2015-05-01
We calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events xμ(τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics. We consider a three-stage interaction which when parameterized by the laboratory clock x0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.
NASA Astrophysics Data System (ADS)
Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.
2018-03-01
The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.
Changes in beta-actin mRNA expression in remodeling canine myocardium.
Carlyle, W C; Toher, C A; Vandervelde, J R; McDonald, K M; Homans, D C; Cohn, J N
1996-01-01
Beta-actin, a cytoskeletal protein important in the maintenance of cytoarchitecture, has long been thought to be expressed constitutively in myocardial tissue. As such, beta-actin mRNA has been used as a control gene in a wide range of experiments. However, we have uncovered consistent changes in beta-actin mRNA expression in canine myocardium remodeling as a result of insult to the left ventricle. The experimental canine models used were either DC shock damage to the left ventricle or volume overload resulting from severe mitral regurgitation. The remodeling process in both canine models is characterized by an increase in left ventricular mass. PCR amplification using primers designed to selectively amplify the 3' end and a portion of the 3' untranslated region of beta-actin mRNA resulted in the generation of a 297 base pair product predominant only in normal canine myocardium and a 472 base pair product that became increasingly prominent from 1 to 30 days after DC shock damage to the left ventricle and from 10 to 90 days after creation of mitral regurgitation. Northern analysis showed a three-fold increase in beta-actin mRNA after either DC shock or creation of mitral regurgitation. Western analysis revealed an early increase in beta-actin protein followed by an apparent decrease to below baseline levels. These observations suggest that changes in beta-actin mRNA expression accompany the structural alterations that occur in response to myocardial damage. Whether or not the changes in beta-actin mRNA expression play a role in mediating these structural alterations remains to be determined.
The entangled accelerating universe
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.; Robles-Pérez, Salvador
2009-08-01
Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.
NASA Astrophysics Data System (ADS)
Laurent, Philippe; Titarchuk, Lev
2018-06-01
We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.
Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering
NASA Astrophysics Data System (ADS)
Breunig, Daniel; Burset, Pablo; Trauzettel, Björn
2018-01-01
In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.
Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering.
Breunig, Daniel; Burset, Pablo; Trauzettel, Björn
2018-01-19
In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction-the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.
ERIC Educational Resources Information Center
Yoon, Seung Won; Song, Ji Hoon; Lim, Doo Hun
2009-01-01
This integrative literature review synthesizes the concepts and process of organizational knowledge creation with theories of individual learning. The knowledge conversion concept (Nonaka & Takeuchi, 1995; Nonaka, Toyama, & Byosiere, 2001) is used as the basis of the organizational knowledge creation process, while major learning theories relevant…
Topological phases in a Kitaev chain with imbalanced pairing
NASA Astrophysics Data System (ADS)
Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z.
2018-03-01
We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. An exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of ground states occurs, associated with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist in an open chain in the time-reversal symmetry-unbroken region, demonstrating the bulk-edge correspondence in such a non-Hermitian system.
NASA Astrophysics Data System (ADS)
Rosenberger, Tessa; Lindner, John F.
We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.
NASA Astrophysics Data System (ADS)
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Enhancing Poetry Writing through Technology: The Yin and the Yang.
ERIC Educational Resources Information Center
Roberts, Sherron Killingsworth; Schmidt, Denise
2002-01-01
Describes the outcome of an innovative mentoring program that paired technology faculty and methods faculty in order to form partnerships to facilitate the modeling of technology for preservice teachers. Discusses the creation of useful applications for enhancing poetry writing through technology for elementary school students. (SG)
On Electron-Positron Pair Production by a Spatially Inhomogeneous Electric Field
NASA Astrophysics Data System (ADS)
Chervyakov, A.; Kleinert, H.
2018-05-01
A detailed analysis of electron-positron pair creation induced by a spatially non-uniform and static electric field from vacuum is presented. A typical example is provided by the Sauter potential. For this potential, we derive the analytic expressions for vacuum decay and pair production rate accounted for the entire range of spatial variations. In the limit of a sharp step, we recover the divergent result due to the singular electric field at the origin. The limit of a constant field reproduces the classical result of Euler, Heisenberg and Schwinger, if the latter is properly averaged over the width of a spatial variation. The pair production by the Sauter potential is described for different regimes from weak to strong fields. For all these regimes, the locally constant-field rate is shown to be the upper limit.
Model of Ni-63 battery with realistic PIN structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Charles E.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr
2015-09-14
GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-nmore » structure under scanning electron microscope illumination.« less
Model of Ni-63 battery with realistic PIN structure
NASA Astrophysics Data System (ADS)
Munson, Charles E.; Arif, Muhammad; Streque, Jeremy; Belahsene, Sofiane; Martinez, Anthony; Ramdane, Abderrahim; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; Ougazzaden, Abdallah
2015-09-01
GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination.
Schemas and memory consolidation.
Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M
2007-04-06
Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.
Magnetic Photon Splitting: The S-Matrix Formulation in the Landau Representation
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1999-01-01
Calculations of reaction rates for the third-order QED process of photon splitting gamma yields gamma.gamma in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner [1] presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant, advances beyond the work of [1] by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper- time formulations is demonstrated.
Entangle Accelerating Universe
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.; Robles-Pérez, Salvador a. i. e.
We show that there exists a T-duality symmetry between two-dimensional warp drives and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to space-time squeezing. It has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities. These results are generalized to the case of any dynamically accelerating universe whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.
NASA Astrophysics Data System (ADS)
Chen, Yi-Chieh; Li, Tsung-Han; Lin, Hung-Yu; Chen, Kao-Tun; Wu, Chun-Sheng; Lai, Ya-Chieh; Hurat, Philippe
2018-03-01
Along with process improvement and integrated circuit (IC) design complexity increased, failure rate caused by optical getting higher in the semiconductor manufacture. In order to enhance chip quality, optical proximity correction (OPC) plays an indispensable rule in the manufacture industry. However, OPC, includes model creation, correction, simulation and verification, is a bottleneck from design to manufacture due to the multiple iterations and advanced physical behavior description in math. Thus, this paper presented a pattern-based design technology co-optimization (PB-DTCO) flow in cooperation with OPC to find out patterns which will negatively affect the yield and fixed it automatically in advance to reduce the run-time in OPC operation. PB-DTCO flow can generate plenty of test patterns for model creation and yield gaining, classify candidate patterns systematically and furthermore build up bank includes pairs of match and optimization patterns quickly. Those banks can be used for hotspot fixing, layout optimization and also be referenced for the next technology node. Therefore, the combination of PB-DTCO flow with OPC not only benefits for reducing the time-to-market but also flexible and can be easily adapted to diversity OPC flow.
Money creation process in a random redistribution model
NASA Astrophysics Data System (ADS)
Chen, Siyan; Wang, Yougui; Li, Keqiang; Wu, Jinshan
2014-01-01
In this paper, the dynamical process of money creation in a random exchange model with debt is investigated. The money creation kinetics are analyzed by both the money-transfer matrix method and the diffusion method. From both approaches, we attain the same conclusion: the source of money creation in the case of random exchange is the agents with neither money nor debt. These analytical results are demonstrated by computer simulations.
NASA Astrophysics Data System (ADS)
Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier
2017-01-01
We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.
Imaginary Worlds in Middle Childhood: A Qualitative Study of Two Pairs of Coordinated Paracosms
ERIC Educational Resources Information Center
Taylor, Marjorie; Mottweiler, Candice M.; Naylor, Emilee R.; Levernier, Jacob G.
2015-01-01
Imagining alternatives to actual experiences is an important part of everyday life that can take many forms. One manifestation in middle childhood is the creation of elaborate imaginary worlds, called "paracosms." Retrospective reports of adults indicate that having a childhood paracosm is more commonly reported in individuals…
Knowledge Creation in Construction Organisations: A Case Approach
ERIC Educational Resources Information Center
Eliufoo, Harriet
2008-01-01
Purpose: The purpose of this paper is to investigate and characterise the knowledge creation process in construction organisations and explore to what extent organisations facilitate the process. Design/methodology/approach: A case study approach is adopted using four construction organisations; a knowledge creation model is also used as the…
Verloigne, Maïté; Altenburg, Teatske Maria; Chinapaw, Mai Jeanette Maidy; Chastin, Sebastien; Cardon, Greet
2017-01-01
Background: As physical inactivity is particularly prevalent amongst lower-educated adolescent girls, interventions are needed. Using a co-creational approach increases their engagement and might be effective. This study aimed to: (1) describe the co-creation process, (2) evaluate how girls experienced co-creation, and (3) evaluate the effect of the co-creational interventions on physical activity, individual, sociocultural and school-based factors. Methods: Three intervention schools (n = 91) and three control schools (n = 105) across Flanders participated. A questionnaire was completed pre (September–October 2014) and post (April–May 2015). In between, sessions with a co-creation group were organised to develop and implement the intervention in each intervention school. Focus groups were conducted to evaluate the co-creational process. Results: School 1 organised sport sessions for girls, school 2 organised a fitness activity and set up a Facebook page, school 3 organised a lunch walk. Girls were positive about having a voice in developing an intervention. No significant effects were found, except for small effects on extracurricular sports participation and self-efficacy. Conclusions: Using a co-creational approach amongst adolescent girls might be a feasible approach. However, as interventions were minimal, effects were limited or undetectable. Future co-creation projects could consider the most optimal co-creation process, evaluation design and intensively test this approach. PMID:28763041
Verloigne, Maïté; Altenburg, Teatske Maria; Chinapaw, Mai Jeanette Maidy; Chastin, Sebastien; Cardon, Greet; De Bourdeaudhuij, Ilse
2017-08-01
Background: As physical inactivity is particularly prevalent amongst lower-educated adolescent girls, interventions are needed. Using a co-creational approach increases their engagement and might be effective. This study aimed to: (1) describe the co-creation process, (2) evaluate how girls experienced co-creation, and (3) evaluate the effect of the co-creational interventions on physical activity, individual, sociocultural and school-based factors. Methods: Three intervention schools (n = 91) and three control schools (n = 105) across Flanders participated. A questionnaire was completed pre (September-October 2014) and post (April-May 2015). In between, sessions with a co-creation group were organised to develop and implement the intervention in each intervention school. Focus groups were conducted to evaluate the co-creational process. Results: School 1 organised sport sessions for girls, school 2 organised a fitness activity and set up a Facebook page, school 3 organised a lunch walk. Girls were positive about having a voice in developing an intervention. No significant effects were found, except for small effects on extracurricular sports participation and self-efficacy. Conclusions: Using a co-creational approach amongst adolescent girls might be a feasible approach. However, as interventions were minimal, effects were limited or undetectable. Future co-creation projects could consider the most optimal co-creation process, evaluation design and intensively test this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu
Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less
Yang, Ya-Ting; Iqbal, Usman; Chen, Ya-Mei; Su, Shyi; Chang, Yao-Mao; Handa, Yujiro; Lin, Neng-Pai; Hsu, Yi-Hsin Elsa
2016-09-01
With global population aging, great business opportunities are driven by the various needs that the elderly face in everyday living. Internet development makes information spread faster, also allows elderly and their caregivers to more easily access information and actively participate in value co-creation in the services. This study aims to investigate the designs of value co-creation by the supply and demand sides of the senior industry. This study investigated senior industry in Taiwan and analyzed bussiness models of 33 selected successful senior enterprises in 2013. We adopted series field observation, reviews of documentations, analysis of meeting records and in-depth interviews with 65 CEOs and managers. Thirty-three quality enterprises in senior industry. Sixty-five CEOs and managers in 33 senior enterprises. None. Value co-creation design, value co-creating process. We constructed a conceptual model that comprehensively describes essential aspects of value co-creation and categorized the value co-creation designs into four types applying for different business models: (i) interaction in experience spaces co-creation design, (ii) on-site interacting co-creation design, (iii) social networking platform co-creation design and (iv) empowering customers co-creation design. Through value co-creation platform design, the senior enterprises have converted the originally passive roles of the elderly and caregivers into active participants in the value co-creation process. The new paradigm of value co-creation designs not only promote innovative development during the interactive process, lead enterprises reveal and meet customers' needs but also increase markets and profits. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Born-Oppenheimer approximation for a singular system
NASA Astrophysics Data System (ADS)
Akbas, Haci; Turgut, O. Teoman
2018-01-01
We discuss a simple singular system in one dimension, two heavy particles interacting with a light particle via an attractive contact interaction and not interacting among themselves. It is natural to apply the Born-Oppenheimer approximation to this problem. We present a detailed discussion of this approach; the advantage of this simple model is that one can estimate the error terms self-consistently. Moreover, a Fock space approach to this problem is presented where an expansion can be proposed to get higher order corrections. A slight modification of the same problem in which the light particle is relativistic is discussed in a later section by neglecting pair creation processes. Here, the second quantized description is more challenging, but with some care, one can recover the first order expression exactly.
Coma, Ermengol; Ferran, Manel; Méndez, Leonardo; Iglesias, Begoña; Fina, Francesc; Medina, Manuel
2013-12-01
The development of electronic medical records has allowed the creation of new quality indicators in healthcare. Among them, synthetic indicators facilitate global interpretation of results and comparisons between professionals. A healthcare quality standard (EQA, the Catalan acronym for Estàndard de Qualitat Assistencial) was constructed to serve as a synthetic indicator to measure the quality of care provided by primary care professionals in Catalonia (Spain). The project phases were to establish the reference population; select health problems to be included; define, select and deliberate about subindicators; and construct and publish the EQA. Construction of the EQA involved 107 healthcare professionals, and 91 health problems were included. In addition, 133 experts were consulted, who proposed a total of 339 indicators. After systematic paired comparison, 61 indicators were selected to create the synthetic indicator. The EQA is now calculated on a monthly basis for more than 8000 healthcare professionals using an automated process that extracts data from electronic medical records; results are published on a follow-up website. Along with the use of the online EQA results tool, there has been an ongoing improvement in most of the quality of care indicators. Creation of the EQA has proven to be useful for the measurement of the quality of care of primary care services. Also an improvement trend over 5 years is shown across most of the measured indicators. The online version of this article (doi:10.1186/2193-1801-2-51) contains supplementary material, which is available to authorized users.
ERIC Educational Resources Information Center
Exley, I. Sheck
The high percentage of high school pre-algebra students having difficulty learning the abstract concept of graphing ordered pairs on the Cartesian rectangular coordinate system was addressed by the creation and implementation of a computer-managed instructional program. Modules consisted of a pretest, instruction, two practice sessions, and a…
Is the continuous matter creation cosmology an alternative to ΛCDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
2014-06-01
The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less
Developmental trends in the process of constructing own- and other-race facial composites.
Kehn, Andre; Renken, Maggie D; Gray, Jennifer M; Nunez, Narina L
2014-01-01
The current study examined developmental differences from the age of 5 to 18 in the creation process of own- and other-race facial composites. In addition, it considered how differences in the creation process affect similarity ratings. Participants created two composites (one own- and one other-race) from memory. The complexity of the composite creation process was recorded during Phase One. In Phase Two, a separate group of participants rated the composites for similarity to the corresponding target face. Results support the cross-race effect, developmental differences (based on composite creators) in similarity ratings, and the importance of the creation process for own- and other-race facial composites. Together, these findings suggest that as children get older the process through which they create facial composites becomes more complex and their ability to create facial composites improves. Increased complexity resulted in higher rated composites. Results are discussed from a psycho-legal perspective.
Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures.
Magne, P; Oh, W S; Pintado, M R; DeLong, R
1999-12-01
This in vitro study compared the wear of enamel against 3 types of ceramics with high esthetic potential (designed for layering techniques): feldspathic porcelain (Creation), aluminous porcelain (Vitadur alpha), and low-fusing glass (Duceram-LFC). Laboratory finishing (glazing/polishing) and chairside polishing with a Dialite kit were simulated to compare their respective effects on wear. Tooth-material specimen pairs were placed in an artificial mouth using closed-loop servohydraulics. Constant masticatory parameters (13.5 N occlusal force, 0.62 mm lateral excursion; 0.23 second cuspal contact time) were maintained for 300, 000 cycles at a rate of 4 Hz. The occlusal surface of each pair was mapped and digitally recorded before and after each masticatory test. Quantitative changes were measured in terms of depth and volume of wear. Quantitative wear characteristics were assessed by SEM. Significant differences were observed (2-factor ANOVA, P <.05). Duceram-LFC generated increased volume loss of enamel (0.197 mm(3)) compared with Creation (0.135 mm(3)) and Vitadur alpha (0.153 mm(3)). Creation exhibited the lowest ceramic wear and lowest combined volume loss (0.260 mm(3); the sum of the data for enamel and the opposing material) compared with Duceram-LFC (0.363 mm(3)) and Vitadur alpha (0.333 mm(3)). The most significant differences among materials were observed in volume loss, not in depth of wear. For all 3 ceramic systems, qualitative SEM evaluation revealed an abrasive type of wear. Wear characteristics of chairside polished specimens were similar to those of laboratory finished specimens (glazed and polished). Duceram-LFC was the most abrasive ceramic for the antagonistic tooth. Creation ceramic was the least abrasive material and most resistant to wear. Defects, brittleness, and the possibly insufficient toughness of LFC may explain its increased abrasiveness. Laboratory and chairside finishing procedures generated similar results.
Performance Scripts Creation: Processes and Applications
ERIC Educational Resources Information Center
Lyons, Paul
2006-01-01
Purpose: Seeks to explain some of the dynamics of scripts creation as used in training, to offer some theoretical underpinning regarding the influence of script creation on behavior and performance, and to offer some examples of how script creation is applied in training activities. Design/methodology/approach: The paper explains in detail and…
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex
2015-03-01
As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.
Partial hyperbolicity and attracting regions in 3-dimensional manifolds
NASA Astrophysics Data System (ADS)
Potrie, Rafael
The need for reliable, fiber-based sources of entangled and paired photons has intensified in recent years because of potential uses in optical quantum communication and computing. In particular, indistinguishable photon sources are an inherent part of several quantum communication protocols and are needed to establish the viability of quantum communication networks. This thesis is centered around the development of such sources at telecommunication-band wavelengths. In this thesis, we describe experiments on entangled photon generation and the creation of quantum logic gates in the C-band, and on photon indistinguishability in the O-band. These experiments utilize the four-wave mixing process in fiber which occurs as a result of the Kerr nonlinearity, to create paired photons. To begin, we report the development of a source of 1550-nm polarization entangled photons in fiber. We then interface this source with a quantum Controlled-NOT gate, which is a universal quantum logic gate. We set experimental bounds on the process fidelity of the Controlled-NOT gate. Next, we report a demonstration of quantum interference between 1310-nm photons produced in independent sources. We demonstrate high quantum interference visibility, a signature of quantum indistinguishability, while using distinguishable pump photons. Together, these efforts constitute preliminary steps toward establishing the viability of fiber-based quantum communication, which will allow us to utilize existing infrastructure for implementing quantum communication protocols.
A French national research project to the creation of an auscultation's school: the ASAP project.
Andrès, Emmanuel; Reichert, Sandra; Gass, Raymond; Brandt, Christian
2009-05-01
Auscultation of pulmonary sounds provides valuable clinical information but has been regarded as a tool of low diagnostic value due to the inherent subjectivity in the evaluation of these sounds. This paper describes an ambitious study of in the so-called ASAP project or "Analyse de Sons Auscultatoires et Pathologiques". ASAP is a 3-year-long French collaborative project developed in the context of the News Technologies of Information and Communication. ASAP aims at making evolve the auscultation technics: by 1) the development objective tools for the analyse of auscultation sounds: electronic stethoscopes paired with computing device; 2) the creation of an auscultation sounds' database in order to compare and identify the acoustical and visual signatures of the pathologies; and 3) the capitalisation of these new auscultation techniques around the creation of a teaching unit: "Ecole de l'Auscultation". This auscultation's school will be destined to the initial and continuous formation of the medical attendants.
LLE Review 116 (July-September 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozas, J.A., editor
2010-03-12
This issue has the following articles: (1) Optimizing Electron-Positron Pair Production on kJ-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation; (2) Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA; (3) Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil; (4) A Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion; (5) Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors; (6) LLE's Summer High School Research Program; (7) FY08 Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.
Comparison of Fingerprint and Iris Biometric Authentication for Control of Digital Signatures
Zuckerman, Alan E.; Moon, Kenneth A.; Eaddy, Kenneth
2002-01-01
Biometric authentication systems can be used to control digital signature of medical documents. This pilot study evaluated the use of two different fingerprint technologies and one iris technology to control creation of digital signatures on a central server using public private key pairs stored on the server. Documents and signatures were stored in XML for portability. Key pairs and authentication certificates were generated during biometric enrollment. Usability and user acceptance were guarded and limitations of biometric systems prevented use of the system with all test subjects. The system detected alternations in the data content and provided future signer re-authentication for non-repudiation.
Semantic Entity Pairing for Improved Data Validation and Discovery
NASA Astrophysics Data System (ADS)
Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Chen, Yanning; Krisnadhi, Adila; Hitzler, Pascal; Narock, Tom; Groman, Robert; Rauch, Shannon
2014-05-01
One of the central incentives for linked data implementations is the opportunity to leverage the rich logic inherent in structured data. The logic embedded in semantic models can strengthen capabilities for data discovery and data validation when pairing entities from distinct, contextually-related datasets. The creation of links between the two datasets broadens data discovery by using the semantic logic to help machines compare similar entities and properties that exist on different levels of granularity. This semantic capability enables appropriate entity pairing without making inaccurate assertions as to the nature of the relationship. Entity pairing also provides a context to accurately validate the correctness of an entity's property values - an exercise highly valued by data management practices who seek to ensure the quality and correctness of their data. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) semantically models metadata surrounding oceanographic researchcruises, but other sources outside of BCO-DMO exist that also model metadata about these same cruises. For BCO-DMO, the process of successfully pairing its entities to these sources begins by selecting sources that are decidedly trustworthy and authoritative for the modeled concepts. In this case, the Rolling Deck to Repository (R2R) program has a well-respected reputation among the oceanographic research community, presents a data context that is uniquely different and valuable, and semantically models its cruise metadata. Where BCO-DMO exposes the processed, analyzed data products generated by researchers, R2R exposes the raw shipboard data that was collected on the same research cruises. Interlinking these cruise entities expands data discovery capabilities but also allows for validating the contextual correctness of both BCO-DMO's and R2R's cruise metadata. Assessing the potential for a link between two datasets for a similar entity consists of aligning like properties and deciding on the appropriate semantic markup to describe the link. This highlights the desire for research organizations like BCO-DMO and R2R to ensure the complete accuracy of their exposed metadata, as it directly reflects on their reputations as successful and trustworthy source of research data. Therefore, data validation reaches beyond simple syntax of property values into contextual correctness. As a human process, this is a time-intensive task that does not scale well for finite human and funding resources. Therefore, to assess contextual correctness across datasets at different levels of granularity, BCO-DMO is developing a system that employs semantic technologies to aid the human process by organizing potential links and calculating a confidence coefficient as to the correctness of the potential pairing based on the distance between certain entity property values. The system allows humans to quickly scan potential links and their confidence coefficients for asserting persistence and correcting and investigating misaligned entity property values.
There is no clam with coats in the calm coast: delimiting the transposed-letter priming effect.
Duñabeitia, Jon Andoni; Perea, Manuel; Carreiras, Manuel
2009-10-01
In this article, we explore the transposed-letter priming effect (e.g., jugde-JUDGE vs. jupte-JUDGE), a phenomenon that taps into some key issues on how the brain encodes letter positions and has favoured the creation of new input coding schemes. However, almost all the empirical evidence from transposed-letter priming experiments comes from nonword primes (e.g., jugde-JUDGE). Indeed, previous evidence when using word-word pairs (e.g., causal-CASUAL) is not conclusive. Here, we conducted five masked priming lexical decision experiments that examined the relationship between pairs of real words that differed only in the transposition of two of their letters (e.g., CASUAL vs. CAUSAL). Results showed that, unlike transposed-letter nonwords, transposed-letter words do not seem to affect the identification time of their transposed-letter mates. Thus, prime lexicality is a key factor that modulates the magnitude of transposed-letter priming effects. These results are interpreted under the assumption of the existence of lateral inhibition processes occurring within the lexical level-which cancels out any orthographic facilitation due to the overlapping letters. We examine the implications of these findings for models of visual-word recognition.
Emergence of entanglement with temperature and time in factorization-surface states
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2018-01-01
There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.
Squeezed states and graviton-entropy production in the early universe
NASA Technical Reports Server (NTRS)
Giovannini, Massimo
1994-01-01
Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.
ERIC Educational Resources Information Center
Díaz-Mataix, Lorenzo; Piper, Walter T.; Schiff, Hillary C.; Roberts, Clark H.; Campese, Vincent D.; Sears, Robert M.; LeDoux, Joseph E.
2017-01-01
The creation of auditory threat Pavlovian memory requires an initial learning stage in which a neutral conditioned stimulus (CS), such as a tone, is paired with an aversive one (US), such as a shock. In this phase, the CS acquires the capacity of predicting the occurrence of the US and therefore elicits conditioned defense responses.…
Antimatter Production at a Potential Boundary
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Reddy, Dhanireddy (Technical Monitor)
2001-01-01
Current antiproton production techniques rely on high-energy collisions between beam particles and target nuclei to produce particle and antiparticle pairs, but inherently low production and capture efficiencies render these techniques impractical for the cost-effective production of antimatter for space propulsion and other commercial applications. Based on Dirac's theory of the vacuum field, a new antimatter production concept is proposed in which particle-antiparticle pairs are created at the boundary of a steep potential step formed by the suppression of the local vacuum fields. Current antimatter production techniques are reviewed, followed by a description of Dirac's relativistic quantum theory of the vacuum state and corresponding solutions for particle tunneling and reflection from a potential barrier. The use of the Casimir effect to suppress local vacuum fields is presented as a possible technique for generating the sharp potential gradients required for particle-antiparticle pair creation.
NASA Astrophysics Data System (ADS)
Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.
2018-02-01
We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.
Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...
2014-10-22
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less
Radiation Effects on the Electrical Properties of Hafnium Oxide Based MOS Capacitors
2011-03-01
Figures Figure Page 1. Conceptual illustration of the creation of electron-hole pairs and displacement damage in a n -type silicon metal-oxide-silicon...Illustration of the effect, in a CV plot, of oxide trapped charge for a hypothetical n -type device...8 5. Illustration of the effect, in a CV plot, of interface trapped charge for a hypothetical n -type device
ERIC Educational Resources Information Center
Obschonka, Martin; Silbereisen, Rainer K.; Schmitt-Rodermund, Eva; Stuetzer, Michael
2011-01-01
What predicts a person's venture creation success over the course of the career, such as making progress in the venture creation process and multiple successful venture creations? Applying a life span approach of human development, this study examined the effect of early entrepreneurial competence in adolescence, which was gathered retrospectively…
Greenhalgh, Trisha; Jackson, Claire; Shaw, Sara; Janamian, Tina
2016-06-01
Co-creation-collaborative knowledge generation by academics working alongside other stakeholders-is an increasingly popular approach to aligning research and service development. It has potential for "moving beyond the ivory towers" to deliver significant societal impact via dynamic, locally adaptive community-academic partnerships. Principles of successful co-creation include a systems perspective, a creative approach to research focused on improving human experience, and careful attention to governance and process. If these principles are not followed, co-creation efforts may fail. Co-creation-collaborative knowledge generation by academics working alongside other stakeholders-reflects a "Mode 2" relationship (knowledge production rather than knowledge translation) between universities and society. Co-creation is widely believed to increase research impact. We undertook a narrative review of different models of co-creation relevant to community-based health services. We contrasted their diverse disciplinary roots and highlighted their common philosophical assumptions, principles of success, and explanations for failures. We applied these to an empirical case study of a community-based research-service partnership led by the Centre of Research Excellence in Quality and Safety in Integrated Primary-Secondary Care at the University of Queensland, Australia. Co-creation emerged independently in several fields, including business studies ("value co-creation"), design science ("experience-based co-design"), computer science ("technology co-design"), and community development ("participatory research"). These diverse models share some common features, which were also evident in the case study. Key success principles included (1) a systems perspective (assuming emergence, local adaptation, and nonlinearity); (2) the framing of research as a creative enterprise with human experience at its core; and (3) an emphasis on process (the framing of the program, the nature of relationships, and governance and facilitation arrangements, especially the style of leadership and how conflict is managed). In both the literature review and the case study, co-creation "failures" could often be tracked back to abandoning (or never adopting) these principles. All co-creation models made strong claims for significant and sustainable societal impacts as a result of the adaptive and developmental research process; these were illustrated in the case study. Co-creation models have high potential for societal impact but depend critically on key success principles. To capture the nonlinear chains of causation in the co-creation pathway, impact metrics must reflect the dynamic nature and complex interdependencies of health research systems and address processes as well as outcomes. © 2016 Milbank Memorial Fund.
A framework of knowledge creation processes in participatory simulation of hospital work systems.
Andersen, Simone Nyholm; Broberg, Ole
2017-04-01
Participatory simulation (PS) is a method to involve workers in simulating and designing their own future work system. Existing PS studies have focused on analysing the outcome, and minimal attention has been devoted to the process of creating this outcome. In order to study this process, we suggest applying a knowledge creation perspective. The aim of this study was to develop a framework describing the process of how ergonomics knowledge is created in PS. Video recordings from three projects applying PS of hospital work systems constituted the foundation of process mining analysis. The analysis resulted in a framework revealing the sources of ergonomics knowledge creation as sequential relationships between the activities of simulation participants sharing work experiences; experimenting with scenarios; and reflecting on ergonomics consequences. We argue that this framework reveals the hidden steps of PS that are essential when planning and facilitating PS that aims at designing work systems. Practitioner Summary: When facilitating participatory simulation (PS) in work system design, achieving an understanding of the PS process is essential. By applying a knowledge creation perspective and process mining, we investigated the knowledge-creating activities constituting the PS process. The analysis resulted in a framework of the knowledge-creating process in PS.
Pair luminescence in Cr3+ -doped Ba2Mg(BO3)2
NASA Astrophysics Data System (ADS)
Bondzior, Bartosz; Miniajluk, Natalia; Dereń, Przemysław J.
2018-05-01
Cr3+ ions were introduced to the Ba2Mg(BO3)2 host to provide information about the site occupation, crystal field strength, and the site symmetry. The samples were synthesized by solid-state reaction. Emission observed under 440 nm excitation was characteristic for Cr3+ ions in strong octahedral ligand field with Dq/B parameter ratio 2.74 and sharp R line at 698 nm. The charge mismatch between Cr3+ dopant and Mg2+ host ion is compensated by the creation of Cr3+ pair in the vicinity of Ba or Mg vacancy. The emission decay curve is bi-exponential with decay times 1.2 and 13.3 ms.
NASA Technical Reports Server (NTRS)
Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth
2013-01-01
In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.
Takanashi, Tsukasa; Nakamura, Kosuke; Kukk, Edwin; Motomura, Koji; Fukuzawa, Hironobu; Nagaya, Kiyonobu; Wada, Shin-Ichi; Kumagai, Yoshiaki; Iablonskyi, Denys; Ito, Yuta; Sakakibara, Yuta; You, Daehyun; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Umemoto, Takayuki; Kariyazono, Kango; Ochiai, Kohei; Kanno, Manabu; Yamazaki, Kaoru; Kooser, Kuno; Nicolas, Christophe; Miron, Catalin; Asavei, Theodor; Neagu, Liviu; Schöffler, Markus; Kastirke, Gregor; Liu, Xiao-Jing; Rudenko, Artem; Owada, Shigeki; Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Kono, Hirohiko; Ueda, Kiyoshi
2017-08-02
Coulomb explosion of diiodomethane CH 2 I 2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH 3 I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH 2 I 2 in comparison to CH 3 I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH 2 I 2 . The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10 fs.
Performance measurement of HARPO: A time projection chamber as a gamma-ray telescope and polarimeter
NASA Astrophysics Data System (ADS)
Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Magniette, F.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Yonamine, R.; Wang, S.
2018-01-01
We analyse the performance of a gas time projection chamber (TPC) as a high-performance gamma-ray telescope and polarimeter in the e+e- pair-creation regime. We use data collected at a gamma-ray beam of known polarisation. The TPC provides two orthogonal projections (x, z) and (y, z) of the tracks induced by each conversion in the gas volume. We use a simple vertex finder in which vertices and pseudo-tracks exiting from them are identified. We study the various contributions to the single-photon angular resolution using Monte Carlo simulations, compare them with the experimental data and find that they are in excellent agreement. The distribution of the azimuthal angle of pair conversions shows a bias due to the non-cylindrical-symmetric structure of the detector. This bias would average out for a long duration exposure on a space mission, but for this pencil-beam characterisation we have ensured its accurate simulation by a double systematics-control scheme, data taking with the detector rotated at several angles with respect to the beam polarisation direction and systematics control with a non-polarised beam. We measure, for the first time, the polarisation asymmetry of a linearly polarised gamma-ray beam in the low energy pair-creation regime. This sub-GeV energy range is critical for cosmic sources as their spectra are power laws which fall quickly as a function of increasing energy. This work could pave the way to extending polarised gamma-ray astronomy beyond the MeV energy regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hones, E.W. Jr.
1959-06-15
Hoyle obtained a steady-state model for an expanding universe by introducing continuous creation of matter into the field equations of general relativity. Morrison has speculated that the creation of matter throughout the universe may take place by formation of particle--antiparticle pairs which subsequently are segregated by a repulsive force between matter and anti-matter. Burbidge and Hall have estimated that the ratio of antimatter to matter in our galaxy can not exceed -- 10/sup -7/ This investigation points out that a slightly more stringent limit for this ratio is sugge sted by cosmic ray measurements. More precise information concerning the densitymore » of antiparticles in the galaxy can be obtained by carrying a simple scintillation gamma spectrometer some distance from the earth in a satelite or space probe. (A.C.)« less
Two-dimensional quantum repeaters
NASA Astrophysics Data System (ADS)
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Rapid creation of distant entanglement by multiphoton resonant fluorescence
NASA Astrophysics Data System (ADS)
Cohen, Guy Z.; Sham, L. J.
2013-12-01
We study a simple, effective, and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multiphoton Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel effect, to selective pairing of photon holes (photon absences in the fluorescent signals). As a result, two odd photon number detections at the outgoing beams herald trion entanglement creation, and subsequent reduction of the trions to the spin ground states leads to spin-spin entanglement. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, nonideal, and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities.
NASA Astrophysics Data System (ADS)
Li, Chang-kai; Wang, Feng; Gao, Cong-Zhang; Liao, Bin; Ouyang, Xiao-ping; Zhang, Feng-Shou
2018-07-01
Electronic stopping power of helium ions in a semiconductor material ZnSe has been investigated through non-adiabatic dynamics simulations at energies of a few keV under channeling condition. The stopping power is predicted to be proportional to velocity for the trajectory along middle axis of a 〈 1 1 0 〉 channel, as expected for the linear response theory accounts for election-hole pair creation. While for the off-center channeling trajectory, a counterintuitive of electronic stopping power versus velocity is observed. Our study, presented herein, finds a non-trivial connection between charge transfer and the force experienced by the projectile. Charge transfer can produce, throughout the collision process, additional force by continuously forming and breaking instantaneous chemical bonds between the projectile and the neighboring host atoms.
Xiong, Zheng; He, Yinyan; Hattrick-Simpers, Jason R; Hu, Jianjun
2017-03-13
The creation of composition-processing-structure relationships currently represents a key bottleneck for data analysis for high-throughput experimental (HTE) material studies. Here we propose an automated phase diagram attribution algorithm for HTE data analysis that uses a graph-based segmentation algorithm and Delaunay tessellation to create a crystal phase diagram from high throughput libraries of X-ray diffraction (XRD) patterns. We also propose the sample-pair based objective evaluation measures for the phase diagram prediction problem. Our approach was validated using 278 diffraction patterns from a Fe-Ga-Pd composition spread sample with a prediction precision of 0.934 and a Matthews Correlation Coefficient score of 0.823. The algorithm was then applied to the open Ni-Mn-Al thin-film composition spread sample to obtain the first predicted phase diagram mapping for that sample.
Programmable energy landscapes for kinetic control of DNA strand displacement.
Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J
2014-11-10
DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.
How beliefs about self-creation inflate value in the human brain.
Koster, Raphael; Sharot, Tali; Yuan, Rachel; De Martino, Benedetto; Norton, Michael I; Dolan, Raymond J
2015-01-01
Humans have a tendency to overvalue their own ideas and creations. Understanding how these errors in judgement emerge is important for explaining suboptimal decisions, as when individuals and groups choose self-created alternatives over superior or equal ones. We show that such overvaluation is a reconstructive process that emerges when participants believe they have created an item, regardless of whether this belief is true or false. This overvaluation is observed both when false beliefs of self-creation are elicited (Experiment 1) or implanted (Experiment 2). Using brain imaging data we highlight the brain processes mediating an interaction between value and belief of self-creation. Specifically, following the creation manipulation there is an increased functional connectivity during valuation between the right caudate nucleus, where we show BOLD activity correlated with subjective value, and the left amygdala, where we show BOLD activity is linked to subjective belief. Our study highlights psychological and neurobiological processes through which false beliefs alter human valuation and in doing so throw light on a common source of error in judgements of value.
How beliefs about self-creation inflate value in the human brain
Koster, Raphael; Sharot, Tali; Yuan, Rachel; De Martino, Benedetto; Norton, Michael I.; Dolan, Raymond J.
2015-01-01
Humans have a tendency to overvalue their own ideas and creations. Understanding how these errors in judgement emerge is important for explaining suboptimal decisions, as when individuals and groups choose self-created alternatives over superior or equal ones. We show that such overvaluation is a reconstructive process that emerges when participants believe they have created an item, regardless of whether this belief is true or false. This overvaluation is observed both when false beliefs of self-creation are elicited (Experiment 1) or implanted (Experiment 2). Using brain imaging data we highlight the brain processes mediating an interaction between value and belief of self-creation. Specifically, following the creation manipulation there is an increased functional connectivity during valuation between the right caudate nucleus, where we show BOLD activity correlated with subjective value, and the left amygdala, where we show BOLD activity is linked to subjective belief. Our study highlights psychological and neurobiological processes through which false beliefs alter human valuation and in doing so throw light on a common source of error in judgements of value. PMID:26388755
17 CFR 201.1100 - Creation of Fair Fund.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Creation of Fair Fund. 201.1100 Section 201.1100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Fair Fund and Disgorgement Plans § 201.1100 Creation of Fair Fund. In any agency process initiated...
17 CFR 201.1100 - Creation of Fair Fund.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Creation of Fair Fund. 201.1100 Section 201.1100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Fair Fund and Disgorgement Plans § 201.1100 Creation of Fair Fund. In any agency process initiated...
17 CFR 201.1100 - Creation of Fair Fund.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Creation of Fair Fund. 201.1100 Section 201.1100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Fair Fund and Disgorgement Plans § 201.1100 Creation of Fair Fund. In any agency process initiated...
17 CFR 201.1100 - Creation of Fair Fund.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Creation of Fair Fund. 201.1100 Section 201.1100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Fair Fund and Disgorgement Plans § 201.1100 Creation of Fair Fund. In any agency process initiated...
17 CFR 201.1100 - Creation of Fair Fund.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Creation of Fair Fund. 201.1100 Section 201.1100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Fair Fund and Disgorgement Plans § 201.1100 Creation of Fair Fund. In any agency process initiated...
Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd
2014-10-01
Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.
Martínez-Cañas, Ricardo; Ruiz-Palomino, Pablo; Linuesa-Langreo, Jorge; Blázquez-Resino, Juan J
2016-01-01
In the current highly interconnected modern world, the role of consumers has changed substantially due to their active collaboration with companies in product and process innovation. Specifically, consumer participation has become key to the development of successful products and services, as companies have come to rely more and more on consumers' opinion as a source of innovative ideas and brand value. However, whereas existing research has focused on identifying the different elements involved in consumers' co-creation, there is still the need to comprehend better this complex mechanism by integrating distinct dimensional insights. With an integrative review of research into three important perspectives, one nurturing from the Service-Dominant logic, another one based on the information and communication technologies (ICTs) platforms, and (the ethical values-driven) Marketing 3.0 paradigm, this article proposes a conceptual framework in which consumers' ethical values and transcendent motivations play an important role in encouraging their engagement in co-creation activities. In this connection, and with consumers increasingly embracing the need to fulfill a social and ethical function in society, the co-creation process is here comprehended as a means to emphasize the social and moral aspects of co-creation. This article also identifies the important, supportive role of the Marketing 3.0 paradigm and Web 3.0 tools to initiate the co-creation process, as well as the important valuable benefits attained by both companies and consumers after consumers engage in this process. Importantly, these benefits are highlighted to increase when ethical products are the object of these co-creation activities. All these insights have notable implications for both research and managerial practice.
Martínez-Cañas, Ricardo; Ruiz-Palomino, Pablo; Linuesa-Langreo, Jorge; Blázquez-Resino, Juan J.
2016-01-01
In the current highly interconnected modern world, the role of consumers has changed substantially due to their active collaboration with companies in product and process innovation. Specifically, consumer participation has become key to the development of successful products and services, as companies have come to rely more and more on consumers' opinion as a source of innovative ideas and brand value. However, whereas existing research has focused on identifying the different elements involved in consumers' co-creation, there is still the need to comprehend better this complex mechanism by integrating distinct dimensional insights. With an integrative review of research into three important perspectives, one nurturing from the Service-Dominant logic, another one based on the information and communication technologies (ICTs) platforms, and (the ethical values-driven) Marketing 3.0 paradigm, this article proposes a conceptual framework in which consumers' ethical values and transcendent motivations play an important role in encouraging their engagement in co-creation activities. In this connection, and with consumers increasingly embracing the need to fulfill a social and ethical function in society, the co-creation process is here comprehended as a means to emphasize the social and moral aspects of co-creation. This article also identifies the important, supportive role of the Marketing 3.0 paradigm and Web 3.0 tools to initiate the co-creation process, as well as the important valuable benefits attained by both companies and consumers after consumers engage in this process. Importantly, these benefits are highlighted to increase when ethical products are the object of these co-creation activities. All these insights have notable implications for both research and managerial practice. PMID:27303349
Oh, Young Sam; Nam, SungHee; Kim, Yuna
2016-01-01
This research explores how expert knowledge is created in the process of women-friendly policy making, based on actor network theory (ANT). To address this purpose, this study uses the "Women's Happiness in the City of Seoul" policy initiated by the local government of Seoul as one example of policy development. Research findings demonstrate that knowledge creation in expert groups followed the four stages suggested by ANT. In addition, this study found that various types of knowledge emerged from individual experts. This research elucidates the process of knowledge creation and its meanings for women-friendly policy.
Experiencing Collaborative Knowledge Creation Processes
ERIC Educational Resources Information Center
Jakubik, Maria
2008-01-01
Purpose: How people learn and create knowledge together through interactions in communities of practice (CoPs) is not fully understood. The purpose of this paper is to create and apply a model that could increase participants' consciousness about knowledge creation processes. Design/methodology/approach: This four-month qualitative research was…
METHODOLOGICAL NOTES: The Einstein-Podolsky-Rosen paradox for energy-time variables
NASA Astrophysics Data System (ADS)
Klyshko, D. N.
1989-06-01
A new variant of the Einstein-Podolsky-Rosen experiment is discussed which illustrates the complementarity principle and the indeterminancy relations for the energy and the time of creation of photons emitted as correlated pairs in the decay of a metastable state of an atom or in parametric scattering of light. It is shown that it is not possible a priori to ascribe to such photons a definite temporal structure; it acquires an operational meaning only after one of the photons of the pair is recorded by a detector with a definite frequency characteristic. A simple interpretation of the effect is possible by means of an advanced wave emitted by one of the detectors at the instant of the photon being recorded.
Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions
NASA Astrophysics Data System (ADS)
Bais, F. A.; Striet, J.
2003-08-01
Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.
Statefinder diagnostic for modified Chaplygin gas cosmology in f(R,T) gravity with particle creation
NASA Astrophysics Data System (ADS)
Singh, J. K.; Nagpal, Ritika; Pacif, S. K. J.
In this paper, we have studied flat Friedmann-Lemaître-Robertson-Walker (FLRW) model with modified Chaplygin gas (MCG) having equation of state pm = Aρ ‑ B ργ, where 0 ≤ A ≤ 1, 0 ≤ γ ≤ 1 and B is any positive constant in f(R,T) gravity with particle creation. We have considered a simple parametrization of the Hubble parameter H in order to solve the field equations and discussed the time evolution of different cosmological parameters for some obtained models showing unique behavior of scale factor. We have also discussed the statefinder diagnostic pair {r,s} that characterizes the evolution of obtained models and explore their stability. The physical consequences of the models and their kinematic behaviors have also been scrutinized here in some detail.
The Co-Creation-Wheel: A Four-Dimensional Model of Collaborative Interorganistional Innovation
ERIC Educational Resources Information Center
Ehlen, Corry; van der Klink, Marcel; Stoffers, Jol; Boshuizen, Henny
2017-01-01
Purpose: This study aims to design and validate a conceptual and practical model of co-creation. Co-creation, to design collaborative new products, services and processes in contact with users, has become more and more important because organisations increasingly require multidisciplinary collaboration inside and outside the organisation to…
40 CFR 98.120 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... does not include the reuse or recycling of a fluorinated gas, the creation of HFC-23 during the production of HCFC-22, the creation of intermediates that are created and transformed in a single process with no storage of the intermediates, or the creation of fluorinated GHGs that are released or...
40 CFR 98.120 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... does not include the reuse or recycling of a fluorinated gas, the creation of HFC-23 during the production of HCFC-22, the creation of intermediates that are created and transformed in a single process with no storage of the intermediates, or the creation of fluorinated GHGs that are released or...
40 CFR 98.120 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... does not include the reuse or recycling of a fluorinated gas, the creation of HFC-23 during the production of HCFC-22, the creation of intermediates that are created and transformed in a single process with no storage of the intermediates, or the creation of fluorinated GHGs that are released or...
40 CFR 98.120 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... does not include the reuse or recycling of a fluorinated gas, the creation of HFC-23 during the production of HCFC-22, the creation of intermediates that are created and transformed in a single process with no storage of the intermediates, or the creation of fluorinated GHGs that are released or...
Change Creation: The Rest of the Planning Story.
ERIC Educational Resources Information Center
Lick, Dale W.; Kaufman, Roger
2001-01-01
Introduces a new, comprehensive planning and change concept for universities, "change creation," that encompasses both strategic planning and a transition process for the organization from "what is" to "what should be." After exploring change, why it often fails, and the tenets of change creation, presents its steps. A few are: leadership team…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta, D.; Affolder, Anthony A.; Albrow, M.G.
The authors have measured the azimuthal angular correlation of b{bar b} production, using 86.5 pb{sup -1} of data collected by Collider Detector at Fermilab (CDF) in p{bar p} collisions at {radical}s = 1.8 TeV during 1994-1995. In high-energy p{bar p} collisions, such as at the Tevatron, b{bar b} production can be schematically categorized into three mechanisms. The leading-order (LO) process is ''flavor creation'', where both b and {bar b} quarks substantially participate in the hard scattering and result in a distinct back-to-back signal in final state. The ''flavor excitation'' and the ''gluon splitting'' processes, which appear at next-leading-order (NLO), aremore » known to make a comparable contribution to total b{bar b} cross section, while providing very different opening angle distributions from the LO process. An azimuthal opening angle between bottom and anti-bottom, {Delta}{phi}, has been used for the correlation measurement to probe the interaction creating b{bar b} pairs. The {Delta}{phi} distribution has been obtained from two different methods. one method measures the {Delta}{phi} between bottom hadrons using events with two reconstructed secondary vertex tags. The other method uses b{bar b} {yields} (J/{psi}X)({ell}X') events, where the charged lepton ({ell}) is an electron (e) or a muon ({mu}), to measure {Delta}{phi} between bottom quarks. The b{bar b} purity is determined as a function of {Delta}{phi} by fitting the decay length of the J/{psi} and the impact parameter of the {ell}. Both methods quantify the contribution from higher-order production mechanisms by the fraction of the b{bar b} pairs produced in the same azimuthal hemisphere, f{sub toward}. The measured f{sub toward} values are consistent with both parton shower Monte Carlo and NLO QCD predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j
2009-10-01
The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less
Counterion effects on the ultrafast dynamics of charge-transfer-to-solvent electrons.
Rivas, N; Moriena, G; Domenianni, L; Hodak, J H; Marceca, E
2017-12-06
We performed femtosecond transient absorption (TA) experiments to monitor the solvation dynamics of charge-transfer-to-solvent (CTTS) electrons originating from UV photoexcitation of ammoniated iodide in close proximity to the counterions. Solutions of KI were prepared in liquid ammonia and TA experiments were carried out at different temperatures and densities, along the liquid-gas coexistence curve of the fluid. The results complement previous femtosecond TA work by P. Vöhringer's group in neat ammonia via multiphoton ionization. The dynamics of CTTS-detached electrons in ammonia was found to be strongly affected by ion pairing. Geminate recombination time constants as well as escape probabilities were determined from the measured temporal profiles and analysed as a function of the medium density. A fast unresolved (τ < 250 fs) increase of absorption related to the creation/thermalization of solvated electron species was followed by two decay components: one with a characteristic time around 10 ps, and a slower one that remains active for hundreds of picoseconds. While the first process is attributed to an early recombination of (I, e - ) pairs, the second decay and its asymptote reflects the effect of the K + counterion on the geminate recombination dynamics, rate and yield. The cation basically acts as an electron anchor that restricts the ejection distance, leading to solvent-separated counterion-electron species. The formation of (K + , NH 3 , e - ) pairs close to the parent iodine atom brings the electron escape probability to very low values. Transient spectra of the electron species have also been estimated as a function of time by probing the temporal profiles at different wavelengths.
Sonic analog of gravitational black holes in bose-einstein condensates
Garay; Anglin; Cirac; Zoller
2000-11-27
It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap.
NASA Astrophysics Data System (ADS)
Brächer, T.; Pirro, P.; Hillebrands, B.
2017-06-01
Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.
Classical Wave Model of Quantum-Like Processing in Brain
NASA Astrophysics Data System (ADS)
Khrennikov, A.
2011-01-01
We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.
Automated CD-SEM recipe creation technology for mass production using CAD data
NASA Astrophysics Data System (ADS)
Kawahara, Toshikazu; Yoshida, Masamichi; Tanaka, Masashi; Ido, Sanyu; Nakano, Hiroyuki; Adachi, Naokaka; Abe, Yuichi; Nagatomo, Wataru
2011-03-01
Critical Dimension Scanning Electron Microscope (CD-SEM) recipe creation needs sample preparation necessary for matching pattern registration, and recipe creation on CD-SEM using the sample, which hinders the reduction in test production cost and time in semiconductor manufacturing factories. From the perspective of cost reduction and improvement of the test production efficiency, automated CD-SEM recipe creation without the sample preparation and the manual operation has been important in the production lines. For the automated CD-SEM recipe creation, we have introduced RecipeDirector (RD) that enables the recipe creation by using Computer-Aided Design (CAD) data and text data that includes measurement information. We have developed a system that automatically creates the CAD data and the text data necessary for the recipe creation on RD; and, for the elimination of the manual operation, we have enhanced RD so that all measurement information can be specified in the text data. As a result, we have established an automated CD-SEM recipe creation system without the sample preparation and the manual operation. For the introduction of the CD-SEM recipe creation system using RD to the production lines, the accuracy of the pattern matching was an issue. The shape of design templates for the matching created from the CAD data was different from that of SEM images in vision. Thus, a development of robust pattern matching algorithm that considers the shape difference was needed. The addition of image processing of the templates for the matching and shape processing of the CAD patterns in the lower layer has enabled the robust pattern matching. This paper describes the automated CD-SEM recipe creation technology for the production lines without the sample preparation and the manual operation using RD applied in Sony Semiconductor Kyusyu Corporation Kumamoto Technology Center (SCK Corporation Kumamoto TEC).
Planning for Program Design and Assessment Using Value Creation Frameworks
ERIC Educational Resources Information Center
Whisler, Laurel; Anderson, Rachel; Brown, Jenai
2017-01-01
This article explains a program design and planning process using the Value Creation Framework (VCF) developed by Wenger, Trayner, and de Laat (2011). The framework involves identifying types of value or benefit for those involved in the program, conditions and activities that support creation of that value, data that measure whether the value was…
Training for Template Creation: A Performance Improvement Method
ERIC Educational Resources Information Center
Lyons, Paul
2008-01-01
Purpose: There are three purposes to this article: first, to offer a training approach to employee learning and performance improvement that makes use of a step-by-step process of skill/knowledge creation. The process offers follow-up opportunities for skill maintenance and improvement; second, to explain the conceptual bases of the approach; and…
Transparency in the ePortfolio Creation Process
ERIC Educational Resources Information Center
Jones, Stephanie A.; Downs, Elizabeth; Jenkins, Stephen J.
2015-01-01
This paper presents the findings of a study examining the effect of transparency on the ePortfolio creation process. The purpose of the study was to examine whether increased awareness of other students' ePortfolios through the implementation of transparency and peer review would positively affect the quality of performance of school library media…
A Curriculum of Value Creation and Management in Engineering
ERIC Educational Resources Information Center
Yannou, Bernard; Bigand, Michel
2004-01-01
As teachers and researchers belonging to two sister French engineering schools, we are convinced that the processes of value creation and management are essential in today's teaching of industrial engineering and project managers. We believe that such processes may be embedded in a three-part curriculum composed of value management and innovation…
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro
2005-07-06
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, Ronaldo V.; Malheiro, M.; Coelho, J. G.
Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study wemore » consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.« less
Gortais, Bernard
2003-01-01
In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659
Gortais, Bernard
2003-07-29
In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music.
The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies
Turchinovich, Dmitry; Kläui, Mathias; Hendry, Euan; Polini, Marco
2018-01-01
For many of the envisioned optoelectronic applications of graphene, it is crucial to understand the subpicosecond carrier dynamics immediately following photoexcitation and the effect of photoexcitation on the electrical conductivity—the photoconductivity. Whereas these topics have been studied using various ultrafast experiments and theoretical approaches, controversial and incomplete explanations concerning the sign of the photoconductivity, the occurrence and significance of the creation of additional electron-hole pairs, and, in particular, how the relevant processes depend on Fermi energy have been put forward. We present a unified and intuitive physical picture of the ultrafast carrier dynamics and the photoconductivity, combining optical pump–terahertz probe measurements on a gate-tunable graphene device, with numerical calculations using the Boltzmann equation. We distinguish two types of ultrafast photo-induced carrier heating processes: At low (equilibrium) Fermi energy (EF ≲ 0.1 eV for our experiments), broadening of the carrier distribution involves interband transitions (interband heating). At higher Fermi energy (EF ≳ 0.15 eV), broadening of the carrier distribution involves intraband transitions (intraband heating). Under certain conditions, additional electron-hole pairs can be created [carrier multiplication (CM)] for low EF, and hot carriers (hot-CM) for higher EF. The resultant photoconductivity is positive (negative) for low (high) EF, which in our physical picture, is explained using solely electronic effects: It follows from the effect of the heated carrier distributions on the screening of impurities, consistent with the DC conductivity being mostly due to impurity scattering. The importance of these insights is highlighted by a discussion of the implications for graphene photodetector applications. PMID:29756035
Rosandić, Marija; Vlahović, Ines; Glunčić, Matko; Paar, Vladimir
2016-07-01
For almost 50 years the conclusive explanation of Chargaff's second parity rule (CSPR), the equality of frequencies of nucleotides A=T and C=G or the equality of direct and reverse complement trinucleotides in the same DNA strand, has not been determined yet. Here, we relate CSPR to the interstrand mirror symmetry in 20 symbolic quadruplets of trinucleotides (direct, reverse complement, complement, and reverse) mapped to double-stranded genome. The symmetries of Q-box corresponding to quadruplets can be obtained as a consequence of Watson-Crick base pairing and CSPR together. Alternatively, assuming Natural symmetry law for DNA creation that each trinucleotide in one strand of DNA must simultaneously appear also in the opposite strand automatically leads to Q-box direct-reverse mirror symmetry which in conjunction with Watson-Crick base pairing generates CSPR. We demonstrate quadruplet's symmetries in chromosomes of wide range of organisms, from Escherichia coli to Neanderthal and human genomes, introducing novel quadruplet-frequency histograms and 3D-diagrams with combined interstrand frequencies. These "landscapes" are mutually similar in all mammals, including extinct Neanderthals, and somewhat different in most of older species. In human chromosomes 1-12, and X, Y the "landscapes" are almost identical and slightly different in the remaining smaller and telocentric chromosomes. Quadruplet frequencies could provide a new robust tool for characterization and classification of genomes and their evolutionary trajectories.
ERIC Educational Resources Information Center
Song, Ji Hoon
2008-01-01
This research aims to identify the influence of learning organization culture on the practices of organizational knowledge-creation. Actionable knowledge-creation practices are put forward as a variable in preference to the learning process itself because they may be more closely related to the achievement of individual and/or organizational…
JACKSON, CLAIRE; SHAW, SARA; JANAMIAN, TINA
2016-01-01
Policy Points: Co‐creation—collaborative knowledge generation by academics working alongside other stakeholders—is an increasingly popular approach to aligning research and service development.It has potential for “moving beyond the ivory towers” to deliver significant societal impact via dynamic, locally adaptive community‐academic partnerships.Principles of successful co‐creation include a systems perspective, a creative approach to research focused on improving human experience, and careful attention to governance and process.If these principles are not followed, co‐creation efforts may fail. Context Co‐creation—collaborative knowledge generation by academics working alongside other stakeholders—reflects a “Mode 2” relationship (knowledge production rather than knowledge translation) between universities and society. Co‐creation is widely believed to increase research impact. Methods We undertook a narrative review of different models of co‐creation relevant to community‐based health services. We contrasted their diverse disciplinary roots and highlighted their common philosophical assumptions, principles of success, and explanations for failures. We applied these to an empirical case study of a community‐based research‐service partnership led by the Centre of Research Excellence in Quality and Safety in Integrated Primary‐Secondary Care at the University of Queensland, Australia. Findings Co‐creation emerged independently in several fields, including business studies (“value co‐creation”), design science (“experience‐based co‐design”), computer science (“technology co‐design”), and community development (“participatory research”). These diverse models share some common features, which were also evident in the case study. Key success principles included (1) a systems perspective (assuming emergence, local adaptation, and nonlinearity); (2) the framing of research as a creative enterprise with human experience at its core; and (3) an emphasis on process (the framing of the program, the nature of relationships, and governance and facilitation arrangements, especially the style of leadership and how conflict is managed). In both the literature review and the case study, co‐creation “failures” could often be tracked back to abandoning (or never adopting) these principles. All co‐creation models made strong claims for significant and sustainable societal impacts as a result of the adaptive and developmental research process; these were illustrated in the case study. Conclusions Co‐creation models have high potential for societal impact but depend critically on key success principles. To capture the nonlinear chains of causation in the co‐creation pathway, impact metrics must reflect the dynamic nature and complex interdependencies of health research systems and address processes as well as outcomes. PMID:27265562
On the chemical reaction of matter with antimatter.
Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola
2007-06-04
A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein.
Nomura, Yasunori; Salzetta, Nico
2016-08-04
The firewall paradox for black holes is often viewed as indicating a conflict between unitarity and the equivalence principle. We elucidate how the paradox manifests as a limitation of semiclassical theory, rather than presents a conflict between fundamental principles. Two principal features of the fundamental and semiclassical theories address two versions of the paradox: the entanglement and typicality arguments. First, the physical Hilbert space describing excitations on a fixed black hole background in the semiclassical theory is exponentially smaller than the number of physical states in the fundamental theory of quantum gravity. Second, in addition to the Hilbert space formore » physical excitations, the semiclassical theory possesses an unphysically large Fock space built by creation and annihilation operators on the fixed black hole background. Understanding these features not only eliminates the necessity of firewalls but also leads to a new picture of Hawking emission contrasting pair creation at the horizon.« less
ERIC Educational Resources Information Center
Yuksekyalcin, Gozen; Tanriseven, Isil; Sancar-Tokmak, Hatice
2016-01-01
This case study investigated math and science teachers' perceptions about the use of creative drama during a digital story (DS) creation process for educational purposes. A total of 25 secondary science and math teachers were selected according to criterion sampling strategy to participate in the study. Data were collected through an open-ended…
NASA Astrophysics Data System (ADS)
Saldana, Tiffany; McGarvey, Steve; Ayres, Steve
2014-04-01
The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raposo, Maria, E-mail: mfr@fct.unl.pt; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.
2015-09-21
Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solutionmore » constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.« less
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe.
Gertz, E Michael; Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe
Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A.
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees. PMID:27362268
Knowledge Value Creation Characteristics of Virtual Teams: A Case Study in the Construction Sector
NASA Astrophysics Data System (ADS)
Vorakulpipat, Chalee; Rezgui, Yacine
Any knowledge environment aimed at virtual teams should promote identification, access, capture and retrieval of relevant knowledge anytime / anywhere, while nurturing the social activities that underpin the knowledge sharing and creation process. In fact, socio-cultural issues play a critical role in the successful implementation of Knowledge Management (KM), and constitute a milestone towards value creation. The findings indicate that Knowledge Management Systems (KMS) promote value creation when they embed and nurture the social conditions that bind and bond team members together. Furthermore, technology assets, human networks, social capital, intellectual capital, and change management are identified as essential ingredients that have the potential to ensure effective knowledge value creation.
Magnetic Reconnection in Extreme Astrophysical Environments
NASA Astrophysics Data System (ADS)
Uzdensky, Dmitri A.
2011-10-01
Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD's frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth's magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research—reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end—QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014-1015 G, exceeding the quantum critical field B ∗≃4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.
NASA Astrophysics Data System (ADS)
Baumann, C.; Pukhov, A.
2016-12-01
The behavior of a thin plasma target irradiated by two counterpropagating laser pulses of ultrahigh intensity is studied in the framework of one- and two-dimensional particle-in-cell simulations. It is found that above an intensity threshold, radiative trapping can focus electrons in the peaks of the electromagnetic field. At even higher intensities, the trapping effect cannot be maintained according to the increasing influence of electron-positron pair production on the laser-plasma dynamics.
A Java software for creation of image mosaics.
Bossert, Oliver
2004-08-01
Besides the dimensions of the selected image field width, the resolution of the individual objects is also of major importance for automatic reconstruction and other sophisticated histological work. The software solution presented here allows the user to create image mosaics by using a combination of several photographs. Optimum control is achieved by combining two procedures and several control mechanisms. In sample tests involving 50 image pairs, all images were mosaiced without giving rise to error. The program is ready for public download.
Creating customer value by streamlining business processes.
Vantrappen, H
1992-02-01
Much of the strategic preoccupation of senior managers in the 1990s is focusing on the creation of customer value. Companies are seeking competitive advantage by streamlining the three processes through which they interact with their customers: product creation, order handling and service assurance. 'Micro-strategy' is a term which has been coined for the trade-offs and decisions on where and how to streamline these three processes. The article discusses micro-strategies applied by successful companies.
Tumpa, Anja; Stajić, Ana; Jančić-Stojanović, Biljana; Medenica, Mirjana
2017-02-05
This paper deals with the development of hydrophilic interaction liquid chromatography (HILIC) method with gradient elution, in accordance with Analytical Quality by Design (AQbD) methodology, for the first time. The method is developed for olanzapine and its seven related substances. Following step by step AQbD methodology, firstly as critical process parameters (CPPs) temperature, starting content of aqueous phase and duration of linear gradient are recognized, and as critical quality attributes (CQAs) separation criterion S of critical pairs of substances are investigated. Rechtschaffen design is used for the creation of models that describe the dependence between CPPs and CQAs. The design space that is obtained at the end is used for choosing the optimal conditions (set point). The method is fully validated at the end to verify the adequacy of the chosen optimal conditions and applied to real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
The behavior of small helium clusters near free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Barashev, A. V.; Xu, H.; Stoller, R. E.
2014-11-01
The results of a computational study of helium-vacancy clusters in tungsten are reported. A recently developed atomistic kinetic Monte Carlo method employing empirical interatomic potentials was used to investigate the behavior of clusters composed of three interstitial-helium atoms near {1 1 1}, {1 1 0} and {1 0 0} free surfaces. Multiple configurations were examined and the local energy landscape was characterized to determine cluster mobility and the potential for interactions with the surface. The clusters were found to be highly mobile if far from the surface, but were attracted and bound to the surface when within a distance of a few lattice parameters. When near the surface, the clusters were transformed into an immobile configuration due to the creation of a Frenkel pair; the vacancy was incorporated into what became a He3-vacancy complex. The corresponding interstitial migrated to and became an adatom on the free surface. This process can contribute to He retention, and may be responsible for the observed deterioration of the plasma-exposed tungsten surfaces.
NASA Astrophysics Data System (ADS)
Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.
2015-07-01
In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essman, Eric P.; Aganagic, Mina; Okuda, Takuya
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preservemore » a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.« less
Memory for Multiple Cache Locations and Prey Quantities in a Food-Hoarding Songbird
Armstrong, Nicola; Garland, Alexis; Burns, K. C.
2012-01-01
Most animals can discriminate between pairs of numbers that are each less than four without training. However, North Island robins (Petroica longipes), a food-hoarding songbird endemic to New Zealand, can discriminate between quantities of items as high as eight without training. Here we investigate whether robins are capable of other complex quantity discrimination tasks. We test whether their ability to discriminate between small quantities declines with (1) the number of cache sites containing prey rewards and (2) the length of time separating cache creation and retrieval (retention interval). Results showed that subjects generally performed above-chance expectations. They were equally able to discriminate between different combinations of prey quantities that were hidden from view in 2, 3, and 4 cache sites from between 1, 10, and 60 s. Overall results indicate that North Island robins can process complex quantity information involving more than two discrete quantities of items for up to 1 min long retention intervals without training. PMID:23293622
Memory for multiple cache locations and prey quantities in a food-hoarding songbird.
Armstrong, Nicola; Garland, Alexis; Burns, K C
2012-01-01
Most animals can discriminate between pairs of numbers that are each less than four without training. However, North Island robins (Petroica longipes), a food-hoarding songbird endemic to New Zealand, can discriminate between quantities of items as high as eight without training. Here we investigate whether robins are capable of other complex quantity discrimination tasks. We test whether their ability to discriminate between small quantities declines with (1) the number of cache sites containing prey rewards and (2) the length of time separating cache creation and retrieval (retention interval). Results showed that subjects generally performed above-chance expectations. They were equally able to discriminate between different combinations of prey quantities that were hidden from view in 2, 3, and 4 cache sites from between 1, 10, and 60 s. Overall results indicate that North Island robins can process complex quantity information involving more than two discrete quantities of items for up to 1 min long retention intervals without training.
'Ethos' Enabling Organisational Knowledge Creation
NASA Astrophysics Data System (ADS)
Matsudaira, Yoshito
This paper examines knowledge creation in relation to improvements on the production line in the manufacturing department of Nissan Motor Company and aims to clarify embodied knowledge observed in the actions of organisational members who enable knowledge creation will be clarified. For that purpose, this study adopts an approach that adds a first, second, and third-person's viewpoint to the theory of knowledge creation. Embodied knowledge, observed in the actions of organisational members who enable knowledge creation, is the continued practice of 'ethos' (in Greek) founded in Nissan Production Way as an ethical basis. Ethos is knowledge (intangible) assets for knowledge creating companies. Substantiated analysis classifies ethos into three categories: the individual, team and organisation. This indicates the precise actions of the organisational members in each category during the knowledge creation process. This research will be successful in its role of showing the indispensability of ethos - the new concept of knowledge assets, which enables knowledge creation -for future knowledge-based management in the knowledge society.
Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope
NASA Astrophysics Data System (ADS)
Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.
2017-06-01
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.
Confinement with Perturbation Theory, After All?
NASA Astrophysics Data System (ADS)
Hoyer, Paul
2015-09-01
I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.
English semantic word-pair norms and a searchable Web portal for experimental stimulus creation.
Buchanan, Erin M; Holmes, Jessica L; Teasley, Marilee L; Hutchison, Keith A
2013-09-01
As researchers explore the complexity of memory and language hierarchies, the need to expand normed stimulus databases is growing. Therefore, we present 1,808 words, paired with their features and concept-concept information, that were collected using previously established norming methods (McRae, Cree, Seidenberg, & McNorgan Behavior Research Methods 37:547-559, 2005). This database supplements existing stimuli and complements the Semantic Priming Project (Hutchison, Balota, Cortese, Neely, Niemeyer, Bengson, & Cohen-Shikora 2010). The data set includes many types of words (including nouns, verbs, adjectives, etc.), expanding on previous collections of nouns and verbs (Vinson & Vigliocco Journal of Neurolinguistics 15:317-351, 2008). We describe the relation between our and other semantic norms, as well as giving a short review of word-pair norms. The stimuli are provided in conjunction with a searchable Web portal that allows researchers to create a set of experimental stimuli without prior programming knowledge. When researchers use this new database in tandem with previous norming efforts, precise stimuli sets can be created for future research endeavors.
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.
2016-05-01
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.
Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.
2016-01-01
The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397
McLaren, Jay W; Bourne, William M; Maguire, Leo J; Patel, Sanjay V
2015-07-01
To determine the effects of keratocyte loss on optical properties and vision after laser in situ keratomileusis (LASIK) with the flap created with a femtosecond laser or a mechanical microkeratome. Randomized clinical paired-eye study. Both eyes of 21 patients received LASIK for myopia or myopic astigmatism. One eye of each patient was randomized by ocular dominance to flap creation with a femtosecond laser and the other eye to flap creation with a mechanical microkeratome. Before LASIK and at 1, 3, and 6 months and 1, 3, and 5 years after LASIK, keratocyte density was measured using confocal microscopy, and high-contrast visual acuity and anterior corneal wavefront aberrations were measured by standard methods. At each visit, all variables were compared between methods of creating the flap and to the same variable before treatment using paired tests with Bonferroni correction for multiple comparisons. Keratocyte density in the flap decreased by 20% during the first year after LASIK and remained low through 5 years (P < .001). High-order wavefront aberrations increased and uncorrected visual acuity improved immediately after surgery, but these variables did not change further to 5 years. There were no differences in any variables between treatments. A sustained reduction in keratocyte density does not affect vision or optical properties of the cornea through 5 years after LASIK. The method of creating a LASIK flap does not influence the changes in keratocyte density in the flap. Copyright © 2015 Elsevier Inc. All rights reserved.
In Situ Biotreatment of TBA with Recirculation/Oxygenation
North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.
2012-01-01
The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537
In Situ Biotreatment of TBA with Recirculation/Oxygenation.
North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M
2012-01-01
The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Pattern-based information portal for business plan co-creation
NASA Astrophysics Data System (ADS)
Bontchev, Boyan; Ruskov, Petko; Tanev, Stoyan
2011-03-01
Creation of business plans helps entrepreneurs in managing identification of business opportunities and committing necessary resources for process evolution. Applying patterns in business plan creation facilitates the identification of effective solutions that were adopted in the past and may provide a basis for adopting similar solutions in the future within given business context. The article presents the system design of an information portal for business plan co-creation based on patterns. The portal is going to provide start-up and entrepreneurs with ready-to-modify business plan patterns in order to help them in development of effective and efficient business plans. It will facilitate entrepreneurs in co-experimenting and co-learning more frequently and faster. Moreover, the paper focuses on the software architecture of the pattern based portal and explains the functionality of its modules, namely the pattern designer, pattern repository services and agent-based pattern implementers. It explains their role for business process co-creation, storing and managing patterns described formally, and selecting patterns best suited for specific business case. Thus, innovative entrepreneurs will be guided by the portal in co-writing winning business plans and staying competitive in the present day dynamic globalized environment.
Pattern-based information portal for business plan co-creation
NASA Astrophysics Data System (ADS)
Bontchev, Boyan; Ruskov, Petko; Tanev, Stoyan
2010-10-01
Creation of business plans helps entrepreneurs in managing identification of business opportunities and committing necessary resources for process evolution. Applying patterns in business plan creation facilitates the identification of effective solutions that were adopted in the past and may provide a basis for adopting similar solutions in the future within given business context. The article presents the system design of an information portal for business plan co-creation based on patterns. The portal is going to provide start-up and entrepreneurs with ready-to-modify business plan patterns in order to help them in development of effective and efficient business plans. It will facilitate entrepreneurs in co-experimenting and co-learning more frequently and faster. Moreover, the paper focuses on the software architecture of the pattern based portal and explains the functionality of its modules, namely the pattern designer, pattern repository services and agent-based pattern implementers. It explains their role for business process co-creation, storing and managing patterns described formally, and selecting patterns best suited for specific business case. Thus, innovative entrepreneurs will be guided by the portal in co-writing winning business plans and staying competitive in the present day dynamic globalized environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, J.F.; Pereira, S.H., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com
In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε for the scale factor in the matter dominated era of the form t{sup 2/3+ε}. Based on recent H(z) data, the best fit values for the mass of dark matter created particles and the ε parameter have been foundmore » as m = 1.6× 10{sup 3} GeV, restricted to a 68.3% c.l. interval of 1.5 < m < 6.3× 10{sup 7}) GeV and ε = -0.250{sup +0.15}{sub -0.096} at 68.3% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called ''dark degeneracy'', where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion.« less
Radiation-mediated Shocks in Gamma-Ray Bursts: Pair Creation
NASA Astrophysics Data System (ADS)
Lundman, Christoffer; Beloborodov, Andrei M.; Vurm, Indrek
2018-05-01
Relativistic sub-photospheric shocks are a possible mechanism for producing prompt gamma-ray burst (GRB) emission. Such shocks are mediated by scattering of radiation. We introduce a time-dependent, special relativistic code which dynamically couples Monte Carlo radiative transfer to the flow hydrodynamics. The code also self-consistently follows electron–positron pair production in photon–photon collisions. We use the code to simulate shocks with properties relevant to GRBs. We focus on plane-parallel solutions, which are accurate deep below the photosphere. The shock generates a power-law photon spectrum through the first-order Fermi mechanism, extending upward from the typical upstream photon energy. Strong (high Mach number) shocks produce rising νF ν spectra. We observe that in non-relativistic shocks the spectrum extends to {E}\\max ∼ {m}e{v}2, where v is the speed difference between the upstream and downstream. In relativistic shocks the spectrum extends to energies E> 0.1 {m}e{c}2 where its slope softens due to Klein–Nishina effects. Shocks with Lorentz factors γ > 1.5 are prolific producers of electron–positron pairs, yielding hundreds of pairs per proton. The main effect of pairs is to reduce the shock width by a factor of ∼ {Z}+/- -1. Most pairs annihilate far downstream of the shock, and the radiation spectrum relaxes to a Wien distribution, reaching equilibrium with the plasma at a temperature determined by the shock jump conditions and the photon number per proton. We discuss the implications of our results for observations of radiation generated by sub-photospheric shocks.
NASA Astrophysics Data System (ADS)
Gossard, Paula Rae
Authors of recent science reform documents promote the goal of scientific literacy for all Americans (American Association for the Advancement of Science, 1989, 1993). Some students, however, feel apprehensive about learning science due to perceptions that science is antagonistic to their world views (Alters, 2005; Esbenshade, 1993). This study investigated the effect of an introductory science course taught in the context of a Christian, theistic world view on the scientific compatibility of religious college students' world views. For the purposes of this study, students' understanding of the nature of science, affective attitudes toward science, and beliefs regarding creation were used as indicators of the scientific compatibility of their world views. One hundred and seventy-one students enrolled in a core curriculum, introductory science course at a Christian university participated in this study by completing pre-instruction and post-instruction survey packets that included demographic information, the Student Understanding of Science and Scientific Inquiry questionnaire (Liang et al., 2006), the Affective Attitude toward Science Scale (Francis & Greer, 1999), and the Origins Survey (Tenneson & Badger, personal communication, June, 2008). Two-tailed paired samples t tests were used to test for significant mean differences in the indicator variables at a .05 level before and after instruction. Pearson correlation coefficients were calculated to determine if relationships were present among the indicator variables at a .05 level before and after instruction. Students' self-identified positions regarding creation were analyzed using a chi-square contingency table. Results indicated that there were statistically significant changes in all indicator variables after instruction of the contextualized course. The direction of these changes and shifts in students' self-identified positions regarding creation supported the conclusion that students developed a more scentifically compatible world view after contextualized instruction based on the indicators used in this study. Weak positive correlations were found between nature of science understanding and young earth creation before and after instruction; weak negative correlations were found between nature of science understanding and old earth creation and evolutionary creation before, but not after, instruction. Conclusions, implications for practice, and recommendations for future research are included.
Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng
2017-01-01
This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars’ scientific co-author networks. The result indicates that tie stability changes the teams’ information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape. PMID:28993744
Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng
2017-01-01
This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars' scientific co-author networks. The result indicates that tie stability changes the teams' information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape.
Computer Assisted Multi-Center Creation of Medical Knowledge Bases
Giuse, Nunzia Bettinsoli; Giuse, Dario A.; Miller, Randolph A.
1988-01-01
Computer programs which support different aspects of medical care have been developed in recent years. Their capabilities range from diagnosis to medical imaging, and include hospital management systems and therapy prescription. In spite of their diversity these systems have one commonality: their reliance on a large body of medical knowledge in computer-readable form. This knowledge enables such programs to draw inferences, validate hypotheses, and in general to perform their intended task. As has been clear to developers of such systems, however, the creation and maintenance of medical knowledge bases are very expensive. Practical and economical difficulties encountered during this long-term process have discouraged most attempts. This paper discusses knowledge base creation and maintenance, with special emphasis on medical applications. We first describe the methods currently used and their limitations. We then present our recent work on developing tools and methodologies which will assist in the process of creating a medical knowledge base. We focus, in particular, on the possibility of multi-center creation of the knowledge base.
NASA Astrophysics Data System (ADS)
Esparza, Javier
In many areas of computer science entities can “reproduce”, “replicate”, or “create new instances”. Paramount examples are threads in multithreaded programs, processes in operating systems, and computer viruses, but many others exist: procedure calls create new incarnations of the callees, web crawlers discover new pages to be explored (and so “create” new tasks), divide-and-conquer procedures split a problem into subproblems, and leaves of tree-based data structures become internal nodes with children. For lack of a better name, I use the generic term systems with process creation to refer to all these entities.
Reflectance of topologically disordered photonic-crystal films
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt
2005-04-01
Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.
Simulations of "tunnelling of the 3rd kind"
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tognarelli, Paul; Tranberg, Anders
2017-07-01
We consider the phenomenon of "tunnelling of the 3rd kind" [1], whereby a magnetic field may traverse a classically impenetrable barrier by pair creation of unimpeded quantum fermions. These propagate through the barrier and generate a magnetic field on the other side. We study this numerically using quantum fermions coupled to a classical Higgs-gauge system, where we set up a magnetic field outside a box shielded by two superconducting barriers. We examine the magnitude of the internal magnetic field, and find agreement with existing perturbative results within a factor of two.
Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene
NASA Astrophysics Data System (ADS)
Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.
1994-07-01
The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.
Investigating Knowledge Creation Technology in an Engineering Course
ERIC Educational Resources Information Center
Jalonen, Satu; Lakkala, Minna; Paavola, Sami
2011-01-01
The aim of the present study was to examine the technological affordances of a web-based collaborative learning technology, Knowledge Practices Environment (KPE), for supporting different dimensions of knowledge creation processes. KPE was used by engineering students in a practically oriented undergraduate engineering course. The study…
Toward a Neurobiology of Child Psychotherapy
ERIC Educational Resources Information Center
Kay, Jerald
2009-01-01
Brain imaging studies have demonstrated that psychotherapy alters brain structure and function. Learning and memory, both implicit and explicit, play central roles in this process through the creation of new genetic material that leads to increased synaptic efficiency through the creation of new neuronal connections. Although there is substantial…
3 CFR - Regulatory Flexibility, Small Business, and Job Creation
Code of Federal Regulations, 2012 CFR
2012-01-01
..., economic growth, and job creation. More than half of all Americans working in the private sector either are... imposing unnecessary burdens on the public. The RFA emphasizes the importance of recognizing “differences... also encourages public participation in and transparency about the rulemaking process. Among other...
Dynamical Reference Frame - Current Relevance and Future Prospects
2000-03-01
mentioned that the concepts of ecliptic , obliquity , and mean equator are now obsolete in the context of modern ephemeris creation. 2. Ephemerides...based upon the ICRF, there is no longer an explicit use of the celestial equator, equinox, or ecliptic in the ephemeris creation process. These elements
The Leader's Role in Strategic Knowledge Creation and Mobilization
ERIC Educational Resources Information Center
Reid, Steven
2013-01-01
The purpose of this paper is to explore how leaders influence knowledge creation and mobilization processes. As a basis for the theoretical framework, the researcher selected theories that informed the investigation of this influence: leadership theory, knowledge theory, learning theory, organizational learning theory, and organizational knowledge…
Network Analysis of an Emergent Massively Collaborative Creation on Video Sharing Website
NASA Astrophysics Data System (ADS)
Hamasaki, Masahiro; Takeda, Hideaki; Nishimura, Takuichi
The Web technology enables numerous people to collaborate in creation. We designate it as massively collaborative creation via the Web. As an example of massively collaborative creation, we particularly examine video development on Nico Nico Douga, which is a video sharing website that is popular in Japan. We specifically examine videos on Hatsune Miku, a version of a singing synthesizer application software that has inspired not only song creation but also songwriting, illustration, and video editing. As described herein, creators of interact to create new contents through their social network. In this paper, we analyzed the process of developing thousands of videos based on creators' social networks and investigate relationships among creation activity and social networks. The social network reveals interesting features. Creators generate large and sparse social networks including some centralized communities, and such centralized community's members shared special tags. Different categories of creators have different roles in evolving the network, e.g., songwriters gather more links than other categories, implying that they are triggers to network evolution.
State-of-the-art Nanofabrication in Catalysis.
Karim, Waiz; Tschupp, Simon A; Herranz, Juan; Schmidt, Thomas J; Ekinci, Yasin; van Bokhovenac, Jeroen A
2017-04-26
We present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top-down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.
Towards Semantic Modelling of Business Processes for Networked Enterprises
NASA Astrophysics Data System (ADS)
Furdík, Karol; Mach, Marián; Sabol, Tomáš
The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.
Offering a Framework for Value Co-Creation in Virtual Academic Learning Environments
ERIC Educational Resources Information Center
Ranjbarfard, Mina; Heidari Sureshjani, Mahboobeh
2018-01-01
Purpose: This research aims to convert the traditional teacher-student models, in which teachers determine the learning resources, into a flexible structure and an active learning environment so that students can participate in the educational processes and value co-creation in virtual academic learning environments (VALEs).…
Uprising of Creation in Education
ERIC Educational Resources Information Center
Hatamleh, Habes Mohamed
2015-01-01
This research (Uprising of Creation in Education) aims at defining the importance of creativity in education, and its reflection on the elements of the educational process. Creativity is regarded an important element in the nations progress, which depends on the minds of their sons. Creativity became the language of the present age, after the…
NASA Technical Reports Server (NTRS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
1996-01-01
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.
NASA Astrophysics Data System (ADS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.
Mitchell, C; Sherman, L; Nielsen, S; Nelson, P; Trumbo, P; Hodges, T; Hasegawa, P; Bressan, R; Ladisch, M; Auslander, D
1996-01-01
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.
Creating and Selling Embryos for “Donation”: Ethical Challenges
Klitzman, Robert; Sauer, Mark V.
2015-01-01
The commercial creation and sale of embryos has begun, posing a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, firstly, regarding the rights of the unborn children – their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring will thus never learn that their parents are not their biological parents. Yet, such disclosures – regarding not only one, but both of these biological parents – may be important for these individuals; and lack of this knowledge may impede their physical and psychological health. Secondly, questions surface regarding the fees that providers should charge for embryos, and whether these amounts should vary based on the traits of one or both of the gamete donors. Some prospective parents may seek specific traits in a baby (e.g., height or eye/hair coloring), prompting creation of embryos from two gamete donors who possess these characteristics. Thirdly, ownership of embryos created without an advanced directive by patients poses dilemmas – e.g., disposition of any remaining embryos. Fourthly, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married and procreate. This discussion has several critical implications for future practice, and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists and other physicians about these techniques and practices. Clinicians can refer such patients to Assisted Reproductive Technology specialists, but familiarity with the basic aspects of the issues and complexities involved could aid themselves and their patients Several of these issues can be relatively easily addressed through guidelines from professional associations (e.g., limiting the number of embryos sold from each pair of gamete donors). As creation and sales of embryos will likely spread, consideration of appropriate responses is critical in order to establish standards of care to help the future offspring, and ensure ongoing public trust. PMID:25448512
Creating and selling embryos for "donation": ethical challenges.
Klitzman, Robert; Sauer, Mark V
2015-02-01
The commercial creation and sale of embryos has begun, which poses a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, first, regarding the rights of the unborn children and their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring thus will never learn that their parents are not their biologic parents. Yet, such disclosures, regarding not only one but both of these biologic parents, may be important for these individuals; and a lack of this knowledge may impede their physical and psychological health. Second, questions surface regarding the fees that providers should charge for embryos and whether these amounts should vary based on the traits of 1 or both of the gamete donors. Some prospective parents may seek specific traits in a baby (eg, height or eye/hair coloring), which prompts the creation of embryos from 2 gamete donors who possess these characteristics. Third, ownership of embryos created without an advanced directive by patients poses dilemmas (eg, disposition of any remaining embryos). Fourth, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married, and procreate. This discussion has several critical implications for future practice and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists, and other physicians about these techniques and practices. Clinicians can refer such patients to assisted reproductive technology specialists; however, familiarity with the basic aspects of the issues and complexities involved could aid these providers and their patients Several of these issues can be addressed relatively easily through guidelines from professional associations (eg, limiting the number of embryos sold from each pair of gamete donors). Because creation and sales of embryos will likely spread, consideration of appropriate responses is critical to establish standards of care to help the future offspring, and ensure ongoing public trust. Copyright © 2015 Elsevier Inc. All rights reserved.
Rubinelli, Sara
2017-01-01
Background The use of online communities to promote end user involvement and co-creation in the product and service innovation process is well documented in the marketing and management literature. Whereas online communities are widely used for health care service provision and peer-to-peer support, only little is known about how they could be integrated into the health care innovation process. Objective The overall objective of this qualitative study was to explore community managers’ views on and experiences with knowledge co-creation in online communities for people with disabilities. Methods A descriptive qualitative research design was used. Data were collected through semi-structured interviews with nine community managers. To complement the interview data, additional information was retrieved from the communities in the form of structural information (number of registered users, number and names of topic areas covered by the forum) and administrative information (terms and conditions and privacy statements, forum rules). Data were analyzed using thematic analysis. Results Our results highlight two main aspects: peer-to-peer knowledge co-creation and types of collaboration with external actors. Although community managers strongly encouraged peer-to-peer knowledge co-creation, our findings indicated that these activities were not common practice in the communities under investigation. In fact, much of what related to co-creation, prototyping, and product development was still perceived to be directed by professionals and experts. Community managers described the role of their respective communities as informing this process rather than a driving force. The role of community members as advisors to researchers, health care professionals, and businesses was discussed in the context of types of collaboration with external actors. According to the community managers, most of the external inquiries related to research projects of students or health care professionals in training, who often joined a community for the sole purpose of recruiting participants for their research. Despite this unilateral form of knowledge co-creation, community managers acknowledged the mere interest of these user groups as beneficial, as long as their interest was not purely financially motivated. Being able to contribute to advancing research, improving products, and informing the planning and design of health care services were described as some of the key motivations to engage with external stakeholders. Conclusions This paper draws attention to the currently under-investigated role of online communities as platforms for collaboration and co-creation between patients, health care professionals, researchers, and businesses. It describes community managers’ views on and experiences with knowledge co-creation and provides recommendations on how these activities can be leveraged to foster knowledge co-creation in health care. Engaging in knowledge co-creation with online health communities may ultimately help to inform the planning and design of products, services, and research activities that better meet the actual needs of those living with a disability. PMID:29017993
Amann, Julia; Rubinelli, Sara
2017-10-10
The use of online communities to promote end user involvement and co-creation in the product and service innovation process is well documented in the marketing and management literature. Whereas online communities are widely used for health care service provision and peer-to-peer support, only little is known about how they could be integrated into the health care innovation process. The overall objective of this qualitative study was to explore community managers' views on and experiences with knowledge co-creation in online communities for people with disabilities. A descriptive qualitative research design was used. Data were collected through semi-structured interviews with nine community managers. To complement the interview data, additional information was retrieved from the communities in the form of structural information (number of registered users, number and names of topic areas covered by the forum) and administrative information (terms and conditions and privacy statements, forum rules). Data were analyzed using thematic analysis. Our results highlight two main aspects: peer-to-peer knowledge co-creation and types of collaboration with external actors. Although community managers strongly encouraged peer-to-peer knowledge co-creation, our findings indicated that these activities were not common practice in the communities under investigation. In fact, much of what related to co-creation, prototyping, and product development was still perceived to be directed by professionals and experts. Community managers described the role of their respective communities as informing this process rather than a driving force. The role of community members as advisors to researchers, health care professionals, and businesses was discussed in the context of types of collaboration with external actors. According to the community managers, most of the external inquiries related to research projects of students or health care professionals in training, who often joined a community for the sole purpose of recruiting participants for their research. Despite this unilateral form of knowledge co-creation, community managers acknowledged the mere interest of these user groups as beneficial, as long as their interest was not purely financially motivated. Being able to contribute to advancing research, improving products, and informing the planning and design of health care services were described as some of the key motivations to engage with external stakeholders. This paper draws attention to the currently under-investigated role of online communities as platforms for collaboration and co-creation between patients, health care professionals, researchers, and businesses. It describes community managers' views on and experiences with knowledge co-creation and provides recommendations on how these activities can be leveraged to foster knowledge co-creation in health care. Engaging in knowledge co-creation with online health communities may ultimately help to inform the planning and design of products, services, and research activities that better meet the actual needs of those living with a disability. ©Julia Amann, Sara Rubinelli. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.10.2017.
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
Woo, Karen; Lok, Charmaine E
2016-08-08
Optimal vascular access planning begins when the patient is in the predialysis stages of CKD. The choice of optimal vascular access for an individual patient and determining timing of access creation are dependent on a multitude of factors that can vary widely with each patient, including demographics, comorbidities, anatomy, and personal preferences. It is important to consider every patient's ESRD life plan (hence, their overall dialysis access life plan for every vascular access creation or placement). Optimal access type and timing of access creation are also influenced by factors external to the patient, such as surgeon experience and processes of care. In this review, we will discuss the key determinants in optimal access type and timing of access creation for upper extremity arteriovenous fistulas and grafts. Copyright © 2016 by the American Society of Nephrology.
Rapid creation of distant entanglement by multi-photon resonant fluorescence
NASA Astrophysics Data System (ADS)
Cohen, Guy Z.; Sham, L. J.
2014-03-01
We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.
Dovel, Kathryn; Thompson, Kallie
2016-01-01
Economic costs are commonly cited as barriers to women’s use of antiretroviral therapy (ART) in sub-Saharan Africa; however, little is known about how changes in women’s income influence economic barriers to care. We analysed in-depth interviews with 17 HIV positive women who participated in a job-creation programme in northern Uganda and two key informant interviews with programme staff to examine lingering economic barriers to care experienced after programme enrolment. We found that participants continued to experience economic barriers even after receiving steady a income and improving their economic status. Two themes emerged: first, limited resources in health facilities (e.g., drug and staff shortages) led participants to view ART utilisation as a primarily economic endeavour where clients made informal payments for prompter services or sought treatment in private facilities where ART was readily available; second, increased economic status also increased expectations of economic reciprocity among participants’ social networks. Financial obligations often manifested in the form of caring for additional dependents, limiting the resources women could allocate toward their HIV treatment. When paired with limited resources in health facilities, increased financial obligations perpetuated the economic barriers to care experienced by participants. Job-creation programmes should consider how health institutions interact with participants’ financial obligations to influence women’s access to HIV services. PMID:26652011
Dovel, Kathryn; Thomson, Kallie
2016-01-01
Economic costs are commonly cited as barriers to women's use of antiretroviral therapy (ART) in sub-Saharan Africa; however, little is known about how changes in women's income influence economic barriers to care. We analysed in-depth interviews with 17 HIV-positive women who participated in a job-creation programme in northern Uganda and two key informant interviews with programme staff to examine lingering economic barriers to care experienced after programme enrollment. We found that participants continued to experience economic barriers even after receiving a steady income and improving their economic status. Two themes emerged: first, limited resources in health facilities (e.g. drug and staff shortages) led participants to view ART utilisation as a primarily economic endeavour where clients made informal payments for prompter service or sought treatment in private facilities where ART was readily available; second, increased economic status among participants increased expectations of economic reciprocity among participants' social networks. Financial obligations often manifested themselves in the form of caring for additional dependents, limiting the resources women could allocate toward their HIV treatment. When paired with limited resources in health facilities, increased financial obligations perpetuated the economic barriers experienced by participants. Job-creation programmes should consider how health institutions interact with participants' financial obligations to influence women's access to HIV services.
McLaren, Jay W.; Bourne, William M.; Maguire, Leo J.; Patel, Sanjay V.
2015-01-01
Purpose To determine the effects of keratocyte loss on optical properties and vision after laser in situ keratomileusis (LASIK) with the flap created with a femtosecond laser or a mechanical microkeratome. Design Randomized clinical paired-eye study. Methods Both eyes of 21 patients received LASIK for myopia or myopic astigmatism. One eye of each patient was randomized by ocular dominance to flap creation with a femtosecond laser and the other eye to flap creation with a mechanical microkeratome. Before LASIK and at 1, 3, 6 months and 1, 3, and 5 years after LASIK, keratocyte density was measured by using confocal microscopy, and high-contrast visual acuity and anterior corneal wavefront aberrations were measured by standard methods. At each visit, all variables were compared between methods of creating the flap and to the same variable before treatment by using paired tests with Bonferroni correction for multiple comparisons. Results Keratocyte density in the flap decreased by 20% during the first year after LASIK and remained low through 5 years (p<0.001). High-order wavefront aberrations increased and uncorrected visual acuity improved immediately after surgery but these variables did not change further to five years. There were no differences in any variables between treatments. Conclusions A sustained reduction in keratocyte density does not affect vision or optical properties of the cornea through 5 years after LASIK. The method of creating a LASIK flap does not influence the changes in keratocyte density in the flap. PMID:25868758
Looking and listening for learning in arts- and humanities-based creations.
Varpio, Lara; Grassau, Pamela; Hall, Pippa
2017-02-01
The arts and humanities are gradually gaining a foothold in health professions education as a means of supporting the development of future clinicians who are compassionate, critical and reflexive thinkers, while also strengthening clinical skills and practices that emphasise patient-centredness, collaboration and interprofessional practices. Assignments that tap into trainee creativity are increasingly used both to prepare learners for the demands of clinical work and to understand the personal and professional challenges learners face in these contexts. Health professions educators need methods for interpreting these creations in order to understand each learner's expressions. This paper describes two theoretical frameworks that can be used to understand trainees' unique learning experiences as they are expressed in arts- and humanities-based creations. The authors introduce the philosophical underpinnings and interpretation procedures of two theoretical frameworks that enable educators to 'hear' and 'see' the multilayered expressions embedded within arts- and humanities-based student creations: Gilligan's Listening Guide and Kress and van Leeuwen's approach to visual rhetoric. To illustrate how these frameworks can be used, the authors apply them to two creative summaries that learners made as part of a humanities-informed, interprofessional education intervention that took place in a non-acute-care teaching hospital. The interpretations of two creative summaries, a poem and a pair of paintings, highlight how applying these theoretical frameworks can offer important insights into learners' experiences. This cross-cutting edge paper describes how the Listening Guide and visual rhetoric can help health professions educators listen to and read the arts- and humanities-based creative expressions made by learners. Insights gained from these interpretations can advance the understanding of students' personal experiences in different learning environments and can inform curriculum development. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Exploring the cross-level impact of market orientation on nursing innovation in hospitals.
Weng, Rhay-Hung; Huang, Ching-Yuan; Lin, Tzu-En
2013-01-01
Recently, many hospitals have been enthusiastically encouraging nurses to pursue nursing innovation to improve health care quality and increase nursing productivity by proposing innovative training methods, products, services, care skills, and care methods. This study tried to explore the cross-level impact of market orientation on nursing innovation. In our study, 3 to 7 nurses and 1 manager were selected from each nursing team to act as respondents. The questionnaire survey began after the managers of each nursing team and the nurses had been anonymously coded and paired up in Taiwan in 2009-2010. A total of 808 valid questionnaires were collected, including 172 valid teams. Hierarchical linear modeling was used for the analysis. Nursing innovation is the sum of knowledge creation, innovation behavior, and innovation diffusion displayed by the nurses during nursing care. The level of knowledge creation, as perceived by the nurses, was the highest, whereas the level of innovation diffusion was the lowest. Results of hierarchical linear modeling showed that only competitor orientation yielded a significant positive influence on knowledge creation, innovation behavior, or innovation diffusion. The r values were 0.53, 0.49, and 0.61, respectively. Customer orientation and interfunctional coordination did not have significant effects on nursing innovation. Hospital nurses exhibited better performance in knowledge creation than in innovation behavior and diffusion. Only competitor orientation had a significantly positive and cross-level influence on nursing innovation. However, competitor orientation was observed to be the lowest dimension of market orientation, which indicates that this factor should be the focus when improving nursing innovations in the future. Therefore, managers should continually understand the strategies, advantages, and methods of their competitors.
Why I teach the controversy: using creationism to teach critical thinking
Honey, P. Lynne
2015-01-01
Creationism and intelligent design are terms used to describe supernatural explanations for the origin of life, and the diversity of species on this planet. Many scientists have argued that the science classroom is no place for discussion of creationism. When I began teaching I did not teach creationism, as I focused instead on my areas of expertise. Over time it became clear that students had questions about creationism, and did not understand the difference between a scientific approach to knowledge and non-scientific approaches. This led me to wonder whether ignoring supernatural views allowed them to remain as viable “alternatives” to scientific hypotheses, in the minds of students. Also, a psychology class is an ideal place to discuss not only the scientific method but also the cognitive errors associated with non-science views. I began to explain creationism in my classes, and to model the scientific thought process that leads to a rejection of creationism. My approach is consistent with research that demonstrates that teaching content alone is insufficient for students to develop critical thinking and my admittedly anecdotal experience leads me to conclude that “teaching the controversy” has benefits for science students. PMID:26136700
Studies of Positron Generation from Ultraintense Laser-Matter Interactions
NASA Astrophysics Data System (ADS)
Williams, Gerald Jackson
Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser-generated pairs was considered by exploring the feasibility of radiographing an imploding inertial confinement fusion capsule at ignition- relevant conditions. For an in-flight areal density of 0.02-0.2 g/cm2, currently available positron sources can make density and spatial measurements of deuterium-tritium fuel cores where additional complications of full-scale experiments are expected to reduce the measurement sensitivity.
Iterative Authoring Using Story Generation Feedback: Debugging or Co-creation?
NASA Astrophysics Data System (ADS)
Swartjes, Ivo; Theune, Mariët
We explore the role that story generation feedback may play within the creative process of interactive story authoring. While such feedback is often used as 'debugging' information, we explore here a 'co-creation' view, in which the outcome of the story generator influences authorial intent. We illustrate an iterative authoring approach in which each iteration consists of idea generation, implementation and simulation. We find that the tension between authorial intent and the partially uncontrollable story generation outcome may be relieved by taking such a co-creation approach.
Anderson, Kristen; Foster, Michele M; Freeman, Christopher R; Scott, Ian A
2016-04-18
Co-creation (or co-design) represents the highest form of stakeholder engagement, but it can be infeasible to co-create with all stakeholders through all stages of a research project. The choice of stakeholders for co-design will depend on the study purpose and context of change. For this deprescribing pilot study, general practitioners were recognised as a critical gateway for co-creation, with patients' perspectives of the deprescribing process to be assessed in the evaluation of the pilot.
Leading Innovation and Change: Knowledge Creation by Schools for Schools
ERIC Educational Resources Information Center
Harris, Alma
2008-01-01
This article explores the process and practice of knowledge creation within development and research (D and R) networks. It focuses upon D and R networks in England that are currently engaged in collaboration and innovation. Early evaluative evidence suggests that D and R school networks offer "spaces" for collaborative working, mutual…
The Challenges of Collaborative Knowledge Creation in Open Innovation Teams
ERIC Educational Resources Information Center
Du Chatenier, Elise; Verstegen, Jos A. A. M.; Biemans, Harm J. A.; Mulder, Martin; Omta, Onno
2009-01-01
In open innovation teams, people from different organizations work together to develop new products, services, or markets. This organizational diversity can positively influence collaborative knowledge creation but can frustrate and obstruct the process as well. To increase the success rates of open innovation, it is vital to learn how individuals…
Knowledge Sharing and Creation in a Teachers' Professional Virtual Community
ERIC Educational Resources Information Center
Lin, Fu-ren; Lin, Sheng-cheng; Huang, Tzu-ping
2008-01-01
By virtue of the non-profit nature of school education, a professional virtual community composed of teachers provides precious data to understand the processes of knowledge sharing and creation. Guided by grounded theory, the authors conducted a three-phased study on a teachers' virtual community in order to understand the knowledge flows among…
Game Creation in Youth Media and Information Literacy Education
ERIC Educational Resources Information Center
Costa, Conceição; Tyner, Kathleen; Henriques, Sara; Sousa, Carla
2018-01-01
This article presents the preliminary findings of GamiLearning (2015-2018), a research project that aims to promote critical and participative dimensions of Media and Information Literacy (MIL) in children through the creation of digital games. The project presents an innovative approach by arguing that MIL can be promoted through the process of…
Graph Drawing Aesthetics-Created by Users, Not Algorithms.
Purchase, H C; Pilcher, C; Plimmer, B
2012-01-01
Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.
Securing non-volatile memory regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen
Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.
Lange, Gudrun; Leonhart, Rainer; Gruber, Harald
2018-01-01
Creation is an important part of many interventions in creative arts therapies (art, music, dance, and drama therapy). This active part of art-making in arts therapies has not yet been closely investigated. The present study commits to this field of research using a mixed-methods design to investigate the effects of active creation on health-related psychological outcomes. In an artistic inquiry within an experimental design, N = 44 participants engaged in active art-making for eight minutes in the presence of the researcher (first author) with a choice of artistic materials: paper and colors for drawing and writing, musical instruments, space for moving or performing. Before and after the creation, participants completed a well-being, a self-efficacy and an experience of creation scale, and in addition found their own words to express the experiences during the activity. We hypothesized that the experience of empowerment, freedom, impact, and creativity (Experience of Creation Scale) mediates the positive effect of active creation on the outcomes of self-efficacy and well-being, and evaluated this assumption with a mediation analysis. Results suggest that the effect of active creation on both self-efficacy and well-being is significantly mediated by the Experience of Creation Scale. This article focuses on the quantitative side of the investigation. During the process, qualitative and quantitative results were triangulated for a more valid evaluation and jointly contribute to the emerging theory frame of embodied aesthetics. PMID:29439541
Lange, Gudrun; Leonhart, Rainer; Gruber, Harald; Koch, Sabine C
2018-02-12
Creation is an important part of many interventions in creative arts therapies (art, music, dance, and drama therapy). This active part of art-making in arts therapies has not yet been closely investigated. The present study commits to this field of research using a mixed-methods design to investigate the effects of active creation on health-related psychological outcomes. In an artistic inquiry within an experimental design, N = 44 participants engaged in active art-making for eight minutes in the presence of the researcher (first author) with a choice of artistic materials: paper and colors for drawing and writing, musical instruments, space for moving or performing. Before and after the creation, participants completed a well-being, a self-efficacy and an experience of creation scale, and in addition found their own words to express the experiences during the activity. We hypothesized that the experience of empowerment, freedom, impact, and creativity (Experience of Creation Scale) mediates the positive effect of active creation on the outcomes of self-efficacy and well-being, and evaluated this assumption with a mediation analysis. Results suggest that the effect of active creation on both self-efficacy and well-being is significantly mediated by the Experience of Creation Scale. This article focuses on the quantitative side of the investigation. During the process, qualitative and quantitative results were triangulated for a more valid evaluation and jointly contribute to the emerging theory frame of embodied aesthetics.
Entropy, matter, and cosmology.
Prigogine, I; Géhéniau, J
1986-09-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.
Mobile, Collaborative Situated Knowledge Creation for Urban Planning
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639
Mobile, collaborative situated knowledge creation for urban planning.
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.
Stochastic YORP On Real Asteroid Shapes
NASA Astrophysics Data System (ADS)
McMahon, Jay W.
2015-05-01
Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.
Co-production of knowledge: recipe for success in land-based climate change adaptation?
NASA Astrophysics Data System (ADS)
Coninx, Ingrid; Swart, Rob
2015-04-01
After multiple failures of scientists to trigger policymakers and other relevant actors to take action when communicating research findings, the request for co-production (or co-creation) of knowledge and stakeholder involvement in climate change adaptation efforts has rapidly increased over the past few years. In particular for land-based adaptation, on-the-ground action is often met by societal resistance towards solutions proposed by scientists, by a misfit of potential solutions with the local context, leading to misunderstanding and even rejection of scientific recommendations. A fully integrative co-creation process in which both scientists and practitioners discuss climate vulnerability and possible responses, exploring perspectives and designing adaptation measures based on their own knowledge, is expected to prevent the adaptation deadlock. The apparent conviction that co-creation processes result in successful adaptation, has not yet been unambiguously empirically demonstrated, but has resulted in co-creation being one of basic principles in many new research and policy programmes. But is co-creation that brings knowledge of scientists and practitioners together always the best recipe for success in climate change adaptation? Assessing a number of actual cases, the authors have serious doubts. The paper proposes additional considerations for adaptively managing the environment that should be taken into account in the design of participatory knowledge development in which climate scientists play a role. These include the nature of the problem at stake; the values, interests and perceptions of the actors involved; the methods used to build trust, strengthen alignment and develop reciprocal relationships among scientists and practitioners; and the concreteness of the co-creation output.
Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss
NASA Astrophysics Data System (ADS)
Kiefer-Emmanouilidis, M.; Sirker, J.
2017-12-01
We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.
NASA Astrophysics Data System (ADS)
Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.
2017-11-01
This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.
Sell, S A; McClure, M J; Ayres, C E; Simpson, D G; Bowlin, G L
2011-01-01
The process of electrospinning has proven to be highly beneficial for use in a number of tissue-engineering applications due to its ease of use, flexibility and tailorable properties. There have been many publications on the creation of aligned fibrous structures created through various forms of electrospinning, most involving the use of a metal target rotating at high speeds. This work focuses on the use of a variation known as airgap electrospinning, which does not use a metal collecting target but rather a pair of grounded electrodes equidistant from the charged polymer solution to create highly aligned 3D structures. This study involved a preliminary investigation and comparison of traditionally and airgap electrospun silk-fibroin-based ligament constructs. Structures were characterized with SEM and alignment FFT, and underwent porosity, permeability, and mechanical anisotropy evaluation. Preliminary cell culture with human dermal fibroblasts was performed to determine the degree of cellular orientation and penetration. Results showed airgap electrospun structures to be anisotropic with significantly increased porosity and cellular penetration compared to their traditionally electrospun counterparts.
Selfish DNA in protein-coding genes of Rickettsia.
Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M
2000-10-13
Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.
2002-08-07
Members from all four teams were mixed into pairs to work on a Lego (TM) Challenge device to operate in the portable drop tower demonstrator (background). These two team members are about to try out their LEGO (TM) creation. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.
Phenomenological study of the isovector tensor meson family
NASA Astrophysics Data System (ADS)
Pang, Cheng-Qun; He, Li-Ping; Liu, Xiang; Matsuki, Takayuki
2014-07-01
In this work, we study all the observed a2 states and group them into the a2 meson family, where their total and two-body Okubo-Zweig-Iizuka allowed strong decay partial widths are calculated via the quark pair creation model. Taking into account the present experimental data, we further give the corresponding phenomenological analysis, which is valuable to test whether each a2 state can be assigned into the a2 meson family. What is more important is that the prediction of their decay behaviors will be helpful for future experimental study of the a2 states.
Eye Movements during Art Appreciation by Students Taking a Photo Creation Course.
Ishiguro, Chiaki; Yokosawa, Kazuhiko; Okada, Takeshi
2016-01-01
Previous studies have focused on the differences in the art appreciation process between individuals, and indicated that novice viewers of artworks, in comparison to experts, rarely consider the creation process of the artwork or how this may relate to style. However, behavioral changes in individuals after educational interventions have not been examined. Art education researchers claim that technical knowledge and creation experiences help novice viewers to pay attention to technical features of artwork. Therefore, an artistic photo creation course was designed and conducted to help students acquire techniques and procedural knowledge of photo creation. The present study verified whether students' viewing strategies during appreciation of photographs changed after the course. Twenty-one students participated in two sessions, viewing the same 12 photographs before and after the course. Based on the analysis of recorded eye movements, the results indicated that the students' perceptual exploration became more active with photographs containing recognizable subjects (i.e., humans and objects), and their global saccades increased when they viewed classic photography, one of the categories of photography covered in the course. Interview data after the course indicated that students became aware of the technical effects in photographs. These results suggest that students' viewing strategies may change following a course, as assessed by behavioral measures of eye movements. Further examination is needed to validate this approach to educational effect measurement.
Eye Movements during Art Appreciation by Students Taking a Photo Creation Course
Ishiguro, Chiaki; Yokosawa, Kazuhiko; Okada, Takeshi
2016-01-01
Previous studies have focused on the differences in the art appreciation process between individuals, and indicated that novice viewers of artworks, in comparison to experts, rarely consider the creation process of the artwork or how this may relate to style. However, behavioral changes in individuals after educational interventions have not been examined. Art education researchers claim that technical knowledge and creation experiences help novice viewers to pay attention to technical features of artwork. Therefore, an artistic photo creation course was designed and conducted to help students acquire techniques and procedural knowledge of photo creation. The present study verified whether students' viewing strategies during appreciation of photographs changed after the course. Twenty-one students participated in two sessions, viewing the same 12 photographs before and after the course. Based on the analysis of recorded eye movements, the results indicated that the students' perceptual exploration became more active with photographs containing recognizable subjects (i.e., humans and objects), and their global saccades increased when they viewed classic photography, one of the categories of photography covered in the course. Interview data after the course indicated that students became aware of the technical effects in photographs. These results suggest that students' viewing strategies may change following a course, as assessed by behavioral measures of eye movements. Further examination is needed to validate this approach to educational effect measurement. PMID:27471485
What's in the"'Co"? Tending the Tensions in Co-Creative Inquiry in Social Work Education
ERIC Educational Resources Information Center
Phillips, Louise; Napan, Ksenija
2016-01-01
Higher education is one of many fields of practice that have undergone a so-called "dialogic turn" whereby processes of co-creation proliferate as a means of generating knowledge. According to dialogic ideals, co-creation harnesses the transformative potential of dialogue across difference and empowers participants as co-learners or…
eLearning: From Social Presence to Co-Creation in Virtual Education Community
ERIC Educational Resources Information Center
Katernyak, Ihor; Ekman, Sten; Ekman, Annalill; Sheremet, Mariya; Loboda, Viktoriya
2009-01-01
Purpose: The purpose of this paper is to present an example of how the synergy of different competences in students' teams, out-of-the-box thinking style and various motivation factors in a culturally diverse learning environment is the foundation for knowledge construction, driven by the idea generation process and co-creation--the so-called…
ERIC Educational Resources Information Center
Lee, Young S.
2014-01-01
The article focuses on a systematic approach to the instructional framework to incorporate three aspects of sustainable design. It also aims to provide an instruction model for sustainable design stressing a collective effort to advance knowledge creation as a community. It develops a framework conjoining the concept of integrated process in…
Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning
ERIC Educational Resources Information Center
Yeo, Jennifer; Tan, Seng Chee
2014-01-01
The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…
ERIC Educational Resources Information Center
Leach, Tony
2010-01-01
This paper contains an account of a small scale investigation into the usefulness of the concepts of the learning organisation and organisational learning when seeking to describe the processes of knowledge creation and deployment within the small, but growing, enterprise (SME). A review of the literature reveals a concern that the relationship…
Intentional Process for Intentional Space: Higher Education Classroom Spaces for Learning
ERIC Educational Resources Information Center
Olsen, Taimi; Guffey, Stanley
2016-01-01
This chapter addresses the confluence of theory and practice in developing and using "flexible" classrooms for student learning. A large classroom building renovation will be described, in terms of how collaboration and co-creation of value led to early success of the renovated space. Co-creation of value for staff and faculty can help…
Experimental extraction of an entangled photon pair from two identically decohered pairs.
Yamamoto, Takashi; Koashi, Masato; Ozdemir, Sahin Kaya; Imoto, Nobuyuki
2003-01-23
Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.
Efficient Implementation of the Pairing on Mobilephones Using BREW
NASA Astrophysics Data System (ADS)
Yoshitomi, Motoi; Takagi, Tsuyoshi; Kiyomoto, Shinsaku; Tanaka, Toshiaki
Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant ηT pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. Moreover, we compare the processing speed of the pairing with that of the other standard public key cryptosystems, i. e. RSA cryptosystem and elliptic curve cryptosystem. Indeed the processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over F397. In addition, the pairing is more efficient than the other public key cryptosystems, and the pairing can be achieved enough also on BREW mobilephones. It has become efficient enough to implement security applications, such as short signature, ID-based cryptosystems or broadcast encryption, using the pairing on BREW mobilephones.
Customizing vacuum fluctuations for enhanced entanglement creation
NASA Astrophysics Data System (ADS)
Wang, Jin
2018-07-01
This paper connects the creation of entanglement through cavity enhanced decay rate with practical design parameters such as cavity dimension and cavity mirror reflectivity. The clarification of specific physical parameters on cavity enhanced emission in relation to entanglement creation is discussed. It is found that entanglement increases as the size of the cavity decreases, or the reflectivity of the cavity mirrors increases. Additionally, the negative effect of individual qubit decoherence on the entanglement is discussed. These results can be used to design or choose a practical system for implementing entanglement between two qubits for quantum computation and information processing.
NASA Astrophysics Data System (ADS)
Fretz, Eric Bruce
Scaffolding is a term rooted in multiple research communities over decades of development. Customized, contingent support can be provided to learners to enable performances beyond what they can do alone. This dissertation seeks to examine how effectively scaffolds designed to promote articulation (written expressions of learner understanding) actually work, and if this effectiveness and/or the quality of the resulting models changes over time. It longitudinally examines the use of scaffolds designed into a dynamic modeling tool, as it is used by middle school science learners to create, test, and revise models of complex science phenomena like stream ecosystems. This dissertation also reviews the origins of the scaffolding construct, and summarizes conceptions of scaffolding from various lines of research. Scaffolding can be provided by both human and non-human agents, such as computers, which require specialized interface design to ensure maximum effectiveness. In the study, learners created models in four curriculum units over the seventh and eighth grade school years. Additionally, this dissertation examines the nature of the discussion learners have while using these scaffolds and the frequency and types of interpersonal scaffolds employed during the creation of models. Model quality is also examined using a rubric developed through review of prior research on assessing models and concept maps. Learner pairs' model creation sessions on a computer are captured with screen video and learner audio, and then distilled to transcripts for subsequent coding and analysis, supported by qualitative analysis software. Articulation scaffolds were found to succeed in promoting articulations and the quality of those articulations improved over time. Learner dialog associated with these written articulations is of reasonable quality but did not improve over time. Quality of model artifacts did improve over time. The overall use of scaffolding by each learner pair was contrasted with that pairs model quality, but no relationship was found. Software design and classroom implementation implications of these findings are discussed. The frequency of interpersonal scaffolding provided by teachers highlights the need to consider scaffolding holistically and synergistically, with design decisions for software tools made in light of careful analysis as to what human and non-human agents can and should each provide.
Creation of structured documentation templates using Natural Language Processing techniques.
Kashyap, Vipul; Turchin, Alexander; Morin, Laura; Chang, Frank; Li, Qi; Hongsermeier, Tonya
2006-01-01
Structured Clinical Documentation is a fundamental component of the healthcare enterprise, linking both clinical (e.g., electronic health record, clinical decision support) and administrative functions (e.g., evaluation and management coding, billing). One of the challenges in creating good quality documentation templates has been the inability to address specialized clinical disciplines and adapt to local clinical practices. A one-size-fits-all approach leads to poor adoption and inefficiencies in the documentation process. On the other hand, the cost associated with manual generation of documentation templates is significant. Consequently there is a need for at least partial automation of the template generation process. We propose an approach and methodology for the creation of structured documentation templates for diabetes using Natural Language Processing (NLP).
The co-creation of meaningful action: bridging enaction and interactional sociology.
De Jaegher, Hanne; Peräkylä, Anssi; Stevanovic, Melisa
2016-05-05
What makes possible the co-creation of meaningful action? In this paper, we go in search of an answer to this question by combining insights from interactional sociology and enaction. Both research schools investigate social interactions as such, and conceptualize their organization in terms of autonomy. We ask what it could mean for an interaction to be autonomous, and discuss the structures and processes that contribute to and are maintained in the so-called interaction order. We also discuss the role played by individual vulnerability as well as the vulnerability of social interaction processes in the co-creation of meaningful action. Finally, we outline some implications of this interdisciplinary fraternization for the empirical study of social understanding, in particular in social neuroscience and psychology, pointing out the need for studies based on dynamic systems approaches on origins and references of coordination, and experimental designs to help understand human co-presence. © 2016 The Authors.
[Creation and management of organizational knowledge].
Shinyashiki, Gilberto Tadeu; Trevizan, Maria Auxiliadora; Mendes, Isabel Amélia
2003-01-01
With a view to creating and establishing a sustainable position of competitive advantage, the best organizations are increasingly investing in the application of concepts such as learning, knowledge and competency. The organization's creation or acquisition of knowledge about its actions represents an intangible resource that is capable of conferring a competitive advantage upon them. This knowledge derives from interactions developed in learning processes that occur in the organizational environment. The more specific characteristics this knowledge demonstrates in relation to the organization, the more it will become the foundation of its core competencies and, consequently, an important strategic asset. This article emphasizes nurses' role in the process of knowledge management, placing them in the intersection between horizontal and vertical information levels as well as in the creation of a sustainable competitive advantage. Authors believe that this contribution may represent an opportunity for a reflection about its implications for the scenarious of health and nursing practices.
The co-creation of meaningful action: bridging enaction and interactional sociology
Peräkylä, Anssi; Stevanovic, Melisa
2016-01-01
What makes possible the co-creation of meaningful action? In this paper, we go in search of an answer to this question by combining insights from interactional sociology and enaction. Both research schools investigate social interactions as such, and conceptualize their organization in terms of autonomy. We ask what it could mean for an interaction to be autonomous, and discuss the structures and processes that contribute to and are maintained in the so-called interaction order. We also discuss the role played by individual vulnerability as well as the vulnerability of social interaction processes in the co-creation of meaningful action. Finally, we outline some implications of this interdisciplinary fraternization for the empirical study of social understanding, in particular in social neuroscience and psychology, pointing out the need for studies based on dynamic systems approaches on origins and references of coordination, and experimental designs to help understand human co-presence. PMID:27069055
Network testbed creation and validation
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John
2017-03-21
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.
Network testbed creation and validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less
The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1993-01-01
Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.
Henny, Charles J.; Galushin, V.M.; Kuznetsov, A.V.; Meyburg, B.-U.; Chancellor, R.D.; Ferrero, J.J.
1998-01-01
The Osprey population associated with Darwin Nature Reserve and the Rybinsk Reservoir increased from only a few pairs prior to the creation of the reservoir in the late 1940s , to about 45-50 pairs in 1994. Productivity rates were excellent in 1988 and 1989 (1.38 young/occupied nest), but extremely low in 1987 (0.47 young/occupied nest). A chemical spill into the Volga River in early 1987 resulted in a massive fish kill, which was believed responsible for low production that year. With the exception of the year of the chemical spill and 1992 (the year an egg was collected from 10 of 11 nests studied), production was comparable to rates observed in stable or increasing populations in Byelorussia, Finland, and Sweden. The p.p'-DDE (DDE), polychlorinated biphenyl (PCB), and mercury concentrations from eggs collected in 1992 were below known effect levels and eggshell thickness showed only 6.3 % thinning - an amount not associated with reproductive problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veres, P.; Dermer, C. D.; Dhuga, K. S.
The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less
Development of materials for the rapid manufacture of die cast tooling
NASA Astrophysics Data System (ADS)
Hardro, Peter Jason
The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely, reduce tooling cost, shorten tooling creation time, and reduce the man-hours needed for tool creation. Though identifying the appropriate time to use RP tooling appears to be the most important aspect in achieving successful implementation.
Lewenstein, Bruce V
2011-12-01
Social scientists can explore questions about what counts as knowledge and how researchers-including social science researchers-can produce that knowledge. An art/space installation examining issues of public participation in science demonstrates the process of co-creation of knowledge about public participation, not simply the co-creation of the meaning of the installation itself.
ERIC Educational Resources Information Center
Woods, Larry, Ed.
The 1999 American Society for Information Science (ASIS) conference explored current knowledge creation, acquisition, navigation, correlation, retrieval, management, and dissemination practicalities and potentialities, their implementation and impact, and the theories behind the developments. Speakers reviewed processes, technologies, and tools,…
The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...
Creating a Business in France: A Class Project for the Business French Course.
ERIC Educational Resources Information Center
Morris, Daniel R.
A class project used in one college-level business French course in Oregon involves creation of a French company using a modified simulation approach. Students work in groups to determine what product or service they would like to develop and research the creation of a company. During this process, they simulate a number of situations encountered…
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Social media addiction: What is the role of content in YouTube?
Balakrishnan, Janarthanan; Griffiths, Mark D.
2017-01-01
Background YouTube, the online video creation and sharing site, supports both video content viewing and content creation activities. For a minority of people, the time spent engaging with YouTube can be excessive and potentially problematic. Method This study analyzed the relationship between content viewing, content creation, and YouTube addiction in a survey of 410 Indian-student YouTube users. It also examined the influence of content, social, technology, and process gratifications on user inclination toward YouTube content viewing and content creation. Results The results demonstrated that content creation in YouTube had a closer relationship with YouTube addiction than content viewing. Furthermore, social gratification was found to have a significant influence on both types of YouTube activities, whereas technology gratification did not significantly influence them. Among all perceived gratifications, content gratification had the highest relationship coefficient value with YouTube content creation inclination. The model fit and variance extracted by the endogenous constructs were good, which further validated the results of the analysis. Conclusion The study facilitates new ways to explore user gratification in using YouTube and how the channel responds to it. PMID:28914072
Social media addiction: What is the role of content in YouTube?
Balakrishnan, Janarthanan; Griffiths, Mark D
2017-09-01
Background YouTube, the online video creation and sharing site, supports both video content viewing and content creation activities. For a minority of people, the time spent engaging with YouTube can be excessive and potentially problematic. Method This study analyzed the relationship between content viewing, content creation, and YouTube addiction in a survey of 410 Indian-student YouTube users. It also examined the influence of content, social, technology, and process gratifications on user inclination toward YouTube content viewing and content creation. Results The results demonstrated that content creation in YouTube had a closer relationship with YouTube addiction than content viewing. Furthermore, social gratification was found to have a significant influence on both types of YouTube activities, whereas technology gratification did not significantly influence them. Among all perceived gratifications, content gratification had the highest relationship coefficient value with YouTube content creation inclination. The model fit and variance extracted by the endogenous constructs were good, which further validated the results of the analysis. Conclusion The study facilitates new ways to explore user gratification in using YouTube and how the channel responds to it.
NASA Astrophysics Data System (ADS)
Rana, Aniket; Sharma, Chhavi; Prabhu, Deepak D.; Kumar, Mahesh; Karuvath, Yoosaf; Das, Suresh; Chand, Suresh; Singh, Rajiv K.
2018-04-01
Ultrafast charge carrier dynamics as well as the generation of polaron pair in squaraine (SQ) and squaraine:[6,6]-phenyl-C 71-butyric acid methyl ester (SQ:PCBM71) have been studied using ultrafast transient absorption spectroscopy (UTAS). The current study reveals that the pure SQ exhibits the creation of singlet and triplet states; however, incorporation of PCBM71 in SQ results in the formation of polaron pairs with ˜550ps lifetime, which in turn leads to the creation of free electrons in the device. We show that the considerable increment in monomolecular and bimolecular recombination in SQ:PCBM71 compared to pure SQ which describes the interfacial compatibility of SQ and PCBMC71 molecules. The present work not only provides the information about the carrier generation in SQ and SQ:PCBM71 but also gives the facts relating to the effect of PCBM71 mixing into the SQ which is very significant because the SQ has donor-acceptor-donor (D-A-D) structure and mixing one more acceptor can introduce more complex recombinations in the blend. These findings have been complimented by the charge transport study in the device using impedance spectroscopy. The various important transport parameters are transit time (τt), diffusion constant (Dn), global mobility (μ) and carrier lifetime (τr). The values of these parameters are 26.38 μs, 4.64x10-6 cm2s-1, 6.12x10-6 cm2V-1s-1 and 399 μs, respectively. To the best of our knowledge such study related to SQ is not present in the literature comprehensively.
Robertson, Peter A; Armstrong, William A; Woods, Daniel L; Rawlinson, Jeremy J
2018-04-24
Controlled cadaveric study of surgical technique in Transforaminal and Posterior Lumbar Interbody Fusion (TLIF & PLIF) OBJECTIVE.: To evaluate the contribution of surgical techniques and cage variables in lordosis re-creation in posterior interbody fusion (TLIF/PLIF). The major contributors to lumbar lordosis are the lordotic lower lumbar discs. The pathologies requiring treatment with segmental fusion are frequently hypolordotic or kyphotic. Current posterior based interbody techniques have a poor track record for recreating lordosis, although re-creation of lordosis with optimum anatomical alignment is associated with better outcomes and reduced adjacent segment change needing revision. It is unclear whether surgical techniques or cage parameters contribute significantly to lordosis re-creation. Eight instrumented cadaveric motion segments were evaluated with pre and post experimental radiological assessment of lordosis. Each motion segment was instrumented with pedicle screw fixation to allow segmental stabilization. The surgical procedures were unilateral TLIF with an 18° lordotic and 27 mm length cage, unilateral TLIF (18°, 27 mm) with bilateral facetectomy, unilateral TLIF (18°, 27 mm) with posterior column osteotomy, PLIF with bilateral cages (18°, 22 mm), and PLIF with bilateral cages (24°, 22 mm). Cage insertion used and 'insert and rotate' technique. Pooled results demonstrated a mean increase in lordosis of 2.2° with each procedural step (Lordosis increase was serially 1.8°, 3.5°, 1.6°, 2.5° & 1.6° through the procedures). TLIF and PLIF with posterior column osteotomy increased lordosis significantly compared with Unilateral TLIF and TLIF with bilateral facetectomy. The major contributors to lordosis re-creation were posterior column osteotomy, and PLIF with paired shorter cages rather than TLIF. This study demonstrates that the surgical approach to posterior interbody surgery influences lordosis gain and posterior column osteotomy optimizes lordosis gain in TLIF. The bilateral cages used in PLIF are shorter and associated with further gain in lordosis. This information has the potential to aid surgical planning when attempting to recreate lordosis to optimize outcomes. N/A.
Case-based synthesis in automatic advertising creation system
NASA Astrophysics Data System (ADS)
Zhuang, Yueting; Pan, Yunhe
1995-08-01
Advertising (ads) is an important design area. Though many interactive ad-design softwares have come into commercial use, none of them ever support the intelligent work -- automatic ad creation. The potential for this is enormous. This paper gives a description of our current work in research of an automatic advertising creation system (AACS). After careful analysis of the mental behavior of a human ad designer, we conclude that case-based approach is appropriate to its intelligent modeling. A model for AACS is given in the paper. A case in ads is described as two parts: the creation process and the configuration of the ads picture, with detailed data structures given in the paper. Along with the case representation, we put forward an algorithm. Some issues such as similarity measure computing, and case adaptation have also been discussed.
The Partners in Recovery program: mental health commissioning using value co-creation.
Cheverton, Jeff; Janamian, Tina
2016-04-18
The Australian Government's Partners in Recovery (PIR) program established a new form of mental health intervention which required multiple sectors, services and consumers to work in a more collaborative way. Brisbane North Primary Health Network applied a value co-creation approach with partners and end users, engaging more than 100 organisations in the development of a funding submission to PIR. Engagement platforms were established and continue to provide opportunities for new co-creation experiences. Initially, seven provider agencies - later expanded to eight to include an Aboriginal and Torres Strait Islander provider organisation - worked collaboratively as a Consortium Management Committee. The co-creation development process has been part of achieving the co-created outcomes, which include new initiatives, changes to existing interventions and referral practices, and an increased understanding and awareness of end users' needs.
Superordinate Level Processing Has Priority Over Basic-Level Processing in Scene Gist Recognition
Sun, Qi; Zheng, Yang; Sun, Mingxia; Zheng, Yuanjie
2016-01-01
By combining a perceptual discrimination task and a visuospatial working memory task, the present study examined the effects of visuospatial working memory load on the hierarchical processing of scene gist. In the perceptual discrimination task, two scene images from the same (manmade–manmade pairing or natural–natural pairing) or different superordinate level categories (manmade–natural pairing) were presented simultaneously, and participants were asked to judge whether these two images belonged to the same basic-level category (e.g., street–street pairing) or not (e.g., street–highway pairing). In the concurrent working memory task, spatial load (position-based load in Experiment 1) and object load (figure-based load in Experiment 2) were manipulated. The results were as follows: (a) spatial load and object load have stronger effects on discrimination of same basic-level scene pairing than same superordinate level scene pairing; (b) spatial load has a larger impact on the discrimination of scene pairings at early stages than at later stages; on the contrary, object information has a larger influence on at later stages than at early stages. It followed that superordinate level processing has priority over basic-level processing in scene gist recognition and spatial information contributes to the earlier and object information to the later stages in scene gist recognition. PMID:28382195
Development of an indexed integrated neuroradiology reports for teaching file creation
NASA Astrophysics Data System (ADS)
Tameem, Hussain Z.; Morioka, Craig; Bennett, David; El-Saden, Suzie; Sinha, Usha; Taira, Ricky; Bui, Alex; Kangarloo, Hooshang
2007-03-01
The decrease in reimbursement rates for radiology procedures has placed even more pressure on radiology departments to increase their clinical productivity. Clinical faculties have less time for teaching residents, but with the advent and prevalence of an electronic environment that includes PACS, RIS, and HIS, there is an opportunity to create electronic teaching files for fellows, residents, and medical students. Experienced clinicians, who select the most appropriate radiographic image, and clinical information relevant to that patient, create these teaching files. Important cases are selected based on the difficulty in determining the diagnosis or the manifestation of rare diseases. This manual process of teaching file creation is time consuming and may not be practical under the pressure of increased demands on the radiologist. It is the goal of this research to automate the process of teaching file creation by manually selecting key images and automatically extracting key sections from clinical reports and laboratories. The text report is then processed for indexing to two standard nomenclatures UMLS and RADLEX. Interesting teaching files can then be queried based on specific anatomy and findings found within the clinical reports.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision
NASA Astrophysics Data System (ADS)
Bouman, Maarten A.
2002-02-01
In the model presented here, in the dark any single quantum absorption in a rod or cone produces a subliminal excitation. Subliminal excitations from both halves of a twin unit pair in the retina for the perception of light from the stimulus. A twin unit contains either two red or two green cones. The twin units are intertwined in triples of two red units and one green unit in a hexagon called a trion. P satellite rods surround each cone, P being approximately proportional to the square of eccentricity. A successful pairing for light perception represents-through the points of time and locations of the creation of its partners in the retina-a direction event with two possible polarities and with the orientation of the elongated shape of the twin unit. The polarity of the event depends on which of the two partners arrives first at the twin's pairing facility. Simultaneous events and successive events with the same polarity in adjacent units that are aligned along one of the three orientations of the hexagonal retinal mosaic pair in the cortex for the perception of edge and of movement. Inter-twin pairing products of the three differently oriented sets of aligned twins are independent of each other and sum vectorially in the cortex. This system of three sub-retinas is called the retrinet. Two one-quantum excitations in any of a twin's receptors make the percept colored. The odd blue cone produces already a blue signal for a single one-quantum excitation. Intra-receptor pairing in a rod, a red cone and a green cone is for white, red, and green respectively. Red and green cone products of a trion cross-pair in the retina and produce a yellow signal. Red and green cone products of a hexagon of adjacent trions cross-pair in the cortex and produce a white signal. This large hexagon with a total of seven trions is called a persepton. After subliminal excitations in a twin have paired successfully, further subliminal receptor excitations in neighboring and aligned twins are expressed to a certain extent in the percept's area, duration and color. Earlier experiments on absolute and color thresholds are the basis for this theory, which is developed in this paper.
Co-creation and Co-innovation in a Collaborative Networked Environment
NASA Astrophysics Data System (ADS)
Klen, Edmilson Rampazzo
Leveraged by the advances in communication and information Technologies, producers and consumers are developing a new behavior. Together with the new emerging collaborative manifestations this behavior may directly impact the way products are developed. This powerful combination indicates that consumers will be involved in a very early stage in product development processes supporting even more the creation and innovation of products. This new way of collaboration gives rise to a new collaborative networked environment based on co-creation and co-innovation. This work will present some evolutionary steps that point to the development of this environment where prosumer communities and virtual organizations interact and collaborate.
Concentration of vorticity due to selective decay in doubly periodic vortices and a vortex pair
NASA Astrophysics Data System (ADS)
Hattori, Yuji
2018-01-01
Strong vortices like tornadoes, typhoons, and tropical cyclones are often created in geophysical flows. It is important to understand the mechanism for the creation of these strong vortices. Recently, we found a purely hydrodynamic mechanism for the concentration of vorticity: it is due to selective decay in which circulation decays faster than angular momentum and energy. In this paper, two problems are investigated by direct numerical simulation to seek universality of this mechanism: doubly periodic vortices disturbed by an unstable eigenmode and a vortex pair disturbed by localized disturbances. In the former case, concentration of vorticity occurs when the wavenumber of the eigenmode is large, while it does not occur for small wavenumbers. For small wavenumbers the disturbances grow to a large amplitude eventually destroying the base flow. For large wavenumber, on the other hand, the growth of the disturbances saturates before destroying the base flow. Selective decay of inviscid invariants is shown to be responsible for the concentration of vorticity as in the previous study. In the case of a vortex pair disturbed by localized disturbances concentration of vorticity occurs twice: the first concentration is not related to selective decay; however, the second weak concentration is most likely due to selective decay.
Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61
NASA Astrophysics Data System (ADS)
Lu, Y.; Zhang, S. N.
2004-11-01
Based on the work of Luo & Melrose from the early 1990s, a maser curvature emission mechanism in the presence of curvature drift is used to explain the optical pulsations from anomalous X-ray pulsars (AXPs). The model comprises a rotating neutron star with a strong surface magnetic field, i.e. a magnetar. Assuming the space-charge-limited flow acceleration mechanism, in which the strongly magnetized neutron star induces strong electric fields that pull the charges from its surface and flow along the open field lines, the neutron star generates a dense flow of electrons and positrons (relativistic pair plasma) by either two-photon pair production or one-photon pair creation resulting from inverse Compton scattering of the thermal photons above the pulsar polar cap (PC). The motion of the pair plasma is essentially one-dimensional along the field lines. We propose that optical pulsations from AXPs are generated by a curvature-drift-induced maser developing in the PC of magnetars. Pair plasma is considered as an active medium that can amplify its normal modes. The curvature drift, which is energy-dependent, is another essential ingredient in allowing negative absorption (maser action) to occur. For the source AXP 4U 0142+61, we find that the optical pulsation triggered by curvature-drift maser radiation occurs at the radial distance R(νM) ~ 4.75 × 109 cm to the neutron star. The corresponding curvature maser frequency is about νM~ 1.39 × 1014 Hz, and the pulse component from the maser amplification is about 27 per cent. The result is consistent with the observation of the optical pulsations from AXP 4U 0142+61.
Xu, Rong; Li, Li; Wang, QuanQiu
2013-01-01
Motivation: Systems approaches to studying phenotypic relationships among diseases are emerging as an active area of research for both novel disease gene discovery and drug repurposing. Currently, systematic study of disease phenotypic relationships on a phenome-wide scale is limited because large-scale machine-understandable disease–phenotype relationship knowledge bases are often unavailable. Here, we present an automatic approach to extract disease–manifestation (D-M) pairs (one specific type of disease–phenotype relationship) from the wide body of published biomedical literature. Data and Methods: Our method leverages external knowledge and limits the amount of human effort required. For the text corpus, we used 119 085 682 MEDLINE sentences (21 354 075 citations). First, we used D-M pairs from existing biomedical ontologies as prior knowledge to automatically discover D-M–specific syntactic patterns. We then extracted additional pairs from MEDLINE using the learned patterns. Finally, we analysed correlations between disease manifestations and disease-associated genes and drugs to demonstrate the potential of this newly created knowledge base in disease gene discovery and drug repurposing. Results: In total, we extracted 121 359 unique D-M pairs with a high precision of 0.924. Among the extracted pairs, 120 419 (99.2%) have not been captured in existing structured knowledge sources. We have shown that disease manifestations correlate positively with both disease-associated genes and drug treatments. Conclusions: The main contribution of our study is the creation of a large-scale and accurate D-M phenotype relationship knowledge base. This unique knowledge base, when combined with existing phenotypic, genetic and proteomic datasets, can have profound implications in our deeper understanding of disease etiology and in rapid drug repurposing. Availability: http://nlp.case.edu/public/data/DMPatternUMLS/ Contact: rxx@case.edu PMID:23828786
Comparison of different "along the track" high resolution satellite stereo-pair for DSM extraction
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos G.
2013-10-01
The possibility to create DEM from stereo pairs is based on the Pythagoras theorem and on the principles of photogrammetry that are applied to aerial photographs stereo pairs for the last seventy years. The application of these principles to digital satellite stereo data was inherent in the first satellite missions. During the last decades the satellite stereo-pairs were acquired across the track in different days (SPOT, ERS etc.). More recently the same-date along the track stereo-data acquisition seems to prevail (Terra ASTER, SPOT5 HRS, Cartosat, ALOS Prism) as it reduces the radiometric image variations (refractive effects, sun illumination, temporal changes) and thus increases the correlation success rate in any image matching.Two of the newest satellite sensors with stereo collection capability is Cartosat and ALOS Prism. Both of them acquire stereopairs along the track with a 2,5m spatial resolution covering areas of 30X30km. In this study we compare two different satellite stereo-pair collected along the track for DSM creation. The first one is created from a Cartosat stereopair and the second one from an ALOS PRISM triplet. The area of study is situated in Chalkidiki Peninsula, Greece. Both DEMs were created using the same ground control points collected with a Differential GPS. After a first control for random or systematic errors a statistical analysis was done. Points of certified elevation have been used to estimate the accuracy of these two DSMs. The elevation difference between the different DEMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.
Interplay Between the Object and Its Symbol: The Size-Congruency Effect
Shen, Manqiong; Xie, Jiushu; Liu, Wenjuan; Lin, Wenjie; Chen, Zhuoming; Marmolejo-Ramos, Fernando; Wang, Ruiming
2016-01-01
Grounded cognition suggests that conceptual processing shares cognitive resources with perceptual processing. Hence, conceptual processing should be affected by perceptual processing, and vice versa. The current study explored the relationship between conceptual and perceptual processing of size. Within a pair of words, we manipulated the font size of each word, which was either congruent or incongruent with the actual size of the referred object. In Experiment 1a, participants compared object sizes that were referred to by word pairs. Higher accuracy was observed in the congruent condition (e.g., word pairs referring to larger objects in larger font sizes) than in the incongruent condition. This is known as the size-congruency effect. In Experiments 1b and 2, participants compared the font sizes of these word pairs. The size-congruency effect was not observed. In Experiments 3a and 3b, participants compared object and font sizes of word pairs depending on a task cue. Results showed that perceptual processing affected conceptual processing, and vice versa. This suggested that the association between conceptual and perceptual processes may be bidirectional but further modulated by semantic processing. Specifically, conceptual processing might only affect perceptual processing when semantic information is activated. The current study PMID:27512529
nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
Valente, Giordano; Crimi, Gianluigi; Vanella, Nicola; Schileo, Enrico; Taddei, Fulvia
2017-12-01
Musculoskeletal modeling and simulations of movement have been increasingly used in orthopedic and neurological scenarios, with increased attention to subject-specific applications. In general, musculoskeletal modeling applications have been facilitated by the development of dedicated software tools; however, subject-specific studies have been limited also by time-consuming modeling workflows and high skilled expertise required. In addition, no reference tools exist to standardize the process of musculoskeletal model creation and make it more efficient. Here we present a freely available software application, nmsBuilder 2.0, to create musculoskeletal models in the file format of OpenSim, a widely-used open-source platform for musculoskeletal modeling and simulation. nmsBuilder 2.0 is the result of a major refactoring of a previous implementation that moved a first step toward an efficient workflow for subject-specific model creation. nmsBuilder includes a graphical user interface that provides access to all functionalities, based on a framework for computer-aided medicine written in C++. The operations implemented can be used in a workflow to create OpenSim musculoskeletal models from 3D surfaces. A first step includes data processing to create supporting objects necessary to create models, e.g. surfaces, anatomical landmarks, reference systems; and a second step includes the creation of OpenSim objects, e.g. bodies, joints, muscles, and the corresponding model. We present a case study using nmsBuilder 2.0: the creation of an MRI-based musculoskeletal model of the lower limb. The model included four rigid bodies, five degrees of freedom and 43 musculotendon actuators, and was created from 3D surfaces of the segmented images of a healthy subject through the modeling workflow implemented in the software application. We have presented nmsBuilder 2.0 for the creation of musculoskeletal OpenSim models from image-based data, and made it freely available via nmsbuilder.org. This application provides an efficient workflow for model creation and helps standardize the process. We hope this would help promote personalized applications in musculoskeletal biomechanics, including larger sample size studies, and might also represent a basis for future developments for specific applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental purification of two-atom entanglement.
Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J
2006-10-19
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.
Design of neurophysiologically motivated structures of time-pulse coded neurons
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.
2009-04-01
The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.
Clinical report writing: Process and perspective
NASA Technical Reports Server (NTRS)
Ewald, H. R.
1981-01-01
Clinical report writing in psychology and psychiatry is addressed. Audience/use analysis and the basic procedures of information gathering, diagnosis, and prognosis are described. Two interlinking processes are involved: the process of creation and the process of communication. Techniques for good report writing are presented.
Andreev bound states probed in three-terminal quantum dots
NASA Astrophysics Data System (ADS)
Gramich, J.; Baumgartner, A.; Schönenberger, C.
2017-11-01
Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single-electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Feng, Zexin; Froese, Brittany D; Huang, Chih-Yu; Ma, Donglin; Liang, Rongguang
2015-07-10
We consider here creation of an unconventional flattop beam with a large depth of field by employing double freeform optical surfaces. The output beam is designed with continuous variations from the flattop to almost zero near the edges to resist the influence of diffraction on its propagation. We solve this challenging problem by naturally incorporating an optimal transport map computation scheme for unconventional boundary conditions with a simultaneous point-by-point double surface construction procedure. We demonstrate experimentally the generation of a long-range propagated triangular beam through a plano-freeform lens pair fabricated by a diamond-tuning machine.
Ultrafast laser control of backward superfluorescence towards standoff sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariunbold, Gombojav O.; National University of Mongolia, Ulaanbaatar 210646; Baylor University, Waco, Texas 76798
2014-01-13
We study infrared backward cooperative emission in a rubidium vapor induced by ultrafast two-photon optical excitations. The laser coherent control of the backward emission is demonstrated by using a pair of 100 fs pulses with a variable time delay. The temporal variation (quantum beat) of the backward beam intensity due to interference of atomic transitions in the rubidium atomic level system 5S-5P-5D is produced and controlled. Based on the obtained experimental results, we discuss possible applications of the developed approach for creation of an effective “guide star” in the sodium atomic layer in the upper atmosphere (mesosphere)
DIME Participants Working on a Legos(TM) Challenge
NASA Technical Reports Server (NTRS)
2002-01-01
Members from all four teams were mixed into pairs to work on a Lego (TM) Challenge device to operate in the portable drop tower demonstrator (background). These two team members are about to try out their LEGO (TM) creation. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.
NASA Astrophysics Data System (ADS)
Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatović, Lj M.
2010-11-01
Elementary processes in plasma phenomena traditionally attract physicist's attention. The channel of charged-particle formation in Rydberg atom-atom thermal and sub-thermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI). atomic ions - Penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H-, H+, H2, He,He+). Hydrogen-like alkali-metal Lithium (Li, Li+,Li-) and combinations (HeH+, LiH-, LiH+). There is a wide range of plasma parameters in which the Rydberg atoms of the elements mentioned above make the dominant contribution to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg atom-atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modelled as diffusion within the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum. This may lead to anomalies of Rydberg atom spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg atom closed to the primary selected one. The Rydberg atoms ionisation theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.
Gravitationally influenced particle creation models and late-time cosmic acceleration
NASA Astrophysics Data System (ADS)
Pan, Supriya; Kumar Pal, Barun; Pramanik, Souvik
In this work, we focus on the gravitationally influenced adiabatic particle creation process, a mechanism that does not need any dark energy or modified gravity models to explain the current accelerating phase of the universe. Introducing some particle creation models that generalize some previous models in the literature, we constrain the cosmological scenarios using the latest compilation of the Type Ia Supernovae data only, the first indicator of the accelerating universe. Aside from the observational constraints on the models, we examine the models using two model independent diagnoses, namely the cosmography and Om. Further, we establish the general conditions to test the thermodynamic viabilities of any particle creation model. Our analysis shows that at late-time, the models have close resemblance to that of the ΛCDM cosmology, and the models always satisfy the generalized second law of thermodynamics under certain conditions.
New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database
NASA Technical Reports Server (NTRS)
Laher, Russ; Rector, John
2004-01-01
Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.
Expansion of the Genetic Alphabet: A Chemist's Approach to Synthetic Biology.
Feldman, Aaron W; Romesberg, Floyd E
2018-02-20
The information available to any organism is encoded in a four nucleotide, two base pair genetic code. Since its earliest days, the field of synthetic biology has endeavored to impart organisms with novel attributes and functions, and perhaps the most fundamental approach to this goal is the creation of a fifth and sixth nucleotide that pair to form a third, unnatural base pair (UBP) and thus allow for the storage and retrieval of increased information. Achieving this goal, by definition, requires synthetic chemistry to create unnatural nucleotides and a medicinal chemistry-like approach to guide their optimization. With this perspective, almost 20 years ago we began designing unnatural nucleotides with the ultimate goal of developing UBPs that function in vivo, and thus serve as the foundation of semi-synthetic organisms (SSOs) capable of storing and retrieving increased information. From the beginning, our efforts focused on the development of nucleotides that bear predominantly hydrophobic nucleobases and thus that pair not based on the complementary hydrogen bonds that are so prominent among the natural base pairs but rather via hydrophobic and packing interactions. It was envisioned that such a pairing mechanism would provide a basal level of selectivity against pairing with natural nucleotides, which we expected would be the greatest challenge; however, this choice mandated starting with analogs that have little or no homology to their natural counterparts and that, perhaps not surprisingly, performed poorly. Progress toward their optimization was driven by the construction of structure-activity relationships, initially from in vitro steady-state kinetic analysis, then later from pre-steady-state and PCR-based assays, and ultimately from performance in vivo, with the results augmented three times with screens that explored combinations of the unnatural nucleotides that were too numerous to fully characterize individually. The structure-activity relationship data identified multiple features required by the UBP, and perhaps most prominent among them was a substituent ortho to the glycosidic linkage that is capable of both hydrophobic packing and hydrogen bonding, and nucleobases that stably stack with flanking natural nucleobases in lieu of the potentially more stabilizing stacking interactions afforded by cross strand intercalation. Most importantly, after the examination of hundreds of unnatural nucleotides and thousands of candidate UBPs, the efforts ultimately resulted in the identification of a family of UBPs that are well recognized by DNA polymerases when incorporated into DNA and that have been used to create SSOs that store and retrieve increased information. In addition to achieving a longstanding goal of synthetic biology, the results have important implications for our understanding of both the molecules and forces that can underlie biological processes, so long considered the purview of molecules benefiting from eons of evolution, and highlight the promise of applying the approaches and methodologies of synthetic and medical chemistry in the pursuit of synthetic biology.
The Creation Process in Digital Art
NASA Astrophysics Data System (ADS)
Marcos, Adérito Fernandes; Branco, Pedro Sérgio; Zagalo, Nelson Troca
The process behind the act of the art creation or the creation process has been the subject of much debate and research during the last fifty years at least, even thinking art and beauty has been a subject of analysis already by the ancient Greeks such were Plato or Aristotle. Even though intuitively it is a simple phenomenon, creativity or the human ability to generate innovation (new ideas, concepts, etc.) is in fact quite complex. It has been studied from the perspectives of behavioral and social psychology, cognitive science, artificial intelligence, philosophy, history, design research, digital art, and computational aesthetics, among others. In spite of many years of discussion and research there is no single, authoritative perspective or definition of creativity, i.e., there is no standardized measurement technique. Regarding the development process that supports the intellectual act of creation it is usually described as a procedure where the artist experiments the medium, explores it with one or more techniques, changing shapes, forms, appearances, where beyond time and space, he/she seeks his/her way out to a clearing, i.e., envisages a path from intention to realization. Duchamp in his lecture "The Creative Act" states the artist is never alone with his/her artwork; there is always the spectator that later on will react critically to the work of art. If the artist succeeds in transmitting his/her intentions in terms of a message, emotion or feeling to the spectator then a form of aesthetic osmosis actually takes place through the inert matter (the medium) that enabled this communication or interaction phenomenon to occur. The role of the spectator may become gradually more active by interacting with the artwork itself possibly changing or becoming a part of it [2][4].
Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul
2012-11-01
Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.
Caregiving decision making by older mothers and adult children: process and expected outcome.
Cicirelli, Victor G
2006-06-01
Dyadic caregiving decision making was studied in 30 mother-son and 29 mother-daughter pairs (mother's age=65-94 years) who responded to a vignette depicting a caregiving decision situation. The observed decision-making process of mother-child pairs was largely naturalistic, with few alternatives proposed and quick convergence to a decision followed by a postdecision justification; a degree of more rational decision making was seen in some pairs. Among significant findings, adult children, especially sons, dominated the decision process, doing more talking and introducing more alternatives than did their mothers, who played a more subordinate role. Mother-son pairs expected more negative outcomes and greater regrets regarding their decisions than mother-daughter pairs. Closeness of the parent-child relationship influenced the decision-making process, expected outcomes, and regrets. Copyright (c) 2006 APA, all rights reserved.
ERIC Educational Resources Information Center
Miller, Jon S.; Toth, Ronald
2014-01-01
We describe how the increased level of religiosity in the United States is correlated with the resistance to the teaching of evolution and argue that this is a social, rather than scientific, issue. Our goal is to foster teachers' understanding of the philosophy of biology and encourage them to proactively deal with creationism at all levels,…
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-01-01
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029
Practical Implementation of Semi-Automated As-Built Bim Creation for Complex Indoor Environments
NASA Astrophysics Data System (ADS)
Yoon, S.; Jung, J.; Heo, J.
2015-05-01
In recent days, for efficient management and operation of existing buildings, the importance of as-built BIM is emphasized in AEC/FM domain. However, fully automated as-built BIM creation is a tough issue since newly-constructed buildings are becoming more complex. To manage this problem, our research group has developed a semi-automated approach, focusing on productive 3D as-built BIM creation for complex indoor environments. In order to test its feasibility for a variety of complex indoor environments, we applied the developed approach to model the `Charlotte stairs' in Lotte World Mall, Korea. The approach includes 4 main phases: data acquisition, data pre-processing, geometric drawing, and as-built BIM creation. In the data acquisition phase, due to its complex structure, we moved the scanner location several times to obtain the entire point clouds of the test site. After which, data pre-processing phase entailing point-cloud registration, noise removal, and coordinate transformation was followed. The 3D geometric drawing was created using the RANSAC-based plane detection and boundary tracing methods. Finally, in order to create a semantically-rich BIM, the geometric drawing was imported into the commercial BIM software. The final as-built BIM confirmed that the feasibility of the proposed approach in the complex indoor environment.
Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi
2012-08-21
Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.
Mitochondrial transcription: Lessons from mouse models
Peralta, Susana; Wang, Xiao; Moraes, Carlos T.
2012-01-01
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174
TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools
NASA Technical Reports Server (NTRS)
Marlowe, Jill M.; Dixon, Genevieve D.
1998-01-01
This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.
NASA Astrophysics Data System (ADS)
Hahn, Deirdre
The introduction of the theories of evolution into public education has created a history of misinterpretation and uncertainty about its application to understanding deep time and human origins. Conceptions about negative social and moral outcomes of evolution itself along with cognitive temporal constraints may be difficult for many individuals to uncouple from the scientific theory, serving to provoke the ongoing debate about the treatment of evolution in science education. This debate about teaching evolution is strongly influenced by groups who strive to add creationism to the science curriculum for a balanced treatment of human origins and to mediate implied negative social and moral outcomes of evolution. Individual conceptualization of evolution and creation may influence the choice of college students to teach science. This study is designed to examine if pre-service teachers' conceptualize an evolutionary and creationist process of human development using certain social, moral or temporal patterns; and if the patterns follow a negative conceptual theme. The pilot study explored 21 pre-service teachers' conceptual representation of an evolutionary process through personal narratives. Participants tended to link evolutionary changes with negative social and moral consequences and seemed to have difficulty envisioning change over time. The pilot study was expanded to include a quantitative examination of attribute patterns of an evolutionary and creationist developmental process. Seventy-three pre-service teachers participated in the second experiment and tended to fall evenly along a continuum of creationist and evolutionist beliefs about life. Using a chi-square and principle components analysis, participants were found to map concepts of evolution and creation onto each other using troubling attributes of development to distinguish negative change over time. A strong negative social and moral pattern of human development was found in the creation condition, though only a vague negative human developmental process was found for the evolution condition. Based on these results, pre-service teachers may not use evolution as a viable explanation of human origins, which may serve to contribute to evolution theory debates and discourage pre-service teachers' choice of being science instructors.
Final state interactions at the threshold of Higgs boson pair production
NASA Astrophysics Data System (ADS)
Zhang, Zhentao
2015-11-01
We study the effect of final state interactions at the threshold of Higgs boson pair production in the Glashow-Weinberg-Salam model. We consider three major processes of the pair production in the model: lepton pair annihilation, ZZ fusion, and WW fusion. We find that the corrections caused by the effect for these processes are markedly different. According to our results, the effect can cause non-negligible corrections to the cross sections for lepton pair annihilation and small corrections for ZZ fusion, and this effect is negligible for WW fusion.
The effect of image processing on the detection of cancers in digital mammography.
Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C
2014-08-01
OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.
The 3D Digital Story-telling Media on Batik Learning in Vocational High Schools
NASA Astrophysics Data System (ADS)
Widiaty, I.; Achdiani, Y.; Kuntadi, I.; Mubaroq, S. R.; Zakaria, D.
2018-02-01
The aim of this research is to make 3D digital Story-telling Media on Batik Learning in Vocational High School. The digital story-telling developed in this research is focused on 3D-based story-telling. In contrast to the digital story-telling that has been developed in existing learning, this research is expected to be able to improve understanding of vocational students about the value of local wisdom batik more meaningful and “live”. The process of making 3D digital story-telling media consists of two processes, namely the creation of 3D objects and the creation of 3D object viewer.
Clinical Note Creation, Binning, and Artificial Intelligence
Deliberato, Rodrigo Octávio; Stone, David J
2017-01-01
The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. PMID:28778845
Code IN Exhibits - Supercomputing 2000
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
A Process for the Creation of T-MATS Propulsion System Models from NPSS data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Comprehending isospin breaking effects of X (3872 ) in a Friedrichs-model-like scheme
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Yong; Xiao, Zhiguang
2018-02-01
Recently, we have shown that the X (3872 ) state can be naturally generated as a bound state by incorporating the hadron interactions into the Godfrey-Isgur quark model using a Friedrichs-like model combined with the quark pair creation model, in which the wave function for the X (3872 ) as a combination of the bare c c ¯ state and the continuum states can also be obtained. Under this scheme, we now investigate the isospin-breaking effect of X (3872 ) in its decays to J /ψ π+π- and J /ψ π+π-π0. By coupling its dominant continuum parts to J /ψ ρ and J /ψ ω through the quark rearrangement process, one could obtain the reasonable ratio of B (X (3872 )→J /ψ π+π-π0)/B (X (3872 )→J /ψ π+π-)≃ (0.58 - 0.92 ) . It is also shown that the D ¯D* invariant mass distributions in the B →D ¯D*K decays could be understood qualitatively at the same time. This scheme may provide more insight into the enigmatic nature of the X (3872 ) state.
Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2017-03-01
Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.
De novo self-assembling collagen heterotrimers using explicit positive and negative design.
Xu, Fei; Zhang, Lei; Koder, Ronald L; Nanda, Vikas
2010-03-23
We sought to computationally design model collagen peptides that specifically associate as heterotrimers. Computational design has been successfully applied to the creation of new protein folds and functions. Despite the high abundance of collagen and its key role in numerous biological processes, fibrous proteins have received little attention as computational design targets. Collagens are composed of three polypeptide chains that wind into triple helices. We developed a discrete computational model to design heterotrimer-forming collagen-like peptides. Stability and specificity of oligomerization were concurrently targeted using a combined positive and negative design approach. The sequences of three 30-residue peptides, A, B, and C, were optimized to favor charge-pair interactions in an ABC heterotrimer, while disfavoring the 26 competing oligomers (i.e., AAA, ABB, BCA). Peptides were synthesized and characterized for thermal stability and triple-helical structure by circular dichroism and NMR. A unique A:B:C-type species was not achieved. Negative design was partially successful, with only A + B and B + C competing mixtures formed. Analysis of computed versus experimental stabilities helps to clarify the role of electrostatics and secondary-structure propensities determining collagen stability and to provide important insight into how subsequent designs can be improved.
Amorphous lead oxide (a-PbO): suppression of signal lag via engineering of the layer structure.
Semeniuk, O; Grynko, O; Juska, G; Reznik, A
2017-10-16
Presence of a signal lag is a bottle neck of performance for many non-crystalline materials, considered for dynamic radiation sensing. Due to inadequate lag-related temporal performance, polycrystalline layers of CdZnTe, PbI 2 , HgI 2 and PbO are not practically utilized, despite their superior X-ray sensitivity and low production cost (even for large area detectors). In the current manuscript, we show that a technological step to replace nonhomogeneous disorder in polycrystalline PbO with homogeneous amorphous PbO structure suppresses signal lag and improves time response to X-ray irradiation. In addition, the newly developed amorphous lead oxide (a-PbO) possesses superior X-ray sensitivity in terms of electron-hole pair creation energy [Formula: see text] in comparison with amorphous selenium - currently the only photoconductor used as an X-ray-to-charge transducer in the state-of-the-art direct conversion X-ray medical imaging systems. The proposed advances of the deposition process are low cost, easy to implement and with certain customization might potentially be applied to other materials, thus paving the way to their wide-range commercial use.
Nonequilibrium excitations and transport of Dirac electrons in electric-field-driven graphene
NASA Astrophysics Data System (ADS)
Li, Jiajun; Han, Jong E.
2018-05-01
We investigate nonequilibrium excitations and charge transport in charge-neutral graphene driven with dc electric field by using the nonequilibrium Green's-function technique. Due to the vanishing Fermi surface, electrons are subject to nontrivial nonequilibrium excitations such as highly anisotropic momentum distribution of electron-hole pairs, an analog of the Schwinger effect. We show that the electron-hole excitations, initiated by the Landau-Zener tunneling with a superlinear I V relation I ∝E3 /2 , reaches a steady state dominated by the dissipation due to optical phonons, resulting in a marginally sublinear I V with I ∝E , in agreement with recent experiments. The linear I V starts to show the sign of current saturation as the graphene is doped away from the Dirac point, and recovers the semiclassical relation for the saturated velocity. We give a detailed discussion on the nonequilibrium charge creation and the relation between the electron-phonon scattering rate and the electric field in the steady-state limit. We explain how the apparent Ohmic I V is recovered near the Dirac point. We propose a mechanism where the peculiar nonequilibrium electron-hole creation can be utilized in a infrared device.
Ambivalent Aspects of Evolution
ERIC Educational Resources Information Center
Hardin, Garrett
1973-01-01
Author proposes that the process of natural selection has resulted in higher forms of life. The Theory of Creation fails to appreciate the continuing nature of the natural selection process. Proofs of the natural selection process and the origin of species with new characteristics are observable. (PS)
Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L
2014-10-01
To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Lubner, Meghan G.; Ziemlewicz, Tim J; Hinshaw, J. Louis; Lee, Fred T.; Sampson, Lisa J.; Brace, Chris L.
2014-01-01
Purpose To characterize modified triaxial microwave antennas configured to produce short ablation zones. Materials and Methods 50 single- and 27 paired-antenna hepatic ablations were performed in domestic swine (n=11) with 17-gauge, gas-cooled modified triaxial antennas powered at 65W from a 2.45 GHz generator. Single-antenna ablations were performed at 2 (n=16), 5 (n=21), and 10 (n=13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n=7, n=8) and 10 minutes (n=7, n=5). Mean transverse width, length and aspect ratio of sectioned ablation zones were measured and compared. Results For single antennas, mean ablation zone length was 2.9±0.45, 3.5±0.55 and 4.2±0.40 cm at 2, 5, and 10 minutes respectively. Mean width was 1.8±0.3, 2.0±0.32, 2.5±0.25 cm at 2, 5, and 10 minutes. For paired antennas, mean length at 5 min 1 and 2 cm and 10 min 1 and 2 cm spacing was 4.2±0.9, 4.4±0.9, 4.8±0.5 and 4.3±0.9 cm respectively. Mean width was 3.1±1.0, 4.0±0.8 and 3.8±0.4, 4.2±0.6 cm respectively. Paired-antenna ablations were more spherical (aspect ratios 0.72-0.79 for 5-10 min) than single-antenna ablations (0.57-0.59). For paired-antenna ablations, 1 cm spacing appeared optimal, with improved circularity and decreased clefting compared to 2 cm spacing (circ 1 cm 0.85, 2 cm 0.78). Conclusion Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension compared to single antenna ablations, with 1 cm spacing optimal for confluence of the ablation zone. PMID:25156644
Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.
2016-01-01
Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts.
A Multi-touch Tool for Co-creation
NASA Astrophysics Data System (ADS)
Ludden, Geke D. S.; Broens, Tom
Multi-touch technology provides an attractive way for knowledge workers to collaborate. Co-creation is an important collaboration process in which collecting resources, creating results and distributing these results is essential. We propose a wall-based multi-touch system (called CoCreate) in which these steps are made easy due to the notion of connected private spaces and a shared co-create space. We present our ongoing work, expert evaluation of interaction scenarios and future plans.
The Portfolio Creation Model Developed for the Capital Investment Program Plan Review (CIPPR)
2014-11-12
Basinger, Director, DCI, CFD Scientific Letter The PORTFOLIO CREATION MODEL developed for the Capital Investment Program Plan Review (CIPPR) To inform...senior management about CIPPR decision support, this scientific letter has been prepared upon request [1] to clarify some of the key concepts about...delivery process as laid out in the Defence Project Approval Directive (PAD). 1 With respect to the list above, the subject of this scientific letter is
Intrinsic measures of field entropy in cosmological particle creation
NASA Astrophysics Data System (ADS)
Hu, B. L.; Pavon, D.
1986-11-01
Using the properties of quantum parametric oscillators, two quantities are identified which increase monotonically in time in the process of parametric amplification. The use of these quantities as possible measures of entropy generation in vacuum cosmological particle creation is suggested. These quantities which are of complementary nature are both related to the number of particles spontaneously created. Permanent address: Departamento de Termologia, Facultad de Ciencias, Universidad Autonoma de Barcelona, Ballaterra, Barcelona, Spain.
ERIC Educational Resources Information Center
de Freitas Guilhermino Trindade, Daniela; Guimaraes, Cayley; Antunes, Diego Roberto; Garcia, Laura Sanchez; Lopes da Silva, Rafaella Aline; Fernandes, Sueli
2012-01-01
This study analysed the role of knowledge management (KM) tools used to cultivate a community of practice (CP) in its knowledge creation (KC), transfer, learning processes. The goal of such observations was to determine requirements that KM tools should address for the specific CP formed by Deaf and non-Deaf members of the CP. The CP studied is a…
NASA Astrophysics Data System (ADS)
Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.
2016-06-01
Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.
Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.
Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente
2011-01-01
The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.
Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup
Dreyer, Pia; Haahr, Anita; Martinsen, Bente
2011-01-01
The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123
77 FR 4835 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... ingredients, thereby creating a ``filter-cake.'' At the end of the brewing process, following fermentation... process, following fermentation that results in the creation of the alcohol-containing liquid that is...
To pair or not to pair: chromosome pairing and evolution.
Moore, G
1998-04-01
Chromosome pairing in wild-type wheat closely resembles the process in both yeast and Drosophila. The recent characterisation of a mutant Ph1 wheat and the observation that chromosome pairing in the absence of Ph1 more closely resembles that of mammals and maize has shed light on the evolution of chromosome pairing in the cereals.
Kuperman, Gilad J; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality.
Kuperman, Gilad J.; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D.; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality. PMID:17238381
NASA Astrophysics Data System (ADS)
Deveaud-Plédran, Benoit
2012-02-01
Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.
Domain topology and domain switching kinetics in a hybrid improper ferroelectric
Huang, F. -T.; Xue, F.; Gao, B.; Wang, L. H.; Luo, X.; Cai, W.; Lu, X. -Z.; Rondinelli, J. M.; Chen, L. Q.; Cheong, S. -W.
2016-01-01
Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr)3Ti2O7 crystals. From the exploration of antiphase boundaries in bilayer-perovskites, here we discover that each of four polarization-direction states is degenerate with two antiphase domains, and these eight structural variants form a Z4 × Z2 domain structure with Z3 vortices and five distinct types of domain walls, whose topology is directly relevant to the presence of abundant charged walls. We also discover a zipper-like nature of antiphase boundaries, which are the reversible creation/annihilation centres of pairs of two types of ferroelectric walls (and also Z3-vortex pairs) in 90° and 180° polarization switching. Our results demonstrate the unexpectedly rich nature of hybrid improper ferroelectricity. PMID:27215944
Measuring Charge Collection Efficiency in Diamond Vertex Detectors
NASA Astrophysics Data System (ADS)
Josey, Brian; Seidel, Sally; Hoeferkamp, Martin
2011-10-01
As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.
3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy.
Lozano, Maria Teresa Ugidos; Haro, Fernando Blaya; Diaz, Carlos Molino; Manzoor, Sadia; Ugidos, Gonzalo Ferrer; Mendez, Juan Antonio Juanes
2017-05-01
The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.
The genetics of early telencephalon patterning: some assembly required
Hébert, Jean M.; Fishell, Gord
2009-01-01
The immense range of human behaviours is rooted in the complex neural networks of the cerebrum. The creation of these networks depends on the precise integration of specific neuronal subtypes that are born in different regions of the telencephalon. Here, using the mouse as a model system, we review how these proliferative zones are established. Moreover, we discuss how these regions can be traced back in development to the function of a few key genes, including those that encode fibroblast growth factors (FGFs), sonic hedgehog (SHH), bone morphogenetic proteins (BMPs), forkhead box G1 (FoxG1), paired box 6 (PAX6) and LIM homeobox protein 2 (LHX2), that pattern the early telencephalon. PMID:19143049
Is nucleon spin structure inconsistent with the constituent quark model?
NASA Astrophysics Data System (ADS)
Qing, Di; Chen, Xiang-Song; Wang, Fan
1998-12-01
Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.
Crack Tip Dislocation Nucleation in FCC Solids
NASA Astrophysics Data System (ADS)
Knap, J.; Sieradzki, K.
1999-02-01
We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.
Spontaneous creation of the Universe Ex Nihilo
NASA Astrophysics Data System (ADS)
Lincoln, Maya; Wasser, Avi
2013-12-01
Questions regarding the formation of the Universe and ‘what was there’ before it came to existence have been of great interest to mankind at all times. Several suggestions have been presented during the ages - mostly assuming a preliminary state prior to creation. Nevertheless, theories that require initial conditions are not considered complete, since they lack an explanation of what created such conditions. We therefore propose the ‘Creatio Ex Nihilo’ (CEN) theory, aimed at describing the origin of the Universe from ‘nothing’ in information terms. The suggested framework does not require amendments to the laws of physics: but rather provides a new scenario to the Universe initiation process, and from that point merges with state-of-the-art cosmological models. The paper is aimed at providing a first step towards a more complete model of the Universe creation - proving that creation Ex Nihilo is feasible. Further adjustments, elaborations, formalisms and experiments are required to formulate and support the theory.
Merged GLORIA sidescan and hydrosweep pseudo-sidescan: Processing and creation of digital mosaics
Bird, R.T.; Searle, R.C.; Paskevich, V.; Twichell, D.C.
1996-01-01
We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these "pseudo-sidescan" images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may not have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR).
The Use of EPI-Splines to Model Empirical Semivariograms for Optimal Spatial Estimation
2016-09-01
proliferation of unmanned systems in military and civilian sectors has occurred at lightning speed. In the case of Autonomous Underwater Vehicles or...SLAM is a method of position estimation that relies on map data [3]. In this process, the creation of the map occurs as the vehicle is navigating the...that ensures minimal errors. This technique is accomplished in two steps. The first step is creation of the semivariogram. The semivariogram is a
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
DEVELOPMENT AND USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOLS FOR POLLUTION PREVENTION
The use of Computer-Aided Process Engineering (CAPE) and process simulation tools has become established industry practice to predict simulation software, new opportunities are available for the creation of a wide range of ancillary tools that can be used from within multiple sim...
Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A
2008-11-15
We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.
Cosmogonic Perceptions in the Armenian Traditional Musical Instrument-crafting Culture
NASA Astrophysics Data System (ADS)
Pikichian, Hripsime
2015-07-01
Based on research data and materials recorded by folk musicians and craftsmen, the article presents the musical instrument-crafting in traditional culture, its contribution in to re-establishment of cosmic order. In this context, the several issues are reviewed in detail: individuality of craftsmen and musicians, the raw materials for the creation of instrument, the instrument structure, the manufacturing process, the ornaments and application. According to the traditional view, using the elements of nature and imitating the sounds of nature and human psychological states the master imitates God repeating the process of creation of the Universe. So, the Instrument is held capable to influence the society contributing to the eternity of life.
Ambient Assisted Living spaces validation by services and devices simulation.
Fernández-Llatas, Carlos; Mocholí, Juan Bautista; Sala, Pilar; Naranjo, Juan Carlos; Pileggi, Salvatore F; Guillén, Sergio; Traver, Vicente
2011-01-01
The design of Ambient Assisted Living (AAL) products is a very demanding challenge. AAL products creation is a complex iterative process which must accomplish exhaustive prerequisites about accessibility and usability. In this process the early detection of errors is crucial to create cost-effective systems. Computer-assisted tools can suppose a vital help to usability designers in order to avoid design errors. Specifically computer simulation of products in AAL environments can be used in all the design phases to support the validation. In this paper, a computer simulation tool for supporting usability designers in the creation of innovative AAL products is presented. This application will benefit their work saving time and improving the final system functionality.
Disclinations, dislocations, and continuous defects: A reappraisal
NASA Astrophysics Data System (ADS)
Kleman, M.; Friedel, J.
2008-01-01
Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.
An advanced simulator for orthopedic surgical training.
Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel
2018-02-01
The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.
Heavy Quark Correlations and J / Φ Production in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Niazi, Reza; Liu, Yunpeng; Ko, Che-Ming
2014-09-01
Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Funded by DOE and NSF-REU Program.
Simulation of the target creation through FRC merging for a magneto-inertial fusion concept
NASA Astrophysics Data System (ADS)
Li, Chenguang; Yang, Xianjun
2017-04-01
A two-dimensional magnetohydrodynamics model has been used to simulate the target creation process in a magneto-inertial fusion concept named Magnetized Plasma Fusion Reactor (MPFR) [C. Li and X. Yang, Phys. Plasmas 23, 102702 (2016)], where the target plasma created through Field reversed configuration (FRC) merging was compressed by an imploding liner driven by the pulsed-power driver. In the scheme, two initial FRCs (Field reversed configurations) are translated into the region where FRC merging occurs, bringing out the target plasma ready for compression. The simulations cover the three stages of the target creation process: formation, translation, and merging. The factors affecting the achieved target are analyzed numerically. The magnetic field gradient produced by the conical coils is found to determine how fast the FRC is accelerated to peak velocity and the collision merging occurs. Moreover, it is demonstrated that FRC merging can be realized by real coils with gaps showing nearly identical performance, and the optimized target by FRC merging shows larger internal energy and retained flux, which is more suitable for the MPFR concept.
The evolution of creationists in the United States: where are they now, and where are they going?
Padian, Kevin
2009-01-01
The history of anti-evolutionism in the United States begins only in the early decades of the 20th century but has evolved considerably since then. Various versions of the movement ("equal time" for creationism, "creation science", "intelligent design") have developed over time, but they have made few positive contributions to serious discourse about science and religion. Their main goal has been to try to stop the teaching of evolution. The most recent version of creationism, "intelligent design" (ID), has little in common with William Paley's 18th-century version: ID posits an interventionist Deity who regularly interferes in natural processes to produce complex biological structures and functions. The 2005 "intelligent design" trial in Dover, Pennsylvania, destroyed any pretensions that the movement had to scientific integrity. However, anti-evolutionists continue to foment discord at local levels, where opposition to the teaching of evolution can be presented without strong resistance. Scientists can best demonstrate their concern by becoming involved in federal, state, and local administrative processes that determine curricula and develop and adopt textbooks and other instructional materials.
Creating the learning situation to promote student deep learning: Data analysis and application case
NASA Astrophysics Data System (ADS)
Guo, Yuanyuan; Wu, Shaoyan
2017-05-01
How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.
Building a Knowledge to Action Program in Stroke Rehabilitation.
Janzen, Shannon; McIntyre, Amanda; Richardson, Marina; Britt, Eileen; Teasell, Robert
2016-09-01
The knowledge to action (KTA) process proposed by Graham et al (2006) is a framework to facilitate the development and application of research evidence into clinical practice. The KTA process consists of the knowledge creation cycle and the action cycle. The Evidence Based Review of Stroke Rehabilitation is a foundational part of the knowledge creation cycle and has helped guide the development of best practice recommendations in stroke. The Rehabilitation Knowledge to Action Project is an audit-feedback process for the clinical implementation of best practice guidelines, which follows the action cycle. The objective of this review was to: (1) contextualize the Evidence Based Review of Stroke Rehabilitation and Rehabilitation Knowledge to Action Project within the KTA model and (2) show how this process led to improved evidence-based practice in stroke rehabilitation. Through this process, a single centre was able to change clinical practice and promote a culture that supports the use of evidence-based practices in stroke rehabilitation.
Enabling integration in sports for adolescents with intellectual disabilities.
Grandisson, Marie; Tétreault, Sylvie; Freeman, Andrew R
2012-05-01
Promoting the health and social participation of adolescents with intellectual disability is important as they are particularly vulnerable to encountering difficulties in those areas. Integration of these individuals in integrated sports is one strategy to address this issue. The main objective of this study was to gain a better understanding of the factors associated with the integration of adolescents with intellectual disability in sports alongside their non-disabled peers. Individual interviews were completed with 40 adolescents with intellectual disability and their parents, while 39 rehabilitation staff participated via either a discussion group or self-administered questionnaires. The Disability Creation Process (DCP) theoretical model was used to frame the analysis and the presentation of the findings (The Quebec Classification: Disability Creation Process. International Network on the Disability Creation Process/CSICIDH, Québec, QC, 1998). Various personal and environmental factors that have an impact on integration in sports were identified by participants. For example, attitudes, practical support, individuals' experiences in sports and in integrated settings as well as behaviour control emerged as important elements to consider. Integration in integrated sports can engender a lot of benefits for individuals with intellectual disability, their parents and non-disabled athletes. However, many barriers need to be removed before such benefits can be more widely realized. © 2012 Blackwell Publishing Ltd.
Cislunar space infrastructure: Lunar technologies
NASA Technical Reports Server (NTRS)
Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.
1989-01-01
Continuing its emphasis on the creation of a cisluar infrastructure as an appropriate and cost-effective method of space exploration and development, the University of Colorado explores the technologies necessary for the creation of such an infrastructure, namely (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologes. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by automation and robotics (LOARS). Under direction from the NASA Office of Exploration, automation and robotics have been extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a 'buddy system', these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of lunar resources and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar Environmentally Controlled Life Support System. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the lunar surface. Physiochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ lunar resources will be both tested and used within this bio-volume. Second phase development on the lunar surface calls for manned operations. Repairs and reconfiguration of the initial framework will ensue. An autonomously initiated, manned Lunar Oasis can become an essential component of the United States space program. The Lunar Oasis will provide support to science, technology, and commerce. It will enable more cost-effective space exploration to the planets and beyond.
Ram Pressure Stripping and Morphological Transformation in the Coma Cluster
NASA Astrophysics Data System (ADS)
Gregg, Michael; West, Michael
2017-01-01
The two largest spiral galaxies in the Coma cluster, NGC4911 and NGC4921, exhibit signs of being vigorously ram-pressure stripped by the hot intracluster medium. HST ACS and WFC3 images have revealed galactic scale shock fronts, giant "Pillars of Creation", rivulets of dust, and spatially coherent star formation in these grand design spirals. All evidence points to these galaxies being stressed by a global external source which can only be the hot intracluster medium (ICM). Inspired by these examples, we have obtained HST WFC3 imaging of five additional large spirals to search for and investigate the effects of ram pressure stripping across the wider Coma cluster. The results are equally spectacular as the first two examples. The geometry of the interactions in some cases allows us to estimate the various time scales involved, including gas flows out of the disk leading to creation of the ICM, and the attendant triggered star formation in the galaxy disks. The global star formation patterns and wholesale tidal stripping of matter yield insights into the spatial and temporal ISM-ICM interactions driving the evolution of galaxies in clusters and ultimately transforming their morphologies from spiral to S0. These processes, much more common in the early Universe, led to the wholesale morphological transformation of Hubble types during the assembly of rich clusters, when the intergalactic populations and hot ICM were first being created and laid down from such stripping and destruction of their member galaxies.We also report on two instrumental aspects of WFC3: 1) using the filter pair F350LP and F600LP to create an extremely broad pseudo Blue-Red color to achieve the greatest observing efficiency with HST, and 2) a WFC3 CCD effect which leads to apparent quantization of background counts, making automatic sky determination challenging when using drizzlepac routines.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
This research is computational /theoretical and complements the Caltech experimental program. We have developed an understanding of the basic physical processes and produced computational models and implemented these into Eulerian and Lagrangian finite element codes. The key issues we have addressed include the conditions required for: faulting (strain localization), elastic moduli weakening, dynamic weakening (layering elastic instabilities and fluidization), bulking (creation of porosity at zero pressure) and compaction of pores, frictional melting (creation of pseudotachylytes), partial and selective devolatilization of materials (e.g. CaCO3, water/ice mixtures), and debris flows.
Guiding the creation of knowledge and understanding in a virtual learning environment.
Littleton, Karen; Whitelock, Denise
2004-04-01
This article reports findings from an in-depth case study investigating processes of teaching and learning within one tutorial group studying an e-learning course presented as part of the Open University's MA in Open and Distance Education. Drawing on contemporary sociocultural theory and research, the instructional techniques used by the tutor-moderator to guide the creation of "common knowledge" and the construction of understanding are explored. The significance of tutor contributions for fostering a supportive culture of enquiry is also discussed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Value-Added to farm products through processing or marketing activities. Development activities may... economic development in rural areas through the creation and enhancement of cooperatives. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Value-Added to farm products through processing or marketing activities. Development activities may... economic development in rural areas through the creation and enhancement of cooperatives. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Value-Added to farm products through processing or marketing activities. Development activities may... economic development in rural areas through the creation and enhancement of cooperatives. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Value-Added to farm products through processing or marketing activities. Development activities may... economic development in rural areas through the creation and enhancement of cooperatives. ...
Industrialisation, Exports and Employment.
ERIC Educational Resources Information Center
Sabolo, Yves
1980-01-01
After reviewing trends in industrial production, exports, and employment in the Third World since 1960, the author discusses industrialization strategies based on the local processing of raw materials for export. Such processing has proved to be a major factor in job creation. (Author/SK)
Challenges in New Service Development and Value Creation through Service
NASA Astrophysics Data System (ADS)
Edvardsson, Bo; Gustafsson, Anders; Enquist, Bo
Many companies are at a crossroad where they try to' stay competitive by creating customer value through service development. This combination produces the prerequisites that are necessary for favorable customer experiences. Our focus is not on issues directly related to the new service development process as such, which has often been the case in the service literature (Gupta and Wilemon 1990; Martin and Home 1993, Martin and Home 1995; Edvardsson et al., 1995, Edvardsson et al., 2000; John and Storey 1998; Scheuing and Johnson 1989; Kelly and Storey 2000). First we focus on challenges in the new business landscape where service competition, IT, and value creation through service, put pressure on companies and markets to develop service offerings preferredby demanding customers. Secondly, we focus on service value creation through favorable customer experiences.
The Strategic Partners Network's Extraction: The XStrat.Net Project
NASA Astrophysics Data System (ADS)
Taifi, Nouha; Passiante, Giuseppina
The firms in the business environment have to choose adequate partners in order to sustain their competitive advantage and their economic performance. Plus, the creation of special communities consisting of these partners is essential for the life-long development of these latter and the firms creating them. The research project XStrat.Net aims at the identification of factors and indicators about the organizations for the modelling of intelligent agents -XStrat intelligent agents- and the engineering of a software -XStrat- to process these backbones intelligent agents. Through the use of the software, the firms will be able to select the needed partners for the creation of special communities for the purpose of learning, interest or innovation. The XStrat.Net project also intends to provide guidelines for the creation of the special communities.
Mangels, Jennifer A; Manzi, Alberto; Summerfield, Christopher
2010-03-01
In social interactions, it is often necessary to rapidly encode the association between visually presented faces and auditorily presented names. The present study used event-related potentials to examine the neural correlates of associative encoding for multimodal face-name pairs. We assessed study-phase processes leading to high-confidence recognition of correct pairs (and consistent rejection of recombined foils) as compared to lower-confidence recognition of correct pairs (with inconsistent rejection of recombined foils) and recognition failures (misses). Both high- and low-confidence retrieval of face-name pairs were associated with study-phase activity suggestive of item-specific processing of the face (posterior inferior temporal negativity) and name (fronto-central negativity). However, only those pairs later retrieved with high confidence recruited a sustained centro-parietal positivity that an ancillary localizer task suggested may index an association-unique process. Additionally, we examined how these processes were influenced by massed repetition, a mnemonic strategy commonly employed in everyday situations to improve face-name memory. Differences in subsequent memory effects across repetitions suggested that associative encoding was strongest at the initial presentation, and thus, that the initial presentation has the greatest impact on memory formation. Yet, exploratory analyses suggested that the third presentation may have benefited later memory by providing an opportunity for extended processing of the name. Thus, although encoding of the initial presentation was critical for establishing a strong association, the extent to which processing was sustained across subsequent immediate (massed) presentations may provide additional encoding support that serves to differentiate face-name pairs from similar (recombined) pairs by providing additional encoding opportunities for the less dominant stimulus dimension (i.e., name).
A Model of the Creative Process Based on Quantum Physics and Vedic Science.
ERIC Educational Resources Information Center
Rose, Laura Hall
1988-01-01
Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…
The relationship between the content and the form of metaphorical statements.
Xu, Xu
2010-04-01
Recent research suggests that the quality of a metaphorical topic-vehicle pairing should be the determinant to the choice of a proper grammatical form, nominal metaphor versus simile. Two studies examined the relationship between the quality of the content of a metaphorical statement and its grammatical form. Study 1 showed that the two grammatical forms did not differ in aptness when the quality of topic-vehicle pairs and the conventionality of vehicles, a factor associated with the quality of metaphorical expressions, were controlled. With an online comprehension measure, Study 2 found that high quality metaphorical pairings were easier to process than low quality metaphorical pairings in both the metaphor form and the simile form. For high quality metaphorical pairings, information related to both the topics and the vehicles was highly activated at an early stage of processing. The relations among factors involved in the interpretive process of metaphorical language are discussed.
Trainor, Laurel J.
2015-01-01
Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory–motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation. PMID:25646512
Embracing value co-creation in primary care services research: a framework for success.
Janamian, Tina; Crossland, Lisa; Jackson, Claire L
2016-04-18
Value co-creation redresses a key criticism of researcher-driven approaches to research - that researchers may lack insight into the end users' needs and values across the research journey. Value co-creation creates, in a step-wise way, value with, and for, multiple stakeholders through regular, ongoing interactions leading to innovation, increased productivity and co-created outcomes of value to all parties - thus creating a "win more-win more" environment. The Centre of Research Excellence (CRE) in Building Primary Care Quality, Performance and Sustainability has co-created outcomes of value that have included robust and enduring partnerships, research findings that have value to end users (such as the Primary Care Practice Improvement Tool and the best-practice governance framework), an International Implementation Research Network in Primary Care and the International Primary Health Reform Conference. Key lessons learned in applying the strategies of value co-creation have included the recognition that partnership development requires an investment of time and effort to ensure meaningful interactions and enriched end user experiences, that research management systems including governance, leadership and communication also need to be "co-creative", and that openness and understanding is needed to work across different sectors and cultures with flexibility, fairness and transparency being essential to the value co-creation process.
Trainor, Laurel J
2015-03-19
Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory-motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation.
Garimella, Ravindranath; Halye, Jeffrey L.; Harrison, William; Klebba, Phillip E.; Rice, Charles V.
2009-01-01
The conformation of D-alanine (D-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The D-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH3+ group with the ability to form a contact-ion-pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the D-Ala cation; thus the ion-pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing 15N D-Ala and β-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling and the results demonstrate: 1) the metal-free amine-to-phosphate distance is 4.4 Å and 2) the amine-to-phosphate distance increases to 5.4 Å in the presence of Mg2+ ions. As a result, the zwitterion exists in a nitrogen-oxygen ion-pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of D-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies. PMID:19746945
NASA Astrophysics Data System (ADS)
Yathapu, Nithin; McGarvey, Steve; Brown, Justin; Zhivotovsky, Alexander
2016-03-01
This study explores the feasibility of Automated Defect Classification (ADC) with a Surface Scanning Inspection System (SSIS). The defect classification was based upon scattering sensitivity sizing curves created via modeling of the Bidirectional Reflectance Distribution Function (BRDF). The BRDF allowed for the creation of SSIS sensitivity/sizing curves based upon the optical properties of both the filmed wafer samples and the optical architecture of the SSIS. The elimination of Polystyrene Latex Sphere (PSL) and Silica deposition on both filmed and bare Silicon wafers prior to SSIS recipe creation and ADC creates a challenge for light scattering surface intensity based defect binning. This study explored the theoretical maximal SSIS sensitivity based on native defect recipe creation in conjunction with the maximal sensitivity derived from BRDF modeling recipe creation. Single film and film stack wafers were inspected with recipes based upon BRDF modeling. Following SSIS recipe creation, initially targeting maximal sensitivity, selected recipes were optimized to classify defects commonly found on non-patterned wafers. The results were utilized to determine the ADC binning accuracy of the native defects and evaluate the SSIS recipe creation methodology. A statistically valid sample of defects from the final inspection results of each SSIS recipe and filmed substrate were reviewed post SSIS ADC processing on a Defect Review Scanning Electron Microscope (SEM). Native defect images were collected from each statistically valid defect bin category/size for SEM Review. The data collected from the Defect Review SEM was utilized to determine the statistical purity and accuracy of each SSIS defect classification bin. This paper explores both, commercial and technical, considerations of the elimination of PSL and Silica deposition as a precursor to SSIS recipe creation targeted towards ADC. Successful integration of SSIS ADC in conjunction with recipes created via BRDF modeling has the potential to dramatically reduce the workload requirements of a Defect Review SEM and save a significant amount of capital expenditure for 450mm SSIS recipe creation.
From neural-based object recognition toward microelectronic eyes
NASA Technical Reports Server (NTRS)
Sheu, Bing J.; Bang, Sa Hyun
1994-01-01
Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.
Kukleta, Miloslav; Damborská, Alena; Turak, Baris; Louvel, Jacques
2017-07-01
Comparison between the intended and performed motor action can be expected to occur in the final epoch of a voluntary movement. In search for electrophysiological correlates of this mental process the purpose of the current study was to identify intracerebral sites activated in final epoch of self-paced voluntary movement. Intracerebral EEG was recorded from 235 brain regions of 42 epileptic patients who performed self-paced voluntary movement task. Evoked potentials starting at 0 to 243ms after the peak of averaged, rectified electromyogram were identified in 21 regions of 13 subjects. The mean amplitude value of these late movement potentials (LMP) was 56.4±27.5μV. LMPs were observed in remote regions of mesiotemporal structures, cingulate, frontal, temporal, parietal, and occipital cortices. Closely before the LMP onset, a significant increase of phase synchronization was observed in all EEG record pairs in 9 of 10 examined subjects; p<0.001, Mann-Whitney U test. In conclusion, mesiotemporal structures, cingulate, frontal, temporal, parietal, and occipital cortices seem to represent integral functionally linked parts of network activated in final epoch of self-paced voluntary movement. Activation of this large-scale neuronal network was suggested to reflect a comparison process between the intended and actually performed motor action. Our results contribute to better understanding of neural mechanisms underlying goal-directed behavior crucial for creation of agentive experience. Copyright © 2017 Elsevier B.V. All rights reserved.
Effective Organizational Structures and Processes: Addressing Issues of Change
ERIC Educational Resources Information Center
Andrade, Maureen Snow
2016-01-01
This chapter describes organizational structures and processes at the institutional and project levels for the development and support of distance learning initiatives. It addresses environmental and stakeholder issues and explores principles and strategies of effective leadership for change creation and management.
Dollins, Haley E; Bray, Kimberly Krust; Gadbury-Amyot, Cynthia C
2013-10-01
Inequitable access to dental care contributes to oral health disparities. Midlevel dental provider models are utilized across the globe as a way to bridge the gap between preventive and restorative dental professionals and increase access to dental care. The purpose of this study was threefold: to examine lessons learned from the state legislative process related to creation of the hygienist-therapist in a Midwestern state, to improve understanding of the relationship between alternative oral health delivery models and public policy and to inform the development and passage of future policies aimed at addressing the unmet dental needs of the public. This research investigation utilized a qualitative research methodology to examine the process of legislation relating to an alternative oral health delivery model (hygienist-therapist) through the eyes of key stakeholders. Interview data was analyzed and then triangulated with 3 data sources: interviews with key stakeholders, documents and researcher participant field notes. Data analysis resulted in consensus on 3 emergent themes with accompanying categories. The themes that emerged included social justice, partnerships and coalitions, and the legislative process. This qualitative case study suggests that the creation of a new oral health workforce model was a long and arduous process involving multiple stakeholders and negotiation between the parties involved. The creation of this new workforce model was recognized as a necessary step to increasing access to dental care at the state and national level. The research in this case study may serve to inform advocates of access to oral health care as other states pursue their own workforce models.
What Critical Ethical Values Guide Strategic Planning Processes in Health Care Organizations?
Kucmanic, Matthew; Sheon, Amy R
2017-11-01
This case explores a fictitious hospital's use of co-creation to make a decision about redesign of inpatient units as a first step in incorporating stakeholder input into creation of governing policies. We apply a "procedural fairness" framework to reveal that conditions required for an ethical decision about space redesign were not met by using clinician and patient focus groups to obtain stakeholder input. In this article, we identify epistemic injustices resulting from this process that could undermine confidence in leadership decisions. Suggestions are offered for incorporating stakeholder input going forward that address prior shortcomings. The result should be conditions that are perceived as procedurally fair and decisions that engender confidence in institutional leadership. © 2017 American Medical Association. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen
1992-01-01
A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.
[Proposal for Recertification of Medical Specialties in Colombia].
Luis, E Jaramillo G
2012-01-01
This article gives a brief overview of the aspects that justify implementing a recertification of doctors. After a description of this process in the countries where it has the most experience, the advantages of having a recertification process and the criticism of the system is also discussed. Finally, the creation of the Council on Accreditation and Recertification Colombian Medical Specialist professionals (CAMEC, in Spanish), as a product of the work of the Colombian Association of Scientific Societies, and also the draft decree of the national government is proposed in the creation of the Integrated System for Continuing Education and Continuing Professional Development in Health (SFCTHS, in Spanish). Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Wilcox, Jennifer L; Bevilacqua, Philip C
2013-10-22
Shifting of pKa's in RNA is important for many biological processes; however, the driving forces responsible for shifting are not well understood. Herein, we determine how structural environments surrounding protonated bases affect pKa shifting in double-stranded RNA (dsRNA). Using (31)P NMR, we determined the pKa of the adenine in an A(+)·C base pair in various sequence and structural environments. We found a significant dependence of pKa on the base pairing strength of nearest neighbors and the location of a nearby bulge. Increasing nearest neighbor base pairing strength shifted the pKa of the adenine in an A(+)·C base pair higher by an additional 1.6 pKa units, from 6.5 to 8.1, which is well above neutrality. The addition of a bulge two base pairs away from a protonated A(+)·C base pair shifted the pKa by only ~0.5 units less than a perfectly base paired hairpin; however, positioning the bulge just one base pair away from the A(+)·C base pair prohibited formation of the protonated base pair as well as several flanking base pairs. Comparison of data collected at 25 °C and 100 mM KCl to biological temperature and Mg(2+) concentration revealed only slight pKa changes, suggesting that similar sequence contexts in biological systems have the potential to be protonated at biological pH. We present a general model to aid in the determination of the roles protonated bases may play in various dsRNA-mediated processes including ADAR editing, miRNA processing, programmed ribosomal frameshifting, and general acid-base catalysis in ribozymes.
ERIC Educational Resources Information Center
Song, Ji Hoon; Chermack, Thomas J.; Kim, Hong Min
2008-01-01
This research examined the link between learning processes and knowledge formation through an integrated literature review from both academic and practical viewpoints. Individuals' learning processes and organizational knowledge creation were reviewed by means of theoretical and integrative analysis based on a lack of empirical research on the…
77 FR 38033 - Notice of Establishment of a Commodity Import Approval Process Web Site
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... Process Web Site AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are announcing the creation of a new Plant Protection and Quarantine Web site that will provide stakeholders with... comment on draft risk assessments. This Web site will make the commodity import approval process more...
Kill the Song--Steal the Show: What Does Distinguish Predicative Metaphors from Decomposable Idioms?
ERIC Educational Resources Information Center
Caillies, Stephanie; Declercq, Christelle
2011-01-01
This study examined the semantic processing difference between decomposable idioms and novel predicative metaphors. It was hypothesized that idiom comprehension results from the retrieval of a figurative meaning stored in memory, that metaphor comprehension requires a sense creation process and that this process difference affects the processing…
Jamin, Gaston; Luyten, Tom; Delsing, Rob; Braun, Susy
2017-10-17
Interactive art installations might engage nursing home residents with dementia. The main aim of this article was to describe the challenging design process of an interactive artwork for nursing home residents, in co-creation with all stakeholders and to share the used methods and lessons learned. This process is illustrated by the design of the interface of VENSTER as a case. Nursing home residents from the psychogeriatric ward, informal caregivers, client representatives, health care professionals and members of the management team were involved in the design process, which consisted of three phases: (1) identify requirements, (2) develop a prototype and (3) conduct usability tests. Several methods were used (e.g. guided co-creation sessions, "Wizard of Oz"). Each phase generated "lessons learned", which were used as the departure point of the next phase. Participants hardly paid attention to the installation and interface. There, however, seemed to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). "Fifteen lessons learned" which can potentially assist the design of an interactive artwork for nursing home residents suffering from dementia were derived from the design process. This description provides tools and best practices for stakeholders to make (better) informed choices during the creation of interactive artworks. It also illustrates how co-design can make the difference between designing a pleasurable experience and a meaningful one. Implications for rehabilitation Co-design with all stakeholders can make the difference between designing a pleasurable experience and a meaningful one. There seems to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). Content as an interface proved to be a crucial part of the overall user experience. The case-study provides tools and best practices (15 "lessons learned") for stakeholders to make (better) informed choices during the creation of interactive artworks.
Episodic, generalized, and semantic memory tests: switching and strength effects.
Humphreys, Michael S; Murray, Krista L
2011-09-01
We continue the process of investigating the probabilistic paired associate paradigm in an effort to understand the memory access control processes involved and to determine whether the memory structure produced is in transition between episodic and semantic memory. In this paradigm two targets are probabilistically paired with a cue across a large number of short lists. Participants can recall the target paired with the cue in the most recent list (list specific test), produce the first of the two targets that have been paired with that cue to come to mind (generalised test), and produce a free association response (semantic test). Switching between a generalised test and a list specific test did not produce a switching cost indicating a general similarity in the control processes involved. In addition, there was evidence for a dissociation between two different strength manipulations (amount of study time and number of cue-target pairings) such that number of pairings influenced the list specific, generalised and the semantic test but amount of study time only influenced the list specific and generalised test. © 2011 Canadian Psychological Association
NASA Astrophysics Data System (ADS)
Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.
2016-04-01
The phenomenological structure of inclusive cross-sections of the production of two neutral K mesons in collisions of hadrons and nuclei is investigated taking into account the strangeness conservation in strong and electromagnetic interactions. Relations describing the dependenceof the correlations of two short-lived and two long-lived neutral kaons KS∘ KS∘, KL∘ KL∘ and the correlations of ;mixed; pairs KS∘ KL∘ at small relative momenta upon the space-time parameters of the generation region of K∘ and Kbar∘ mesons have been obtained. It is shown that under the strangeness conservation the correlation functions of the pairs KS∘ KS∘ and KL∘ KL∘, produced in the same inclusive process, coincide, and the difference between the correlation functions of the pairs KS∘ KS∘ and KS∘ KL∘ is conditioned exclusively by the production of the pairs of non-identical neutral kaons K∘Kbar∘. Analogous correlations for the pairs of neutral heavy mesons D∘ ,B∘ and BS∘, generated in multiple processes with the charm (beauty) conservation, are analyzed, and differences from the case of neutral K mesons are discussed.
Detecting measurement outliers: remeasure efficiently
NASA Astrophysics Data System (ADS)
Ullrich, Albrecht
2010-09-01
Shrinking structures, advanced optical proximity correction (OPC) and complex measurement strategies continually challenge critical dimension (CD) metrology tools and recipe creation processes. One important quality ensuring task is the control of measurement outlier behavior. Outliers could trigger false positive alarm for specification violations impacting cycle time or potentially yield. Constant high level of outliers not only deteriorates cycle time but also puts unnecessary stress on tool operators leading eventually to human errors. At tool level the sources of outliers are natural variations (e.g. beam current etc.), drifts, contrast conditions, focus determination or pattern recognition issues, etc. Some of these can result from suboptimal or even wrong recipe settings, like focus position or measurement box size. Such outliers, created by an automatic recipe creation process faced with more complicated structures, would manifest itself rather as systematic variation of measurements than the one caused by 'pure' tool variation. I analyzed several statistical methods to detect outliers. These range from classical outlier tests for extrema, robust metrics like interquartile range (IQR) to methods evaluating the distribution of different populations of measurement sites, like the Cochran test. The latter suits especially the detection of systematic effects. The next level of outlier detection entwines additional information about the mask and the manufacturing process with the measurement results. The methods were reviewed for measured variations assumed to be normally distributed with zero mean but also for the presence of a statistically significant spatial process signature. I arrive at the conclusion that intelligent outlier detection can influence the efficiency and cycle time of CD metrology greatly. In combination with process information like target, typical platform variation and signature, one can tailor the detection to the needs of the photomask at hand. By monitoring the outlier behavior carefully, weaknesses of the automatic recipe creation process can be spotted.
Energy-momentum restrictions on the creation of Gott time machines
NASA Astrophysics Data System (ADS)
Carroll, Sean M.; Farhi, Edward; Guth, Alan H.; Olum, Ken D.
1994-11-01
The discovery by Gott of a remarkably simple spacetime with closed timelike curves (CTC's) provides a tool for investigating how the creation of time machines is prevented in classical general relativity. The Gott spacetime contains two infinitely long, parallel cosmic strings, which can equivalently be viewed as point masses in (2+1)-dimensional gravity. We examine the possibility of building such a time machine in an open universe. Specifically, we consider initial data specified on an edgeless, noncompact, spacelike hypersurface, for which the total momentum is timelike (i.e., not the momentum of a Gott spacetime). In contrast to the case of a closed universe (in which Gott pairs, although not CTC's, can be produced from the decay of stationary particles), we find that there is never enough energy for a Gott-like time machine to evolve from the specified data; it is impossible to accelerate two particles to a sufficiently high velocity. Thus, the no-CTC theorems of Tipler and Hawking are enforced in an open (2+1)-dimensional universe by a mechanism different from that which operates in a closed universe. In proving our result, we develop a simple method to understand the inequalities that restrict the result of combining momenta in (2+1)-dimensional gravity.
Piovesan, Márcia Franke; Labra, Maria Eliana
2007-06-01
This article examines the decision-making process that led to the creation of the Brazilian National Health Surveillance Agency (ANVISA) in 1999. The authors begin by discussing the history of the Agency's predecessor, the Health Surveillance Secretariat, and the need for its modernization to adjust the quality of the products under its control to domestic and international demands. From the theoretical perspective of neo-institutionalism, the article goes on to analyze the social and political context surrounding the debate on the proposed alternatives to adjust Health Surveillance to new rules in line with such requirements, focusing especially on the formulation of the new policy, the decision-making arena, and the actors with specific interests in the sector. The research drew on extensive documentary and media material, plus interviews with key actors. The article concludes that a determinant factor for the creation of ANVISA was the favorable domestic political context, fostering a positive correlation of forces that (in an extremely short timeframe, 1998-1999) allowed the creation of the first regulatory agency in the social policies area in Brazil.
Temporal texture of associative encoding modulates recall processes.
Tibon, Roni; Levy, Daniel A
2014-02-01
Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.
Creating Shared Mental Models: The Support of Visual Language
NASA Astrophysics Data System (ADS)
Landman, Renske B.; van den Broek, Egon L.; Gieskes, José F. B.
Cooperative design involves multiple stakeholders that often hold different ideas of the problem, the ways to solve it, and to its solutions (i.e., mental models; MM). These differences can result in miscommunication, misunderstanding, slower decision making processes, and less chance on cooperative decisions. In order to facilitate the creation of a shared mental model (sMM), visual languages (VL) are often used. However, little scientific foundation is behind this choice. To determine whether or not this gut feeling is justified, a research was conducted in which various stakeholders had to cooperatively redesign a process chain, with and without VL. To determine whether or not a sMM was created, scores on agreement in individual MM, communication, and cooperation were analyzed. The results confirmed the assumption that VL can indeed play an important role in the creation of sMM and, hence, can aid the processes of cooperative design and engineering.
Interaction-induced decay of a heteronuclear two-atom system
Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng
2015-01-01
Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051
Multiphase flow of miscible liquids: jets and drops
NASA Astrophysics Data System (ADS)
Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.
2015-05-01
Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.
Conducting a narrative analysis.
Emden, C
1998-07-01
This paper describes the process of narrative analysis as undertaken within a nursing study on scholars and scholarship. If follows an earlier paper titled: Theoretical perspectives on narrative inquiry that described the influencing ideas of Bruner (1987) and Roof (1994) upon the same study. Analysis procedures are described here in sufficient detail for other researchers wishing to implement a similar approach to do so. The process as described has two main components: (A) strategies of 'core story creation' and 'employment'; and (B) issues and dilemmas of narrative analysis, especially relating to rigour. The ideas of Polkinghorne (1988), Mishler (1986), and Labov (in Mishler 1986a) are introduced in so far as they impinge upon the analysis process. These relate especially to the development of key terms, and to the analysis strategies of core story creation and employment. Outcomes of the study in question are termed 'Signposting the lived-world of scholarship'.
Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
Moeller, Charles P.
1987-01-01
Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.
Homogeneous Atomic Fermi Gases
NASA Astrophysics Data System (ADS)
Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.
2017-03-01
We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.
Third Quantization and Quantum Universes
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
2014-01-01
We study the third quantization of the Friedmann-Robertson-Walker cosmology with N-minimal massless fields. The third quantized Hamiltonian for the Wheeler-DeWitt equation in the minisuperspace consists of infinite number of intrinsic time-dependent, decoupled oscillators. The Hamiltonian has a pair of invariant operators for each universe with conserved momenta of the fields that play a role of the annihilation and the creation operators and that construct various quantum states for the universe. The closed universe exhibits an interesting feature of transitions from stable states to tachyonic states depending on the conserved momenta of the fields. In the classical forbidden unstable regime, the quantum states have googolplex growing position and conjugate momentum dispersions, which defy any measurements of the position of the universe.
Creation of the precision magnetic spectrometer SCAN-3
NASA Astrophysics Data System (ADS)
Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.
2017-03-01
The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.
Mierop, Adrien; Hütter, Mandy; Stahl, Christoph; Corneille, Olivier
2018-02-05
Research that dissociates different types of processes within a given task using a processing tree approach suggests that attitudes may be acquired through evaluative conditioning in the absence of explicit encoding of CS-US pairings in memory. This research distinguishes explicit memory for the CS-US pairings from CS-liking acquired without encoding of CS-US pairs in explicit memory. It has been suggested that the latter effect may be due to an implicit misattribution process that is assumed to operate when US evocativeness is low. In the present research, the latter assumption was supported neither by two high-powered experiments nor by complementary meta-analytic evidence, whereas evocativeness exerted an influence on explicit memory. This pattern of findings is inconsistent with the view that CS-liking acquired without encoding of CS-US pairs in explicit memory reflects an implicit misattribution process at learning. Hence, the underlying learning process is awaiting further empirical scrutiny.
Seid-Karbasi, Puya; Ye, Xin C; Zhang, Allen W; Gladish, Nicole; Cheng, Suzanne Y S; Rothe, Katharina; Pilsworth, Jessica A; Kang, Min A; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C; Wasserman, Wyeth W
2017-03-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community.
Seid-Karbasi, Puya; Ye, Xin C.; Zhang, Allen W.; Gladish, Nicole; Cheng, Suzanne Y. S.; Rothe, Katharina; Pilsworth, Jessica A.; Kang, Min A.; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C.; Wasserman, Wyeth W.
2017-01-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community. PMID:28267757
NASA Astrophysics Data System (ADS)
Knightly, P.; Murakami, Y.; Clarke, J.; Sizemore, H.; Siegler, M.; Rupert, S.; Chevrier, V.
2017-12-01
Patterned ground forms in periglacial zones from both expansion and contraction of permafrost by freeze-thaw and sub-freezing temperature changes and has been observed on both Earth and Mars from orbital and the surface at the Phoneix and Viking 2 landing sites. The Phoenix mission to Mars studied patterned ground in the vicinity of the spacecraft including the excavation of a trench revealing water permafrost beneath the surface. A study of patterned ground at the Haughton Impact structure on Devon Island used stereo-pair imaging and three-dimensional photographic models to catalog the type and occurrence of patterned ground in the study area. This image catalog was then used to provide new insight into photographic observations gathered by Phoenix. Stereo-pair imagery has been a valuable geoscience tool for decades and it is an ideal tool for comparative planetary geology studies. Stereo-pair images captured on Devon Island were turned into digital elevation models (DEMs) and comparisons were noted between the permafrost and patterned ground environment of Earth and Mars including variations in grain sorting, active layer thickness, and ice table depth. Recent advances in 360° cameras also enabled the creation of a detailed, immersive site models of patterned ground at selected sites in Haughton crater on Devon Island. The information from this ground truth study will enable the development and refinement of existing models to better evaluate patterned ground on Mars and predict its evolution.
Academic Achievement in Blacks and Whites: Are the Developmental Processes Similar?
ERIC Educational Resources Information Center
Rowe, David C.; Cleveland, Hobart H.
1996-01-01
Genetic and environmental influences on academic achievement were studied for 314 pairs of white full siblings and 53 pairs of half siblings and 161 pairs of black full siblings and 106 half-sibling pairs (National Longitudinal Survey of Youth). Results support a common heritage view of the growth of academic knowledge. (SLD)
The role of connectedness in haptic object perception.
Plaisier, Myrthe A; van Polanen, Vonne; Kappers, Astrid M L
2017-03-02
We can efficiently detect whether there is a rough object among a set of smooth objects using our sense of touch. We can also quickly determine the number of rough objects in our hand. In this study, we investigated whether the perceptual processing of rough and smooth objects is influenced if these objects are connected. In Experiment 1, participants were asked to identify whether there were exactly two rough target spheres among smooth distractor spheres, while we recorded their response times. The spheres were connected to form pairs: rough spheres were paired together and smooth spheres were paired together ('within pairs arrangement'), or a rough and a smooth sphere were connected ('between pairs arrangement'). Participants responded faster when the spheres in a pair were identical. In Experiment 2, we found that the advantage for within pairs arrangements was not driven by feature saliency. Overall our results show that haptic information is processed faster when targets were connected together compared to when targets were connected to distractors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanecak, R.; Semler, B.L.; Anderson, C.W.
1982-07-01
Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH/sub 2/-coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins inmore » vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X.« less
Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon
2013-01-01
Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005
Roesler, Rafael; Reolon, Gustavo K.; Maurmann, Natasha; Schwartsmann, Gilberto; Schröder, Nadja; Amaral, Olavo B.; Valvassori, Samira; Quevedo, João
2014-01-01
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall. PMID:24672454
Geonnotti, Anthony R; Katz, David F
2006-09-15
Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.
Zhang, Rui; Garner, Sean R; Hau, Lene Vestergaard
2009-12-04
A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than 1 s are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.
NASA Astrophysics Data System (ADS)
Alshakova, E. L.
2017-01-01
The program in the AutoLISP language allows automatically to form parametrical drawings during the work in the AutoCAD software product. Students study development of programs on AutoLISP language with the use of the methodical complex containing methodical instructions in which real examples of creation of images and drawings are realized. Methodical instructions contain reference information necessary for the performance of the offered tasks. The method of step-by-step development of the program is the basis for training in programming on AutoLISP language: the program draws elements of the drawing of a detail by means of definitely created function which values of arguments register in that sequence in which AutoCAD gives out inquiries when performing the corresponding command in the editor. The process of the program design is reduced to the process of step-by-step formation of functions and sequence of their calls. The author considers the development of the AutoLISP program for the creation of parametrical drawings of details, the defined design, the user enters the dimensions of elements of details. These programs generate variants of tasks of the graphic works performed in educational process of "Engineering graphics", "Engineering and computer graphics" disciplines. Individual tasks allow to develop at students skills of independent work in reading and creation of drawings, as well as 3D modeling.
Processing negative valence of word pairs that include a positive word.
Itkes, Oksana; Mashal, Nira
2016-09-01
Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.
Fagot, Joël; Malassis, Raphaelle; Medam, Tiphaine
2018-03-01
When trained to associate Stimulus A to Stimulus B, humans can derive the untrained symmetrical B to A relation while nonhuman animals have much more difficulties. Urcuioli (2008, Journal of the Experimental Analysis of Behavior, 90, 257--282; 2015, Conductal, 3, 4--25) proposed that the apparent difficulty of animals in symmetry testing reflects their double encoding of the information on the stimuli (identity and relation) and their positional (i.e., spatial and temporal/ordinal) characteristics. This comparative study tested the emergence of symmetry in humans and baboons in a task in which the position of the stimuli was manipulated independently of their relation. Humans and baboons initially learned to associate pairs of visual shapes on a touch screen in a specific order. Three pairs of (A-B, C-D, and E-F) stimuli were used in training. After training, the two species were tested with the B-A, F-C, and E-D pairs. The B-A pairs preserved the association initially learned with A-B but reversed the positional information relative to training. The F-C pair neither preserved the association nor the positional information of the training pairs, and positional information were the only cues preserved in the E-D pair. Humans showed a response time advantage for B-A, suggesting symmetry, but also for E-D, suggesting that they also process positional information. In baboons, the advantage was found only for E-D, suggesting that they only process positional information. These results confirm that the processing of stimulus pairs differ between nonhuman animals to humans.
Zhou, Ruokun; Tseng, Chiao-Li; Huan, Tao; Li, Liang
2014-05-20
A chemical isotope labeling or isotope coded derivatization (ICD) metabolomics platform uses a chemical derivatization method to introduce a mass tag to all of the metabolites having a common functional group (e.g., amine), followed by LC-MS analysis of the labeled metabolites. To apply this platform to metabolomics studies involving quantitative analysis of different groups of samples, automated data processing is required. Herein, we report a data processing method based on the use of a mass spectral feature unique to the chemical labeling approach, i.e., any differential-isotope-labeled metabolites are detected as peak pairs with a fixed mass difference in a mass spectrum. A software tool, IsoMS, has been developed to process the raw data generated from one or multiple LC-MS runs by peak picking, peak pairing, peak-pair filtering, and peak-pair intensity ratio calculation. The same peak pairs detected from multiple samples are then aligned to produce a CSV file that contains the metabolite information and peak ratios relative to a control (e.g., a pooled sample). This file can be readily exported for further data and statistical analysis, which is illustrated in an example of comparing the metabolomes of human urine samples collected before and after drinking coffee. To demonstrate that this method is reliable for data processing, five (13)C2-/(12)C2-dansyl labeled metabolite standards were analyzed by LC-MS. IsoMS was able to detect these metabolites correctly. In addition, in the analysis of a (13)C2-/(12)C2-dansyl labeled human urine, IsoMS detected 2044 peak pairs, and manual inspection of these peak pairs found 90 false peak pairs, representing a false positive rate of 4.4%. IsoMS for Windows running R is freely available for noncommercial use from www.mycompoundid.org/IsoMS.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Rural cooperative development grants will be used to facilitate the creation or retention of jobs in rural areas through the development of new rural cooperatives, Value-Added processing and rural...
Vortex reconnection rate, and loop birth rate, for a random wavefield
NASA Astrophysics Data System (ADS)
Hannay, J. H.
2017-04-01
A time dependent, complex scalar wavefield in three dimensions contains curved zero lines, wave ‘vortices’, that move around. From time to time pairs of these lines contact each other and ‘reconnect’ in a well studied manner, and at other times tiny loops of new line appear from nowhere (births) and grow, or the reverse, existing loops shrink and disappear (deaths). These three types are known to be the only generic events. Here the average rate of their occurrences per unit volume is calculated exactly for a Gaussian random wavefield that has isotropic, stationary statistics, arising from a superposition of an infinity of plane waves in different directions. A simplifying ‘axis fixing’ technique is introduced to achieve this. The resulting formulas are proportional to the standard deviation of angular frequencies, and depend in a simple way on the second and fourth moments of the power spectrum of the plane waves. Reconnections turn out to be more common than births and deaths combined. As an expository preliminary, the case of two dimensions, where the vortices are points, is studied and the average rate of pair creation (and likewise destruction) per unit area is calculated.
NASA Astrophysics Data System (ADS)
Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.
2016-12-01
Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.
Learning Processes in a Work Organization: From Individual to Collective and/or Vice Versa?
ERIC Educational Resources Information Center
Lehesvirta, Tuija
2004-01-01
The study investigates learning as knowledge-creation processes on individual and collective levels. The processes were examined in an ethnographic study, conducted in a metal industry company over a four-year period. The empirical study suggests that conflicts and crises experienced on individual level were some kind of incidental starting…
Proposed Computer System for Library Catalog Maintenance. Part II: System Design.
ERIC Educational Resources Information Center
Stein (Theodore) Co., New York, NY.
The logic of the system presented in this report is divided into six parts for computer processing and manipulation. They are: (1) processing of Library of Congress copy, (2) editing of input into standard format, (3) processing of information into and out from the authority files, (4) creation of the catalog records, (5) production of the…
ERIC Educational Resources Information Center
Krishnan, Sathasivam
2010-01-01
This action research study examined the process of creation and implementation of a case statement for an urban community college foundation. An instrumental case study methodology was used in examining this process. The study chronicled a successful participatory development process that allowed a number of stakeholders to effectively work on…
Knowledge Creation in Nursing Education
Hassanian, Zahra Marzieh; Ahanchian, Mohammad Reza; Ahmadi, Suleiman; Gholizadeh, Rezvan Hossein; Karimi-Moonaghi, Hossein
2015-01-01
In today’s society, knowledge is recognized as a valuable social asset and the educational system is in search of a new strategy that allows them to construct their knowledge and experience. The purpose of this study was to explore the process of knowledge creation in nursing education. In the present study, the grounded theory approach was used. This method provides a comprehensive approach to collecting, organizing, and analyzing data. Data were obtained through 17 semi-structured interviews with nursing faculties and nursing students. Purposeful and theoretical sampling was conducted. Based on the method of Strauss and Corbin, the data were analyzed using fragmented, deep, and constant-comparative methods. The main categories included striving for growth and reduction of ambiguity, use of knowledge resources, dynamism of mind and social factors, converting knowledge, and creating knowledge. Knowledge was converted through mind processes, individual and group reflection, praxis and research, and resulted in the creation of nursing knowledge. Discrete nursing knowledge is gained through disconformity research in order to gain more individual advantages. The consequence of this analysis was gaining new knowledge. Knowledge management must be included in the mission and strategic planning of nursing education, and it should be planned through operational planning in order to create applicable knowledge. PMID:25716383
ERP signs of categorical and supra-categorical processing of visual information.
Zani, Alberto; Marsili, Giulia; Senerchia, Annapaola; Orlandi, Andrea; Citron, Francesca M M; Rizzi, Ezia; Proverbio, Alice M
2015-01-01
The aim of the present study was to investigate to what extent shared and distinct brain mechanisms are possibly subserving the processing of visual supra-categorical and categorical knowledge as observed with event-related potentials of the brain. Access time to these knowledge types was also investigated. Picture pairs of animals, objects, and mixed types were presented. Participants were asked to decide whether each pair contained pictures belonging to the same category (either animals or man-made objects) or to different categories by pressing one of two buttons. Response accuracy and reaction times (RTs) were also recorded. Both ERPs and RTs were grand-averaged separately for the same-different supra-categories and the animal-object categories. Behavioral performance was faster for more endomorphic pairs, i.e., animals vs. objects and same vs. different category pairs. For ERPs, a modulation of the earliest C1 and subsequent P1 responses to the same vs. different supra-category pairs, but not to the animal vs. object category pairs, was found. This finding supports the view that early afferent processing in the striate cortex can be boosted as a by-product of attention allocated to the processing of shapes and basic features that are mismatched, but not to their semantic quintessence, during same-different supra-categorical judgment. Most importantly, the fact that this processing accrual occurred independent of a traditional experimental condition requiring selective attention to a stimulus source out of the various sources addressed makes it conceivable that this processing accrual may arise from the attentional demand deriving from the alternate focusing of visual attention within and across stimulus categorical pairs' basic structural features. Additional posterior ERP reflections of the brain more prominently processing animal category and same-category pairs were observed at the N1 and N2 levels, respectively, as well as at a late positive complex level, overall most likely related to different stages of analysis of the greater endomorphy of these shape groups. Conversely, an enhanced fronto-central and fronto-lateral N2 as well as a centro-parietal N400 to man-made objects and different-category pairs were found, possibly indexing processing of these entities' lower endomorphy and isomorphy at the basic features and semantic levels, respectively. Overall, the present ERP results revealed shared and distinct mechanisms of access to supra-categorical and categorical knowledge in the same way in which shared and distinct neural representations underlie the processing of diverse semantic categories. Additionally, they outlined the serial nature of categorical and supra-categorical representations, indicating the sequential steps of access to these separate knowledge types. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
Fandakova, Yana; Sander, Myriam C; Grandy, Thomas H; Cabeza, Roberto; Werkle-Bergner, Markus; Shing, Yee Lee
2018-02-01
Older adults are more likely than younger adults to falsely recall past episodes that occurred differently or not at all. We examined whether older adults' propensity for false associative memory is related to declines in postretrieval monitoring processes and their modulation with varying memory representations. Younger (N = 20) and older adults (N = 32) studied and relearned unrelated scene-word pairs, followed by a final cued recall that was used to distribute the pairs for an associative recognition test 24 hours later. This procedure allowed individualized formation of rearranged pairs that were made up of elements of pairs that were correctly recalled in the final cued recall ("high-quality" pairs), and of pairs that were not correctly recalled ("low-quality" pairs). Both age groups falsely recognized more low-quality than high-quality rearranged pairs, with a less pronounced reduction in false alarms to high-quality pairs in older adults. In younger adults, cingulo-opercular activity was enhanced for false alarms and for low-quality correct rejections, consistent with its role in postretrieval monitoring. Older adults did not show such modulated recruitment, suggesting deficits in their selective engagement of monitoring processes given variability in the fidelity of memory representations. There were no age differences in hippocampal activity, which was higher for high-quality than low-quality correct rejections in both age groups. These results demonstrate that the engagement of cingulo-opercular monitoring mechanisms varies with memory representation quality and contributes to age-related deficits in false associative memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S
2016-03-26
Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on the autosomes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
First-Year Students' Impressions of Pair Programming in CS1
ERIC Educational Resources Information Center
Simon, Beth; Hanks, Brian
2008-01-01
Pair programming, as part of the Agile Development process, has noted benefits in professional software development scenarios. These successes have led to a rise in use of pair programming in educational settings, particularly in Computer Science 1 (CS1). Specifically, McDowell et al. [2006] has shown that students using pair programming in CS1 do…
Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows
NASA Technical Reports Server (NTRS)
McKenzie, D.; Savage, S.
2011-01-01
The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.
Clinical Note Creation, Binning, and Artificial Intelligence.
Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J
2017-08-03
The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Optical switch using Risley prisms
Sweatt, William C.; Christenson, Todd R.
2003-04-15
An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.
Optical Switch Using Risley Prisms
Sweatt, William C.; Christenson, Todd R.
2005-02-22
An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.
Stanley, Nicholas; Davis, Tara; Estis, Julie
2017-03-01
Aging effects on speech understanding in noise have primarily been assessed through speech recognition tasks. Recognition tasks, which focus on bottom-up, perceptual aspects of speech understanding, intentionally limit linguistic and cognitive factors by asking participants to only repeat what they have heard. On the other hand, linguistic processing tasks require bottom-up and top-down (linguistic, cognitive) processing skills and are, therefore, more reflective of speech understanding abilities used in everyday communication. The effect of signal-to-noise ratio (SNR) on linguistic processing ability is relatively unknown for either young (YAs) or older adults (OAs). To determine if reduced SNRs would be more deleterious to the linguistic processing of OAs than YAs, as measured by accuracy and reaction time in a semantic judgment task in competing speech. In the semantic judgment task, participants indicated via button press whether word pairs were a semantic Match or No Match. This task was performed in quiet, as well as, +3, 0, -3, and -6 dB SNR with two-talker speech competition. Seventeen YAs (20-30 yr) with normal hearing sensitivity and 17 OAs (60-68 yr) with normal hearing sensitivity or mild-to-moderate sensorineural hearing loss within age-appropriate norms. Accuracy, reaction time, and false alarm rate were measured and analyzed using a mixed design analysis of variance. A decrease in SNR level significantly reduced accuracy and increased reaction time in both YAs and OAs. However, poor SNRs affected accuracy and reaction time of Match and No Match word pairs differently. Accuracy for Match pairs declined at a steeper rate than No Match pairs in both groups as SNR decreased. In addition, reaction time for No Match pairs increased at a greater rate than Match pairs in more difficult SNRs, particularly at -3 and -6 dB SNR. False-alarm rates indicated that participants had a response bias to No Match pairs as the SNR decreased. Age-related differences were limited to No Match pair accuracies at -6 dB SNR. The ability to correctly identify semantically matched word pairs was more susceptible to disruption by a poor SNR than semantically unrelated words in both YAs and OAs. The effect of SNR on this semantic judgment task implies that speech competition differentially affected the facilitation of semantically related words and the inhibition of semantically incompatible words, although processing speed, as measured by reaction time, remained faster for semantically matched pairs. Overall, the semantic judgment task in competing speech elucidated the effect of a poor listening environment on the higher order processing of words. American Academy of Audiology
Awake, Offline Processing during Associative Learning
Nestor, Adrian; Tarr, Michael J.; Creswell, J. David
2016-01-01
Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations. PMID:27119345
Awake, Offline Processing during Associative Learning.
Bursley, James K; Nestor, Adrian; Tarr, Michael J; Creswell, J David
2016-01-01
Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.
Musical Maps as Narrative Inquiry
ERIC Educational Resources Information Center
Blair, Deborah V.
2007-01-01
This study explores the metaphorical relationship between the process of narrative inquiry and the process of "musical mapping." The creation of musical maps was used as a classroom tool for enabling students' musical understanding while listening to music. As teacher-researcher, I studied my fifth-grade music students as they interacted with…
An Overview of Computer-Based Natural Language Processing.
ERIC Educational Resources Information Center
Gevarter, William B.
Computer-based Natural Language Processing (NLP) is the key to enabling humans and their computer-based creations to interact with machines using natural languages (English, Japanese, German, etc.) rather than formal computer languages. NLP is a major research area in the fields of artificial intelligence and computational linguistics. Commercial…
Automated road segment creation process : a report on research sponsored by SaferSim.
DOT National Transportation Integrated Search
2016-08-01
This report provides a summary of a set of tools that can be used to automate the process : of generating roadway surfaces from alignment and texture information. The tools developed : were created in Python 3.x and rely on the availability of two da...
Converting the H. W. Wilson Company Indexes to an Automated System: A Functional Analysis.
ERIC Educational Resources Information Center
Regazzi, John J.
1984-01-01
Description of the computerized information system that supports the editorial and manufacturing processes involved in creation of Wilson's subject indexes and catalogs includes the major subsystems--online data entry, batch input processing, validation and release, file generation and database management, online and offline retrieval, publication…
Reading, Pa.: Training Local People.
ERIC Educational Resources Information Center
Connell, Eileen
1978-01-01
Describes the training process for the local takeover of the New York University--Reading (Pennsylvania) Consortium interactive cable television project for the delivery of social services to senior citizens. The process included hiring and training of staff, training of users, and creation and staffing of the organization needed to operate the…
Reframing the Praxis of School Leadership Preparation through Digital Storytelling
ERIC Educational Resources Information Center
Guajardo, Miguel; Oliver, John A.; Rodriguez, Gregory; Valadez, Monica M.; Cantu, Yvette; Guajardo, Francisco
2011-01-01
This article introduces a social innovation that contributes to the formation of educational leaders. Digital storytelling is employed as a process for data creation, analysis, and synthesis. Emerging educational leaders are guided through a process to better understand the experiences and social constructs that inform their identity. Through a…
Cultural Appropriation, Performance, and Agency in Mexicana Parent Involvement
ERIC Educational Resources Information Center
Galindo, Rene; Medina, Christina
2009-01-01
Parental agency is examined in the creation of a dance performance by a group of Mexican immigrant mothers that combined a mixture of genres into an educational message. The "folklorico" performance resulted from a process of cultural appropriation involving linguistic, cultural, and experiential "translations." This process was concerned with…
Restructuring to Sustain Excellence.
ERIC Educational Resources Information Center
Myers, Richard S.
1996-01-01
The process of restructuring a higher education institution does not end with creation of a strategic plan; the plan's objectives and strategies must be monitored for effectiveness. Phases of creative strategy-making and plan formulation should be alternated with periods of assessment. The process is not a direct course, but dynamic progression…
ERIC Educational Resources Information Center
McAdam, Maura; Miller, Kristel; McAdam, Rodney
2018-01-01
Given recent demands for more co-creational university technology commercialisation processes involving industry and end users, this paper adopts a micro-level approach to explore the challenges faced by universities when managing Quadruple Helix stakeholders within technology commercialisation processes. To explore this research question, a…
Textbook Writing and Creativity: The Case of Mendeleev.
ERIC Educational Resources Information Center
Graham, Loren R.
1983-01-01
Historical reconstruction of Dmitrii Mendeleev's part in the creation of the Periodic Table of Elements illustrates how important the process of textbook writing was in this scientific development. A clear difference is seen between logical reconstruction of the discovery process and the insights provided by historical reconstruction of the same…
Creating Cartoons to Promote Leaderships Skills and Explore Leadership Qualities
ERIC Educational Resources Information Center
Smith, Latisha L.; Clausen, Courtney K.; Teske, Jolene K.; Ghayoorrad, Maryam; Gray, Phyllis; Al Subia, Sukainah; Atwood-Blaine, Dana; Rule, Audrey C.
2015-01-01
This document describes a strategy for increasing student leadership and creativity skills through the creation of cartoons. Creating cartoons engages students in divergent thinking and cognitive processes, such as perception, recall, and mental processing. When students create cartoons focused on a particular topic, they are making connections to…
Concept for Future Data Services at the Long-Term Archive of WDCC combining DOIs with common PIDs
NASA Astrophysics Data System (ADS)
Stockhause, Martina; Weigel, Tobias; Toussaint, Frank; Höck, Heinke; Thiemann, Hannes; Lautenschlager, Michael
2013-04-01
The World Data Center for Climate (WDCC) hosted at the German Climate Computing Center (DKRZ) maintains a long-term archive (LTA) of climate model data as well as observational data. WDCC distinguishes between two types of LTA data: Structured data: Data output of an instrument or of a climate model run consists of numerous, highly structured individual datasets in a uniform format. Part of these data is also published on an ESGF (Earth System Grid Federation) data node. Detailed metadata is available allowing for fine-grained user-defined data access. Unstructured data: LTA data of finished scientific projects are in general unstructured and consist of datasets of different formats, different sizes, and different contents. For these data compact metadata is available as content information. The structured data is suitable for WDCC's DataCite DOI process, the project data only in exceptional cases. The DOI process includes a thorough quality control process of technical as well as scientific aspects by the publication agent and the data creator. DOIs are assigned to data collections appropriate to be cited in scientific publications, like a simulation run. The data collection is defined in agreement with the data creator. At the moment there is no possibility to identify and cite individual datasets within this DOI data collection analogous to the citation of chapters in a book. Also missing is a compact citation regulation for a user-specified collection of data. WDCC therefore complements its existing LTA/DOI concept by Persistent Identifier (PID) assignment to datasets using Handles. In addition to data identification for internal and external use, the concept of PIDs allows to define relations among PIDs. Such structural information is stored as key-value pair directly in the handles. Thus, relations provide basic provenance or lineage information, even if part of the data like intermediate results are lost. WDCC intends to use additional PIDs on metadata entities with a relation to the data PID(s). These add background information on the data creation process (e.g. descriptions of experiment, model, model set-up, and platform for the model run etc.) to the data. These pieces of additional information increase the re-usability of the archived model data, significantly. Other valuable additional information for scientific collaboration could be added by the same mechanism, like quality information and annotations. Apart from relations among data and metadata entities, PIDs on collections are advantageous for model data: Collections allow for persistent references to single datasets or subsets of data assigned a DOI, Data objects and additional information objects can be consistently connected via relations (provenance, creation, quality information for data),
Multiple Wheel Throwing: And Chess Sets.
ERIC Educational Resources Information Center
Sapiro, Maurice
1978-01-01
A chess set project is suggested to teach multiple throwing, the creation on a potter's wheel of several pieces of similar configuration. Processes and finished sets are illustrated with photographs. (SJL)
PDS4 Bundle Creation Governance Using BPMN
NASA Astrophysics Data System (ADS)
Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.
2015-06-01
The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.
Isomorphic pressures, institutional strategies, and knowledge creation in the health care sector.
Yang, Chen-Wei; Fang, Shih-Chieh; Huang, Wei-Min
2007-01-01
Health care organizations are facing surprisingly complex challenges, including new treatment and diagnostic technologies, ongoing pressures for health care institutional reform, the emergence of new organizational governance structures, and knowledge creation for the health care system. To maintain legitimacy in demanding environments, organizations tend to copy practices of similar organizations, which lead to isomorphism, and to use internal strategies to accommodate changes. A concern is that a poor fit between isomorphic pressures and internal strategies can interfere with developmental processes, such as knowledge creation. The purposes of this article are to, first, develop a set of propositions, based on institutional theory, as a theoretical framework that might explain the influence of isomorphic pressures on institutional processes through which knowledge is created within the health care sector and, second, propose that a good fit between isomorphic pressures factors and health care organizations' institutional strategic choices will enhance the health care organizations' ability to create knowledge. To develop a theoretical framework, we developed a set of propositions based on literature pertaining to the institutional theory perspective of isomorphic pressures and the response of health care organizations to isomorphic pressures. Institutional theory perspectives of isomorphic pressures and institutional strategies may provide a new understanding for health care organizations seeking effective knowledge creation strategies within institutional environment of health care sector. First, the ability to identify three forces for isomorphic change is critical for managers. Second, the importance of a contingency approach by health care managers can lead to strategies tailoring to cope with uncertainties facing their organizations.
[Platonic conception of a man as an element of the universe on the base of dialogue "Timajos"].
Ziaja, Jacek
2002-01-01
Dialogue "Timajos" states Plato's lecture on a nature of the universe with special regard for position of a man. Presented in it ideas are based in a considerable degree on the knowledge of earlier thinkers, first of all Phytagoreans. They concern problems of primeval matter properties and world creation based on the rules of geometry. Afterwords the question of soul bestowal on the world and creation of living beings, connected directly with a problem of metempsychosis, are discussed. In the final part of the dialogue Plato focuses his attention on a corporal dimension of human structure. On the basis of triangle theory he describes creation of internal organs, skeleton, blood vessels and organs of senses, their function and the processes of growing old and death of the body. In the whole lecture an attention is brought to disclosure the effect of mind in the universe and purposefulness of creator activity.