Introduction to Pair Distribution Function Analysis
King, Graham Missell
2015-02-17
By collecting a total scattering pattern, subtracting the non-sample background, applying corrections, and taking the Fourier transform, the real space pair distribution function can be obtained. A PDF gives the distribution of inter-atomic distances in a material and is an excellent probe of short and intermediate range structure. RMC refinements using multiple data types are an excellent method for multi-scale modeling, including the mesoscale range.
Pair distribution functions of silicon/silicon nitride interfaces
NASA Astrophysics Data System (ADS)
Cao, Deng; Bachlechner, Martina E.
2006-03-01
Using molecular dynamics simulations, we investigate different mechanical and structural properties of the silicon/silicon nitride interface. One way to characterize the structure as tensile strain is applied parallel to the interface is to calculate pair distribution functions for specific atom types. The pair distribution function gives the probability of finding a pair of atoms a distance r apart, relative to the probability expected for a completely random distribution at the same density. The pair distribution functions for bulk silicon nitride reflect the fracture of the silicon nitride film at about 8 % and the fact that the centerpiece of the silicon nitride film returns to its original structure after fracture. The pair distribution functions for interface silicon atoms reveal the formation of bonds for originally unbound atom pairs, which is indicative of the interstitial-vacancy defect that causes failure in silicon.
Crystal structure solution from experimentally determined atomic pair distribution functions
Juhas, P.; Granlund, L.; Gujarathi, S.R.; Duxbury, P.M.; Billinge, S.J.L.
2010-05-25
An extension of the Liga algorithm for structure solution from atomic pair distribution functions (PDFs), to handle periodic crystal structures with multiple elements in the unit cell, is described. The procedure is performed in three separate steps. First, pair distances are extracted from the experimental PDF. In the second step the Liga algorithm is used to find unit-cell sites consistent with these pair distances. Finally, the atom species are assigned over the cell sites by minimizing the overlap of their empirical atomic radii. The procedure has been demonstrated on synchrotron X-ray PDF data from 16 test samples. The structure solution was successful for 14 samples, including cases with enlarged supercells. The algorithm success rate and the reasons for the failed cases are discussed, together with enhancements that should improve its convergence and usability.
Temperature effects on atomic pair distribution functions of melts
Ding, J. Ma, E.; Xu, M.; Guan, P. F.; Deng, S. W.; Cheng, Y. Q.
2014-02-14
Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds.
Genetic algorithm for the pair distribution function of the electron gas.
Vericat, Fernando; Stoico, César O; Carlevaro, C Manuel; Renzi, Danilo G
2011-12-01
The pair distribution function of the electron gas is calculated using a parameterized generalization of hypernetted chain approximation with the parameters being obtained by optimizing the system energy with a genetic algorithm. The functions so obtained are compared with Monte Carlo simulations performed by other authors in its variational and di_usion versions showing a very good agreement especially with the di_usion Monte Carlo results.
NASA Astrophysics Data System (ADS)
Borgis, Daniel; Assaraf, Roland; Rotenberg, Benjamin; Vuilleumier, Rodolphe
2013-12-01
No fancy statistical objects here, we go back to the computation of one of the most basic and fundamental quantities in the statistical mechanics of fluids, namely the pair distribution functions. Those functions are usually computed in molecular simulations by using histogram techniques. We show here that they can be estimated using a global information on the instantaneous forces acting on the particles, and that this leads to a reduced variance compared to the standard histogram estimators. The technique is extended successfully to the computation of three-dimensional solvent densities around tagged molecular solutes, quantities that are noisy and very long to converge, using histograms.
Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.
2012-05-01
Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.
Structure of Nanocrystalline Ti3C2 MXene Using Atomic Pair Distribution Function
NASA Astrophysics Data System (ADS)
Shi, Chenyang; Beidaghi, Majid; Naguib, Michael; Mashtalir, Olha; Gogotsi, Yury; Billinge, Simon J. L.
2014-03-01
The structures of nanocrystalline pristine, potassium hydroxide and sodium acetate intercalated new two-dimensional materials Ti3C2 MXenes were studied using the x-ray atomic pair distribution function technique. Pristine MXene has a hexagonal structure with a =b=3.0505(5) Å, c =19.86(2) Å (S.G. P63/mmc No. 194). Both hydroxyl and fluoride terminating species are present. The intercalation of K+ or Na+ ions expands the Ti3C2 layers perpendicular to the planes but shrinks the in-plane a and b lattice parameters.
Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function.
Shi, Chenyang; Beidaghi, Majid; Naguib, Michael; Mashtalir, Olha; Gogotsi, Yury; Billinge, Simon J L
2014-03-28
The structures of nanocrystalline pristine, potassium hydroxide and sodium acetate intercalated new two-dimensional materials Ti3C2 MXenes were studied using the x-ray atomic pair distribution function technique. Pristine MXene has a hexagonal structure with a=b=3.0505(5) Å, c=19.86(2) Å (S.G. P63/mmc No. 194). Both hydroxyl and fluoride terminating species are present. The intercalation of K+ or Na+ ions expands the Ti3C2 layers perpendicular to the planes but shrinks the in-plane a and b lattice parameters.
Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis
Billinge, S.J.L.; Thorpe, M.F.
2002-06-24
We have been taking advantage of recent experimental developments, which involve utilizing diffraction data from x-rays or neutrons out to very large wave-vectors, to obtain a detailed structural characterization of semiconductor alloys. This approach allows an accurate Pair Distribution Function (PDF) to be obtained to 20A and beyond and reveals the local structure of the alloy directly. These data can be modeled explicitly to learn about local correlations and short-range order in materials. We are combining theory, modeling and experiments to study a range of materials from semiconductors to thermoelectrics and proton conductors.
Finite Size Effects on the Real-Space Pair Distribution Function of Nanoparticles
Gilbert, Benjamin
2008-10-01
The pair distribution function (PDF) method is a powerful approach for the analysis of the structure of nanoparticles. An important approximation used in nanoparticle PDF simulations is the incorporation of a form factor describing nanoparticle size and shape. The precise effect of the form factor on the PDF is determined by both particle shape and structure if these characteristics are both anisotropic and correlated. The correct incorporation of finite size effects is important for distinguishing and quantifying the structural consequences of small particle size in nanomaterials.
SUePDF: a program to obtain quantitative pair distribution functions from electron diffraction data
Tran, Dung Trung; Svensson, Gunnar; Tai, Cheuk-Wai
2017-01-01
SUePDF is a graphical user interface program written in MATLAB to achieve quantitative pair distribution functions (PDFs) from electron diffraction data. The program facilitates structural studies of amorphous materials and small nanoparticles using electron diffraction data from transmission electron microscopes. It is based on the physics of electron scattering as well as the total scattering methodology. A method of background modeling is introduced to treat the intensity tail of the direct beam, inelastic scattering and incoherent multiple scattering. Kinematical electron scattering intensity is scaled using the electron scattering factors. The PDFs obtained after Fourier transforms are normalized with respect to number density, nanoparticle form factor and the non-negativity of probability density. SUePDF is distributed as free software for academic users. PMID:28190994
Malavasi, Lorenzo; Orera, Alodia; Slater, Peter R; Panchmatia, Pooja M; Islam, M Saiful; Siewenie, Joan
2011-01-07
In this communication we provide a direct insight into the local structure and defects of oxygen excess Ge-apatites, in both dry and deuterated states, by means of pair distribution function analysis.
Novel trends in pair distribution function approaches on bulk systems with nanoscale heterogeneities
Emil S. Bozin; Billinge, Simon J. L.
2016-07-29
Novel materials for high performance applications increasingly exhibit structural order on the nanometer length scale; a domain where crystallography, the basis of Rietveld refinement, fails [1]. In such instances the total scattering approach, which treats Bragg and diffuse scattering on an equal basis, is a powerful approach. In recent years, the analysis of the total scattering data became an invaluable tool and the gold standard for studying nanocrystalline, nanoporous, and disordered crystalline materials. The data may be analyzed in reciprocal space directly, or Fourier transformed to the real-space atomic pair distribution function (PDF) and this intuitive function examined for localmore » structural information. Here we give a number of illustrative examples, for convenience picked from our own work, of recent developments and applications of total scattering and PDF analysis to novel complex materials. There are many other wonderful examples from the work of others.« less
Emerging operando and x-ray pair distribution function methods for energy materials development
Chapman, Karena W.
2016-03-01
Our energy needs drive widespread materials research. Advances in materials characterization are critical to this research effort. Using new characterization tools that allow us to probe the atomic structure of energy materials in situ as they operate, we can identify how their structure is linked to their functional properties and performance. These fundamental insights serve as a roadmap to enhance performance in the next generation of advanced materials. In the last decade, developments in synchrotron instrumentation have made the pair distribution function (PDF) method and operando x-ray studies more readily accessible tools capable of providing valuable insights into complex materials systems. Here, the emergence of the PDF method as a versatile structure characterization tool and the further enhancement of this method through developments in operando capabilities and multivariate data analytics are described. These advances in materials characterization are demonstrated by several highlighted studies focused on energy storage in batteries.
Novel trends in pair distribution function approaches on bulk systems with nanoscale heterogeneities
Emil S. Bozin; Billinge, Simon J. L.
2016-07-29
Novel materials for high performance applications increasingly exhibit structural order on the nanometer length scale; a domain where crystallography, the basis of Rietveld refinement, fails [1]. In such instances the total scattering approach, which treats Bragg and diffuse scattering on an equal basis, is a powerful approach. In recent years, the analysis of the total scattering data became an invaluable tool and the gold standard for studying nanocrystalline, nanoporous, and disordered crystalline materials. The data may be analyzed in reciprocal space directly, or Fourier transformed to the real-space atomic pair distribution function (PDF) and this intuitive function examined for local structural information. Here we give a number of illustrative examples, for convenience picked from our own work, of recent developments and applications of total scattering and PDF analysis to novel complex materials. There are many other wonderful examples from the work of others.
Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...
2015-04-01
This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less
Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute
2015-04-01
This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam-damage of the sample are possible to resolve.
The total scattering atomic pair distribution function: New methodology for nanostructure analysis
NASA Astrophysics Data System (ADS)
Masadeh, Ahmad
The conventional xray diffration (XRD) methods probe for the presence of long-range order (periodic structure) which are reflected in the Bragg peaks. Local structural deviations or disorder mainly affect the diffuse scattering intensity. In order to obtain structural information about both long-range order and local structure disorder, a technique that takes in account both Bragg and diffuse scattering need to be employed, such as the atomic pair distribution function (PDF) technique. This work introduces a PDF based methodology to quantitatively investigate nanostructure materials in general. The introduced methodology can be applied to extract quantitatively structural information about structure, crystallinity level, core/shell size, nanoparticle size, and inhomogeneous internal strain in the measured nanoparticles. This method is generally applicable to the characterization of the nano-scale solid, many of which may exhibit complex disorder and strain
Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study
Bell, J.; Sarin, P; Provis, J; Haggerty, R; Driemeyer, P; Chupas, P; van Deventer, J; Kriven, W
2008-01-01
The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer. The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000C resulted in formation of crystalline pollucite (CsAlSi{sub 2}O{sub 6}). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 {angstrom} range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 {angstrom} due to an additional amorphous phase present in the heated geopolymer. On the basis of PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of 9 {angstrom}, despite some differences. Our results suggest that hydrated Cs{sup +} ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds.
X-ray Pair Distribution Function Analysis of Potassium Based Geopolymer
Bell, J.; Sarin, P; Driemeyer, P; Haggerty, R; Chupas, P; Kriven, W
2008-01-01
The atomic structure of geopolymers is often described as amorphous with a local structure that is equivalent to that of crystalline zeolites. However, this structural relationship has never been quantified beyond a first-nearest-neighbor bonding environment. In this study, the short to medium range (1 nm) structural order of metakaolin-based KAlSi{sub 2}O{sub 6}{center_dot}5.5H{sub 2}O geopolymer was quantified and compared to zeolitic tetragonal leucite (KAlSi2O6) using the X-ray atomic pair distribution function technique. Unheated KAlSi{sub 2}O{sub 6}{center_dot}5.5H{sub 2}O was found to be structurally similar to leucite out to a length of 8 {angstrom}, but had increased medium range disorder over the 4.5 {angstrom} < r < 8 {angstrom} range. On heating to >300 C, changes in the short to medium range structure were observed due to dehydration and removal of chemically bound water. Crystallization of leucite occurred in samples heated beyond 1050 C. Refinements of a leucite model against the PDF data for geopolymer heated to 1100 C for 24 h yielded a good fit.
Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.
2010-07-24
Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti_{1-x}Zr_{x})(HPO_{4})_{2} • H_{2}O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H_{3}PO_{4} in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits.
Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U
2016-01-01
A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.
Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; ...
2016-01-01
In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may bemore » used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.« less
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn_{1/3}Nb_{2/3}O_{3}) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that (110) Pb^{2+} displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separationmore » distances and the fact that (110) Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less
Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; Schmidt, Martin U.
2016-01-01
In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.
Cole, Jacqueline M; Cheng, Xie; Payne, Michael C
2016-11-07
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions.
Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.
2016-10-18
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, co-doped with two rare-earth ions (R and R’) of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of co-doped REPGs presents significant challenges relative to their singly-doped counterparts; specifically, R and R’ are difficult to distinguish in terms of establishing relativemore » material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown co-doped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are pre-validated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly-doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. Furthermore, while this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials, and be exploited in large-scale data-mining efforts that probe many t
Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.
2016-10-18
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, co-doped with two rare-earth ions (R and R’) of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of co-doped REPGs presents significant challenges relative to their singly-doped counterparts; specifically, R and R’ are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown co-doped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are pre-validated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly-doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. Furthermore, while this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials, and be exploited in large-scale data-mining efforts that probe many t(r) functions.
White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine
2013-06-14
With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.
Studies of some problems related to atomic ordering, molecular motion and pair distribution function
NASA Astrophysics Data System (ADS)
Levashov, Valentin A.
In this thesis the results of my work on three out of four projects on which I was working during my Ph.D. under supervision of Prof. M. F. Thorpe are summarized. The first project was devoted to the study of properties of a model that was developed to reproduce the ordering of ions in layered double hydroxides. In the model two types of positive ions occupy the sites of triangular lattice. The ordering of ions is assumed to occur due to the long-range Coulomb interaction. The charge neutrality is provided by the negative background charge, which is assumed to be the same at every site of the lattice. General properties of the model in 1d and 2d were studied and the phase diagrams were obtained. The obtained results predict multiple phase separations in this system of charges that can, in particularly, affect the stability of the layered double hydroxides. Some properties of the atomic pair distribution function (PDF) were studied during my work on the second project. Traditionally PDF was used to study atomic ordering at small distances, while it was assumed that at large distances PDF is featureless. Puzzled by the observation that PDF calculated for the crystalline Ni does not decay at large distances we studied the behavior, in particularly the origin of decay, of PDF at large distances. The obtained results potentially could be used to measure the amount of imperfections in crystalline materials and to test instrumental resolution in X-ray and neutron diffraction experiments. During my work on the third project we were developing a technique that would allow accurate calculation of PDF for the flexible molecules. Since quantum mechanical calculations are complicated and computationally demanding in calculations of PDF for molecules in liquid or gaseous phases, classical methods, like molecular dynamics are usually employed. Thus, quantum mechanical effects, like zero-point atomic motion, are usually ignored. However, it is necessary to take into account the
Pair distribution function analysis of La(Fe{sub 1−x}Ru{sub x})AsO compounds
Martinelli, A.; Palenzona, A.; Ferdeghini, C.; Mazzani, M.; Bonfa', P.; Allodi, G.
2014-12-15
The local structures of La(Fe{sub 1−x}Ru{sub x})AsO (0.00≤x≤0.80) compounds were investigated by means of pair distribution function analysis at room temperature; as a result, no phase separation or clustering takes place. Local distortions are no longer correlated beyond ∼15 Å for both pure and substituted samples, indicating that the presence of Ru atoms does not determine a notable variation in the length scale of the local distortion. Different types of short range correlation between Fe and Ru atoms do not produce significant changes in the pair distribution function. - Graphical abstract: Fe–As and Ru–As bond length distributions as obtained by pair distribution function analysis of La(Fe{sub 0.70}Ru{sub 0.30})AsO; As atoms (purple spheres) undergo a random shifting around their crystallographic positions (red spheres: Fe/Ru atoms). - Highlights: • No phase separation or clustering takes place in La(Fe{sub 1−x}Ru{sub x})AsO solid solutions. • Local distortions are no longer correlated beyond ∼15 Å. • Ru displays a tendency towards local enrichment in the transition metal sublattice.
Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; ...
2015-02-01
We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.
Nyquist-Shannon sampling theorem applied to refinements of the atomic pair distribution function
NASA Astrophysics Data System (ADS)
Farrow, Christopher L.; Shaw, Margaret; Kim, Hyunjeong; Juhás, Pavol; Billinge, Simon J. L.
2011-10-01
We have systematically studied the optimal real-space sampling of atomic pair distribution (PDF) data by comparing refinement results from oversampled and resampled data. Based on nickel and a complex perovskite system, we show that not only is the optimal sampling bounded by the Nyquist interval described by the Nyquist-Shannon (NS) sampling theorem as expected, but near this sampling interval, the data points in the PDF are minimally correlated, which results in more reliable uncertainty estimates in the modeling. Surprisingly, we find that PDF refinements quickly become unstable for data on coarser grids. Although the Nyquist-Shannon sampling theorem is well known, it has not been applied to PDF refinements, despite the growing popularity of the PDF method and its adoption in a growing number of communities. Here, we give explicit expressions for the application of NS sampling theorem to the PDF case, and establish through modeling that it is working in practice, which lays the groundwork for this to become more widely adopted. This has implications for the speed and complexity of possible refinements that can be carried out many times faster than currently with no loss of information, and it establishes a theoretically sound limit on the amount of information contained in the PDF that will prevent over-parametrization during modeling.
Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.
2015-09-04
In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). In addition, we introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for any atomistic model.
Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.
2015-09-04
In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). In addition, we introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for anymore » atomistic model.« less
Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; ...
2015-12-08
MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...
2016-05-11
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-01
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
Dambournet, D.; Chapman, K. W.; Koudriachova, M. V.; Chupas, P. J.; Belharouak, I.; Amine, K.
2011-07-04
X-ray pair distribution function (PDF) methods and first-principles calculations have been combined to probe the structure of electrochemically lithiated TiO{sub 2} Brookite. Traditional powder diffraction studies suggest that Brookite amorphizes upon lithium insertion, with the Bragg reflections disappearing. However, PDF analysis indicates that the TiO{sub 2} framework connectivity is maintained throughout lithium intercalation, with expansions along the a and b axes. The Li{sup +} ions within the framework are poorly observed in the X-ray PDF, which is dominated by contributions from the more strongly scattering Ti and O atoms. First-principles calculations were used to identify energetically favorable Li{sup +} sites within the Brookite lattice and to develop a complete structural model of the lithiated material. This model replicates the local structure and decreased intermediate range order observed in the PDF data. The analysis suggests that local structural distortions of the TiO{sub 2} lattice accommodate lithium in five-coordinate sites. This structural model is consistent with the observed electrochemical behavior.
NASA Astrophysics Data System (ADS)
Zurbriggen, E.; Rohrmann, R. D.
The description of the microscopical spatial structure of a gas in equilibrium can be enriched by using the so-called space partition method. This thermo-statistical formalism makes use of a novel kind of conditional pair distribution function denoted g_{vv'}. The aim of the present work is to continue the analysis of the function g_{vv'} for gases composed of independent, randomly distributed particles.
NASA Astrophysics Data System (ADS)
Ziesche, P.; Pernal, K.; Tasnádi, F.
2003-09-01
Recently, new sum rules for the scattering phase shifts of the pair-density geminals (being 2-body-wave functions which parametrize the pair density together with an appropriately chosen occupancy) have been derived from the normalization of the pair density [P. Ziesche, Phys. Rev. B 67, 233102 (2003)]. Here, we present a generalization of these sum rules, which allows one in principle to calculate the momentum distribution from these geminals and their phase shifts. These contraction sum rules contain the afore mentioned (Friedel-like) normalization sum rules as special cases.
Nishi, Kengo; Shibayama, Mitsuhiro
2017-03-01
Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.
Morandeau, Antoine E.; White, Claire E.
2015-04-21
Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.
NASA Astrophysics Data System (ADS)
Rademacher, N.; Bayarjargal, L.; Morgenroth, W.; Bauer, J. D.; Milman, V.; Winkler, B.
2015-05-01
The decomposition of SF6 in the presence of glassy carbon was induced in laser heated diamond anvil cells at 10-11 GPa and 2000-2500 K. The reaction products were characterised by synchrotron X-ray diffraction, including high pressure pair distribution function analysis, and micro-Raman spectroscopy combined with atomistic model calculations. The decomposition leads to elemental amorphous helical sulfur and crystalline CF4-III. Two different sulfur phases, namely helical Sμ and crystalline α-S8, were observed after recovering the laser heated samples of different experiments at ambient conditions.
Pair correlation function for spin glasses
NASA Astrophysics Data System (ADS)
Fernández, Julio F.; Alonso, Juan J.
2012-10-01
We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.
Meral, Cagla; Benmore, C.J.; Monteiro, Paulo J.M.
2011-07-15
Significant progress was achieved with the application of Rietveld method to characterize the crystalline phases in portland cement paste. However, to obtain detailed information on the amorphous or poorly crystalline phases, it is necessary to analyze the total scattering data. The pair distribution function (PDF) method has been successfully used in the study of liquids and amorphous solids. The method takes the Sine Fourier transform of the measured structure factor over a wide momentum transfer range, providing a direct measure of the probability of finding an atom surrounding a central atom at a radial distance away. The obtained experimental characteristic distances can be also used to validate the predictions by the theoretical models, such as, molecular dynamics, ab initio simulations and density functional theory. The paper summarizes recent results of PDF analysis on silica fume, rice husk ash, fly ash, ASR gel, C-S-H and geopolymers.
Grangeon, Sylvain; Baronnet, Alain; Marty, Nicolas; Poulain, Agnieszka; Elkaïm, Erik; Roosz, Cédric; Gaboreau, Stéphane; Henocq, Pierre; Claret, Francis
2017-01-01
The structural evolution of nanocrystalline calcium silicate hydrate (C–S–H) as a function of its calcium to silicon (Ca/Si) ratio has been probed using qualitative and quantitative X-ray atomic pair distribution function analysis of synchrotron X-ray scattering data. Whatever the Ca/Si ratio, the C–S–H structure is similar to that of tobermorite. When the Ca/Si ratio increases from ∼0.6 to ∼1.2, Si wollastonite-like chains progressively depolymerize through preferential omission of Si bridging tetrahedra. When the Ca/Si ratio approaches ∼1.5, nanosheets of portlandite are detected in samples aged for 1 d, while microcrystalline portlandite is detected in samples aged for 1 year. High-resolution transmission electron microscopy imaging shows that the tobermorite-like structure is maintained to Ca/Si > 3. PMID:28190991
Filippov, Alexander E.; Popov, Valentin L.; Gorb, Stanislav N.
2015-01-01
Microstructures responsible for temporary arresting of contacting surfaces are widely distributed on surfaces in different organisms. Recent morphological studies show that these structures have different density of outgrowths and not ideal distribution pattern on both complementary parts of the contact. One can suggest that this difference is optimized by natural selection to get stronger mechanical arrest within the system. In this paper, we simulate such a system numerically, both in the frames of continuous contact and discrete dynamical models to prove this hypothesis and elucidate other aspects of optimization of such mechanical adhesive systems. PMID:25533090
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, C. G.; Posch, H. A.; Codelli, J. A.
2007-03-01
We explore and compare numerical methods for the determination of multifractal dimensions for a doubly-thermostatted harmonic oscillator. The equations of motion are continuous and time-reversible. At equilibrium the distribution is a four-dimensional Gaussian, so that all the dimension calculations can be carried out analytically. Away from equilibrium the distribution is a surprisingly isotropic multifractal strange attractor, with the various fractal dimensionalities in the range 1 < D < 4. The attractor is relatively homogeneous, with projected two-dimensional information and correlation dimensions which are nearly independent of direction. Our data indicate that the Kaplan-Yorke conjecture (for the information dimension) fails in the full four-dimensional phase space. We also find no plausible extension of this conjecture to the projected fractal dimensions of the oscillator. The projected growth rate associated with the largest Lyapunov exponent is negative in the one-dimensional coordinate space.
Skinner, Lawrie B; Huang, Congcong; Schlesinger, Daniel; Pettersson, Lars G M; Nilsson, Anders; Benmore, Chris J
2013-02-21
Four recent x-ray diffraction measurements of ambient liquid water are reviewed here. Each of these measurements represents a significant development of the x-ray diffraction technique applied to the study of liquid water. Sources of uncertainty from statistical noise, Q-range, Compton scattering, and self-scattering are discussed. The oxygen-hydrogen contribution to the measured x-ray scattering pattern was subtracted using literature data to yield an experimental determination, with error bars, of the oxygen-oxygen pair-distribution function, g(OO)(r), which essentially describes the distribution of molecular centers. The extended Q-range and low statistical noise of these measurements has significantly reduced truncation effects and related errors in the g(OO)(r) functions obtained. From these measurements and error analysis, the position and height of the nearest neighbor maximum in g(OO)(r) were found to be 2.80(1) Å and 2.57(5) respectively. Numerical data for the coherent differential x-ray scattering cross-section I(X)(Q), the oxygen-oxygen structure factor S(OO)(Q), and the derived g(OO)(r) are provided as benchmarks for calibrating force-fields for water.
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-11
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.
2015-01-01
Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.
NASA Astrophysics Data System (ADS)
Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.
2016-02-01
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.
Hong, Xinguo; Ehm, Lars; Zhong, Zhong; ...
2016-02-23
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less
Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.
2016-02-23
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.
Allan, P. K.; Chapman, K. W.; Chupas, P. J.; Hriljac, J. A.; Renouf, C. L.; Lucas, T. C. A.; Morris, R. E.
2012-01-01
Flexible metal-organic frameworks (MOFs) are materials of great current interest. A small class of MOFs show flexibility driven by reversible bonding rearrangements that lead directly to unusual properties. Cu-SIP-3 is a MOF based on the 5-sulfoisophthalate ligand, where the strong copper-carboxylate bonds ensure that the three-dimensional integrity of the structure is retained while allowing bonding changes to occur at the more weakly bonding sulfonate group leading to unusual properties such as the ultra-selective adsorption of only certain gases. While the integrity of the framework remains intact during bonding changes, crystalline order is not retained at all times during the transformations. X-Ray diffraction reveals that highly crystalline single crystals lose order during the transformation before regaining crystallinity once it is complete. Here we show how X-ray pair distribution function analysis can be used to reveal the mechanism of the transformations in Cu-SIP-3, identifying the sequence of atomic displacements that occur in the disordered phase. A similar approach reveals the underlying mechanism of Cu-SIP-3's ultra-selective gas adsorption.
Chen, Shuang; Sheikh, Ahmad Y; Ho, Raimundo
2014-12-01
Pharmaceutical unit operations such as milling and compaction can often generate disordered regions in crystals of active pharmaceutical ingredients (APIs). This may lead to changes in a number of important pharmaceutical properties including dissolution, stability, hygroscopicity, and so on. It is therefore important for pharmaceutical industry to evaluate the effects of pharmaceutical processing on API structural orders, and to investigate and develop analytical tools that are capable of accurately detecting and assessing subtle process-induced structural disorders in pharmaceutical crystals. In this study, nanoindentation was first used to determine the intrinsic mechanical properties including hardness and Young's modulus of two API crystals, compounds 1 and 2. These crystals of different mechanical properties were then milled and compacted under various conditions. The resulting structural disorders in these crystals were subsequently evaluated using synchrotron-based high-resolution total scattering pair distribution function (TS-PDF) analysis. Furthermore, principal component analysis was applied to the PDF data to assess the relative extents of disorders in the API crystals, which showed a good correlation with the process conditions. The study demonstrates that high-resolution TS-PDF analysis coupled with nanoindentation measurement is a valuable and effective tool for detecting and assessing process-induced subtle structural disorders in API crystals.
Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.
2016-01-01
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122
Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.
2015-07-05
By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as deposited (i.e. amorphous) and crystalline FeSb_{3} films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb_{3} phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb_{3} structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb_{6} octahedra with motifs highly resembling the local structure in crystalline FeSb_{3}. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb_{3} phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.
Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P
2016-02-24
Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.
Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.
2015-12-01
Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.
Jensen, Kirsten M Ø; Blichfeld, Anders B; Bauers, Sage R; Wood, Suzannah R; Dooryhée, Eric; Johnson, David C; Iversen, Bo B; Billinge, Simon J L
2015-09-01
By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The 'tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.
Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...
2015-07-05
By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less
Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...
2015-12-01
Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less
Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.
2015-01-01
By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190
2016-01-01
Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406
NASA Astrophysics Data System (ADS)
Davis, Timur D.
2011-12-01
In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure
NASA Astrophysics Data System (ADS)
Shi, Chenyang
Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage
NASA Astrophysics Data System (ADS)
Idemoto, Yasushi; Akatsuka, Kazumasa; Kitamura, Naoto
2015-12-01
We synthesize Li(Li1/6Mn1/2Ni1/6Co1/6)O2 with a coprecipitation method, and study the electrochemical properties and the atomic configuration by means of galvanostatic charge-discharge test, neutron total scatterings, and the density functional theory calculation. From the average-structure analysis using the Bragg profile, that is, the Rietveld analysis, it is found that the sample has the Li2MnO3-type layered structure (space group; C2/m) and Ni and Co exist at both the two sites (4g and 2b sites) in the transition-metal layer. The DFT calculation indicates that there is a local atomic ordering denoted as LiMn6 in the transition-metal layer in the same way as Li2MnO3. Moreover, such a local structure can explain a reduced pair distribution function, G(r), derived from neutron total scatterings. Detailed investigation on the G(r) also suggests a local distortion along the c axis perpendicular to the layer.
Pair correlation function integrals: Computation and use
NASA Astrophysics Data System (ADS)
Wedberg, Rasmus; O'Connell, John P.; Peters, Günther H.; Abildskov, Jens
2011-08-01
We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O'Connell, G. H. Peters, and J. Abildskov, Mol. Simul. 36, 1243 (2010);, 10.1080/08927020903536366 Fluid Phase Equilib. 302, 32 (2011)], 10.1016/j.fluid.2010.10.004, but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.
Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury
2015-12-08
MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti_{3}C_{2}T_{x} MXenes (T stands for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti_{3}C_{2}-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.
Multi-user distribution of polarization entangled photon pairs
NASA Astrophysics Data System (ADS)
Trapateau, J.; Ghalbouni, J.; Orieux, A.; Diamanti, E.; Zaquine, I.
2015-10-01
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Multi-user distribution of polarization entangled photon pairs
Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I.; Ghalbouni, J.
2015-10-14
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Wigner functions for the pair angle and orbital angular momentum
NASA Astrophysics Data System (ADS)
Kastrup, H. A.
2016-12-01
The problem of constructing physically and mathematically well-defined Wigner functions for the canonical pair angle θ and angular momentum p is solved. While a key element for the construction of Wigner functions for the planar phase space {(q ,p ) ∈R2} is the Heisenberg-Weyl group, the corresponding group for the cylindrical phase space {(θ ,p ) ∈S1×R } is the Euclidean group E (2 ) of the plane and its unitary representations. Here the angle θ is replaced by the pair (cosθ ,sinθ ) , which corresponds uniquely to the points on the unit circle. The main structural properties of the Wigner functions for the planar and the cylindrical phase spaces are strikingly similar. A crucial role is played by the s i n c function, which provides the interpolation for the discontinuous quantized angular momenta in terms of the continuous classical ones, in accordance with the famous Whittaker cardinal function well known from interpolation and sampling theories. The quantum mechanical marginal distributions for the angle (continuous) and angular momentum (discontinuous) are, as usual, uniquely obtained by appropriate integrations of the (θ ,p ) Wigner function. Among the examples discussed is an elementary system of simple cat states.
Spatial Distribution of Pair Production Over the Pulsar Polar Cap
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Parfrey, Kyle
2016-10-01
Using an analytic, axisymmetric approach that includes general relativity, coupled to a condition for pair production deduced from simulations, we derive general results about the spatial distribution of pair-producing field lines over the pulsar polar cap. In particular, we show that pair production on magnetic field lines operates over only a fraction of the polar cap for an aligned rotator for general magnetic field configurations, assuming the magnetic field varies spatially on a scale that is larger than the size of the polar cap. We compare our result to force-free simulations of a pulsar with a dipole surface field and find excellent agreement. Our work has implications for first-principles simulations of pulsar magnetospheres and for explaining observations of pulsed radio and high-energy emission.
Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; ...
2015-05-06
The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less
Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.
2015-05-06
The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.
Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; Senanayake, Sanjaya D.
2016-02-18
The functionalization of graphene oxide (GO) and graphene by TiO_{2} and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO_{2} and TiO_{2} under H_{2} reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystal growth of TiO_{2} nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.
Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...
2016-02-18
The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less
NASA Astrophysics Data System (ADS)
Romanyuk, O. N.; Pavlov, S. V.; Dovhaliuk, R. Yu.; Babyuk, N. P.; Obidnyk, M. D.; Kisala, P.; Suleimenov, B.
2013-01-01
A microfacet distribution function is presented. This function can be used to calculate the microfacet distribution term in BRDF models. The function differs from other well-known microfacet distribution functions like Blinn or Beckmann distributions in that it doesn`t use special functions like acos, tan, exp, pow and thus has lower computational complexity.
Nucleon and nucleon-pair momentum distributions in A≤12 nuclei
Wiringa, Robert B.; Schiavilla, Rocco; Pieper, Steven C.; ...
2014-02-10
We report variational Monte Carlo calculations of single-nucleon momentum distributions for A≤12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A≤8. The wave functions have been generated for a Hamiltonian containing the Argonne ν18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, αd inmore » 6Li,αt in 7Li, and αα in 8Be. Detailed tables are provided on-line for download.« less
Synergy between pair coupled cluster doubles and pair density functional theory
Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-28
Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.
Bréger, Julien; Dupré, Nicolas; Chupas, Peter J; Lee, Peter L; Proffen, Thomas; Parise, John B; Grey, Clare P
2005-05-25
The local environments and short-range ordering of LiNi(0.5)Mn(0.5)O(2), a potential Li-ion battery positive electrode material, were investigated by using a combination of X-ray and neutron diffraction and isotopic substitution (NDIS) techniques, (6)Li Magic Angle Spinning (MAS) NMR spectroscopy, and for the first time, X-ray and neutron Pair Distribution Function (PDF) analysis, associated with Reverse Monte Carlo (RMC) calculations. Three samples were studied: (6)Li(NiMn)(0.5)O(2), (7)Li(NiMn)(0.5)O(2), and (7)Li(NiMn)(0.5)O(2) enriched with (62)Ni (denoted as (7)Li(ZERO)Ni(0.5)Mn(0.5)O(2)), so that the resulting scattering length of Ni atoms is null. LiNi(0.5)Mn(0.5)O(2) adopts the LiCoO(2) structure (space group Rm) and comprises separate lithium layers, transition metal layers (Ni, Mn), and oxygen layers. NMR experiments and Rietveld refinements show that there is approximately 10% of Ni/Li site exchange between the Li and transition metal layers. PDF analysis of the neutron data revealed considerable local distortions in the layers that were not captured in the Rietveld refinements performed using the Bragg diffraction data and the LiCoO(2) structure, resulting in different M-O bond lengths of 1.93 and 2.07 Angstroms for Mn-O and Ni/Li-O, respectively. Large clusters of 2400-3456 atoms were built to investigate cation ordering. The RMC method was then used to improve the fit between the calculated model and experimental PDF data. Both NMR and RMC results were consistent with a nonrandom distribution of Ni, Mn, and Li cations in the transition metal layers; both the Ni and Li atoms are, on average, close to more Mn ions than predicted based on a random distribution of these ions in the transition metal layers. Constraints from both experimental methods showed the presence of short-range order in the transition metal layers comprising LiMn(6) and LiMn(5)Ni clusters combined with Ni and Mn contacts resembling those found in the so-called "flower structure" or
Nuclear Parton Distribution Functions
Schienbein, I.; Yu, J.-Y.; Keppel, Cynthia; Morfin, Jorge; Olness, F.; Owens, J.F.
2009-01-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a chi^2 analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x_Bj-dependent and Q^2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x_Bj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
Nuclear Parton Distribution Functions
I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens
2009-06-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan
2013-01-25
Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.
Hyperdimensional Analysis of Amino Acid Pair Distributions in Proteins
Henriksen, Svend B.; Arnason, Omar; Söring, Jón; Petersen, Steffen B.
2011-01-01
Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis. PMID:22174733
Cluster pair correlation function of simple fluids: energetic connectivity criteria.
Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando
2006-11-21
We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.
Integrals over the triplet distribution function without the triplet distribution function
NASA Astrophysics Data System (ADS)
Lado, F.
While the triplet distribution function of disordered systems appears in a wide variety of problems in statistical mechanics, it does so always under an integral sign. In this paper, we propose a new method of evaluating such integrals that involves only pair functions throughout and avoids altogether the need for any explicit representation of the little-known triplet function. The procedure is based on an extension of integral equation theory of classical fluids. Numerical illustrations of the method are given for integrals that arise in the calculation of moments of a local field distribution.
Kinematic distributions for electron pair production by muons
NASA Technical Reports Server (NTRS)
Linsker, R.
1972-01-01
Cross sections and kinematic distributions for the trident production process plus or negative muon plus charge yields plus or minus muon plus electron plus positron plus charge (with charge = dipion moment and Fe) are given for beam energies of 100 to 300 GeV at fixed (electron positron) masses from 5 to 15 GeV. This process is interesting as a test of quantum electrodynamics at high energies, and in particular as a test of the form of the photon propagator at large timelike (four-momentum) squared. For this purpose, it is desirable to impose kinematic cuts that favor those Bethe-Heitler graphs which contain a timelike photon propagator. It is found that there are substantial differences between the kinematic distributions for the full Bethe-Heitler matrix element and the distributions for the two timelike-photon graphs alone; these differences can be exploited in the selection of appropriate kinematic cuts.
Distributed Pair Programming Using Collaboration Scripts: An Educational System and Initial Results
ERIC Educational Resources Information Center
Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios
2015-01-01
Since pair programming appeared in the literature as an effective method of teaching computer programming, many systems were developed to cover the application of pair programming over distance. Today's systems serve personal, professional and educational purposes allowing distributed teams to work together on the same programming project. The…
Chemical reactivity in the framework of pair density functional theories.
Otero, Nicolás; Mandado, Marcos
2012-05-15
Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches.
2001-06-01
Correlation Functions of Non- Crystalline Materials DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...PAIR CORRELATION FUNCTIONS OF NON- CRYSTALLINE MATERIALS W. Hoyer, I. Kaban, Th. Halm Institute of Physics, TU - Chemnitz, D-09107, Chemnitz, Germany...correlation functions of the non- crystalline materials with low-coordinated (open) structure. Liquid Te and amorphous Ge-telluride have been chosen for
Valence quark spin distribution functions
Nathan Isgur
1998-09-01
The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the {Delta} - N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x) {r_arrow} 0 as x {r_arrow} 1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A{sub 1}{sup p}(x) and A{sub 1}{sup n}(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are ''normal''.
Beam distribution function after filamentation
Raubenheimer, T.O.; Decker, F.J.; Seeman, J.T.
1995-05-01
In this paper, the authors calculate the beam distribution function after filamentation (phase-mixing) of a focusing mismatch. This distribution is relevant when interpreting beam measurements and sources of emittance dilution in linear colliders. It is also important when considering methods of diluting the phase space density, which may be required for the machine protection system in future linear colliders, and it is important when studying effects of trapped ions which filament in the electron beam potential. Finally, the resulting distribution is compared with measured beam distributions from the SLAC linac.
Nagy, A.
2011-09-15
A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).
Structure functions and parton distributions
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-07-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.
Spin quasi-distribution functions
NASA Astrophysics Data System (ADS)
Scully, M. O.; Wódkiewicz, K.
1994-01-01
Two-classes of phase-space spin quasi-distribution functions are introduced and discussed. The first class of these distributions is based on the delta function construction. It is shown that such a construction can be carried out for an arbitrary spin s and an arbitrary ordering of the spin operators. The second class of the spin distributions is constructed with the help of the spin coherent states. The connection of the spin coherent states to the Stratonovich formalism is established and discussed. It is shown that the c-number phase-space description of quantum fluctuations provides a simple statistical picture of quantum fluctuations of spinoperators in terms of random directions on a unit sphere. For quantum states of the spin system the statistics of these random orientations is given by non-positive spin quasi-distribution functions. It is shown that the application of these spin quasi-distribution functions to the Einstein-Podolsky-Rosen correlations provide an insight into the quantum theory of measurement.
King, Graham; Ramezanipour, Farshid; Llobet, Anna; Greedan, John E.
2013-02-15
The local structures of the oxygen deficient perovskites Sr{sub 2}FeMnO{sub 5}, Sr{sub 2}FeMnO{sub 5.5}, and Sr{sub 2}Fe{sub 1.5}Cr{sub 0.5}O{sub 5} have been analyzed using neutron pair distribution function data. The results show that locally all three structures are more complex than implied by their average cubic structures and that the distributions of oxygen vacancies are not completely random on a local level. For both Sr{sub 2}FeMnO{sub 5+y} compounds it is found that there is no short range ordering of the Fe and Mn cations. For Sr{sub 2}Fe{sub 1.5}Cr{sub 0.5}O{sub 5} there is evidence to suggest that the Fe/Cr distribution is not completely random and is locally ordered such that there are fewer Fe--Fe nearest neighbor pairs than in a random distribution. Reverse Monte Carlo modeling of the pair distribution function data has provided the Fe--O, Mn--O, and Cr--O bond length distributions and information on the coordination numbers of the Fe, Mn, and Cr cations. In Sr{sub 2}FeMnO{sub 5} it is found that the Fe{sup 3+} cations are most often in 4-fold coordination but there is also a large amount of Fe{sup 3+} in 5-fold coordination and a small amount in 6-fold coordination. The Mn{sup 3+} is split between 5-fold and 6-fold coordination. The Mn--O bond length distributions indicate that the Mn{sup 3+}O{sub 6} octahedra and Mn{sup 3+}O{sub 5} square pyramids are locally Jahn-Teller distorted. In Sr{sub 2}FeMnO{sub 5.5} the Fe{sup 3+} is almost entirely 5 coordinate while the Mn{sup 4+} is almost entirely 6 coordinate. The Cr{sup 3+} in Sr{sub 2}Fe{sub 1.5}Cr{sub 0.5}O{sub 5} is almost entirely 6-fold coordinated, giving the Fe{sup 3+} an average coordination number of 4.67. In Sr{sub 2}FeMnO{sub 5} and Sr{sub 2}Fe{sub 1.5}Cr{sub 0.5}O{sub 5} the Fe{sup 3+} and Sr{sup 2+} cations undergo local displacements which are driven by the oxygen vacancies, while the Mn{sup 3+} and Cr{sup 3+} cations remain near their positions in the average structures. In Sr{sub 2
The Generalized Relative Pairs IBD Distribution: Its Use in the Detection of Linkage
Zou, Quan
2016-01-01
I introduce a novel approach to derive the distribution of disease affectional status given alleles identical by descent (IBD) sharing through ITO method. My approach tremendously simplifies the calculation of the affectional status distribution compared to the conventional method, which requires the parental mating information, and could be applied to disease with both dichotomous trait and quantitative trait locus (QTL). This distribution is shown to be independent of relative relationship and be employed to develop the marker IBD distributions for relative relationship. In addition, three linkage tests: the proportion, the mean test, and the LOD score test are proposed for different relative pairs based on their marker IBD distributions. Among all three tests, the mean test for sib pair requires the least sample size, thus, has the highest power. Finally, I evaluate the significance of different relative relationships by a Monte-Carlo simulation approach. PMID:27933287
Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang
2014-10-01
The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Zhang, Yan; Inouye, Hideyo; Crowley, Michael; ...
2016-10-14
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Zhang, Yan; Inouye, Hideyo; Crowley, Michael; Yu, Leiming; Kaeli, David; Makowski, Lee
2016-10-14
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD
ERIC Educational Resources Information Center
Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan
2005-01-01
Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…
Unbiased estimators for spatial distribution functions of classical fluids.
Adib, Artur B; Jarzynski, Christopher
2005-01-01
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.
Noureddine, Achraf; Lichon, Laure; Maynadier, Marie; Garcia, Marcel; Gary-Bobo, Magali; Zink, Jeffrey I; Cattoën, Xavier; Wong Chi Man, Michel
2015-07-14
The synthesis of mesoporous silica nanoparticles bearing organic functionalities is strained by the careful adjustment of the reaction parameters, as the incorporation of functional and/or voluminous organosilanes during the sol-gel synthesis strongly affects the final structure of the nanoparticles. In this paper we describe the design of new clickable mesoporous silica nanoparticles as spheres or rods, synthesized by the co-condensation of TEOS with two clickable organosilanes (bearing alkyne and azide groups) and readily multi-functionalizable by CuAAC click chemistry. We show that controlled loadings of clickable functions can be homogeneously distributed within the MSN, allowing us to efficiently click-graft various pairs of functionalities while preserving the texture and morphology of the particles. The homogeneous distribution of the grafted functionalities was probed by FRET experiments between two anchored fluorophores. Moreover, a communication by proton transfer between two functions was demonstrated by constructing a light-actuated nanomachine that works through a proton transfer between a photoacid generator and a pH-sensitive supramolecular nanogate. The activation of the nanomachine enabled the successful release of rhodamine B in buffered solutions and the delivery of doxorubicin in breast cancer cells (MCF-7) upon blue irradiation.
Pair-correlation function of a metastable helium Bose-Einstein condensate
Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz
2004-02-01
The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.
Variational derivation of equation for generalized pair correlation function
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1992-01-01
The wavefunction of a system is explicitly written down in a fully anti-symmetric way between a fermion pair and a medium, and the equations for each one of them are derived from the variation of total energy for bound systems and by forming appropriate scalar products for continuum states. High-energy particles, such as protons, electrons, and nuclei impinging upon spacecraft, produce secondary radiations. In order to protect the internal environment of spacecraft from these radiations, their intensities are determined in many instances theoretically, and an appropriate program has been developed in the High Energy Science Branch. The purpose of this research is to investigate the problem of indistinguishability of an incident projectile with one of the same in a target.
NASA Astrophysics Data System (ADS)
Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian
2016-05-01
Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE
Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian
2016-05-19
Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.
On the distribution of the unpaired t-statistic with paired data.
Proschan, M A
1996-05-30
I derive the exact distribution of the unpaired t-statistic computed when the data actually come from a paired design. I use this to prove a result Diehr et al. obtained by simulation, namely that the type I error rate of this procedure is no greater than alpha regardless of the sample size. I provide a formula to use in computation of power and type I error rate.
The Differential cross section distribution of Drell-Yan dielectron pairs in the z boson mass region
Han, Jiyeon
2008-01-01
We report on a measurement of the rapidity distribution, dσ/dy, for Z=Drell-Yan → ee events produced in p$\\bar{p}$ collisions at √s = 1.96 TeV. The data sample consists of 2.13 fb^{-1} corresponding to about 160,000 Z/Drell-Yan → ee candidates in the Z boson mass region collected by the Collider Detector at Fermilab. The dσ/dy distribution, which is measured over the full kinematic range for e^{+}e^{-} pairs in the invariant mass range 66 < M_{ee} < 116 GeV/c^{2}, is compared with theory predictions. There is good agreement between the data and predictions of Quantum Chromodynamics in Next to Leading Order with the CTEQ6.1M Parton Distribution Functions.
Lerma H, S.
2010-07-15
The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.
NASA Astrophysics Data System (ADS)
Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.
2015-12-01
We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.
NASA Astrophysics Data System (ADS)
Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Bertolus, Marjorie
2017-01-01
We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.
Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard
2011-02-01
In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional
Leszczynska, M; Liu, X; Wrobel, W; Malys, M; Norberg, S T; Hull, S; Krok, F; Abrahams, I
2013-11-13
Reverse Monte Carlo (RMC) modelling of neutron total scattering data, combined with conventional Rietveld analysis of x-ray and neutron data, has been used to describe the cation coordination environments and vacancy pair distribution in the oxide ion conducting electrolyte Bi3YbO6. The thermal variation of the cubic fluorite unit cell volume, monitored by variable temperature x-ray and neutron experiments, reveals significant curvature, which is explained by changes in the oxide ion distribution. There is a significant increase in tetrahedral oxide ion vacancy concentration relative to δ-Bi2O3, due to the creation of Frenkel defects associated with the Yb(3+) cation. The tetrahedral oxide ion vacancy concentration increases from room temperature to 800 °C, but little change is observed in the vacancy pair distribution with temperature. The vacancy pair distributions at both temperatures are consistent with a favouring of [100] vacancy pairs.
Synthesis and characterization of bifunctional surfaces with tunable functional group pairs
NASA Astrophysics Data System (ADS)
Galloway, John M.; Kung, Mayfair; Kung, Harold H.
2016-06-01
Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.
Probability distribution functions of the Grincevicjus series
NASA Astrophysics Data System (ADS)
Kapica, Rafal; Morawiec, Janusz
2008-06-01
Given a sequence ([xi]n,[eta]n) of independent identically distributed vectors of random variables we consider the Grincevicjus series and a functional-integral equation connected with it. We prove that the equation characterizes all probability distribution functions of the Grincevicjus series. Moreover, some application of this characterization to a continuous refinement equation is presented.
Singh, Sheo B; Zhang, Chaowei; Zink, Deborah L; Herath, Kithsiri; Ondeyka, John; Masurekar, Prakash; Jayasuriya, Hiranthi; Goetz, Michael A; Tormo, Jose Rubén; Vicente, Francisca; Martín, Jesús; González, Ignacio; Genilloud, Olga
2013-10-01
Natural products have been major sources of antibacterial agents and remain very promising. Frequent rediscoveries of known compounds hampers progress of new discoveries and demands development and utilization of new methods for rapid biological and chemical dereplication. This paper describes an efficient approach for discovery of new thiazolyl peptides by sensitive-resistant pair screening and dereplication in a time and cost-effective manner at industrial scale. A highly effective library-based dereplication of thiazolyl peptides by high resolution fourier transform liquid chromatography mass spectrometry (HRFTLCMS) has been developed, which can detect and dereplicate very low levels of thiazolyl peptides particularly when combined with miniaturized high-throughput 96-well solid-phase extraction separation, and as well can be automated. Combination of sensitive (susceptible)-resistant pair screening, diversified screening collection and miniaturized high-throughput SPE and HRFTLCMS techniques were applied for discovery of new thiazolyl peptides. The combined approach allowed for identification of over 24 thiazolyl peptides represented by three of the five structural subgroups, including three novel compounds. In addition, it is possible for the first time to mechanistically group three structural subgroups of over 24 thiazolyl peptides. Furthermore, these studies helped to understand natural frequency of distribution of these compounds and helped in discovery of new producing strains of many thiazolyl compounds.
Murugan, N Arul; Chakrabarti, Swapan; Ågren, Hans
2011-04-14
We have studied the structures and absorption spectra of merocyanine, the photoresponsive isomer of the spiropyran (SP)-merocyanine (MC) pair, in chloroform and in water solvents using a combined hybrid QM/MM Car-Parrinello molecular dynamics (CP-QM/MM) and ZINDO approach. We report remarkable differences in the molecular structure and charge distribution of MC between the two solvents; the molecular structure of MC remains in neutral form in chloroform while it becomes charge-separated, zwitterionic, in water. The dipole moment of MC in water is about 50% larger than in chloroform, while the value for SP in water is in between, suggesting that the solvent is more influential than the conformation itself in deciding the dipole moment for the merocyanine-spiropyran pair. The calculations could reproduce the experimentally reported blue shift in the absorption spectra of MC when going from the nonpolar to the polar solvent, though the actual value of the absorption maximum is overestimated in chloroform solvent. We find that the CP-QM/MM approach is appropriate for structure modeling of solvatochromic and thermochromic molecules as this approach is able to capture the solvent and thermal-induced structural changes within the solute important for an accurate assessment of the properties.
An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules
Kimoto, Michiko; Kawai, Rie; Mitsui, Tsuneo; Yokoyama, Shigeyuki; Hirao, Ichiro
2009-01-01
Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies. PMID:19073696
The parton distribution function library
Plothow-Besch, H.
1995-07-01
This article describes an integrated package of Parton Density Functions called PDFLIB which has been added to the CERN Program Library Pool W999 and is labelled as W5051. In this package all the different sets of parton density functions of the Nucleon, Pion and the Photon which are available today have been put together. All these sets have been combined in a consistent way such that they all have similar calling sequences and no external data files have to be read in anymore. A default set has been prepared, although those preferring their own set or wanting to test a new one may do so within the package. The package also offers a program to calculate the strong coupling constant {alpha}, to first or second order. The correct {Lambda}{sub QCD} associated to the selected set of structure functions and the number of allowed flavours with respect to the given Q{sup 2} is automatically used in the calculation. The selection of sets, the program parameters as well as the possibilities to modify the defaults and to control errors occurred during execution are described.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Particulate distribution function evolution for ejecta transport
Hammerberg, James Edward; Plohr, Bradley J
2010-01-01
The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.
Plasma Dispersion Function for the Kappa Distribution
NASA Technical Reports Server (NTRS)
Podesta, John J.
2004-01-01
The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.
Fog droplet distribution functions for lidar.
Mallow, J V
1982-04-15
The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.
Fog droplet distribution functions for lidar
Mallow, J.V.
1982-04-15
The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.
A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures
Li, Haotian; Huang, Yangyu
2017-01-01
Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets. PMID:28358834
A pair-conformation-dependent scoring function for evaluating 3D RNA-protein complex structures.
Li, Haotian; Huang, Yangyu; Xiao, Yi
2017-01-01
Computational prediction of RNA-protein complex 3D structures includes two basic steps: one is sampling possible structures and another is scoring the sampled structures to pick out the correct one. At present, constructing accurate scoring functions is still not well solved and the performances of the scoring functions usually depend on used benchmarks. Here we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-protein complex structure prediction by considering the nucleotide-residue pairs having the same energy if their conformations are similar, instead of the distance-only dependence of the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consistent performance in three test sets.
Extracting the kaon Collins function from e+e- hadron pair production data
NASA Astrophysics Data System (ADS)
Anselmino, M.; Boglione, M.; D'Alesio, U.; Hernandez, J. O. Gonzalez; Melis, S.; Murgia, F.; Prokudin, A.
2016-02-01
The latest data released by the BABAR Collaboration on azimuthal correlations measured for pion-kaon and kaon-kaon pairs produced in e+e- annihilations allow, for the first time, a direct extraction of the kaon Collins functions. These functions are then used to compute the kaon Collins asymmetries in semi-inclusive deep inelastic scattering processes, which result in good agreement with the measurements performed by the HERMES and COMPASS collaborations.
Pair-flowered cymes in the Lamiales: structure, distribution and origin
Weber, Anton
2013-01-01
Background and Aims In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) ‘pair-flowered cymes’ (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood. Methods The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences). Key Results PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers. Conclusions From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable. PMID:23884395
Winges, Sara A.; Johnston, Jamie A.; Santello, Marco
2007-01-01
To gain insight into the synergistic control of hand muscles, we have recently quantified the strength of correlated neural activity across motor units from extrinsic digit flexors during a five-digit object-hold task. We found stronger synchrony and coherence across motor units from thumb and index finger flexor muscle compartment than between the thumb flexor and other finger flexor muscle compartments. The present study of two-digit object hold was designed to determine the extent to which such distribution of common input among thumb-finger flexor muscle compartments, revealed by holding an object with five digits, is preserved when varying the functional role of a given digit pair. We recorded normal force exerted by the digits and electrical activity of single motor units from muscle flexor pollicis longus (FPL) and two compartments of the m. flexor digitorum profundus (FDP2 and FDP3; index and middle finger, respectively). Consistent with our previous results from five-digit grasping, synchrony and coherence across motor units from FPL-FDP2 was significantly stronger than in FPL-FDP3 during object hold with two digits [common input strength: 0.49 ± 0.02 and 0.35 ± 0.02 (means ± SE), respectively; peak coherence: 0.0054 and 0.0038, respectively]. This suggests that the distribution of common neural input is muscle-pair specific regardless of grip type. However, the strength of coherence, but not synchrony, was significantly stronger in two- versus five-digit object hold for both muscle combinations, suggesting the periodicity of common input is sensitive to grip type. PMID:16723414
Energy-loss function in the two-pair approximation for the electron liquid
NASA Astrophysics Data System (ADS)
Bachlechner, M. E.; Holas, A.; Böhm, H. M.; Schinner, A.
1996-07-01
The imaginary part of the proper polarizability, Im Π, arising due to excitations of two electron-hole pairs, is studied in detail for electron systems of arbitrary dimensionality, and taking into account arbitrary degeneracy of the electron bands. This allows an application to semiconductors with degenerate valleys, and to ferromagnetic metals. The results obtained not only confirm expressions already known for paramagnetic systems in the high-frequency region, but are also rigorously shown to be valid for all frequencies outside the particle-hole continuum. For a sufficiently high momentum transfer a cutoff frequency (below which Im Π=0) is established for not only two-pair but also any n-pair processes. In contrast, there is no upper cutoff for n>~1. The energy-loss function, including the discussed two-pair contributions, is calculated. The effects of screening are investigated. Numerical results, illustrating various aspects and properties of this function, especially showing finite-width plasmon peaks, are obtained for a two-dimensional electron gas.
Bounds on transverse momentum dependent distribution functions
NASA Astrophysics Data System (ADS)
Henneman, A.
2001-01-01
When more than one hadron takes part in a hard process, an extended set of quark distribution and fragmentation functions becomes relevant. In this talk, the derivation of Soffer-like bounds for these functions, in the case of a spin-1/2 target [1], is sketched and some of their aspects are discussed.
Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Shengmei
2017-04-01
Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
ERIC Educational Resources Information Center
Hilchey, Christian Thomas
2014-01-01
This dissertation examines prefixation of simplex pairs. A simplex pair consists of an iterative imperfective and a semelfactive perfective verb. When prefixed, both of these verbs are perfective. The prefixed forms derived from semelfactives are labeled single act verbs, while the prefixed forms derived from iterative imperfective simplex verbs…
Exact probability distribution functions for Parrondo's games
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Saakian, David B.; Klümper, Andreas
2016-12-01
We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.
Krisiloff, David B.; Oyeyemi, Victor B.; Libisch, Florian; Carter, Emily A.
2014-01-14
A Multireference Configuration Interaction (MRCI) wavefunction includes both static and dynamic electron correlation. MRCI's well-known flaw, a lack of size extensivity, can be ameliorated with the Multireference Averaged Coupled-Pair Functional (MRACPF). However, the original MRACPF is frequently unstable, sometimes producing unphysical results. The more Multireference Averaged Quadratic Coupled-Cluster and MRACPF2 functionals also occasionally exhibit unphysical behavior. We find that these instabilities are avoided crossings with unphysical solutions to the MRACPF equations. We present two approaches to avoid the undesirable unphysical solutions.
NASA Technical Reports Server (NTRS)
Chong, D. P.; Langhoff, S. R.
1986-01-01
A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.
Density Functional Study of the Influence of C5 Cytosine Substitution in Base Pairs with Guanine
Moser, Adam; Guza, Rebecca; Tretyakova, Natalia; York, Darrin M.
2009-01-01
The present study employs density-functional electronic structure methods to investigate the effect of chemical modification at the C5 position of cytosine. A series of experimentally motivated chemical modifications are considered, including alkyl, halogen, aromatic, fused ring, and strong σ and π withdrawing functional groups. The effect of these modifications on cytosine geometry, electronic structure, proton affinities, gas phase basicities, cytosine-guanine base-pair hydrogen bond network and corresponding nucleophilicity at guanine are examined. Ultimately, these results play a part in dissecting the effect of endogenous cytosine methylation on the reactivity of neighboring guanine toward carcinogens and DNA alkylating agents. PMID:19890472
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than
NASA Astrophysics Data System (ADS)
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.
2016-09-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.
2016-01-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.
Nonlocal energy density functionals for pairing and beyond-mean-field calculations
NASA Astrophysics Data System (ADS)
Bennaceur, K.; Idini, A.; Dobaczewski, J.; Dobaczewski, P.; Kortelainen, M.; Raimondi, F.
2017-04-01
We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle–hole and particle–particle channels, which makes it free from self-interaction and self-pairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order and next-to-next-to-leading order, which fairly well describe infinite-nuclear-matter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.
Matsuo, Ryota; Kobayashi, Suguru; Yamagishi, Miki; Ito, Etsuro
2011-03-15
Terrestrial pulmonates can learn olfactory-aversion tasks and retain them in their long-term memory. To elucidate the cellular mechanisms underlying learning and memory, researchers have focused on both the peripheral and central components of olfaction: two pairs of tentacles (the superior and inferior tentacles) and a pair of procerebra, respectively. Data from tentacle-amputation experiments showed that either pair of tentacles is sufficient for olfactory learning. Results of procerebrum lesion experiments showed that the procerebra are necessary for olfactory learning but that either one of the two procerebra, rather than both, is used for each olfactory learning event. Together, these data suggest that there is a redundancy in the structures of terrestrial pulmonates necessary for olfactory learning. In our commentary we exemplify and discuss functional optimization and structural redundancy in the sensory and central organs involved in olfactory learning and memory in terrestrial pulmonates.
Calculation of the Poisson cumulative distribution function
NASA Technical Reports Server (NTRS)
Bowerman, Paul N.; Nolty, Robert G.; Scheuer, Ernest M.
1990-01-01
A method for calculating the Poisson cdf (cumulative distribution function) is presented. The method avoids computer underflow and overflow during the process. The computer program uses this technique to calculate the Poisson cdf for arbitrary inputs. An algorithm that determines the Poisson parameter required to yield a specified value of the cdf is presented.
Electron energy-distribution functions in gases
Pitchford, L.C.
1981-01-01
Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)
Probability distribution functions in turbulent convection
NASA Technical Reports Server (NTRS)
Balachandar, S.; Sirovich, L.
1991-01-01
Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Krantzler, Seth O.; Ford, Eric B.; Tasker, Elizabeth; Rasio, Fred
2015-12-01
Period ratios of most adjacent planet pairs in Kepler's multiplanet systems seem random. However, there is a clear excess and dearth of systems just exterior and interior to major mean motion resonances, respectively. We show that dynamical interactions between initially resonant planet pairs and planetesimals in a planetesimal disk can naturally produce the observed asymmetric abundances in period ratios of near-resonant pairs for a wide variety of planet and planetesimal disk properties (Chatterjee & Ford 2015). We further extend this study to include planet pairs initially not in resonance. We will present our key results from this large suite of simulations. We will also discuss implications of planetesimal scattering for the observable properties of these planets including their TTV signal and mass-radius properties as a result of planetesimal accretion.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Extended distribution functions for our Galaxy
NASA Astrophysics Data System (ADS)
Sanders, Jason L.; Binney, James
2015-06-01
We extend models of our Galaxy based on distribution functions that are analytic functions of the action integrals to extended distribution functions (EDFs), which have an analytic dependence on metallicity as well. We use a simple, but physically motivated, functional forms for the metallicity of the interstellar medium as a function of radius and time and for the star formation rate, and a model for the diffusion of stars through phase space to suggest the required functional form of an EDF. We introduce a simple prescription for radial migration that preserves the overall profile of the disc while allowing individual stars to migrate throughout the disc. Our models explicitly consider the thin and thick discs as two distinct components separated in age. We show how an EDF can be used to incorporate realistic selection functions in models, and to construct mock catalogues of observed samples. We show that the selection function of the Geneva-Copenhagen Survey (GCS) biases in favour of young stars, which have atypically small random velocities. With the selection function taken into account our models produce good fits of the GCS data in chemo-dynamical space and the Gilmore & Reid (1983) density data. From our EDF, we predict the structure of the Sloan Extension for Galactic Understanding and Exploration G-dwarf sample. The kinematics are successfully predicted. The predicted metallicity distribution has too few stars with [Fe/H] ≃ -0.5 dex and too many metal-rich stars. A significant problem may be the lack of any chemical-kinematic correlations in our thick disc. We argue that EDFs will prove essential tools for the analysis of both observational data and sophisticated models of Galaxy formation and evolution.
Nonclassicality criteria: Quasiprobability distributions and correlation functions
NASA Astrophysics Data System (ADS)
Alexanian, Moorad
2016-10-01
We use the exact calculation of the quantum mechanical, temporal characteristic function χ (η ) and the degree of second-order coherence g(2 )(τ ) for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state, to study the different criteria for nonclassicality. In particular, we contrast criteria that involve only one-time functions of the dynamical system, for instance, the quasiprobability distribution P (β ) of the Glauber-Sudarshan coherent or P representation of the density of state and the Mandel QM(τ ) parameter, versus the criteria associated with the two-time correlation function g(2 )(τ ) .
Nonequilibrium effects in the energy distribution function
NASA Astrophysics Data System (ADS)
Burns, George; Cohen, L. Kenneth
1983-03-01
The relative nonequilibrium energy distribution function, in the steady state for the irreversibly reacting Br2 in an argon system at 3500 K, is calculated. It is based upon 44 400 classical 3D trajectories, and uses the single uniform ensemble method [H. D. Kutz and G. Burns, J. Chem. Phys. 72, 3562 (1980)]. Although the raw data display a considerable scatter, they clearly indicate a depletion from the equilibrium distribution function over a wide energy range. A careful statistical study of the data is performed. It is found that their histograms can be described over the entire possible energy range by a simple analytical function with only one adjustable parameter. The best fitting procedure yields a surprisingly narrow goodness of fit. However, an apparent deviation of the fit from the data is observed in the energy region where the reaction channel opens. To that extent, this work sheds a new light on the nature of the steady state in an irreversible reaction.
Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.
2011-01-01
The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943
NASA Astrophysics Data System (ADS)
Yamanishi, Teruya; Yu-Bing, Dong; Morii, Toshiyuki
2001-06-01
To study the polarized gluon density Δg(x) in the nucleon, we propose the high-pT pair charmed hadron production process in polarized lp scattering. The double spin asymmetry ALL for this process is a good observable for testing the models of Δg(x). .
Pair-correlation functions and phase separation in a two-component point Yukawa fluid
NASA Astrophysics Data System (ADS)
Hopkins, P.; Archer, A. J.; Evans, R.
2006-02-01
We investigate the structure of a binary mixture of particles interacting via purely repulsive point Yukawa pair potentials with a common inverse screening length λ. Using the hypernetted chain closure to the Ornstein-Zernike equations, we find that for a system with "ideal" (Berthelot mixing rule) pair-potential parameters for the interaction between unlike species, the asymptotic decay of the total correlation functions crosses over from monotonic to damped oscillatory on increasing the fluid total density at fixed composition. This gives rise to a Kirkwood line in the phase diagram. We also consider a "nonideal" system, in which the Berthelot mixing rule is multiplied by a factor (1+δ). For any δ >0 the system exhibits fluid-fluid phase separation and remarkably the ultimate decay of the correlation functions is now monotonic for all (mixture) state points. Only in the limit of vanishing concentration of either species does one find oscillatory decay extending to r =∞. In the nonideal case the simple random-phase approximation provides a good description of the phase separation and the accompanying Lifshitz line.
Functional connectivity of paired default mode network subregions in primary insomnia
Nie, Xiao; Shao, Yi; Liu, Si-yu; Li, Hai-jun; Wan, Ai-lan; Nie, Si; Peng, De-chang; Dai, Xi-jian
2015-01-01
Objective The aim of this study is to explore the resting-state functional connectivity (FC) differences between the paired default mode network (DMN) subregions in patients with primary insomnia (PIs). Methods Forty-two PIs and forty-two age- and sex-matched good sleepers (GSs) were recruited. All subjects underwent the resting-state functional magnetic resonance imaging scans. The seed-based region-to-region FC method was used to evaluate the abnormal connectivity within the DMN subregions between the PIs and the GSs. Pearson correlation analysis was used to investigate the relationships between the abnormal FC strength within the paired DMN subregions and the clinical features in PIs. Results Compared with the GSs, the PIs showed higher Pittsburgh Sleep Quality Index score, Hamilton Anxiety Rating Scale score, Hamilton Depression Rating Scale score, Self-Rating Depression Scale score, Self Rating Anxiety Scale score, Self-Rating Scale of Sleep score, and Profile of Mood States score (P<0.001). Compared with the GSs, the PIs showed significant decreased region-to-region FC between the medial prefrontal cortex and the right medial temporal lobe (t=−2.275, P=0.026), and between the left medial temporal lobe and the left inferior parietal cortices (t=−3.32, P=0.001). The abnormal FC strengths between the DMN subregions did not correlate with the clinical features. Conclusion PIs showed disrupted FC within the DMN subregions. PMID:26719693
Spaceflight alters immune cell function and distribution
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.
1992-01-01
Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.
Maradeo, Marie E; Garg, Anisha; Skibbens, Robert V
2010-11-01
Sister chromatid pairing reactions, termed cohesion establishment, occur during S-phase and appear to be regulated by Replication Factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these novel pathways, we analyzed the small RFC subunit Rfc5p that is common to both Ctf18p-RFC and Elg1p-RFC. Despite this commonality, the data show that diminished Rfc5p function rescues ctf7/eco1 mutant cell phenotypes, revealing that Rfc5p promotes anti-establishment activities. This rescue is specific to establishment pathways in that rfc5-1 greatly accentuates growth defects when expressed in scc2 (deposition), mcd1/scc1 or smc3 (cohesion maintenance) mutated cells. Our results reveal for the first time a role for small RFC subunits in directing RFC complex functions-in this case towards anti-establishment pathways. We further report that Pds5p exhibits both establishment and anti-establishment functions in cohesion. This duality suggests that categorizations of establishment and anti-establishment activities require further examination.
Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory
Jensen, Lasse; Govind, Niranjan
2009-09-10
In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.
Zia, Roseanna N; Swan, James W; Su, Yu
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation
NASA Astrophysics Data System (ADS)
Zia, Roseanna N.; Swan, James W.; Su, Yu
2015-12-01
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation
Zia, Roseanna N. Su, Yu; Swan, James W.
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle
Impact of recurrent head trauma on olfactory function in boxers: a matched pairs analysis.
Vent, Julia; Koenig, Joerg; Hellmich, Martin; Huettenbrink, Karl-Bernd; Damm, Michael
2010-03-12
Recently, interest in the health of boxers has been raised by a petition of the British Medical Association to restrict boxing. However, scientific data on permanent damage are rare and typical localisations of injuries were yet to be defined. The aim of this study was to determine whether there are changes in the sense of smell in people undergoing recurrent head traumas. The hypothesis to be tested was if boxers had a reduced olfactory function. We used a matched pairs analysis design. Fifty healthy, male athletes underwent subjective olfactometry using Sniffin'Sticks testing (including threshold, discrimination and identification, TDI). Nasal endoscopy was performed and a thorough, questionnaire-based history was obtained. These data were correlated with normative data from healthy subjects. Statistical analysis was based on matched pairs analysis by t-tests, i.e. boxers and healthy (non-boxing) subjects. Boxers showed a mean TDI score of 32.5 compared to 35.1 of non-boxing controls (p=0.003). The olfactory threshold (p<0.001) and odour identification (p<0.05) were significantly decreased in boxers; whereas odour discrimination was unaffected. Performance of odour identification showed a correlation with cushioning of the gloves (p<0.05), and thus seems a protective measure regarding the sense of smell. Boxing seems to affect olfactory function, particularly by reducing the olfactory threshold. Furthermore, cushioning of the gloves can be protective and should be increased to safeguard sportsmen from physical damage. Boxing can serve as a model for central regeneration after trauma.
The self-consistent electron pairs method for multiconfiguration reference state functions
NASA Astrophysics Data System (ADS)
Werner, Hans-Joachim; Reinsch, Ernst-Albrecht
1982-03-01
An efficient direct CI method which includes all singly and doubly substituted configurations with respect to an arbitrary multiconfiguration (MCSCF) reference function is described. The configurations are generated by subsequently applying spin-coupled two-particle annihilation and creation operators to the complete MCSCF function. This considerably reduces the size of the n-electron basis and the computational effort as compared to previous multireference CI treatments, in which the configurations are defined with respect to the individual reference configurations. The formalism of the method is very similar to the closed-shell ''self-consistent electron pairs'' (SCEP) method of Meyer. The vector Hc is obtained in terms of simple matrix operations involving coefficient and integral matrices. A full transformation of the two-electron integrals is not required. Test calculations with large basis sets have been performed for the 3B1 and 1A1 states of CH2 (ΔE = 9.5 kcal/mol) and for the CH2(3B1) +H2→CH3+H reaction barrier (ΔE = 10.7 kcal/mol). As a preliminary test for the accuracy of the results obtained with contracted wave functions of the above type the potential energy and dipole moment functions of the OH X 2Π and A 2Σ+ states have been calculated. For the 2Π state re and ωe deviate by less than 10-3 Å and 1 cm-1, respectively, from the experimental data. For the 2Σ+ state the agreement is somewhat less good, which is probably due to basis set defects. Around the equilibrium distance the calculated dipole moment functions are in very close agreement with those previously obtained from PNO- CEPA functions.
Trans-ionospheric pulse pairs (TIPPs): Their geographic distributions and seasonal variations
NASA Astrophysics Data System (ADS)
Zuelsdorf, R. S.; Strangeway, R. J.; Russell, C. T.; Casler, C.; Christian, H. J.; Franz, R. C.
Since November 1993 the Blackbeard instrument aboard the ALEXIS satellite has detected pairs of pulses in the VHF band, known as Trans-Ionospheric Pulse Pairs (TIPPs). These pulses exhibit dispersion consistent with a source of sub- ionospheric origin. As of January 1997 over 850 TIPPs have been detected. The source of these emissions still remains a mystery, although it is believed that TIPPs are in some way related to thunderstorms as such storms provide a strong sub-ionospheric source and produce radiation in the same frequencies observed by Blackbeard. In an attempt to establish this connection we compare the geographic occurrence of TIPPs to that of lightning flashes observed from space by the Optical Transient Detector (OTD) on the Microlab-1 spacecraft. TIPP data run from 2 November 1993 to 19 November 1996. OTD data run from 1 May 1995 to 30 November 1996. The geographical occurrence of TIPPs and that of lightning flashes is strongly correlated. TIPPs occur less frequently during the winter months and their region of production moves southward in the North American sector similar in behavior to lightning activity.
Lu, Haige; Krueger, Andrew T; Gao, Jianmin; Liu, Haibo; Kool, Eric T
2010-06-21
The development of alternative architectures for genetic information-encoding systems offers the possibility of new biotechnological tools as well as basic insights into the function of the natural system. In order to examine the potential of benzo-expanded DNA (xDNA) to encode and transfer biochemical information, we carried out a study of the processing of single xDNA pairs by DNA Polymerase I Klenow fragment (Kf, an A-family sterically rigid enzyme) and by the Sulfolobus solfataricus polymerase Dpo4 (a flexible Y-family polymerase). Steady-state kinetics were measured and compared for enzymatic synthesis of the four correct xDNA pairs and twelve mismatched pairs, by incorporation of dNTPs opposite single xDNA bases. Results showed that, like Kf, Dpo4 in most cases selected the correctly paired partner for each xDNA base, but with efficiency lowered by the enlarged pair size. We also evaluated kinetics for extension by these polymerases beyond xDNA pairs and mismatches, and for exonuclease editing by the Klenow exo+ polymerase. Interestingly, the two enzymes were markedly different: Dpo4 extended pairs with relatively high efficiencies (within 18-200-fold of natural DNA), whereas Kf essentially failed at extension. The favorable extension by Dpo4 was tested further by stepwise synthesis of up to four successive xDNA pairs on an xDNA template.
Chawla, Mohit; Abdel-Azeim, Safwat; Oliva, Romina; Cavallo, Luigi
2014-01-01
The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch.
Distribution function approach to redshift space distortions
Seljak, Uroš; McDonald, Patrick E-mail: pvmcdonald@lbl.gov
2011-11-01
We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter
Audio feature extraction using probability distribution function
NASA Astrophysics Data System (ADS)
Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.
2015-05-01
Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.
Nuclear modifications of Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Adeluyi, Adeola Adeleke
This dissertation addresses a central question of modern nuclear physics: how does the behavior of fundamental degrees of freedom (quarks and gluons) change in the nuclear environment? This is an important aspect of experimental studies at current facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Laboratory (JLAB). It is also highly relevant to planned experimental efforts at the Large Hadron Collider (LHC) and the future Electron Ion Collider (EIC). All these facilities probe matter via collisions involving nuclei; thus complications arise due to the presence of the attendant nuclear medium. Theoretical efforts to understand and interpret experimental results from such collisions are therefore largely dependent on the resolution of this question. The development of nuclear physics demonstrates that theoretical description is most efficient in terms of the effective degrees of freedom relevant to the scale (energy) being probed. Thus at low energies, nuclei are described as bound states of protons and neutrons (nucleons). At higher energies, the nucleons are no longer elementary, but are revealed to possess an underlying substructure: they are made up of quarks and gluons, collectively termed partons. The mometum distributions of these partons in the nucleon are referred to as Parton Distribution Functions (PDFs). Parton distributions can be determined from experimental measurements of structure functions. The ratio of nuclear structure functions to nucleon structure functions (generically referred to as nuclear ratio) is a measure of the nuclear modifications of the free nucleon PDFs. Thus a study of the nuclear ratio suffices to gain an understanding of nuclear modifications. In this dissertation we aim to describe theoretically nuclear modifications in a restricted region where the nuclear ratio is less than unity, the so
Optimal pair-generation rate for entanglement-based quantum key distribution
NASA Astrophysics Data System (ADS)
Holloway, Catherine; Doucette, John A.; Erven, Christopher; Bourgoin, Jean-Philippe; Jennewein, Thomas
2013-02-01
In entanglement-based quantum key distribution (QKD), the generation and detection of multiphoton modes leads to a trade-off between entanglement visibility and twofold coincidence events when maximizing the secure key rate. We produce a predictive model for the optimal twofold coincidence probability per coincidence window given the channel efficiency and detector dark count rate of a given system. This model is experimentally validated and used in simulations for QKD with satellites as well as optical fibers.
Tests of structure functions using lepton pairs: W-charge asymmetry at CDF
NASA Astrophysics Data System (ADS)
Sakumoto, W. K.
1994-09-01
Large asymmetry of W-bosons produced in p(bar-p) collisions has been measured using 19 039 W yields e nu and W yields mu nu decays recorded by the CDF detector during the 1992-1993 Tevatron collider run. The asymmetry is sensitive to the slope of the proton's d/u quark distribution ratio down to x less than 0.01 at Q(exp 2) approximately M(sub w)(exp 2), where nonperturbative QCD effects are minimal. Of recent parton distribution functions, those of Martin, Roberts, and Stirling are favored over those of the CTEQ collaboration. This difference is seen even though both sets agree, at the level of the nuclear shadowing corrections, with the recent NMC measurements of F(sub 2)(sup mu n)/F(sub 2)(sup mu p).
Tests of structure functions using lepton pairs: W-charge asymmetry at CDF
Sakumoto, W.K.; CDF Collaboration
1994-09-01
Large asymmetry of W-bosons produced in p{bar p} collisions has been measured using 19 039 W {yields} e{nu} and W {yields} {mu}{nu} decays recorded by the CDF detector during the 1992--1993 Tevatron collider run. The asymmetry is sensitive to the slope of the proton`s d/u quark distribution ratio down to x < 0.01 at Q{sup 2} {approx} M{sub w}{sup 2}, where nonperturbative QCD effects are minimal. Of recent parton distribution functions, those of Martin, Roberts and Stirling are favored over those of the CTEQ collaboration. This difference is seen even though both sets agree, at the leval of the nuclear shadowing corrections, with the recent NMC measurements of F{sub 2}{sup mu}n/F{sub 2}{sup mu}p.
Pair correlation function of short-ranged square-well fluids.
Largo, J; Solana, J R; Yuste, S B; Santos, A
2005-02-22
We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths lambda-1 ranging from 0.1 to 1.0, in units of the diameter sigma of the particles. For each one of these widths, several densities rho and temperatures T in the ranges 0.1< or =rhosigma(3)< or =0.8 and T(c)(lambda) less or approximately T less or approximately 3T(c)(lambda), where T(c)(lambda) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 3079 (1994); 100, 6665 (1994)] and the nonperturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. 101 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory works for long ranges and high densities.
Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk; ...
2015-05-07
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reversesmore » membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less
Rohlmann, A; Calisse, J; Bergmann, G; Radvan, J; Mayer, H M
1996-06-01
The load distribution between two internal spinal fixation devices depends, besides other factors, on their stiffness. The stiffness ranges were determined experimentally for the clamps of the AO internal fixator with lateral nut and with posterior nut as well as for the clamps of the SOCON fixator. The stiffness of eight devices each differed by a factor of 3.1 for the clamp with lateral nut, by a factor of 1.5 for the clamp with posterior nut, and by a factor of 1.4 for the clamp of the SOCON fixator. For the AO clamp with lateral nut, the influence of the nut-tightening torque on the stiffness was determined. Using instrumented internal spinal fixation devices mounted to plastic vertebrae and simulating a corpectomy, the load distribution between the implants was measured for different tightening torques. It could be shown that, for the AO internal fixator whose clamps have a lateral nut, a nut-tightening torque > 5 Nm has only a negligible influence on load-sharing between the implants. Tooth damage occurs when the teeth of the clamp body and clamping jaw of the clamp with lateral nut do not gear together exactly, which leads to changes in the clamping stiffness and load-sharing between the two implants.
Huang, Lin; Wang, Jia; Lilley, David M. J.
2016-01-01
k-turns are commonly-occurring motifs that introduce sharp kinks into duplex RNA, thereby facilitating tertiary contacts. Both the folding and conformation of k-turns are determined by their local sequence. k-turns fall into two conformational classes, called N3 and N1, that differ in the pattern of hydrogen bonding in the core. We show here that this is determined by the basepair adjacent to the critical G•A pairs. We determined crystal structures of a series of Kt-7 variants in which this 3b,3n position has been systematically varied, showing that this leads to a switch in the conformation. We have previously shown that the 3b,3n position also determines the folding characteristics of the k-turn, i.e. whether or not the k-turn can fold in the presence of metal ions alone. We have analyzed the distribution of 3b,3n sequences from four classes of k-turns from ribosomes, riboswitches and U4 snRNA, finding a strong conservation of properties for a given k-turn type. We thus demonstrate a strong association between biological function, 3b,3n sequence and k-turn folding and conformation. This has strong predictive power, and can be applied to the modeling of large RNA architectures. PMID:27016741
Huang, Lin; Wang, Jia; Lilley, David M J
2016-06-20
k-turns are commonly-occurring motifs that introduce sharp kinks into duplex RNA, thereby facilitating tertiary contacts. Both the folding and conformation of k-turns are determined by their local sequence. k-turns fall into two conformational classes, called N3 and N1, that differ in the pattern of hydrogen bonding in the core. We show here that this is determined by the basepair adjacent to the critical G•A pairs. We determined crystal structures of a series of Kt-7 variants in which this 3b,3n position has been systematically varied, showing that this leads to a switch in the conformation. We have previously shown that the 3b,3n position also determines the folding characteristics of the k-turn, i.e. whether or not the k-turn can fold in the presence of metal ions alone. We have analyzed the distribution of 3b,3n sequences from four classes of k-turns from ribosomes, riboswitches and U4 snRNA, finding a strong conservation of properties for a given k-turn type. We thus demonstrate a strong association between biological function, 3b,3n sequence and k-turn folding and conformation. This has strong predictive power, and can be applied to the modeling of large RNA architectures.
NASA Astrophysics Data System (ADS)
Dzuba, Sergei A.
2016-08-01
Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.
Oyeyemi, Victor B; Keith, John A; Carter, Emily A
2014-09-04
Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.
2015-01-01
Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations. PMID:25747091
Ploetz, Elizabeth A.; Smith, Paul E.
2015-03-07
Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.
A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair.
Hernandez, Armando R; Shao, Yaming; Hoshika, Shuichi; Yang, Zunyi; Shelke, Sandip A; Herrou, Julien; Kim, Hyo-Joong; Kim, Myong-Jung; Piccirilli, Joseph A; Benner, Steven A
2015-08-17
As one of its goals, synthetic biology seeks to increase the number of building blocks in nucleic acids. While efforts towards this goal are well advanced for DNA, they have hardly begun for RNA. Herein, we present a crystal structure for an RNA riboswitch where a stem C:G pair has been replaced by a pair between two components of an artificially expanded genetic-information system (AEGIS), Z and P, (6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one). The structure shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details of its interaction with a hypoxanthine ligand. This was confirmed in solution by in-line probing, which also measured a 3.7 nM affinity of the riboswitch for guanine. These data show that the Z:P pair mimics the natural Watson-Crick geometry in RNA in the first example of a crystal structure of an RNA molecule that contains an orthogonal added nucleobase pair.
Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Asano, K.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P. E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS and others
2013-03-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.
Reimers, Jeffrey R; Hush, Noel S
2004-04-07
We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.
NASA Astrophysics Data System (ADS)
Deng, Fu-Guo; Liu, Xiao-Shu; Ma, Ying-Jun; Xiao, Li; Long, Gui-Lu
2002-07-01
We propose a theoretical scheme for any-to-any multi-user quantum key distribution on a passive optical network with ordered N Einstein-Podolsky-Rosen pairs. This scheme is safe and more efficient than those with single photons. Its efficiency approaches 100% in the limit that the number of pairs used in the eavesdropping check becomes negligible. It also has high capacity and is convenient for users.
Extractions of polarized and unpolarized parton distribution functions
Jimenez-Delgado, Pedro
2014-01-01
An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.
Variability of Response Latency in Paired Associate Learning as a Function of Training Procedure.
ERIC Educational Resources Information Center
Judd, Wilson A.; Glaser, Robert
Two procedures were investigated in an attempt to decrease the variability of overlearning response latencies in a study-test paradigm, paired-associate task matching CVC's with response keys: (1) self-pacing the task by presenting test trial stimuli whenever the subject pressed a "home" key; and (2) instructing and shaping subjects to keep home…
Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum.
Sepehrband, Farshid; Alexander, Daniel C; Clark, Kristi A; Kurniawan, Nyoman D; Yang, Zhengyi; Reutens, David C
2016-01-01
Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.
Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum
Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.
2016-01-01
Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273
Optimal Reward Functions in Distributed Reinforcement Learning
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan
2000-01-01
We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.
Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes
FUJII, Wataru; ONUMA, Asuka; YOSHIOKA, Shin; NAGASHIMA, Keisuke; SUGIURA, Koji; NAITO, Kunihiko
2015-01-01
The generation efficiencies of mutation-induced mice when using engineered zinc-finger nucleases (ZFNs) have been generally 10 to 20% of obtained pups in previous studies. The discovery of high-affinity DNA-binding modules can contribute to the generation of various kinds of novel artificial chromatin-targeting tools, such as zinc-finger acetyltransferases, zinc-finger histone kinases and so on, as well as improvement of reported zinc-finger recombinases and zinc-finger methyltransferases. Here, we report a novel ZFN pair that has a highly efficient mutation-induction ability in murine zygotes. The ZFN pair induced mutations in all obtained mice in the target locus, exon 17 of aminopeptidase Q gene, and almost all of the pups had biallelic mutations. This high efficiency was also shown in the plasmid DNA transfected in a cultured human cell line. The induced mutations were inherited normally in the next generation. The zinc-finger modules of this ZFN pair are expected to contribute to the development of novel ZF-attached chromatin-targeting tools. PMID:26460691
NASA Astrophysics Data System (ADS)
Lansberg, J. P.; Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2012-12-01
Nucleon-antinucleon annihilation into a near backward- (or forward-) produced meson and a high invariant mass lepton pair admits a factorized description in terms of antinucleon (or nucleon) distribution amplitudes and nucleon-to-meson (or antinucleon-to-meson) transition distribution amplitudes. We estimate the cross section of backward (and forward) pion and η-meson production in association with a high invariant mass lepton pair for the kinematical conditions of GSI-FAIR. The cross sections are found to be large enough to be measured with the P¯ANDA detector. Interesting phenomenological applications of the approach are thus expected.
Sochacka, Elzbieta; Szczepanowski, Roman H; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara
2015-03-11
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon-anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3'-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.
NASA Technical Reports Server (NTRS)
Witherow, William K. (Inventor)
1988-01-01
A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.
Dijksterhuis, Jacomijn P.; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O.; Ji, Yun; Andres, Osler; Rubin, Jeffrey S.; Hannoush, Rami N.; Schulte, Gunnar
2015-01-01
The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717
NASA Astrophysics Data System (ADS)
Bodek, K.; Kępka, D.; Rozpędzik, D.; Zejma, J.; Kozela, A.
2017-04-01
A self-calibrating double-Mott polarimeter is proposed for measurement of the spin correlation function of relativistic electron pairs produced in Møller scattering. The polarization of outgoing electrons (appearing when the beam is polarized) is utilized for calibration of effective analyzing powers in the secondary Mott scattering used for spin analysis. The experiment will measure the newly introduced relative spin correlation function. This new observable can be measured with a significantly better accuracy than the regular spin correlation function in a small scale experiment. It is shown that both the spin correlation function and the relative spin correlation function are theoretically equivalent. A specific experimental data analysis scenario is proposed, which effectively eliminates the systematic effects related to the imperfect geometry and detector efficiency.
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.H.
1980-01-01
Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.
1983-01-01
Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
Messenger RNA modifications: Form, distribution, and function.
Gilbert, Wendy V; Bell, Tristan A; Schaening, Cassandra
2016-06-17
RNA contains more than 100 distinct modifications that promote the functions of stable noncoding RNAs in translation and splicing. Recent technical advances have revealed widespread and sparse modification of messenger RNAs with N(6)-methyladenosine (m(6)A), 5-methylcytosine (m(5)C), and pseudouridine (Ψ). Here we discuss the rapidly evolving understanding of the location, regulation, and function of these dynamic mRNA marks, collectively termed the epitranscriptome. We highlight differences among modifications and between species that could instruct ongoing efforts to understand how specific mRNA target sites are selected and how their modification is regulated. Diverse molecular consequences of individual m(6)A modifications are beginning to be revealed, but the effects of m(5)C and Ψ remain largely unknown. Future work linking molecular effects to organismal phenotypes will broaden our understanding of mRNA modifications as cell and developmental regulators.
Distributed implementation of functional program evaluation
Fasel, J.H.; Douglass, R.J.; Michelsen, R.; Hudak, P.
1985-01-01
In this paper, we explore the potential of the functional model, particularly as it pertains to architecture. In Section 2, we describe the graph-reduction operational model of computation and its relation to AI problems. In Section 3, we discuss a class of architectures that implement graph reduction and a prototype implementation in this class being developed at Los Alamos. Finally, we speculate on the applicability of graph reduction to some other classes of architecture.
An Orientation Distribution Function for Trabecular Bone
Lawrence Livermore National Laboratory
2004-10-08
We describe a new method for quantifying the orientation of trabecular bone from three-dimensional images. Trabecular lattices from five human vertebrae were decomposed into individual trabecular elements, and the orientation, mass, and thickness of each element were recorded. Continuous functions that described the total mass (M({var_phi},{theta})) and mean thickness ({tau}({var_phi},{theta})) of all trabeculae as a function of orientation were derived. The results were compared with experimental measurements of the elastic modulus in the three principal anatomic directions. A power law scaling relationship between the anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 (R{sup 2} = 0.88). As expected, the preponderance of trabecular mass was oriented along the cranial-caudal direction; on average, there was 3.4 times more mass oriented vertically than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than the horizontal trabeculae. The vertical trabecular thickness was inversely related to the connectivity (R{sup 2} = 0.70; p = 0.07), suggesting a possible organization into either few, thick trabeculae or many thin trabeculae. The method, which accounts for the mechanical connectedness of the lattice, provides a rapid way to both visualize and quantify the three-dimensional organization of trabecular bone.
Aaltonen, T
2011-04-28
We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.
NASA Astrophysics Data System (ADS)
Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura
2017-01-01
The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.
Role of scattering distribution functions in spacecraft contamination control practices
NASA Technical Reports Server (NTRS)
Carosso, P. A.; Carosso, N. J. P.
1986-01-01
A method for spacecraft optical surface contamination monitoring based on the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) is described. In the experimental set up, BRDF/BTDF measurements were made at 0.6328 microns using a 35-mW He-Ne laser light source. A correlation of the second order between BRDF and cleanliness levels was observed. It is suggested that bidirectional scattering distribution functions measured on witness mirrors can give information about contamination in clean rooms or vacuum chambers, and that they can be adopted to establish contamination control criteria.
Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi
2014-01-01
Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.
NASA Astrophysics Data System (ADS)
Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi
2014-01-01
Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.
Mapping distributed brain function and networks with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.
2014-06-01
Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.
Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara
2015-01-01
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Xu, Xiaomeng
2014-11-01
Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.
NASA Astrophysics Data System (ADS)
Zhang, K.; Li, H.; Li, L.; Bian, X. F.
2013-02-01
Molecular dynamics simulation has been performed to study the splitting of the second peak in pair correlation functions of quasi-two-dimensional disordered film. A quasi-two-dimensional inhomogeneous structural model, which contains both crystal-like and disordered regions, supports the hypothesis that the splitting of the second peak is result of a statistical average of crystal-like and disordered structural regions in the system, not just the amorphous structure. The second-peak splitting can be viewed as a prototype of the crystal-like peak exhibiting distorted and vestigial features.
Local field distribution near corrugated interfaces: Green's function formulation
NASA Astrophysics Data System (ADS)
Yu, K. W.; Wan, Jones T. K.
2001-12-01
We have developed a Green's function formalism to compute the local field distribution near an interface separating two media of different dielectric constants. The Maxwell's equations are converted into a surface integral equation; thus it greatly simplifies the solutions and yields accurate results for interfaces of arbitrary shape. The integral equation is solved and the local field distribution is obtained for a periodic interface.
Consistency check for radial distribution functions of water
NASA Astrophysics Data System (ADS)
Lie, George C.
1986-12-01
From a relation between the thermal compressibility and radial distribution function, it is shown that the accuracy of the generally accepted Narten and Levy's experimental radial distribution functions (RDFs) for water is very low, compared with newer experimental results. The most recent experimental RDFs obtained by Soper and Phillips not only pass the consistency check derived, but also have the best overall agreement with the simulated results of Lie and Clementi.
Generalised partition functions: inferences on phase space distributions
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.; Baumjohann, Wolfgang
2016-06-01
It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs-Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1/|q - 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel-Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs-Boltzmann partition function is fundamental not only to Gibbs-Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.
Pion and kaon valence-quark parton distribution functions
Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.
2011-06-15
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Pion and kaon valence-quark parton distribution functions.
Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.
2011-06-16
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Advanced Inverter Functions and Communication Protocols for Distribution Management
Nagarajan, Adarsh; Palmintier, Bryan; Baggu, Murali
2016-05-05
This paper aims at identifying the advanced features required by distribution management systems (DMS) service providers to bring inverter-connected distributed energy resources into use as an intelligent grid resource. This work explores the standard functions needed in the future DMS for enterprise integration of distributed energy resources (DER). The important DMS functionalities such as DER management in aggregate groups, including the discovery of capabilities, status monitoring, and dispatch of real and reactive power are addressed in this paper. It is intended to provide the industry with a point of reference for DER integration with other utility applications and to provide guidance to research and standards development organizations.
Lee, Choong-Hee; Ryu, Jungwon; Lee, Sang-Hun; Kim, Hakjin; Lee, Inah
2016-08-01
The hippocampus plays critical roles in both object-based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object-based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object-place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object-cueing period) to searching for its paired-associate place (object-cued place recognition period). Furthermore, the efficient retrieval of object-place paired associate memory (object-cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chakraborty, P.; Kapusta, J. I.
2017-01-01
In simulations of high energy heavy ion collisions that employ viscous hydrodynamics, single particle distributions are distorted from their thermal equilibrium form due to gradients in the flow velocity. These are closely related to the formulas for the shear and bulk viscosities in the quasiparticle approximation. Distorted single particle distributions are now commonly used to calculate the emission of photons and dilepton pairs, and in the late stage to calculate the conversion of a continuous fluid to individual particles. We show how distortions of the single particle distribution functions due to both shear and bulk viscous effects can be done rigorously in the quasiparticle approximation and illustrate it with the linear σ model at finite temperature.
Energy and enthalpy distribution functions for a few physical systems.
Wu, K L; Wei, J H; Lai, S K; Okabe, Y
2007-08-02
The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.
Global Change and the Function and Distribution of Wetlands
Middleton, Beth A.
2012-01-01
The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists. The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands. Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.
NASA Astrophysics Data System (ADS)
Shimizu, Naoto; Kawano, Satoyuki; Tachikawa, Masanori
2005-02-01
The potential energy surface along the hydrogen-bonded proton transfer between the Watson-Crick (WC) adenine-thymine (A-T) base pair of deoxyribonucleic acid (DNA) and its tautomeric structures is calculated with 6-31G(d,p) basis set in Hartree-Fock (HF), density functional theory with Becke's three-parameter hybrid Lee-Yang-Parr exchange-correlation functional (B3LYP), second order Møller-Plesset perturbation (MP2), and coupled cluster singles and doubles (CCSD) levels. The tautomeric structure, where both two hydrogen-bonded protons in the A-T base pair have transferred each other, is found at all level of calculations. Though the optimized structure in which only one hydrogen-bonded proton in adenine has migrated to thymine is found at HF level, we could not obtain such optimized structure at both MP2 and B3LYP levels. Including electron correlations, the energy differences between the canonical A-T and the two hydrogen-bonded protons transferred tautomeric structure become smaller. Aside from this, potential energy surface from the WC A-T to the Hoogsteen type A-T gives almost the same among each level of calculation.
Malyshev, Denis A; Dhami, Kirandeep; Quach, Henry T; Lavergne, Thomas; Ordoukhanian, Phillip; Torkamani, Ali; Romesberg, Floyd E
2012-07-24
The natural four-letter genetic alphabet, comprised of just two base pairs (dA-dT and dG-dC), is conserved throughout all life, and its expansion by the development of a third, unnatural base pair has emerged as a central goal of chemical and synthetic biology. We recently developed a class of candidate unnatural base pairs, exemplified by the pair formed between d5SICS and dNaM. Here, we examine the PCR amplification of DNA containing one or more d5SICS-dNaM pairs in a wide variety of sequence contexts. Under standard conditions, we show that this DNA may be amplified with high efficiency and greater than 99.9% fidelity. To more rigorously explore potential sequence effects, we used deep sequencing to characterize a library of templates containing the unnatural base pair as a function of amplification. We found that the unnatural base pair is efficiently replicated with high fidelity in virtually all sequence contexts. The results show that, for PCR and PCR-based applications, d5SICS-dNaM is functionally equivalent to a natural base pair, and when combined with dA-dT and dG-dC, it provides a fully functional six-letter genetic alphabet.
Gary S. Groenewold; Adriana Dinescu; Michael T. Benson; Garold L. Gresham; Michael J. van Stipdonk
2011-04-01
Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula [UO2(NO3)(amide)n=2,3]+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and –acetamide ligands.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-05-23
Distributions of transverse momentum pTℓℓ and the related angular variablemore » $$\\phi ^*_{\\eta }$$ of Drell-Yan lepton pairs are measured in 20.3 fb–1 of proton-proton collisions at √s=8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7 TeV these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z -boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $$\\phi ^*_{\\eta }$$<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $$\\phi ^*_{\\eta }$$ this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pTℓℓ while the fixed-order prediction of Dynnlo falls below the data at high values of pTℓℓ. Here, ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $$\\phi ^*_{\\eta }$$ and pTℓℓ distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.« less
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.
2016-05-23
Distributions of transverse momentum p_{T}^{ℓℓ} and the related angular variable $\\phi ^*_{\\eta }$ of Drell-Yan lepton pairs are measured in 20.3 fb^{–1} of proton-proton collisions at √s=8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7 TeV these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z -boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $\\phi ^*_{\\eta }$<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $\\phi ^*_{\\eta }$ this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p_{T}^{ℓℓ} while the fixed-order prediction of Dynnlo falls below the data at high values of p_{T}^{ℓℓ}. Here, ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $\\phi ^*_{\\eta }$ and p_{T}^{ℓℓ} distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.
2016-05-01
Distributions of transverse momentum p_T^{ℓ ℓ } and the related angular variable φ ^*_η of DrellΓÇôYan lepton pairs are measured in 20.3┬áfb^{-1} of protonΓÇôproton collisions at √{s}=8┬áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √{s}=7┬áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of φ ^*_η < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of φ ^*_η this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p_T^{ℓ ℓ } while the fixed-order prediction of Dynnlo falls below the data at high values of p_T^{ℓ ℓ }. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the φ ^*_η and p_T^{ℓ ℓ } distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.
2016-05-23
Distributions of transverse momentum p$ℓℓ\\atop{T}$ and the related angular variable Φ$*\\atop{η}$ of DrellΓÇôYan lepton pairs are measured in 20.3$\\perp$áfb^{-1} of protonΓÇôproton collisions at √s=8$\\perp$áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7$\\perp$áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of Φ$*\\atop{η}$<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of Φ$*\\atop{η}$ this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pℓℓTpTℓℓ while the fixed-order prediction of Dynnlo falls below the data at high values of p$ℓℓ\\atop{T}$ . ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the Φ$*\\atop{η}$ and p$ℓℓ\\atop{T}$ distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
2016-01-01
Distributions of transverse momentum [Formula: see text] and the related angular variable [Formula: see text] of DrellΓÇôYan lepton pairs are measured in 20.3┬áfb[Formula: see text] of protonΓÇôproton collisions at [Formula: see text]┬áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at [Formula: see text]┬áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of [Formula: see text] the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of [Formula: see text] this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of [Formula: see text] while the fixed-order prediction of Dynnlo falls below the data at high values of [Formula: see text]. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the [Formula: see text] and [Formula: see text] distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
Analyzing Distributed Functions in an Integrated Hazard Analysis
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Massie, Michael J.
2010-01-01
Large scale integration of today's aerospace systems is achievable through the use of distributed systems. Validating the safety of distributed systems is significantly more difficult as compared to centralized systems because of the complexity of the interactions between simultaneously active components. Integrated hazard analysis (IHA), a process used to identify unacceptable risks and to provide a means of controlling them, can be applied to either centralized or distributed systems. IHA, though, must be tailored to fit the particular system being analyzed. Distributed systems, for instance, must be analyzed for hazards in terms of the functions that rely on them. This paper will describe systems-oriented IHA techniques (as opposed to traditional failure-event or reliability techniques) that should be employed for distributed systems in aerospace environments. Special considerations will be addressed when dealing with specific distributed systems such as active thermal control, electrical power, command and data handling, and software systems (including the interaction with fault management systems). Because of the significance of second-order effects in large scale distributed systems, the paper will also describe how to analyze secondary functions to secondary functions through the use of channelization.
Chen, Liang; Wan, Shaolong
2013-05-29
We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.
Biswas, Anindya; Das, Tapan Kumar; Chakrabarti, Barnali
2010-09-14
We study the ground state pair-correlation properties of a weakly interacting trapped Bose gas in three dimensions by using a correlated many-body method. The use of the van der Waals interaction potential and an external trapping potential shows realistic features. We also test the validity of shape-independent approximation in the calculation of correlation properties.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Global NLO Analysis of Nuclear Parton Distribution Functions
Hirai, M.; Kumano, S.; Nagai, T.-H.
2008-02-21
Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A{sup '}} and Drell-Yan cross section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A{sup '}}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of {alpha}{sub s}. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.
NASA Astrophysics Data System (ADS)
Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi
2016-05-01
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.
Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-ichi
2016-01-01
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour. PMID:27140831
Aaltonen, T
2011-04-28
We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb^{-1}. The observed distribution has an excess in the 120-160 GeV/c^{2} mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.
Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rescigno, M; Rimondi, F; Ristori, L; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S
2011-04-29
We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb(-1). The observed distribution has an excess in the 120-160 GeV/c(2) mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this Letter, we report studies of the properties of this excess.
FEL beam characterization from measurements of the Wigner distribution function
NASA Astrophysics Data System (ADS)
Schäfer, Bernd; Flöter, Bernhard; Mey, Tobias; Juranic, Pavle; Kapitzki, Svea; Keitel, Barbara; Plönjes, Elke; Mann, Klaus; Tiedtke, Kai
2011-10-01
The Free-Electron-Laser FLASH at DESY has been characterized by a quantitative determination of the Wigner distribution function. The setup, comprising an ellipsodial mirror and a moveable extreme UV sensitive CCD detector, enables the mapping of two-dimensional phase spaces corresponding to the horizontal and vertical coordinate axes, respectively. For separable beams this yields the entire Wigner distribution, offering comprehensive information about spatial coherence properties, wavefront, beam profiles, as well as beam propagation parameters.
Polyakov, Evgeny A; Vorontsov-Velyaminov, Pavel N
2014-08-28
Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r(12)) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.
Jensen, Lasse; Govind, Niranjan
2009-09-18
In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.
Okamoto, Itaru; Miyatake, Yuya; Kimoto, Michiko; Hirao, Ichiro
2016-11-18
Genetic alphabet expansion of DNA using an artificial extra base pair (unnatural base pair) could augment nucleic acid and protein functionalities by increasing their components. We previously developed an unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px), which exhibits high fidelity as a third base pair in PCR amplification. Here, the fidelity and efficiency of Ds-Px pairing using modified Px bases with functional groups, such as diol, azide, ethynyl and biotin, were evaluated by an improved method with optimized PCR conditions. The results revealed that all of the base pairs between Ds and either one of the modified Px bases functioned with high amplification efficiency (0.76-0.81), high selectivity (≥99.96% per doubling), and less sequence dependency, in PCR using 3'-exonuclease-proficient Deep Vent DNA polymerase. We also demonstrated that the azide-Px in PCR-amplified DNA was efficiently modified with any functional groups by copper-free click reaction. This genetic alphabet expansion system could endow nucleic acids with a wide variety of increased functionalities by the site-specific incorporation of modified Px bases at desired positions in DNA.
The Central Velocity Distribution Function of Omega Centauri
NASA Astrophysics Data System (ADS)
Seitzer, Patrick
1993-12-01
Precise radial velocities have been obtained for 870 red giant stars within 4 arcminutes of the center of the globular cluster Omega Centauri (NGC\\ 5139) using the ARGUS multiple object echelle spectrometer at CTIO. The resulting distribution of radial velocities is analyzed to derive the line of sight velocity distribution function, and is compared with various models of relaxed star clusters. The truncation of the velocity function is due to the Galactic tidal field, and some hint of the form this truncation takes is available even with this small number of stars. Observations at two epochs are available for most of the stars and are used to constrain the fraction of binary stars.
Electron distribution function in a plasma generated by fission fragments
NASA Technical Reports Server (NTRS)
Hassan, H. A.; Deese, J. E.
1976-01-01
A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.
Mito, Taro; Kobayashi, Chiharu; Sarashina, Isao; Zhang, Hongjie; Shinahara, Wakako; Miyawaki, Katsuyuki; Shinmyo, Yohei; Ohuchi, Hideyo; Noji, Sumihare
2007-03-01
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.
NASA Astrophysics Data System (ADS)
Lüchow, Arne; Fink, Reinhold F.
2000-11-01
While the diffusion quantum Monte Carlo method (DQMC) is capable, in principle, of calculating exact ground state energies, in practice the fixed-node (FN) approximation leads to node location errors which make FN-DQMC energies upper bounds. It is shown that the node location error can be reduced systematically and without prohibitive increase of computer time requirements by using nodes derived from pair natural orbital CI wave functions (PNO-CI). The reduction is demonstrated for the N atom and the molecules N2 and H2O. With the DQMC/PNOCI method, we obtain a variational energy of -109.520(3) H for the N2 molecule and -76.429(1) H for the ground state of the water molecule which is only 22 and 9 mH above the estimated nonrelativistic ground state energy, respectively.
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Characterizing microcrack orientation distribution functions in osteonal bone samples.
Wolfram, U; Schwiedrzik, J J; Mirzaali, M J; Bürki, A; Varga, P; Olivier, C; Peyrin, F; Zysset, P K
2016-12-01
Prefailure microdamage in bone tissue is considered to be the most detrimental factor in defining its strength and toughness with respect to age and disease. To understand the influence of microcracks on bone mechanics it is necessary to assess their morphology and three-dimensional distribution. This requirement reaches beyond classic histology and stereology, and methods to obtain such information are currently missing. Therefore, the aim of the study was to develop a methodology that allows to characterize three-dimensional microcrack distributions in bulk bone samples. Four dumbbell-shaped specimens of human cortical bone of a 77-year-old female donor were loaded beyond yield in either tension, compression or torsion (one control). Subsequently, synchrotron radiation micro-computed tomography (SRμCT) was used to obtain phase-contrast images of the damaged samples. A microcrack segmentation algorithm was developed and used to segment microcrack families for which microcrack orientation distribution functions were determined. Distinct microcrack families were observed for each load case that resulted in distinct orientation distribution functions. Microcracks had median areas of approximately 4.7 μm(2) , 33.3 μm(2) and 64.0 μm(2) for tension, compression and torsion. Verifying the segmentation algorithm against a manually segmented ground truth showed good results when comparing the microcrack orientation distribution functions. A size dependence was noted when investigating the orientation distribution functions with respect to the size of the volume of interest used for their determination. Furthermore, a scale separation between tensile, compressive and torsional microcracks was noticeable. Visual comparison to classic histology indicated that microcrack families were successfully distinguished. We propose a methodology to analyse three-dimensional microcrack distributions in overloaded cortical bone. Such information could improve our understanding of
Sim, Joo Yong; Moeller, Jens; Hart, Kevin C; Ramallo, Diego; Vogel, Viola; Dunn, Alex R; Nelson, W James; Pruitt, Beth L
2015-07-01
Mechanical linkage between cell-cell and cell-extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell-cell and cell-ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell-cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell-cell and cell-ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell-cell pairs resulted in shorter junction lengths and constant cell-cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell-cell forces and was evenly distributed along cell-cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area.
NASA Astrophysics Data System (ADS)
Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi
2015-12-01
This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.
Thermodynamic Derivation of the Equilibrium Distribution Functions of Statistical Mechanics.
ERIC Educational Resources Information Center
Stoeckly, Beth
1979-01-01
Presents a simplified derivation of the equilibrium distribution functions. The derivation proceeds from the change in the Helmholtz free energy when a particle is added to a system of fixed temperature, volume, and chemical potential. The derivations show the relationship between statistical mechanics and macroscopic thermodynamics. (Author/GA)
Bounds on Transverse Momentum Dependent Distribution and Fragmentation Functions
NASA Astrophysics Data System (ADS)
Bacchetta, A.; Boglione, M.; Henneman, A.; Mulders, P. J.
2000-07-01
We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic one-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.
Family Functions' Distribution in Men and Women Concepts
ERIC Educational Resources Information Center
Kasimova, Ramilya Sh.; Biktagirova, Gulnara F.
2016-01-01
Creating a happy family with a favorable psychological climate is important both for the individual and the society as a whole. One of the factors, that influence the creation of a welfare family, is the content of the spouses' concepts of the family, its functions and their possible distribution. The main purpose of this article is to identify…
Distributed representations in memory: insights from functional brain imaging.
Rissman, Jesse; Wagner, Anthony D
2012-01-01
Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses.
Valence-quark distribution functions in the kaon and pion
Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi
2016-04-18
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) ^{2} when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.
Nunes, Rafael; Costa, Paulo J
2017-03-02
The interaction of 2-halo-functionalized imidazolium derivatives (n-X(+) ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl(-) Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.
Duan, Cheng-Guo; Wang, Xingang; Xie, Shaojun; Pan, Li; Miki, Daisuke; Tang, Kai; Hsu, Chuan-Chih; Lei, Mingguang; Zhong, Yingli; Hou, Yueh-Ju; Wang, Zhijuan; Zhang, Zhengjing; Mangrauthia, Satendra K; Xu, Huawei; Zhang, Heng; Dilkes, Brian; Tao, W Andy; Zhu, Jian-Kang
2017-01-01
Transposons are generally kept silent by epigenetic mechanisms including DNA methylation. Here, we identified a pair of Harbinger transposon-derived proteins (HDPs), HDP1 and HDP2, as anti-silencing factors in Arabidopsis. hdp1 and hdp2 mutants displayed an enhanced silencing of transgenes and some transposons. Phylogenetic analyses revealed that HDP1 and HDP2 were co-domesticated from the Harbinger transposon-encoded transposase and DNA-binding protein, respectively. HDP1 interacts with HDP2 in the nucleus, analogous to their transposon counterparts. Moreover, HDP1 and HDP2 are associated with IDM1, IDM2, IDM3 and MBD7 that constitute a histone acetyltransferase complex functioning in DNA demethylation. HDP2 and the methyl-DNA-binding protein MBD7 share a large set of common genomic binding sites, indicating that they jointly determine the target specificity of the histone acetyltransferase complex. Thus, our data revealed that HDP1 and HDP2 constitute a functional module that has been recruited to a histone acetyltransferase complex to prevent DNA hypermethylation and epigenetic silencing. PMID:27934869
Recursive confidence band construction for an unknown distribution function.
Kiatsupaibul, Seksan; Hayter, Anthony J
2015-01-01
Given a sample X1,...,Xn of independent observations from an unknown continuous distribution function F, the problem of constructing a confidence band for F is considered, which is a fundamental problem in statistical inference. This confidence band provides simultaneous inferences on all quantiles and also on all of the cumulative probabilities of the distribution, and so they are among the most important inference procedures that address the issue of multiplicity. A fully nonparametric approach is taken where no assumptions are made about the distribution function F. Historical approaches to this problem, such as Kolmogorov's famous () procedure, represent some of the earliest inference methodologies that address the issue of multiplicity. This is because a confidence band at a given confidence level 1-α allows inferences on all of the quantiles of the distribution, and also on all of the cumulative probabilities, at that specified confidence level. In this paper it is shown how recursive methodologies can be employed to construct both one-sided and two-sided confidence bands of various types. The first approach operates by putting bounds on the cumulative probabilities at the data points, and a recursive integration approach is described. The second approach operates by providing bounds on certain specified quantiles of the distribution, and its implementation using recursive summations of multinomial probabilities is described. These recursive methodologies are illustrated with examples, and R code is available for their implementation.
Magnetospheric electron-velocity-distribution function information from wave observations
NASA Astrophysics Data System (ADS)
Benson, Robert F.; ViñAs, Adolfo F.; Osherovich, Vladimir A.; Fainberg, Joseph; Purser, Carola M.; Adrian, Mark L.; Galkin, Ivan A.; Reinisch, Bodo W.
2013-08-01
The electron-velocity-distribution function was determined to be highly non-Maxwellian and more appropriate to a kappa distribution, with κ ≈ 2.0, near magnetic midnight in the low-latitude magnetosphere just outside a stable plasmasphere during extremely quiet geomagnetic conditions. The kappa results were based on sounder-stimulated Qn plasma resonances using the Radio Plasma Imager (RPI) on the IMAGE satellite; the state of the plasmasphere was determined from IMAGE/EUV observations. The Qn resonances correspond to the maximum frequencies of Bernstein-mode waves that are observed between the harmonics of the electron cyclotron frequency in the frequency domain above the upper-hybrid frequency. Here we present the results of a parametric investigation that included suprathermal electrons in the electron-velocity-distribution function used in the plasma-wave dispersion equation to calculate the Qn frequencies for a range of kappa and fpe/fce values for Qn resonances from Q1 to Q9. The Qn frequencies were also calculated using a Maxwellian distribution, and they were found to be greater than those calculated using a kappa distribution with the frequency differences increasing with increasing n for a fixed κ and with decreasing κ for a fixed n. The calculated fQn values have been incorporated into the RPI BinBrowser software providing a powerful tool for rapidly obtaining information on the nature of the magnetospheric electron-velocity-distribution function and the electron number density Ne. This capability enabled accurate (within a few percent) in situ Ne determinations to be made along the outbound orbital track as IMAGE moved away from the plasmapause. The extremely quiet geomagnetic conditions allowed IMAGE/EUV-extracted counts to be compared with the RPI-determined orbital-track Ne profile. The comparisons revealed remarkably similar Ne structures.
Patterns of oligonucleotide distribution within DNA and RNA functional sites
Kolchanov, N.A.; Kel, A.E.; Ponomarenko, M.P.; Romachenko, A.G.; Likchachev, J.; Milanesi, L.; Lim, H.
1993-12-31
Patterns of short oligonucleotide distribution within DNA and RNA functional sites have been analyzed using ``Site-Video`` computer system. The group of DNA functional sites involved nucleosome binding sites, gyrase cleavage sites, promoters of E. coli and men. The group of RNA functional sites involved donor and acceptor splice sites of men, translation initiation sites of E. coli and men and translation frame shift site sites. Analysis of these samples of nucleotide sequences have been carried out by the ``Site-Video`` computer system. For each type of site specific set of patterns of oligonucleotide distribution important for the functioning and recognition have been revealed. At the same time, the number of specific patterns revealed in RNA sites was significantly higher than those in DNA sites. On the base of the results obtained, the script of functional sites for evolutionary emergency have been prompted. According to it, two types of context feature selection took place: (1) positive selection targeted to the appearance of the definite types of context features in particular regions of functional sites;and (2) negative selection targeted to the elimination of definite types of context features in particular regions of functional sites. The authors suppose that evolutionary formation of any functional site is a multistep process realized via combination of positive and negative selections. Negative selection, via fixation of a specific pattern of mutations, eliminates false signals of regulatory proteins binding with the functional site. Positive selection leads to the appearance of local context features (signals) which provide for the specificity and efficiency of the site functioning.
Universal probability distribution function for bursty transport in plasma turbulence.
Sandberg, I; Benkadda, S; Garbet, X; Ropokis, G; Hizanidis, K; del-Castillo-Negrete, D
2009-10-16
Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.
Transverse momentum dependent distribution functions in the bag model
Harut A. Avakian; Efremov, A. V.; Schweitzer, P.; Yuan, F.
2010-04-01
Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.
NASA Astrophysics Data System (ADS)
Hochmann, David; Houser, Donald R.; Thomas, Jacob
1991-05-01
Because the reduction of gear noise in next-generation rotorcraft depends on the reduction of transmission errors, attention is presently given to the prediction of such errors and the load distributions of both a spur-gear pair and a double helical gear train used in a split-path helicopter transmission. Two cases are examined: (1) the spur gear mesh between the spur shaft and the lower spur/helical shaft, and (2) the double helical gear mesh between the lower spur/helical shaft and the output bull bear shaft.
Erezyilmaz, Deniz F.; Kelstrup, Hans C.; Riddiford, Lynn M.
2009-01-01
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of’E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of’E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of’E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of’E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of’E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity. PMID:19580803
Erezyilmaz, Deniz F; Kelstrup, Hans C; Riddiford, Lynn M
2009-10-01
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.
Transverse momentum-dependent parton distribution functions in lattice QCD
Engelhardt, Michael G.; Musch, Bernhard U.; Haegler, Philipp G.; Negele, John W.; Schaefer, Andreas
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Size distribution of microbubbles as a function of shell composition.
Dicker, Stephen; Mleczko, Michał; Schmitz, Georg; Wrenn, Steven P
2013-09-01
The effect of modifying the shell composition of a population of microbubbles on their size demonstrated through experiment. Specifically, these variations include altering both the mole fraction and molecular weight of functionalized polymer, polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell (1-15 mol% PEG, and 1000-5000 g/mole, respectively). The size distribution is measured with an unbiased image segmentation program written in MATLAB which identifies and sizes bubbles from micrographs. For a population of microbubbles with a shell composition of 5 mol% PEG2000, the mean diameter is 1.42 μm with a variance of 0.244 μm. For the remainder of the shell compositions studied herein, we find that the size distributions do not show a statistically significant correlation to either PEG molecular weight or mole fraction. All the measured distributions are nearly Gaussian in shape and have a monomodal peak.
The distributional zeta-function in disordered field theory
NASA Astrophysics Data System (ADS)
Svaiter, B. F.; Svaiter, N. F.
2016-09-01
In this paper, we present a new mathematical rigorous technique for computing the average free energy of a disordered system with quenched randomness, using the replicas. The basic tool of this technique is a distributional zeta-function, a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which cannot be written as a series of the integer moments, can be made as small as desired. This result supports the use of integer moments of the partition function, computed via replicas, for expressing the average free energy of the system. One advantage of the proposed formalism is that it does not require the understanding of the properties of the permutation group when the number of replicas goes to zero. Moreover, the symmetry is broken using the saddle-point equations of the model. As an application for the distributional zeta-function technique, we obtain the average free energy of the disordered λφ4 model defined in a d-dimensional Euclidean space.
Higher twist parton distributions from light-cone wave functions
Braun, V. M.; Lautenschlager, T.; Pirnay, B.; Manashov, A. N.
2011-05-01
We explore the possibility to construct higher-twist parton distributions in a nucleon at some low reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and unpolarized parton densities at large values of the Bjorken variable x{>=}0.5. Twist-three parton distributions are then constructed as convolution integrals of qqqg and the usual three-quark WFs. The cases of the polarized structure function g{sub 2}(x,Q{sup 2}) and single transverse spin asymmetries are considered in detail. We find that the so-called gluon pole contribution to twist-three distributions relevant for single spin asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the spirit of Glueck-Reya-Vogt parton distributions.
SuperGaussian distribution functions in inhomogenous plasmas
NASA Astrophysics Data System (ADS)
Matte, Jean-Pierre
2008-11-01
In plasmas heated by a narrow laser beam, the shape of the distribution function is influenced by both the absorption, which tends to give a superGaussian (DLM) distribution function [1], and the effects of heat flow, which tends to make the distribution more Maxwellian, when the hot region is considerably wider than the laser beam [2]. Thus, it is only at early times that the deformation is as strong as predicted by our uniform intensity formula [1]. A large number of electron kinetic simulations of a finite width laser beam heating a uniform density plasma were performed with the electron kinetic code FPI [1] to study the competition between these two mechanisms. In some cases, the deformation is approximately given by this formula if we average the laser intensity over the entire plasma. This may explain why distributions were more Maxwellian than expected in some experiments [3]. [0pt] [1] J.-P. Matte et al., Plasma Phys. Contr. Fusion 30, 1665 (1988) [2] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002) [3] S.H. Glenzer et al., Phys. Rev. Lett. 82, 97 (1999).
Intensity distribution function and statistical properties of fast radio bursts
NASA Astrophysics Data System (ADS)
Li, Long-Biao; Huang, Yong-Feng; Zhang, Zhi-Bin; Li, Di; Li, Bing
2017-01-01
Fast Radio Bursts (FRBs) are intense radio flashes from the sky that are characterized by millisecond durations and Jansky-level flux densities. We carried out a statistical analysis on FRBs that have been discovered. Their mean dispersion measure, after subtracting the contribution from the interstellar medium of our Galaxy, is found to be , supporting their being from a cosmological origin. Their energy released in the radio band spans about two orders of magnitude, with a mean value of erg. More interestingly, although the study of FRBs is still in a very early phase, the published collection of FRBs enables us to derive a useful intensity distribution function. For the 16 non-repeating FRBs detected by the Parkes telescope and the Green Bank Telescope, the intensity distribution can be described as , where is the observed radio fluence in units of Jy ms. Here the power-law index is significantly flatter than the expected value of 2.5 for standard candles distributed homogeneously in a flat Euclidean space. Based on this intensity distribution function, the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is predicted to be able to detect about five FRBs for every 1000 h of observation time.
Fault Detection of Rotating Machinery using the Spectral Distribution Function
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1997-01-01
The spectral distribution function is introduced to characterize the process leading to faults in rotating machinery. It is shown to be a more robust indicator than conventional power spectral density estimates, but requires only slightly more computational effort. The method is illustrated with examples from seeded gearbox transmission faults and an analytical model of a defective bearing. Procedures are suggested for implementation in realistic environments.
Ion escape from Venus using statistical distribution functions
NASA Astrophysics Data System (ADS)
Nordstrom, T.; Stenberg, G.; Nilsson, H.; Barabash, S.; Futaana, Y.
2012-04-01
We use more than three years of data from the ASPERA-4 instrument onboard Venus Express to compile statistical distribution functions of ion flux in and around induced magnetosphere of Venus. We present samples of statistical distribution functions, as well average flux patterns in the near Venus space based on the statistical distribution functions. The statistical distribution functions allows for a compensation of biased sampling regarding both position and angular coverage of the instrument. Protons and heavy ions (mass/charge > 16) are the major ion species escaping from Venus. The escape is due to acceleration of planetary ions by energy transfer from the solar wind. The ion escape appears to exclusively take place in the induced magnetotail region and no heavy ions are present in the magnetosheath. Protons of solar wind origin are travelling around the planet and penetrating the tail, resulting in a mix of planetary and solar wind protons inside the induced magnetosphere boundary. The escape rates of ions inside the tail agree with results from recent published studies, where other analysis methods have been used. We also compare our results for Venus with a recent study of ion escape from Mars, where the same analysis method has been applied to data from the ASPERA-3 instrument on Mars Express. Both Mars and Venus are unmagnetized planets and are expected to interact similarly with the solar wind. On Mars the heavy ions are seen escaping in both the magnetosheath and tail regions as opposed to Venus where escape only takes place inside the tail. A possible explanation is that the magnetosphere of Mars is smaller compared to the ion gyroradius, making it easier for the ions to pass through the induced magnetosphere boundary. On both planets the escape rates of heavy ions in the tail are constant with increasing tail distance, verifying that the ions are leaving the planet in this region.
Technology Transfer Automated Retrieval System (TEKTRAN)
GPS collars were used to describe the daily distribution patterns of cows and their calves from 18 to 60 days postpartum on pinyon juniper-shortgrass rangeland in central New Mexico. Eighteen, 3 year old cows and their calves were fitted weekly with GPS collars for seven consecutive weeks. Twenty da...
Bascom, Gavin D; Kim, Taejin; Schlick, Tamar
2017-03-31
Nucleosome placement, or DNA linker length patterns, are believed to yield specific spatial features in chromatin fibers, but details are unknown. Here we examine by mesoscale modeling how kilobase (kb) range contacts and fiber looping depend on linker lengths ranging from 18 to 45 bp, with values modeled after living systems, including nucleosome free regions (NFRs) and gene encoding segments. We also compare artificial constructs with alternating versus randomly distributed linker lengths in the range of 18-72 bp. We show that nonuniform distributions with NFRs enhance flexibility and encourage kb-range contacts. NFRs between neighboring gene segments diminish short-range contacts between flanking nucleosomes, while enhancing kb-range contacts via hierarchical looping. We also demonstrate that variances in linker lengths enhance such contacts. In particular, moderate sized variations in fiber linker lengths (∼27 bp) encourage long-range contacts in randomly distributed linker length fibers. Our work underscores the importance of linker length patterns, alongside bound proteins, in biological regulation. Contacts formed by kb-range chromatin folding are crucial to gene activity. Because we find that special linker length distributions in living systems promote kb contacts, our work suggests ways to manipulate these patterns for regulation of gene activity.
The star formation rate distribution function of the local Universe
NASA Astrophysics Data System (ADS)
Bothwell, M. S.; Kennicutt, R. C.; Johnson, B. D.; Wu, Y.; Lee, J. C.; Dale, D.; Engelbracht, C.; Calzetti, D.; Skillman, E.
2011-08-01
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z˜ 0, selected at IR and UV wavelengths from the Imperial IRAS Faint Source Catalogue redshift data base (IIFSCz) catalogue, and the GALEX All-Sky Imaging Survey (AIS), respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy (LVL) Survey, allowing us to extend these luminosity functions to lower luminosities (˜106 L⊙), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the star formation rate (SFR) distribution function for the local Universe. We find that it has a Schechter form, the faint-end slope has a constant value (to the limits of our data) of α=-1.51 ± 0.08 and the ‘characteristic’ SFR ψ* is 9.2 M⊙ yr-1. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z˜ 0 of 0.025 ± 0.0016 M⊙ yr-1 Mpc-3, of which ˜20 per cent is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 ± 1 per cent is due to LIRGs, and 0.7 ± 0.2 per cent is occurring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust-obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line-of-sight orientation effects as well as conventional internal extinction.
Karunaweera, Sadish
2015-01-01
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined. PMID:25637990
Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.
2015-01-28
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
Functional brain networks develop from a "local to distributed" organization.
Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E
2009-05-01
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have
Zhu, Junfei; Li, Zhiwen; Yang, Zhenjun; He, Junlin
2015-08-01
10-23 DNAzyme is capable of catalytically cleaving RNA substrates with the preferred cleavage sites rAU and rGU, in which the common base pair U-dA0 forms between the substrate and the DNAzyme in the cleavage reaction. Here its conservation was studied with base modifications on dA and extra functional groups introduced. The nitrogen atom at 7- or 8-position of adenine was demonstrated to be equally important for the cleavage reaction, although it is not related to the thermal stability of the base pair. Deletion of 6-amino group led to decreased stability of the base pair and a slight slower reaction rate. Extra functional groups through 6-amino group were not favorably accommodated in the cleavage site. From these modifications at the level of functional groups, it demonstrated that the base pair U-dA0 not only contributes to the recognition and binding stability, but also it is involved in the active catalytic center by its functional groups and base stacking. This kind of chemical modifications with 7-substituted 8-aza-7-deaza-2'-deoxyadenosine at dA0 is favorable for the introduction of signal molecules for mechanistic studies and biological applications, without significant loss of the catalytic function and structural destruction.
Improving Project Management with Simulation and Completion Distribution Functions
NASA Technical Reports Server (NTRS)
Cates, Grant R.
2004-01-01
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. A major culprit in late projects is uncertainty, which most, if not all, projects are inherently subject to. This uncertainty resides in the estimates for activity durations, the occurrence of unplanned and unforeseen events, and the availability of critical resources. In response to this problem, this research developed a comprehensive simulation based methodology for conducting quantitative project completion time risk analysis. It is called the Project Assessment by Simulation Technique (PAST). This new tool enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used within PAST to determine the completion distribution function for the project of interest. The simulation is populated with both deterministic and stochastic elements. The deterministic inputs include planned project activities, precedence requirements, and resource requirements. The stochastic inputs include activity duration growth distributions, probabilities for events that can impact the project, and other dynamic constraints that may be placed upon project activities and milestones. These stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Repeating the simulation hundreds or thousands of times allows one to create the project completion distribution function. The Project Assessment by Simulation Technique was demonstrated to be effective for the on-going NASA project to assemble the International Space Station. Approximately $500
Determination of accurate, mean bond lengths from radial distribution functions
NASA Astrophysics Data System (ADS)
Sukhomlinov, Sergey V.; Müser, Martin H.
2017-01-01
The mean bond length d between a central atom and its nearest neighbors can be estimated from the position of the first peak in the radial distribution function g(r). However, as we demonstrate here, this estimate does not allow one to deduce temperature-induced changes in d. Instead, skewness has to be included into the analysis, which can be achieved, for example, via the skew normal distribution (SND). Fits to the first peak using the SND give bond length in good agreement with direct measurements of nearest-neighbor distribution functions in crystals as well as with a Voronoi-tessellation based detection of nearest-neighbors in liquids. While the location of the first peak in g(r) may shift to smaller values with increasing temperature for three studied liquids—argon, copper, and the bulk-metallic-glass (BMG) forming alloy Zr60Cu30Al10—we find our improved estimates of d to systematically increase with temperature in all cases. Recent conclusions on temperature-induced bond contractions in simple metallic or BMG-forming liquids may therefore have arisen from the neglect of skewness effects.
Measurement and application of bidirectional reflectance distribution function
NASA Astrophysics Data System (ADS)
Liao, Fei; Li, Lin; Lu, Chengwen
2016-10-01
When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.
Low mass lepton pair production at large transverse momentum
NASA Astrophysics Data System (ADS)
Qiu, Jianwei; Kang, Zhongbo; Vogelsang, Werner
2008-10-01
PHENIX collaboration has recently measured the transverse momentum distribution of lepton pair production at RHIC with the pair's invariant mass as low as 120 < Q < 300 MeV. We will show that the distribution of low mass lepton pair production at large transverse momentum QTQ can be systematically calculated in terms of the perturbative QCD factorization approach. All factorized short-distance parotnic hard parts are evaluated at a distance scale ˜1/QT, while all long-distance non-perturbative physics are factorized into the universal parton-to-lepton pair fragmentation functions. We introduce a model for the input lepton pair fragmentation functions at a scale μ˜ 1 GeV, which are then evolved perturbatively to scales relevant at RHIC. Using the evolved fragmentation functions, we calculate the transverse momentum distributions of low mass lepton pair production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. We demonstrate that the transverse momentum distribution of low mass lepton pairs is extremely sensitive to the shape of gluon distribution.
Nuzzolo-Gomez, Robin; Greer, R. Douglas
2004-01-01
We tested the effects of multiple exemplar instruction (MEI) on the emergence of untaught mands or tacts of adjective-object pairs in a multiple-probe design across four students with autism/developmental disabilities. None of the students emitted either mands or tacts for three sets of three adjective-object pairs (word sets counterbalanced across students and conditions) in pre-experimental probe trials. In the baseline phase, either mands or tacts were taught for the first adjective-object pairs to each student who then received probe trials for the untaught verbal operants. None of the students emitted the verbal operant that was not directly taught. In the MEI condition, a second set of adjective-object pairs was taught under alternating mand and tact conditions until both operants were mastered. Following mastery of the second set in the MEI condition, students were again probed for the untaught mands or tacts for the adjective-object pairs that were not in their repertoires when a single verbal operant was taught in baseline (the first set). All students emitted the untaught mands or tacts for the first set. Finally, a third set of adjective-object pairs was taught as tacts or mands and the untaught mands or tacts emerged. The data are discussed in terms of generative verbal behavior, abstraction of establishing operation control, and multiple exemplar instruction. PMID:22477290
Big bang nucleosynthesis with independent neutrino distribution functions
Smith, Christel J.; Fuller, George M.; Smith, Michael S.
2009-05-15
We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community.
ERIC Educational Resources Information Center
Miller, Pat
2005-01-01
Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…
Wedel, Andrew; Jackson, Scott; Kaplan, Abby
2013-09-01
All languages use individually meaningless, contrastive categories in combination to create distinct words. Despite their central role in communication, these "phoneme" contrasts can be lost over the course of language change. The century-old functional load hypothesis proposes that loss of a phoneme contrast will be inhibited in relation to the work that it does in distinguishing words. In a previous work we showed for the first time that a simple measure of functional load does significantly predict patterns of contrast loss within a diverse set of languages: the more minimal word pairs that a phoneme contrast distinguishes, the less likely those phonemes are to have merged over the course of language change. Here, we examine several lexical properties that are predicted to influence the uncertainty between word pairs in usage. We present evidence that (a) the lemma rather than surface-form count of minimal pairs is more predictive of merger; (b) the count of minimal lemma pairs that share a syntactic category is a stronger predictor of merger than the count of those with divergent syntactic categories, and (c) that the count of minimal lemma pairs with members of similar frequency is a stronger predictor of merger than that of those with more divergent frequencies. These findings support the broad hypothesis that properties of individual utterances influence long-term language change, and are consistent with findings suggesting that phonetic cues are modulated in response to lexical uncertainty within utterances.
Cao, Hu; Lu, Yonggang
2017-01-01
With the rapid growth of known protein 3D structures in number, how to efficiently compare protein structures becomes an essential and challenging problem in computational structural biology. At present, many protein structure alignment methods have been developed. Among all these methods, flexible structure alignment methods are shown to be superior to rigid structure alignment methods in identifying structure similarities between proteins, which have gone through conformational changes. It is also found that the methods based on aligned fragment pairs (AFPs) have a special advantage over other approaches in balancing global structure similarities and local structure similarities. Accordingly, we propose a new flexible protein structure alignment method based on variable-length AFPs. Compared with other methods, the proposed method possesses three main advantages. First, it is based on variable-length AFPs. The length of each AFP is separately determined to maximally represent a local similar structure fragment, which reduces the number of AFPs. Second, it uses local coordinate systems, which simplify the computation at each step of the expansion of AFPs during the AFP identification. Third, it decreases the number of twists by rewarding the situation where nonconsecutive AFPs share the same transformation in the alignment, which is realized by dynamic programming with an improved transition function. The experimental data show that compared with FlexProt, FATCAT, and FlexSnap, the proposed method can achieve comparable results by introducing fewer twists. Meanwhile, it can generate results similar to those of the FATCAT method in much less running time due to the reduced number of AFPs.
Electron distribution function formation in regions of diffuse aurora
NASA Astrophysics Data System (ADS)
Khazanov, G. V.; Tripathi, A. K.; Sibeck, D.; Himwich, E.; Glocer, A.; Singhal, R. P.
2015-11-01
The precipitation of high-energy magnetospheric electrons (E ˜ 600 eV-10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ˜700-800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 km) and the resultant population of secondary electrons and electrons cascading toward lower energies. In this paper, we present the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E < 600 eV) and its energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account, for the first time, the formation of the electron distribution function in the diffuse auroral region, beginning with the primary injection of plasma sheet electrons via both electrostatic electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and including their subsequent multiple atmospheric reflections in the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is key in forming the electron distribution function in the diffuse auroral region.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.
A distribution-function-valued SPDE and its applications
NASA Astrophysics Data System (ADS)
Wang, Li; Yang, Xu; Zhou, Xiaowen
2017-01-01
In this paper we further study the stochastic partial differential equation first proposed by Xiong [22]. Under localized conditions on its coefficients, we prove a comparison theorem on its solutions and show that the solution is in fact distribution-function-valued. We also establish pathwise uniqueness of the solution. As applications we obtain the well-posedness of martingale problems for two classes of measure-valued diffusions: interacting super-Brownian motions and interacting Fleming-Viot processes. Properties of the two superprocesses such as the existence of density fields and the survival-extinction behaviors are also studied.
Transfer function modeling of damping mechanisms in distributed parameter models
NASA Technical Reports Server (NTRS)
Slater, J. C.; Inman, D. J.
1994-01-01
This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.
Parton distribution functions in Monte Carlo factorisation scheme
NASA Astrophysics Data System (ADS)
Jadach, S.; Płaczek, W.; Sapeta, S.; Siódmok, A.; Skrzypek, M.
2016-12-01
A next step in development of the KrkNLO method of including complete NLO QCD corrections to hard processes in a LO parton-shower Monte Carlo is presented. It consists of a generalisation of the method, previously used for the Drell-Yan process, to Higgs-boson production. This extension is accompanied with the complete description of parton distribution functions in a dedicated, Monte Carlo factorisation scheme, applicable to any process of production of one or more colour-neutral particles in hadron-hadron collisions.
Are there approximate relations among transverse momentum dependent distribution functions?
Harutyun AVAKIAN; Anatoli Efremov; Klaus Goeke; Andreas Metz; Peter Schweitzer; Tobias Teckentrup
2007-10-11
Certain {\\sl exact} relations among transverse momentum dependent parton distribution functions due to QCD equations of motion turn into {\\sl approximate} ones upon the neglect of pure twist-3 terms. On the basis of available data from HERMES we test the practical usefulness of one such ``Wandzura-Wilczek-type approximation'', namely of that connecting $h_{1L}^{\\perp(1)a}(x)$ to $h_L^a(x)$, and discuss how it can be further tested by future CLAS and COMPASS data.
Beyond histograms: Efficiently estimating radial distribution functions via spectral Monte Carlo
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Rosch, Thomas W.
2017-03-01
Despite more than 40 years of research in condensed-matter physics, state-of-the-art approaches for simulating the radial distribution function (RDF) g(r) still rely on binning pair-separations into a histogram. Such methods suffer from undesirable properties, including subjectivity, high uncertainty, and slow rates of convergence. Moreover, such problems go undetected by the metrics often used to assess RDFs. To address these issues, we propose (I) a spectral Monte Carlo (SMC) quadrature method that yields g(r) as an analytical series expansion and (II) a Sobolev norm that assesses the quality of RDFs by quantifying their fluctuations. Using the latter, we show that, relative to histogram-based approaches, SMC reduces by orders of magnitude both the noise in g(r) and the number of pair separations needed for acceptable convergence. Moreover, SMC reduces subjectivity and yields simple, differentiable formulas for the RDF, which are useful for tasks such as coarse-grained force-field calibration via iterative Boltzmann inversion.
A DERIVATION OF (HALF) THE DARK MATTER DISTRIBUTION FUNCTION
Hansen, Steen H.; Sparre, Martin E-mail: sparre@dark-cosmology.dk
2012-09-01
All dark matter structures appear to follow a set of universalities, such as phase-space density or velocity anisotropy profiles; however, the origin of these universalities remains a mystery. Any equilibrated dark matter structure can be fully described by two functions, namely the radial and tangential velocity distribution functions (VDFs), and once these two are understood we will understand all the observed universalities. Here, we demonstrate that if we know the radial VDF then we can derive and understand the tangential VDF. This is based on simple dynamical arguments about properties of collisionless systems. We use a range of controlled numerical simulations to demonstrate the accuracy of this result. We therefore boil the question of the dark matter structural properties down to understanding the radial VDF.
Functional distribution of synapsin I in human sperm
Coleman, William L.; Kulp, Adam C.; Venditti, Jennifer J.
2015-01-01
Proteins known to function during cell–cell communication and exocytosis in neurons and other secretory cells have recently been reported in human sperm. Synapsins are a group of proteins that have been very well characterized in neurons, but little is known about synapsin function in other cell types. Based upon previous findings and the known function of synapsin, we tested the hypothesis that synapsin I was present in human sperm. Washed, capacitated, and acrosome induced sperm preparations were used to evaluate the functional distribution of synapsin I using immunocytochemistry. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were used for protein blotting techniques. Immunolocalization revealed synapsin I was enriched in the sperm equatorial segment. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were positive for synapsin I using several different antibodies, and dot blot results were confirmed by Western blot analyses. Finally, treatment of capacitated and acrosome reaction induced samples with anti-synapsin antibodies significantly reduced sperm motility. Localization of synapsin I in human sperm is a novel finding. The association of synapsin I with the sperm equatorial segment and effects on motility are suggestive of a role associated with capacitation and/or acrosome reaction, processes that render sperm capable of fertilizing an oocyte. PMID:26566474
Proton structure and parton distribution functions from HERA
NASA Astrophysics Data System (ADS)
Chekelian, Vladimir
2016-11-01
The H1 and ZEUS collaborations at the electron-proton collider HERA collected e± p scattering data corresponding to an integrated luminosity of about 1 fb-1. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV, with different electric charges and longitudinal polarisation of the electron beam. Using these data inclusive neutral and charged current deep inelastic cross sections were measured over six orders of magnitude in negative four-momentum-transfer squared, Q2, and Bjorken x. A combination of all inclusive cross sections, published by the H1 and ZEUS collaborations at HERA, was performed. Using these combined HERA data and the individual H1 and ZEUS data taken using the polarised electron beams, the proton structure functions F2, FγZ2, xFγZ3 and FL were obtained, and scaling violations, electroweak unification, and polarisation effects in the charged current process were demonstrated. The combined cross sections were used as a sole input to QCD analyses at leading, next-to-leading and next-to-next-to-leading orders, providing a new set of parton distribution functions, denoted as HERAPDF2.0. An extension of the analysis by including HERA data on charm and jet production allowed a simultaneous determination of parton distributions and the strong coupling.
Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions
VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.
2011-01-01
Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273
Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.
2014-11-01
We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.
NASA Astrophysics Data System (ADS)
Shukla, Manoj K.; Leszczynski, Jerzy
2010-11-01
A comprehensive analysis of the performance of the TD-DFT method using different density functionals including recently developed medium and long-range correlation corrected density functionals have been carried out for lower-lying electronic singlet valence transitions of nucleic acid bases and the Watson-Crick base pairs in the gas phase and in the water solution. The standard 6-311++G(d,p) basis set was used. Ground state geometries of bases and base pairs were optimized at the M05-2X/6-311++G(d,p) level. The nature of potential energy surfaces (PES) was ascertained through the harmonic vibrational frequency analysis; all geometries were found to be minima at the respective PES. Electronic singlet vertical transition energies were also computed at the CC2/def2-TZVP level in the gas phase. The effect of state-specific water solvation on TD-DFT computed transition energies was considered using the PCM model. For the isolated bases the performance of the B3LYP functional was generally found to be superior among all functionals, but it measurably fails for charge-transfer states in the base pairs. The CC2/def2-TZVP computed transition energies were also revealed to be inferior compared with B3LYP results for the isolated bases. The performance of the ωB97XD, CAM-B3LYP and BMK functionals were found to be similar and comparable with the CC2 results for the isolated bases. However, for the Watson-Crick adenine-thymine and guanine-cytosine base pairs the performance of the ωB97XD functional was found to be the best among all the studied functionals in the present work in predicting the locally excited transitions as well as charge transfer states.
Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs
Patra, Amritraj; Harp, Joel; Pallan, Pradeep S.; Zhao, Linlin; Abramov, Mikhail; Herdewijn, Piet; Egli, Martin
2012-12-28
The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2'-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed., 50, 7109–7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.
O'Connor, M; Dahlberg, A E
1996-01-01
The alpha-sarcin loop of large subunit rRNAs is one of the sites of interaction of elongation factors with the ribosome, and the target of the cytotoxins alpha-sarcin and ricin. Using a genetic selection for increased frameshifting in a reporter gene, we have isolated a C --> U mutation at position 2666 in the alpha-sarcin loop. In the NMR-derived structure of the loop, bases equivalent to 2666 and 2654 are paired via a non-canonical base pairing interaction. Each of the three base substitutions at C2666 and A2654 was constructed by site-directed mutagenesis of a plasmid borne copy of the rrnB operon of Escherichia coli. Only the C2666 --> U and A2654 --> G mutations that resulted in the formation of canonical A-U and C-G base pairs respectively, increased the levels of stop codon readthrough and frameshifting. The effects of different base pair combinations at positions 2666 and 2654 on ribosome function were then tested by constructing and analyzing all possible base combinations at these sites. All A --> G base substitution mutations at position 2654 and C --> U substitutions at position 2666 increased the levels of translational errors. However, these effects were greatest when G2654 and U2666 had the potential to engage in standard Watson-Crick base pairing interactions. These data indicate that base identity as well as base pairing interactions are important for the function of this essential component of the large subunit rRNA. PMID:8758999
Ott, R. T.; Mendelev, M. I.; Besser, M. F.; Kramer, M. J.; Almer, J. D.; Sordelet, D. J.; Iowa State Univ.; Ames Lab.
2009-01-01
We have examined the relationship between the variance in the atomic-level hydrostatic pressure, <{Delta}p{sup 2}>{sup 1/2}, and the widths of the first peaks in the reciprocal- and real-space distribution functions for elastically deformed metallic glasses. In situ synchrotron x-ray scattering studies performed on a binary Cu{sub 64.5}Zr{sub 35.5} glass subject to uniaxial loading reveal that the width of the first peak in the reduced-pair distribution function is dependent on the different elastic responses of the partial-pair correlations. Molecular dynamics (MD) simulations of the same binary glass, as well as a single-component glass, subject to hydrostatic deformation show that the widths of the first peaks in the partial-pair distribution functions are affected by length-scale-dependent changes in the relative atomic separation in the first nearest-neighbor shell. Moreover, the MD simulations show that the strain dependencies of the partial-pair peak widths do not necessarily match the strain-dependence of <{Delta}p{sup 2}>{sup 1/2}. The results suggest that the widths of the peaks in the reciprocal- and real-space functions are not solely dependent on <{Delta}p{sup 2}>{sup 1/2} but rather are also affected by the atomic rearrangements associated with elastic deformation.
Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G
2017-02-14
We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.
Beyond Flory theory: Distribution functions for interacting lattice trees
NASA Astrophysics Data System (ADS)
Rosa, Angelo; Everaers, Ralf
2017-01-01
While Flory theories [J. Isaacson and T. C. Lubensky, J. Physique Lett. 41, 469 (1980), 10.1051/jphyslet:019800041019046900; M. Daoud and J. F. Joanny, J. Physique 42, 1359 (1981), 10.1051/jphys:0198100420100135900; A. M. Gutin et al., Macromolecules 26, 1293 (1993), 10.1021/ma00058a016] provide an extremely useful framework for understanding the behavior of interacting, randomly branching polymers, the approach is inherently limited. Here we use a combination of scaling arguments and computer simulations to go beyond a Gaussian description. We analyze distribution functions for a wide variety of quantities characterizing the tree connectivities and conformations for the four different statistical ensembles, which we have studied numerically in [A. Rosa and R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016), 10.1088/1751-8113/49/34/345001 and J. Chem. Phys. 145, 164906 (2016), 10.1063/1.4965827]: (a) ideal randomly branching polymers, (b) 2 d and 3 d melts of interacting randomly branching polymers, (c) 3 d self-avoiding trees with annealed connectivity, and (d) 3 d self-avoiding trees with quenched ideal connectivity. In particular, we investigate the distributions (i) pN(n ) of the weight, n , of branches cut from trees of mass N by severing randomly chosen bonds; (ii) pN(l ) of the contour distances, l , between monomers; (iii) pN(r ⃗) of spatial distances, r ⃗, between monomers, and (iv) pN(r ⃗|l ) of the end-to-end distance of paths of length l . Data for different tree sizes superimpose, when expressed as functions of suitably rescaled observables x ⃗=r ⃗/√{
Maturation of widely distributed brain function subserves cognitive development.
Luna, B; Thulborn, K R; Munoz, D P; Merriam, E P; Garver, K E; Minshew, N J; Keshavan, M S; Genovese, C R; Eddy, W F; Sweeney, J A
2001-05-01
Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible to characterize changes in brain activity during cognitive development. In order to investigate the cognitive and brain maturation subserving the ability to voluntarily suppress context-inappropriate behavior, we tested 8-30 year olds in an oculomotor response-suppression task. Behavioral results indicated that adult-like ability to inhibit prepotent responses matured gradually through childhood and adolescence. Functional MRI results indicated that brain activation in frontal, parietal, striatal, and thalamic regions increased progressively from childhood to adulthood. Prefrontal cortex was more active in adolescents than in children or adults; adults demonstrated greater activation in the lateral cerebellum than younger subjects. These results suggest that efficient top-down modulation of reflexive acts may not be fully developed until adulthood and provide evidence that maturation of function across widely distributed brain regions lays the groundwork for enhanced voluntary control of behavior during cognitive development.
Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study
Allam, Sushmita L.; Bouteiller, Jean-Marie C.; Hu, Eric Y.; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.
2015-01-01
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics. PMID:26480028
Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study.
Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric Y; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W
2015-01-01
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.
From Bethe-Salpeter Wave functions to Generalised Parton Distributions
NASA Astrophysics Data System (ADS)
Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2016-09-01
We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.
Smooth conditional distribution function and quantiles under random censorship.
Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine
2002-09-01
We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).
Ion distribution function in a plasma with uniform electric field
Lampe, M.; Joyce, G.; Roecker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Morfill, G. E.
2012-11-15
For a homogeneous partially ionized plasma subject to a uniform electric field E, several methods and models are used to calculate the distribution function f(v) for ions subject to charge-exchange collisions. The exact solution for f(v), based on the energy-dependent cross section for Ar, is obtained by Monte Carlo (MC) simulation. This is compared to the MC results for f(v), based on either a constant cross section {sigma} or a constant collision frequency {nu}. The constant-{sigma} model is found to accurately represent f(v) for any value of E, whereas the constant-{nu} results are qualitatively incorrect for large fields. Under the constant-{sigma} assumption, a simple, easily solvable ordinary differential equation is obtained which reproduces the MC results with good accuracy.
Model of bidirectional reflectance distribution function for metallic materials
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun
2016-09-01
Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
Solute-Solvent Energetics Based on Proximal Distribution Functions.
Ou, Shu-Ching; Pettitt, B Montgomery
2016-08-25
We consider the hydration structure and thermodynamic energetics of solutes in aqueous solution. On the basis of the dominant local correlation between the solvent and the chemical nature of the solute atoms, proximal distribution functions (pDF) can be used to quantitatively estimate the hydration pattern of the macromolecules. We extended this technique to study the solute-solvent energetics including the van der Waals terms representing excluded volume and tested the method with butane and propanol. Our results indicate that the pDF-reconstruction algorithm can reproduce van der Waals solute-solvent interaction energies to useful kilocalorie per mole accuracy. We subsequently computed polyalanine-water interaction energies for a variety of conformers, which also showed agreement with the simulated values.
Effects of Angular Scattering on Ion Velocity Distribution Functions
NASA Astrophysics Data System (ADS)
Wang, Huihui; Sukhomlinov, Vladimir; Kaganovich, Igor; Mustafaev, Alexander
2016-09-01
An approximation model for total elastic and charge exchange ion-atom angular differential scattering cross sections is developed for simulations of the ion velocity distribution functions (IVDF), which is validated by the experiment data of mobility and diffusion. IVDFs are simulated using the developed model and compared with recently published experimental data. The IVDFs obtained with this model are compared to that from two other conventional models of less accurate differential cross sections. The simulation results show the necessity to take into account the accurate differential cross sections, especially for strong E/ N. The study reveals that IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions due to the significant effect of scattering.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Grados Luyando, J.; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J. P.; Lykasov, G.; Madrigal Martinez, J. D.; Mulders, P. J.; Nocera, E. R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Signori, A.; Szymanowski, L.; Taheri Monfared, S.; Van der Veken, F. F.; van Haevermaet, H. J.; Van Mechelen, P.; Vladimirov, A. A.; Wallon, S.
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q_{T} spectra of Higgs and vector bosons for low q_{T}, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD_{LIB}, to parton density fits and parameterizations.
NASA Astrophysics Data System (ADS)
Myatt, Philip Thomas; Baker, Matthew T.; Kang, Ju-Hee; Escobar Moya, Andres; McCourt, Frederick R. W.; Le Roy, Robert J.
2016-06-01
The many decades of work on determining accurate analytic pair potentials for rare gas dimers from experimental data focussed largely on the use of bulk non-ideal gas and collisional properties, with the use of spectroscopic data being somewhat of an afterthought, for testing the resulting functions. This was a natural result of experimental challenges, as the very weak binding of ground-state rare gas pairs made high resolution spectroscopy a relatively late arrival as a practical tool in this area. However, we believe that it is now time for a comprehensive reassessment. Following up on a preliminary report at this meeting five years ago, this paper describes work to determine a new generation of empirical potential energy functions for the four heavier (i.e., not involving He) homonuclear rare gas pairs from direct fits to all available spectroscopic, pressure virial, and acoustic virial coefficient data, with the resulting functions being `tuned' by comparisons with available thermal transport property data: viscosity, mass diffusion and thermal diffusion, and thermal conductivity data, and tested against the best available ab initio potentials. The resulting functions are everywhere smooth and differentiable to all orders, incorporate the correct (damped) theoretical inverse-power long-range behaviour, and have sensible short-range extrapolation behaviour. R.J. Le Roy, C.J.W. Mackie, P. Chandrasekhar and K.M. Sentjens, ``Accurate New Potential Energy Functions From Spectroscopic and Virial Coefficient Data for the Ten Rare Gas Pairs formed from Ne, Ar, Kr and Xe, paper MF03 at the 66th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 13-17 (2011).
LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION
Nierenberg, A. M.; Treu, T.; Auger, M. W.; Marshall, P. J.; Fassnacht, C. D.; Busha, Michael T.
2012-06-20
We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log{sub 10}[M*{sub h}/M{sub Sun }] > 10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology, and satellite luminosity. Exploiting the depth and resolution of the COSMOS Hubble Space Telescope images, we detect satellites up to 8 mag fainter than the host galaxies and as close as 0.3 (1.4) arcsec (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R){proportional_to}R{sup {gamma}{sub p}}, we find {gamma}{sub p} = -1.1 {+-} 0.3. We find no dependency of {gamma}{sub p} on host stellar mass, redshift, morphology, or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, possibly indicating that they reside in more massive halos. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using SubHalo Abundance Matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.
Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Turner, Kagan
2005-01-01
The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.
H I 21-cm absorption survey of quasar-galaxy pairs: distribution of cold gas around z < 0.4 galaxies
NASA Astrophysics Data System (ADS)
Dutta, R.; Srianand, R.; Gupta, N.; Momjian, E.; Noterdaeme, P.; Petitjean, P.; Rahmani, H.
2017-02-01
We present the results from our survey of H I 21-cm absorption, using Giant Metrewave Radio Telescope, Very Large Array and Westerbork Radio Synthesis Telescope, in a sample of 55 z < 0.4 galaxies towards radio sources with impact parameters (b) in the range ˜0-35 kpc. In our primary sample (defined for statistical analyses) of 40 quasar-galaxy pairs, probed by 45 sightlines, we have found seven H I 21-cm absorption detections, two of which are reported here for the first time. Combining our primary sample with measurements having similar optical depth sensitivity (∫τdv ≤ 0.3 km s-1) from the literature, we find a weak anti-correlation (rank correlation coefficient = -0.20 at 2.42σ level) between ∫τdv and b, consistent with previous literature results. The covering factor of H I 21-cm absorbers (C21) is estimated to be 0.24^{+0.12}_{-0.08} at b ≤ 15 kpc and 0.06^{+0.09}_{-0.04} at b = 15-35 kpc. ∫τdv and C21 show similar declining trend with radial distance along the galaxy's major axis and distances scaled with the effective H I radius. There is also tentative indication that most of the H I 21-cm absorbers could be co-planar with the extended H I discs. No significant dependence of ∫τdv and C21 on galaxy luminosity, stellar mass, colour and star formation rate is found, though the H I 21-cm absorbing gas cross-section may be larger for the luminous galaxies. The higher detection rate (by a factor of ˜4) of H I 21-cm absorption in z < 1 damped Lyman-α systems compared to the quasar-galaxy pairs indicates towards small covering factor and patchy distribution of cold gas clouds around low-z galaxies.
Rosenberg, Miriam I; Brent, Ava E; Payre, François; Desplan, Claude
2014-01-01
Embryonic anterior–posterior patterning is well understood in Drosophila, which uses ‘long germ’ embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use ‘short germ’ embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001 PMID:24599282
McPhee, Scott A.; Huang, Lin; Lilley, David M. J.
2014-01-01
Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n=G or 3b=C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2+-induced folding in solution. While SAM-I riboswitches have 3b·3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value. PMID:25351101
NASA Astrophysics Data System (ADS)
McPhee, Scott A.; Huang, Lin; Lilley, David M. J.
2014-10-01
Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson-Crick pair leads to an inability to fold in metal ions alone, while 3n=G or 3b=C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2+-induced folding in solution. While SAM-I riboswitches have 3b·3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value.
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (Km) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant
Electron number distribution functions from molecular wavefunctions. Version 2
NASA Astrophysics Data System (ADS)
Francisco, E.; Martín Pendás, A.
2014-10-01
We present in this article a new and considerably faster version of the edf Fortran 77/90 code that replaces the old one (Francisco et al., 2008). In the new version, given an N-electron molecule and an exhaustive, fuzzy, or orbital-based partition of the physical space R3 into m domains, the probabilities p(S) of all possible distributions S = {n1 ,n2 , … ,nm } of the N electrons (n1 +n2 + ⋯ +nm = N) into m real space domains are computed. The set { p(S) } defines the electron number distribution function (EDF) of the molecule for this specific space partition. The molecule may be described by either a single- or a multi-determinant wavefunction Ψ(1 , N) . Both spin-resolved and spin-unresolved EDFs are determined. Isopycnic orbital localizations of the natural molecular orbitals (MOs) can be optionally performed to make the use of the core approximation possible. This explicitly eliminates from the calculation those MOs strongly that are localized over one of the m domains, considerably speeding up the process. An optional approximation consisting of assuming that localized MOs are orthogonal to each other in all the domains is shown to give reasonably accurate results and further accelerates the calculation. The new edf code does also allows for the computation of a single probability p(n1 ,n2 , … ,nm) instead of the full EDF. Finally, this new version computes multiple-domain covariances of electron populations, particularly relevant for chemical bonding theory.
Coarse graining the distribution function of cold dark matter - II
NASA Astrophysics Data System (ADS)
Henriksen, R. N.
2004-12-01
We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the
NASA Technical Reports Server (NTRS)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Alternative energy estimation from the shower lateral distribution function
NASA Astrophysics Data System (ADS)
de Souza, Vitor; Escobar, Carlos; Brito, Joel; Dobrigkeit, Carola; Medina-Tanco, Gustavo
The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.
Maxwellianization of electron distribution functions by convective instabilities in presheaths
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Hegna, C. C.; Callen, J. D.
2008-11-01
Langmuir's paradox is a measurement of anomalous electron scattering where a Maxwellian electron velocity distribution function was measured much closer to a boundary than the electron collision length in a stable plasma; here one should expect truncation corresponding to the sheath energy. In this paper we theoretically analyze the presheath region that is present in Langmuir paradox-relevant plasmas (TeTi). It is shown that the ion-acoustic instability is present throughout the presheath causing convective amplification of thermal fluctuations. A collision operator for the plasma kinetic equation including instabilities in a finite space-time domain is derived [1] which shows that electron scattering can be dominated by wave-particle interactions in the presheath. The modified collision operator satisfies the Boltzmann H-theorem, so the only equilibrium is a Maxwellian which is achieved at a rate depending on collisionality. Wave-particle scattering shrinks the electron collision length to within a few cm for these discharges suggesting that one should expect a Maxwellian at the location of previously reported measurements. [1] S.D. Baalrud, J.D. Callen, C.C. Hegna, UW-CPTC 08-4, June 2008 (sub. to Phys. Plasmas).
Laboratory-based bidirectional reflectance distribution functions of radiometric tarps
Georgiev, Georgi T.; Butler, James J
2008-06-20
Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.
Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA–DNA pairing
Lin, Jiangguo; Countryman, Preston; Chen, Haijiang; Pan, Hai; Fan, Yanlin; Jiang, Yunyun; Kaur, Parminder; Miao, Wang; Gurgel, Gisele; You, Changjiang; Piehler, Jacob; Kad, Neil M.; Riehn, Robert; Opresko, Patricia L.; Smith, Susan; Tao, Yizhi Jane; Wang, Hong
2016-01-01
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA–DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA–DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding. PMID:27298259
NASA Astrophysics Data System (ADS)
Higuchi, Katsuhiko; Higuchi, Masahiko
2014-12-01
We propose approximate kinetic energy (KE) functionals of the pair-density (PD)-functional theory on the basis of the rigorous expression with the coupling-constant integration (RECCI) that has been recently derived [Phys. Rev. A 85, 062508 (2012), 10.1103/PhysRevA.85.062508]. These approximate functionals consist of the noninteracting KE and correlation energy terms. It is found that the Thomas-Fermi-Weizsäcker functional is shown to be better as the noninteracting KE term than the Thomas-Fermi and Gaussian model functionals. It is also shown that the correlation energy term is also indispensable for the reduction of the KE error, i.e., reductions of both inappropriateness of the approximate functional and error of the resultant PD. Concerning the correlation energy term, we further propose an approximate functional in addition to using the existing familiar functionals. This functional satisfies the scaling property of the KE functional, and yields a reasonable PD in a sense that the KE, electron-electron interaction, and potentials energies tend to be improved with satisfying the virial theorem. The present results not only suggest the usefulness of the RECCI but also provide the guideline for the further improvement of the RECCI-based KE functional.
ERIC Educational Resources Information Center
Balasooriya, Uditha; Li, Jackie; Low, Chan Kee
2012-01-01
For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…
Pair correlations in magnetic nanodispersed fluids
Elfimova, E. A. Ivanov, A. O.
2010-07-15
The pair distribution function of a monodisperse magnetic fluid simulated by a liquid made of dipolar hard spheres with constant magnetic moments is calculated. The anisotropy of the pair distribution function and the related structure factor of scattering in a dc uniform magnetic field are studied. The calculation is performed by diagrammatic expansion in the volume concentration of particles and the interparticle magnetic-dipole interaction intensity using a thermodynamic perturbation theory. Limitation by three-particle diagrams makes it possible to apply the results obtained to magnetic fluids with a moderate concentration. Even for low-concentration and weakly nonideal magnetic fluids, the anisotropic interparticle magnetic-dipole correlations in a magnetic field lead to the repulsion of particles in the direction normal to the field and to the formation of particle dimers along the field.
Maddoux, John A; Liu, Fuqin; Symes, Lene; McFarlane, Judith; Paulson, Rene; Binder, Brenda K; Fredland, Nina; Nava, Angeles; Gilroy, Heidi
2016-04-01
Partner violence is associated with numerous negative consequences for victims, especially poor mental health. Children who are exposed to partner violence are more likely to have behavior problems. Nevertheless, research on the relationship between severity of abuse, maternal mental health functioning following partner violence, and child behavior problems is limited. We explored the direct and indirect effects on the child's behavioral functioning of severity of maternal abuse and maternal mental health functioning following abuse. A sample of 300 mothers was recruited when they sought assistance for abuse for the first time at shelters for abused women or at the district attorney's office. Severity of abuse, mothers' mental health functioning, and child behavioral functioning were measured by maternal self-report at entry into the study and 4 months later. In SEM analysis, at both entry and 4 months, severity of abuse had a direct effect on maternal mental health functioning, which in turn had a direct effect on child behavioral functioning. The path from severity of abuse to child behavioral functioning also was significant but became non- significant once maternal mental health functioning was added to the equation, indicating that the path from severity of abuse to child behavioral functioning was indirect and occurred as a result of the mother's mental health functioning, which remained directly linked to child behavioral problems. Intergenerational interventions are needed to address both maternal mental health and child behavioral functioning when a mother reports partner violence and is experiencing mental health problems.
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.
2010-08-01
We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.
METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES
Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu
2015-06-15
We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.
McMenamin, Paul G
2007-01-01
the CNS of a few other classes of non‐mammalian vertebrates, suggest that retinal vascularisation may have evolved independently in marsupial and eutherian mammals and that the former may have evolved from a common primitive mammal‐like reptilian ancestor which possessed paired vasculature in the CNS. Eutherian mammals may have evolved from an ancestor with anastomotic networks in the CNS or this pattern may have evolved later in eutherian mammal evolutionary radiation. The possible functional and physiological significance of the paired vessels is discussed. PMID:17475712
Pair production in superstrong magnetic fields
NASA Technical Reports Server (NTRS)
Daugherty, J. K.; Harding, A. K.
1983-01-01
The production of electron-positron pairs by single photons in magnetic fields 10 to the twelth power G was investigated in detail for photon energies near threshold as well as for the asymptotic limit of high photon energy. The exact attenuation coefficient, which is derived and then evaluated numerically, is strongly influenced by the discrete energy states of the electron and positron. Near threshold, it exhibits a sawtooth pattern as a function of photon energy, and its value is significantly below that predicted by the asymptotic expression for the attenuation coefficient. The energy distributions of the created pair are computed numerically near threshold and analytic expressions are derived in the asymptotic limit. These results indicate that as field strength and photon energy increase, it becomes increasingly probable for the pair to divide the photon energy unequally. This effect, as well as the threshold behavior of the attenuation coefficient, could have important consequences for pulsar models.
Zeng, Yonglun; Chung, Kin Pan; Li, Baiying; Lai, Ching Man; Lam, Sheung Kwan; Wang, Xiangfeng; Cui, Yong; Gao, Caiji; Luo, Ming; Wong, Kam-Bo; Schekman, Randy; Jiang, Liwen
2015-11-17
Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes.
Zeng, Yonglun; Chung, Kin Pan; Li, Baiying; Lai, Ching Man; Lam, Sheung Kwan; Wang, Xiangfeng; Cui, Yong; Gao, Caiji; Luo, Ming; Wong, Kam-Bo; Schekman, Randy; Jiang, Liwen
2015-01-01
Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes. PMID:26578783
Metallicity Distribution Functions of Four Local Group Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.
2015-06-01
We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is
Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.
Sun, Junqiang; Chu, Mike; Wang, Menghua
2016-08-01
The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this
Evolution of transverse momentum dependent distribution and fragmentation functions
NASA Astrophysics Data System (ADS)
Henneman, A. A.; Boer, Daniël; Mulders, P. J.
2002-01-01
We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading order in a 1/ Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large Nc limit, restricting to non-singlet for the chiral-even functions.
NASA Astrophysics Data System (ADS)
Pickl, Peter; Dürr, Detlef
2008-08-01
We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.
NASA Astrophysics Data System (ADS)
Bespalov, Peter; Savina, Olga
2017-01-01
We propose a simple explanation of the prolonged existence of pancake-like electron velocity distributions in the radiation belts. The pancake-like distribution function is characterized by a longitudinal particle velocity (along the magnetic field) of the order of the thermal velocity of the background plasma. The parameters of the tablet-like distribution function with a characteristic longitudinal particle velocity of the order of 20 Alfvèn velocities are refined. Such distribution functions can occur in the middle magnetosphere near the magnetic equator with appropriate sources of energetic particles. The stability of these distributions is examined. The results agree with known experimental data.
Analytical derivation of the radial distribution function in spherical dark matter halos
NASA Astrophysics Data System (ADS)
Eilersen, Andreas; Hansen, Steen H.; Zhang, Xingyu
2017-01-01
The velocity distribution of dark matter near the Earth is important for an accurate analysis of the signals in terrestrial detectors. This distribution is typically extracted from numerical simulations. Here we address the possibility of deriving the velocity distribution function analytically. We derive a differential equation which is a function of radius and the radial component of the velocity. Under various assumptions this can be solved, and we compare the solution with the results from controlled numerical simulations. Our findings complement the previously derived tangential velocity distribution. We hereby demonstrate that the entire distribution function, below ˜0.7vesc, can be derived analytically for spherical and equilibrated dark matter structures.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1973-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
Sponer, Judit E; Spackova, Nad'a; Leszczynski, Jerzy; Sponer, Jirí
2005-06-09
Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.
NASA Technical Reports Server (NTRS)
Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.
2003-01-01
Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.
On, Jason S.W.; Duan, Cumming; Chow, Billy K.C.; Lee, Leo T.O.
2015-01-01
Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand–receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand–receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates. PMID:25841489
On, Jason S W; Duan, Cumming; Chow, Billy K C; Lee, Leo T O
2015-08-01
Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand-receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand-receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates.
Kolar, Patrick S.; Wiens, J. David
2017-03-22
The substantial numbers of golden eagles (Aquila chrysaetos) killed by collisions with oldgeneration wind turbines each year at the Altamont Pass Wind Resource Area (APWRA) in California has been well documented from previous studies. Few eagle nests have been documented in the APWRA, however, and adults and subadults 3+ years of age killed by turbines were generally not associated with nearby territories. We searched a subset of randomly selected survey plots for territorial pairs of golden eagles and associated nesting attempts within the APWRA as part of a broader investigation of population dynamics in the surrounding northern Diablo Range. In contrast to limited historical observations from 1988 to 2013, our surveys documented up to 15 territorial pairs within 3.2 kilometers (km) of wind turbines at the APWRA annually, 9 of which were not previously documented or only observed intermittently during historical surveys. We found evidence of nesting activity by adult pairs at least once during our study at six of these territories. We also determined that 23–36 percent of territories identified within 3.2 km of the APWRA had a subadult pair member, but that no pairs with a subadult member attempted to nest. These data will be useful to developers, wildlife managers, and future raptor studies in the area to evaluate and minimize the potential effects of wind energy or other development activities on previously unknown territorial pairs in the area.
Transition in the Equilibrium Distribution Function of Relativistic Particles
Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.
2012-01-01
We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220
Data synthesis and display programs for wave distribution function analysis
NASA Technical Reports Server (NTRS)
Storey, L. R. O.; Yeh, K. J.
1992-01-01
At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.
NASA Astrophysics Data System (ADS)
Theodorakis, Panagiotis E.; Dellago, Christoph; Kahl, Gerhard
2013-01-01
We discuss a coarse-grained model recently proposed by Starr and Sciortino [J. Phys.: Condens. Matter 18, L347 (2006), 10.1088/0953-8984/18/26/L02] for spherical particles functionalized with short single DNA strands. The model incorporates two key aspects of DNA hybridization, i.e., the specificity of binding between DNA bases and the strong directionality of hydrogen bonds. Here, we calculate the effective potential between two DNA-functionalized particles of equal size using a parallel replica protocol. We find that the transition from bonded to unbonded configurations takes place at considerably lower temperatures compared to those that were originally predicted using standard simulations in the canonical ensemble. We put particular focus on DNA-decorations of tetrahedral and octahedral symmetry, as they are promising candidates for the self-assembly into a single-component diamond structure. Increasing colloid size hinders hybridization of the DNA strands, in agreement with experimental findings.
Toe function and dynamic pressure distribution in ostrich locomotion.
Schaller, Nina Ursula; D'Août, Kristiaan; Villa, Rikk; Herkner, Bernd; Aerts, Peter
2011-04-01
The ostrich is highly specialized in terrestrial locomotion and is the only extant bird that is both didactyl and exhibits a permanently elevated metatarsophalangeal joint. This extreme degree of digitigrady provides an excellent opportunity for the study of phalangeal adaptation towards fast, sustained bipedal locomotion. Data were gathered in a semi-natural setting with hand-raised, cooperative specimens. Dynamic pressure distribution, centre of pressure (CoP) trajectory and the positional inter-relationship of the toes during stance phase were investigated using pedobarography. Walking and running trials shared a J-shaped CoP trajectory with greater localization of CoP origin as speed increased. Slight variations of 4th toe position in walking affect CoP origin and modulation of 4th toe pressure on the substrate allows correction of balance, primarily at the beginning of stance phase at lower speeds. Load distribution patterns differed significantly between slow and fast trials. In walking, the 3rd and particularly the 4th toe exhibited notable variation in load distribution with minor claw participation only at push-off. Running trials yielded a distinctly triangular load distribution pattern defined by the 4th toe tip, the proximal part of the 3rd toe and the claw tip, with the sharp point of the claw providing an essential traction element at push-off. Consistency of CoP trajectory and load distribution at higher speeds arises from dynamic stability effects and may also reflect stringent limitations to degrees of freedom in hindlimb joint articulation that contribute to locomotor efficiency. This novel research could aid in the reconstruction of theropod locomotor modes and offers a systemic approach for future avian pedobarographic investigations.
Pairing Learners in Pair Work Activity
ERIC Educational Resources Information Center
Storch, Neomy; Aldosari, Ali
2013-01-01
Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…
Nonparametric Estimation of Distribution and Density Functions with Applications.
1982-05-01
have been used: kurtosis, Hogg’s Q statistic, and percentile ratios. Applications of the discriminants in parametric estimation problem can be found...particularly in the sense of parametric estimation (Ref 108). Reiss proposes minimum distance estimators of unimodal densities. He proves consistency and...in distribution and density estimation, and goodness of fit testing. 129 The next chapter will venture into the realm of parametric estimation using
Measurement of parallel ion energy distribution function in PISCES plasma
Tynan, G.R.; Goebel, D.M.; Conn, R.W.
1987-08-01
The PISCES facility is used to conduct controlled plasma-surface interaction experiments. Plasma parameters typical of those found in the edge plasmas of major fusion confinement experiments are produced. In this work, the energy distribution of the ion flux incident on a material surface is measured using a gridded energy analyzer in place of a material sample. The full width at half maximum energy distribution of the ion flux is found to vary from 10 eV to 30 eV both hydrogen and deuterium plasmas. Helium plasmas have a much lower FWHM energy spread than hydrogen and deuterium plasmas. The FWHM ion energy spread is found to be linearly related to the electron temperature. The most probable ion energy is found to be linearly related to the bias applied to the energy analyzer. Other plasma parameters have a weak influence upon the energy distribution of the ion flux. Two possible physical mechanisms for producing the observed results are introduced and suggestions for further work are made. The impact of the reported measurements on the materials experiments conducted in the PISCES facility are discussed and recommendations for future experiments are made. 11 refs., 13 figs.
A model distribution function for relativistic bi-Maxwellian with drift
Naito, O.
2013-04-15
A model distribution function for relativistic bi-Maxwellian with drift is proposed, based on the maximum entropy principle and the relativistic canonical transformation. Since the obtained expression is compatible with the existing distribution functions and has a relatively simple form as well as smoothness, it might serve as a useful tool in the research fields of space or high temperature fusion plasmas.
Tao, Changli; Shao, Hongwei; Zhang, Wenfeng; Bo, Huaben; Wu, Fenglin; Shen, Han; Huang, Shulin
2017-02-15
The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain‑exchange and three‑dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically‑encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin‑like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild‑type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer
Cumulative overlap distribution function in realistic spin glasses
NASA Astrophysics Data System (ADS)
Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D.
2014-09-01
We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between replica symmetry breaking-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a replica symmetry breaking-like behavior for the 3D Edwards-Anderson model.
Multi-level methods and approximating distribution functions
NASA Astrophysics Data System (ADS)
Wilson, D.; Baker, R. E.
2016-07-01
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie's direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie's direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146-179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.
Seshadhri, C; Smith, Andrew M; Vorobeychik, Yevgeniy; Mayo, Jackson R; Armstrong, Robert C
2016-07-01
We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
NASA Astrophysics Data System (ADS)
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.
2016-07-01
We present a characterization of short-term stability of Kauffman's N K (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel
2011-05-01
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.
Levine, Benjamin G; Stone, John E; Kohlmeyer, Axel
2011-05-01
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.
NASA Astrophysics Data System (ADS)
Francisco, E.; Pendás, A. Martín; Blanco, M. A.
2008-04-01
Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer
Transverse momentum-dependent parton distribution functions from lattice QCD
Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer
2012-12-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particular on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.
1977-02-01
both academic and industrial environments. However, many problems still require efficient solutions. One of these problem -areas that can have a...distribution of a data base system over several processors increases the complexity of the recovery problem. Just the interprocessor comunications ...DBMS over a computer network enormously complicates the data base administration function. If a recovery scheme similar to that proposed in this
A decentralized mechanism for improving the functional robustness of distribution networks.
Shi, Benyun; Liu, Jiming
2012-10-01
Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.
Barrier distribution functions for the system 6Li+64Ni and the effect of channel coupling
NASA Astrophysics Data System (ADS)
Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastava, A.
2015-03-01
Background: The barrier distribution function is an important observable in low-energy nucleus-nucleus collisions because it carries the distinct signature of the channel-coupling effect that is dominant at low energies. It can be derived from the fusion excitation function as well as from the back-angle quasi-elastic excitation function. The barrier distribution functions derived from the two complimentary measurements, in general, appear to peak at an energy close to the Coulomb barrier for strongly bound systems. But for weakly bound projectiles, like 6Li, a relative shift is observed between the distributions. Purpose: The present work investigates the barrier distribution functions from fusion as well as from the back-angle quasi-elastic excitation function for the 6Li+64Ni system. The purpose is to look for the existence of a shift, if any, between the two measured distribution functions, as reported for 6Li collision with heavy targets. A detailed coupled-channel calculation to probe the behavior of the distribution functions and their relative shift has been attempted. Measurement: A simultaneous measurement of fusion and back-angle quasi-elastic excitation functions for the system 6Li+64Ni was performed. The fusion excitation function was measured for the energy range of 11 to 28 MeV while the quasi-elastic excitation function measurement extended from 11 to 20 MeV. The barrier distribution functions were subsequently extracted from both the excitation functions and compared. Results: A small shift of around 450 keV peak to peak is observed between the barrier distribution functions derived from the complementary measurements. Detailed coupled channel and coupled reaction channel calculations reproduced both the excitation functions and barrier distributions. The shift of about 550 keV resulted from the model predictions corroborate the experimentally observed value for 6Li+64Ni system. Conclusions: The coupling to inelastic channels are found to be
The Drosophila mojavensis Bari3 transposon: distribution and functional characterization
2014-01-01
Background Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon’s family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. Results We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. Conclusions Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity
[Opioid receptors of the CNS: function, structure and distribution].
Slamberová, R
2004-01-01
Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.
Alternative oxidase: distribution, induction, properties, structure, regulation, and functions.
Rogov, A G; Sukhanova, E I; Uralskaya, L A; Aliverdieva, D A; Zvyagilskaya, R A
2014-12-01
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao
2016-01-06
Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii.
Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao
2016-01-01
Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii. PMID:26732855
NASA Technical Reports Server (NTRS)
Deese, J. E.; Hassan, H. A.
1979-01-01
The role played by fission fragments and electron distribution functions in nuclear pumped lasers is considered and procedures for their calculations are outlined. The calculations are illustrated for a He-3/Xe mixture where fission is provided by the He-3(n,p)H-3 reaction. Because the dominant ion in the system depends on the Xe fraction, the distribution functions cannot be determined without the simultaneous consideration of a detailed kinetic model. As is the case for wall sources of fission fragments, the resulting plasmas are essentially thermal but the electron distribution functions are non-Maxwellian.
Liang, Liang; Stone, Rivka C; Stojadinovic, Olivera; Ramirez, Horacio; Pastar, Irena; Maione, Anna G; Smith, Avi; Yanez, Vanessa; Veves, Aristides; Kirsner, Robert S; Garlick, Jonathan A; Tomic-Canic, Marjana
2016-11-01
Diabetic foot ulcers (DFUs) are one of the major complications of diabetes. Its molecular pathology remains poorly understood, impeding the development of effective treatments. Although it has been established that multiple cell types, including fibroblasts, keratinocytes, macrophages, and endothelial cells, all contribute to inhibition of healing, less is known regarding contributions of individual cell type. Thus, we generated primary fibroblasts from nonhealing DFUs and evaluated their cellular and molecular properties in comparison to nondiabetic foot fibroblasts (NFFs). Specifically, we analyzed both micro-RNA and mRNA expression profiles of primary DFU fibroblasts. Paired genomic analyses identified a total of 331 reciprocal miRNA-mRNA pairs including 21 miRNAs (FC > 2.0) along with 239 predicted target genes (FC > 1.5) that are significantly and differentially expressed. Of these, we focused on three miRNAs (miR-21-5p, miR-34a-5p, miR-145-5p) that were induced in DFU fibroblasts as most differentially regulated. The involvement of these microRNAs in wound healing was investigated by testing the expression of their downstream targets as well as by quantifying cellular behaviors in prospectively collected and generated cell lines from 15 patients (seven DFUF and eight NFF samples). We found large number of downstream targets of miR-21-5p, miR-34a-5p, miR-145-5p to be coordinately regulated in mRNA profiles, which was confirmed by quantitative real-time PCR. Pathway analysis on paired miRNA-mRNA profiles predicted inhibition of cell movement and cell proliferation, as well as activation of cell differentiation and senescence in DFU fibroblasts, which was confirmed by cellular assays. We concluded that induction of miR-21-5p, miR-34a-5p, miR-145-5p in DFU dermal fibroblasts plays an important role in impairing multiple cellular functions, thus contributing to overall inhibition of healing in DFUs.
Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms.
Dammeyer, Thorben; Frankenberg-Dinkel, Nicole
2008-10-01
Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.
NASA Astrophysics Data System (ADS)
Andoh, Yoshimichi; Oono, Kimiko; Okazaki, Susumu; Hatta, Ichiro
2012-04-01
Free energy profile of a pair of cholesterol molecules in a leaflet of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers in the liquid-crystalline phase has been calculated as a function of their lateral distance using a combination of NPT-constant atomistic molecular dynamics calculations (P = 1 atm and T = 310.15 K) and the thermodynamic integration method. The calculated free energy clearly shows that the two cholesterol molecules form a dimer separated by a distance of 1.0-1.5 nm in POPC bilayers. Well depth of the free energy profile is about 3.5 kJ/mol, which is comparable to the thermal energy kBT at 310.15 K. This indicates that the aggregation of cholesterol molecules in the bilayers depends on the temperature as well as the concentration of the system. The free energy function obtained here may be used as a reference when coarse grained potential model is investigated for this two-component system. Local structure of POPC molecules around two cholesterol molecules has also been investigated.
Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/
NASA Technical Reports Server (NTRS)
Singh, N.; Raitt, W. J.; Yasuhara, F.
1982-01-01
Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.
The U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) employs the cumulative distribution function (cdf) to measure the status of quantitative variables for resources of interest. The ability to compare cdf's for a resource from, say,...
NASA Technical Reports Server (NTRS)
Lapenta, C. C.
1992-01-01
The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.
Energy distribution functions of kilovolt ions in a modified Penning discharge
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.
Shagayda, Andrey
2012-08-15
Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes-with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.
SEP distribution function and probability of the maximum magnitudes of events
NASA Astrophysics Data System (ADS)
Nymmik, Rikho
Based on the current knowledge the magnitude of specific anticipated SEP event is a random variable taken from large array of expected values. This set of expected values can be determined in terms of the distribution function. Form of the distribution function of SЕР events is usually determined from the data of continuous satellite measurement. Sometimes but without much effect indirect evidences, such as isotopes of samples of lunar rocks, data on the density of radioactive isotopes in the annual rings of ancient trees are used to determine the SEPE distribution function. The most successful was the attempt to describe the distribution function for 21-23 solar cycles by power-low function with exponential cutoff in the area of large events. Significant addition to the available information are relatively new data (McCracken et al., JGR 106(A10), 21585-21498, 2001) on the radioactive isotopes in the Greenland ice, which gives the additional information about the extreme SEP events since 1561. However, the lack of information about full set of events (mainly on small events) does not allow to use these data directly to determine the distribution function. However, using correlation between the number of sunspots and the corresponding mean number of SEP events, one can determine the distribution function since 1561 based on Greenland data. Surprisingly, the parameter values of this function coincide with those calculated from satellite data. Analysis of the obtained parameters of the distribution function shows that the maximum fluence of protons with energies above 30 MeV does not exceed 1011 cm-2 protons with about 10-11 midget probability.
The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2016-11-01
The determination of the luminosity function (LF) in gamma ray bursts (GRBs) depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here we analyse three cosmologies: the standard cosmology, the plasma cosmology, and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law, and secondly by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.
Size distribution of function-based human gene sets and the split-merge model.
Li, Wentian; Fontanelli, Oscar; Miramontes, Pedro
2016-08-01
The sizes of paralogues-gene families produced by ancestral duplication-are known to follow a power-law distribution. We examine the size distribution of gene sets or gene families where genes are grouped by a similar function or share a common property. The size distribution of Human Gene Nomenclature Committee (HGNC) gene sets deviate from the power-law, and can be fitted much better by a beta rank function. We propose a simple mechanism to break a power-law size distribution by a combination of splitting and merging operations. The largest gene sets are split into two to account for the subfunctional categories, and a small proportion of other gene sets are merged into larger sets as new common themes might be realized. These operations are not uncommon for a curator of gene sets. A simulation shows that iteration of these operations changes the size distribution of Ensembl paralogues and could lead to a distribution fitted by a rank beta function. We further illustrate application of beta rank function by the example of distribution of transcription factors and drug target genes among HGNC gene families.
Size distribution of function-based human gene sets and the split–merge model
Fontanelli, Oscar; Miramontes, Pedro
2016-01-01
The sizes of paralogues—gene families produced by ancestral duplication—are known to follow a power-law distribution. We examine the size distribution of gene sets or gene families where genes are grouped by a similar function or share a common property. The size distribution of Human Gene Nomenclature Committee (HGNC) gene sets deviate from the power-law, and can be fitted much better by a beta rank function. We propose a simple mechanism to break a power-law size distribution by a combination of splitting and merging operations. The largest gene sets are split into two to account for the subfunctional categories, and a small proportion of other gene sets are merged into larger sets as new common themes might be realized. These operations are not uncommon for a curator of gene sets. A simulation shows that iteration of these operations changes the size distribution of Ensembl paralogues and could lead to a distribution fitted by a rank beta function. We further illustrate application of beta rank function by the example of distribution of transcription factors and drug target genes among HGNC gene families. PMID:27853602
NASA Astrophysics Data System (ADS)
Bacskay, George B.
1980-05-01
The vertical valence ionization potentials of Ne, H 2O and N 2 have been calculated by Rayleigh-Schrödinger perturbation and configuration interaction methods. The calculations were carried out in the space of a single determinant reference state and its single and double excitations, using both the N and N - 1 electron Hartree-Fock orbitals as hole/particle bases. The perturbation series for the ion state were generally found to converge fairly slowly in the N electron Hartree-Fock (frozen) orbital basis, but considerably faster in the appropriate N - 1 electron RHF (relaxed) orbital basis. In certain cases, however, due to near-degeneracy effects, partial, and even complete, breakdown of the (non-degenerate) perturbation treatment was observed. The effects of higher excitations on the ionization potentials were estimated by the approximate coupled pair techniques CPA' and CPA″ as well as by a Davidson type correction formula. The final, fully converged CPA″ results are generally in good agreement with those from PNO-CEPA and Green's function calculations as well as experiment.
Hasan, Tauheed; Ali, Mashook; Saluja, Daman; Singh, Laishram Rajendrakumar
2015-04-01
Human Sin3B (hSin3B), a transcription regulator, is a scaffold protein that binds to different transcription factors and regulates transcription. It consists of six conserved domains that include four paired amphipathic helices (PAH 1-4), histone deacetylase interaction domain (HID), and highly conserved region (HCR). Interestingly, the PAH domains of hSin3B are significantly homologous to each other, yet each one interacts with a specific set of unique transcription factors. Though various partners interacting with hSin3B PAH domains have been characterized, there is no structural information available on the individual PAH domains of hSin3B. Here we characterize the structure and stability of different PAH domains of hSin3B at both nuclear and physiological pH values by using different optical probes. We found that the native state structure and stability of different PAH domains are different at nuclear pH where hSin3B performs its biological function. We also found that PAH2 and PAH3 behave differently at both nuclear and physiological pH in terms of native state structure and thermodynamic stability, while the structural identity of PAH1 remains unaltered at both pH values. The study indicates that the structural heterogeneity of different PAH domains might be responsible for having a unique set of interacting transcription factors.
Debieu, Marilyne; Huard-Chauveau, Carine; Genissel, Anne; Roux, Fabrice; Roby, Dominique
2016-05-01
Although quantitative disease resistance (QDR) is a durable and broad-spectrum form of resistance in plants, the identification of the genes underlying QDR is still in its infancy. RKS1 (Resistance related KinaSe1) has been reported recently to confer QDR in Arabidopsis thaliana to most but not all races of the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc). We therefore explored the genetic bases of QDR in A. thaliana to diverse races of X. campestris (Xc). A nested genome-wide association mapping approach was used to finely map the genomic regions associated with QDR to Xcc12824 (race 2) and XccCFBP6943 (race 6). To identify the gene(s) implicated in QDR, insertional mutants (T-DNA) were selected for the candidate genes and phenotyped in response to Xc. We identified two major QTLs that confer resistance specifically to Xcc12824 and XccCFBP6943. Although QDR to Xcc12824 is conferred by At5g22540 encoding for a protein of unknown function, QDR to XccCFBP6943 involves the well-known immune receptor pair RRS1/RPS4. In addition to RKS1, this study reveals that three genes are involved in resistance to Xc with strikingly different ranges of specificity, suggesting that QDR to Xc involves a complex network integrating multiple response pathways triggered by distinct pathogen molecular determinants.
NASA Technical Reports Server (NTRS)
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
NASA Technical Reports Server (NTRS)
Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2002-01-01
Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.
Note: On the Universality of Proximal Radial Distribution Functions of Proteins
Lin, Bin; Pettitt, Bernard M.
2011-03-10
Protein hydration is important to protein structure and function. Molecular distribution functions have been an invaluable tool to study protein hydration. Proximal radial distribution functions (pRDFs) have been postulated as being transferable across proteins based on evidence collected from two proteins [V. A. Makarov, B. K. Andrews, and B. M. Pettitt, Biopolymers 45(7), 469 (1998)]. Here we selected nine proteins with different sizes as well as different secondary topologies. We show that pRDFs are universal for proteins with compact structures. We further compare these pRDFs with those calculated from polyglycines that have no defined structures to consider the extent of the validity of this approach.
Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks.
Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj; Wiuf, Carsten
2015-09-01
We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potential of the stationary distribution of stochastically modeled complex balanced systems. We extend this result to general birth-death models and demonstrate via example that similar scaling limits can yield Lyapunov functions even for models that are not complex or detailed balanced, and may even have multiple equilibria.
NASA Astrophysics Data System (ADS)
Tarzimanov, A. A.; Klinov, A. V.; Malygin, A. V.; Nurgalieva, A. A.
2008-08-01
Integral equation theory was used to study the binary distribution functions of the excess properties of three-component Lennard-Jones mixtures. The results obtained for the behavior of the excess functions of caloric properties (internal energy, enthalpy, and isochoric heat capacity) are reported. The influence of the third component with various potential parameters on excess functions was studied. Calculations were performed for systems under super-and subcritical conditions with different sizes of molecules, σ1/σ2 = 1 4, and attraction energies between them, ɛ1/ɛ2 = 1 4. The results were compared with numerical experiment data to find that the approach used was fairly accurate
Richardson's pair diffusion and the stagnation point structure of turbulence.
Dávila, J; Vassilicos, J C
2003-10-03
DNS and laboratory experiments show that the spatial distribution of straining stagnation points in homogeneous isotropic 3D turbulence has a fractal structure with dimension D(s)=2. In kinematic simulations the exponent gamma in Richardson's law and the fractal dimension D(s) are related by gamma=6/D(s). The Richardson constant is found to be an increasing function of the number density of straining stagnation points in agreement with pair diffusion occurring in bursts when pairs meet such points in the flow.
NASA Astrophysics Data System (ADS)
Elsaghir, Ahmed; Shannon, Steve
2008-10-01
Electron energy distribution function (EEDF) extraction from Langmuir probe data is an ill-posed problem due to the integral relationship between electron current and EEDF with respect to probe voltage. Curve fitting solutions to extract this EEDF assume a specific type of distribution. Point by point extraction of the second derivative relationship uses a small fraction of the integrated data to extract the EEDF. Recently EEDF extraction techniques have been evaluated using regularized solutions to the integral problem.ootnotetextGuti'errez-Tapia and Flores-Llamas, Phys. Plasmas 11 5102 (2004) These techniques do not assume any mathematical representation of the EEDF and solve the integral problem for any function that best represents the EEDF. In this paper the electron current for arbitrary functions is derived assuming that the electron density is a sum of step functions representing such a function. This technique for EEDF extraction is validated by adding noise to numerically generated data and using a regularized least squares method to calculate the original function by solving for the individual step function contribution to the total electron current. The methodology, reconstruction, and comparison to current best-known methods will be presented.
NASA Astrophysics Data System (ADS)
Shukla, Manoj K.; Dubey, Madan; Zakar, Eugene; Namburu, Raju; Leszczynski, Jerzy
2010-08-01
A first-principles investigation of interaction of DNA base pairs on the outer surface of zigzag (7,0) single-walled carbon nanotube (CNT) was carried out at the M05-2X/6-31G(d) level of geometry optimization and BSSE corrected interaction energy calculation using the same theoretical level and the 6-311G(d,p), cc-pVDZ and cc-pVTZ basis sets. Study revealed that CNT forms complexes of similar strength with both base pairs. Electron density maps suggest that complexes are characterized by stacking interaction through coupling of π-charge clouds of base pairs and CNT. BSSE corrected interaction energies and density of states calculations indicated the weak nature of interaction between base pairs and CNT.
Zirnstein, E. J.; McComas, D. J. E-mail: dmccomas@swri.edu
2015-12-10
Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.
NASA Astrophysics Data System (ADS)
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Li, X.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Qin, Y.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration
2015-04-01
We present a measurement of the distribution of the variable ϕη* for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb-1 at √{s }=1.96 TeV . The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ϕη* probes the same physical effects as the Z /γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the ϕη* distributions for dilepton masses away from the Z →ℓ+ℓ- boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.
Lu, M F; Cheng, H T; Kern, M J; Potter, S S; Tran, B; Diekwisch, T G; Martin, J F
1999-02-01
The paired-related homeobox gene, prx-1, is expressed in the postmigratory cranial mesenchyme of all facial prominences and is required for the formation of proximal first arch derivatives. We introduced lacZ into the prx-1 locus to study the developmental fate of cells destined to express prx-1 in the prx-1 mutant background. lacZ was normally expressed in prx-1(neo); prx-1(lacZ )mutant craniofacial mesenchyme up until 11.5 d.p.c. At later time points, lacZ expression was lost from structures that are defective in the prx-1(neo) mutant mice. A related gene, prx-2, demonstrated overlapping expression with prx-1. To test the idea that prx-1 and prx-2 perform redundant functions, we generated prx-1(neo;)prx-2 compound mutant mice. Double mutant mice had novel phenotypes in which the rostral aspect of the mandible was defective, the mandibular incisor arrested as a single, bud-stage tooth germ and Meckel's cartilage was absent. Expression of two markers for tooth development, pax9 and patched, were downregulated. Using a transgene that marks a subset of prx-1-expressing cells in the craniofacial mesenchyme, we showed that cells within the hyoid arch take on the properties of the first branchial arch. These data suggest that prx-1 and prx-2 coordinately regulate gene expression in cells that contribute to the distal aspects of the mandibular arch mesenchyme and that prx-1 and prx-2 play a role in the maintenance of cell fate within the craniofacial mesenchyme.
Ouyang, Hanlin; Han, Huazhi; Roh, Jung H; Hemp, James; Hosler, Jonathan P; Gennis, Robert B
2012-09-18
The cbb(3)-type cytochrome c oxidases are members of the family of heme-copper proton pumping respiratory oxygen reductases. The structure of the cbb(3)-type oxidase from Pseudomonas stutzeri reveals that, in addition to the six redox-active metal centers (two b-type hemes, three c-type hemes, and Cu(B)), the enzyme also contains at least one Ca(2+). The calcium bridges two propionate carboxyls at the interface between the low-spin heme b and the active-site heme b(3) and, in addition, is ligated to a serine in subunit CcoO and by a glutamate in subunit CcoN. The glutamate that is ligated to Ca(2+) is one of a pair of glutamic acid residues that has previously been suggested to be part of a proton exit pathway for pumped protons. In this work, mutations of these glutamates are investigated in the cbb(3)-type oxidases from Vibrio cholerae and Rhodobacter sphaeroides. Metal analysis shows that each of these wild-type enzymes contains Ca(2+). Mutations of the glutamate expected to ligate the Ca(2+) in each of these enzymes (E126 in V. cholerae and E180 in R. sphaeroides) result in a loss of activity as well as a loss of Ca(2+). Mutations of the nearby glutamate (E129 in V. cholerae and E183 in R. sphaeroides) also resulted in a loss of oxidase activity and a loss of Ca(2+). It is concluded that the Ca(2+) is essential for assembly of the fully functional enzyme and that neither of the glutamates is likely to be part of a pathway for pumped protons within the cbb(3)-type oxygen reductases. A more likely role for these glutamates is the maintenance of the structural integrity of the active conformation of the enzyme.
Fitness function distributions over generalized search neighborhoods in the q-ary hypercube.
Sutton, Andrew M; Chicano, Francisco; Whitley, L Darrell
2013-01-01
The frequency distribution of a fitness function over regions of its domain is an important quantity for understanding the behavior of algorithms that employ randomized sampling to search the function. In general, exactly characterizing this distribution is at least as hard as the search problem, since the solutions typically live in the tails of the distribution. However, in some cases it is possible to efficiently retrieve a collection of quantities (called moments) that describe the distribution. In this paper, we consider functions of bounded epistasis that are defined over length-n strings from a finite alphabet of cardinality q. Many problems in combinatorial optimization can be specified as search problems over functions of this type. Employing Fourier analysis of functions over finite groups, we derive an efficient method for computing the exact moments of the frequency distribution of fitness functions over Hamming regions of the q-ary hypercube. We then use this approach to derive equations that describe the expected fitness of the offspring of any point undergoing uniform mutation. The results we present provide insight into the statistical structure of the fitness function for a number of combinatorial problems. For the graph coloring problem, we apply our results to efficiently compute the average number of constraint violations that lie within a certain number of steps of any coloring. We derive an expression for the mutation rate that maximizes the expected fitness of an offspring at each fitness level. We also apply the results to the slightly more complex frequency assignment problem, a relevant application in the domain of the telecommunications industry. As with the graph coloring problem, we provide formulas for the average value of the fitness function in Hamming regions around a solution and the expectation-optimal mutation rate.
Dust heating by Alfvén waves using non-Maxwellian distribution function
Zubia, K.; Shah, H. A.; Yoon, P. H.
2015-08-15
Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvén waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvén waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.
Construction Learning as a Function of Frequency, Frequency Distribution, and Function
ERIC Educational Resources Information Center
Ellis, Nick C.; Ferreira-Junior, Fernando
2009-01-01
This article considers effects of construction frequency, form, function, and prototypicality on second language acquisition (SLA). It investigates these relationships by focusing on naturalistic SLA in the European Science Foundation corpus (Perdue, 1993) of the English verb-argument constructions (VACs): verb locative (VL), verb object locative…
Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind
NASA Technical Reports Server (NTRS)
Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.
2006-01-01
We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 < 1. This anti-correlation and small polytropic gamma-values is interpreted in the context of the presence of highly non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.
NASA Astrophysics Data System (ADS)
Sarabia, José María; Jordá, Vanesa
2014-12-01
The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.
Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Bessho, N.; Chen, L.-J.; Hesse, M.
2016-01-01
We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.
Inverse Beta: Inverse cumulative density function (CDF) of a Beta distribution
NASA Astrophysics Data System (ADS)
Kipping, David
2014-03-01
The Beta Inverse code solves the inverse cumulative density function (CDF) of a Beta distribution, allowing one to sample from the Beta prior directly. The Beta distribution is well suited as a prior for the distribution of the orbital eccentricities of extrasolar planets; imposing a Beta prior on orbital eccentricity is valuable for any type of observation of an exoplanet where eccentricity can affect the model parameters (e.g. transits, radial velocities, microlensing, direct imaging). The Beta prior is an excellent description of the current, empirically determined distribution of orbital eccentricities and thus employing it naturally incorporates an observer’s prior experience of what types of orbits are probable or improbable. The default parameters in the code are currently set to the Beta distribution which best describes the entire population of exoplanets with well-constrained orbits.
NASA Astrophysics Data System (ADS)
de Vega, H. J.; Sanchez, N. G.
2016-05-01
We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) - Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.
NASA Astrophysics Data System (ADS)
Lobach, I.; Benediktovitch, A.
2016-07-01
The possibility of quantitative texture analysis by means of parametric x-ray radiation (PXR) from relativistic electrons with Lorentz factor γ > 50MeV in a polycrystal is considered theoretically. In the case of rather smooth orientation distribution function (ODF) and large detector (θD >> 1/γ) the universal relation between ODF and intensity distribution is presented. It is shown that if ODF is independent on one from Euler angles, then the texture is fully determined by angular intensity distribution. Application of the method to the simulated data shows the stability of the proposed algorithm.
Schroeder, J. W. R. Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.
2015-12-10
Wave propagation can be an accurate method for determining material properties. High frequency whistler mode waves (0.7 < ω/|Ω{sub ce}| < 1) in an overdense plasma (ω{sub pe} > |Ω{sub ce}|) are damped primarily by Doppler-shifted electron cyclotron resonance. A kinetic description of whistler mode propagation parallel to the background magnetic field shows that damping is proportional to the parallel electron distribution function. This property enables an experimental determination of the parallel electron distribution function using a measurement of whistler mode wave absorption. The whistler mode wave absorption diagnostic uses this technique on UCLA’s Large Plasma Device (LaPD) to measure the distribution of high energy electrons (5 − 10v{sub te}) with 0.1% precision. The accuracy is limited by systematic effects that need to be considered carefully. Ongoing research uses this diagnostic to investigate the effect of inertial Alfvén waves on the electron distribution function. Results presented here verify experimentally the linear effects of inertial Alfvén waves on the reduced electron distribution function, a necessary step before nonlinear physics can be tested. Ongoing experiments with the whistler mode wave absorption diagnostic are making progress toward the first direct detection of electrons nonlinearly accelerated by inertial Alfvén waves, a process believed to play an important role in auroral generation.
Diffusion-relaxation distribution functions of sedimentary rocks in different saturation states.
Hürlimann, M D; Flaum, M; Venkataramanan, L; Flaum, C; Freedman, R; Hirasaki, G J
2003-01-01
We present diffusion-relaxation distribution functions measured on four rock cores that were prepared in a succession of different saturation states of brine and crude oil. The measurements were performed in a static gradient field at a Larmor frequency of 1.76 MHz. The diffusion-relaxation distribution functions clearly separate the contributions from the two fluid phases. The results can be used to identify the wetting and non-wetting phase, to infer fluid properties of the phases, and to obtain additional information on the geometrical arrangement of the phases. We also observe effects due to restricted diffusion and susceptibility induced internal gradients.
NASA Technical Reports Server (NTRS)
Ivanenko, I. P.; Kanevsky, B. L.; Kirillov, A. A.; Linde, I. A.; Lyutov, Y. G.
1985-01-01
Monte Carlo simulated lateral distribution functions for electrons of EPC developing in lead, at superhigh energies (.1-1 PeV) for depths t or = 60 c.u. delta t=1t. c.u. are presented. The higher moment characteristics, i.e., variation, asymmetry, excess, are presented along with analytical solutions for the same characteristics at fixed observation level calculated to theory approximations A and B by using numerical inversion of the Laplace transformation. The conclusion is made of a complex, usually non-Gaussian shape of the function of the particle number distribution within a circle of given radius at fixed depth.
On the approximations of the distribution function of fusion alpha particles
Bilato, R. Brambilla, M.; Poli, E.
2014-10-15
The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...
2016-07-05
Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.; Scudder, J. D.
1981-01-01
A computer package which produces contour plots of the three dimensional electron distribution function measured by an electron spectrometer aboard ISEE-1 is described. Examples of the contour plots and an explanation of how to use the program, including the necessary computer code for running the program on the GSFC 360/91 computer is presented. The method by which the discrete measurements of the distribution function, given by points on the four dimensional surface are synthesized into a smooth surface in a three dimensional space which can be contoured is described. The velocity components are parallel and perpendicular to the magnetic field, respectively, in the proper frame of the electrons.
NASA Astrophysics Data System (ADS)
Homer, Rachel M.; Law, David W.; Molyneaux, Thomas C. K.
2015-07-01
In previous studies, a 1-D numerical predictive tool to simulate the salt induced corrosion of port assets in Australia has been developed into a 2-D and 3-D model based on current predictive probabilistic models. These studies use a probability distribution function based on the mean and standard deviation of the parameters for a structure incorporating surface chloride concentration, diffusion coefficient and cover. In this paper, this previous work is extended through an investigation of the distribution of actual cover by specified cover, element type and method of construction. Significant differences are found for the measured cover within structures, by method of construction, element type and specified cover. The data are not normally distributed and extreme values, usually low, are found in a number of locations. Elements cast insitu are less likely to meet the specified cover and the measured cover is more dispersed than those in elements which are precast. Individual probability distribution functions are available and are tested against the original function. Methods of combining results so that one distribution is available for a structure are formulated and evaluated. The ability to utilise the model for structures where no measurement have been taken is achieved by transposing results based on the specified cover.
Gasbarro, Andrew; Bazarov, Ivan
2014-03-01
In an effort to provide a computationally convenient approach to the characterization of partially coherent synchrotron radiation in phase space, a thorough discussion of the minimum dimensionality of the Wigner distribution function for rotationally symmetric sources of arbitrary degrees of coherence is presented. It is found that perfectly coherent, perfectly incoherent and partially coherent sources may all be characterized by a three-dimensional reduced Wigner distribution function, and some special cases are discussed in which a two-dimensional reduced Wigner distribution function suffices. An application of the dimension-reducing formalism to the case of partially coherent radiation from a planar undulator and a circularly symmetric electron beam as can be found in linear accelerators is demonstrated. The photon distribution is convolved over a realistic electron bunch, and how the beta function, emittance and energy spread of the bunch affect the total degree of coherence of the radiation is inspected. Finally the cross spectral density is diagonalized and the eigenmodes of the partially coherent radiation are recovered.
Grechin, S G; Nikolaev, P P; Sharandin, E A
2014-10-31
The functional possibilities of diode-side-pumped laser heads of solid-state lasers for forming inverse population distributions of different types are analysed. The invariants determining the relationship between the laser head parameters upon scaling are found. The results of comparative experimental studies are presented. (lasers)
Local Field Distribution Function and High Order Field Moments for metal-dielectric composites.
NASA Astrophysics Data System (ADS)
Genov, Dentcho A.; Sarychev, Andrey K.; Shalaev, Vladimir M.
2001-11-01
In a span of two decades the physics of nonlinear optics saw vast improvement in our understanding of optical properties for various inhomogeneous mediums. One such medium is the metal-dielectric composite, where the metal inclusions have a surface coverage fraction of p, while the rest (1-p) is assumed to represent the dielectric host. The computations carried out by using different theoretical models and the experimental data show existence of giant local electric and magnetic field fluctuations. In this presentation we will introduce a new developed 2D model that determines exactly the Local Field Distribution Function (LFDF) and all other relevant parameters of the film. The LFDF for small filling factors will be shown to transform from lognormal distribution into a single-dipole distribution function. We also will confirm the predictions of the scaling theory for the high field moments, which have a power law dependence on the loss factor.
Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-01-01
The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed. PMID:27446689
Andrés, Juan; Berski, Sławomir; Silvi, Bernard
2016-07-07
Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Zlotnick, Martin
1955-01-01
Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.
Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong
2013-09-09
In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.
Agúndez, José A. G.; Abad-Santos, Francisco; Aldea, Ana; Alonso-Navarro, Hortensia; Bernal, María L.; Borobia, Alberto M.; Borrás, Emma; Carballo, Miguel; Carvajal, Alfonso; García-Muñiz, José D.; Gervasini, Guillermo; Jiménez-Jiménez, Félix J.; Lucena, María I.; Martínez, Carmen; Sacristán, José A.; Salado, Inés; Sinués, Blanca; Vicente, Jorge; García-Martín, Elena
2012-01-01
The development of clinical practice recommendations or guidelines for the clinical use of biomarkers is an issue of great importance with regard to adverse drug reactions. The potential of pharmacogenomic biomarkers has been extensively investigated in recent years. However, several barriers to implementing the use of pharmacogenomics testing exist. We conducted a survey among members of the Spanish Societies of Pharmacology and Clinical Pharmacology to obtain information about the perception of such barriers and to compare the perceptions of participants about the relative importance of major gene/drug pairs. Of 11 potential barriers, the highest importance was attributed to lack of institutional support for pharmacogenomics testing, and to the issues related to the lack of guidelines. Of the proposed gene/drug pairs the highest importance was assigned to HLA-B/abacavir, UGT1A1/irinotecan, and CYP2D6/tamoxifen. In this perspective article, we compare the relative importance of 29 gene/drug pairs in the Spanish study with that of the same pairs in the American Society for Clinical Pharmacology and Therapeutics study, and we provide suggestions and areas of focus to develop a guide for clinical practice in pharmacogenomics testing. PMID:23233861
Role of the emission depth distribution function in quantification of electron spectroscopies
NASA Astrophysics Data System (ADS)
Jablonski, A.
2005-07-01
Quantitative analysis by Auger electron spectroscopy or photoelectron spectroscopy should be founded on a reliable relation between the measured signal intensity and composition of the surface region. In this relation, the signal electron elastic scattering effects are conveniently described by the emission depth distribution function (DDF). This function is the distribution of depths of origin for signal electrons emitted from a solid in a given direction without energy loss. Numerous parameters needed for quantification of electron spectroscopies can be derived from the DDF, e.g. the mean escape depth, the information depth, the effective attenuation length, etc. Generally, knowledge of the accurate DDF facilitates the procedure of including the elastic scattering effects into the formalism of quantitative analysis. The function called the partial escape distribution (PED) defining the probability of emission in a given direction after a certain number of inelastic interactions can be considered as a generalization of the DDF. The PED becomes equivalent to the DDF in the case of no inelastic interactions. A series of the PED functions is needed for quantification of the recorded spectra, especially when the elastic collisions need to be taken into account. It has been shown that the PED for any number of inelastic collisions can be derived from the DDF. Reliability of the obtained PED functions was checked for different analytical expressions for the DDF. It has been shown that the expression published by Tilinin et al. is the most accurate, and can be recommended for calculations of the PED.
Kim, Sung Kuk
2010-01-01
Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073
LETTER TO THE EDITOR: Exact energy distribution function in a time-dependent harmonic oscillator
NASA Astrophysics Data System (ADS)
Robnik, Marko; Romanovski, Valery G.; Stöckmann, Hans-Jürgen
2006-09-01
Following a recent work by Robnik and Romanovski (2006 J. Phys. A: Math. Gen. 39 L35, 2006 Open Syst. Inf. Dyn. 13 197-222), we derive an explicit formula for the universal distribution function of the final energies in a time-dependent 1D harmonic oscillator, whose functional form does not depend on the details of the frequency ω(t) and is closely related to the conservation of the adiabatic invariant. The normalized distribution function is P(x) = \\pi^{-1} (2\\mu^2 - x^2)^{-\\frac{1}{2}} , where x=E_1- \\skew3\\bar{E}_1 ; E1 is the final energy, \\skew3\\bar{E}_1 is its average value and µ2 is the variance of E1. \\skew3\\bar{E}_1 and µ2 can be calculated exactly using the WKB approach to all orders.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
Bivariate extreme value distributions
NASA Technical Reports Server (NTRS)
Elshamy, M.
1992-01-01
In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.
Schmid, Maximilian P.; Kirisits, Christian; Nesvacil, Nicole; Dimopoulos, Johannes C.A.; Berger, Daniel; Pötter, Richard
2011-01-01
Purpose It has been shown that a cumulative dose of ⩾87 Gy (EQD2) of external beam radiotherapy (EBRT) and image guided adaptive brachytherapy (IGABT) to the high risk clinical target volume (HR CTV) confer a local control rate >95% in locally advanced cervical cancer. This study examines the dose distribution within the HR CTV and intermediate (IR) CTV in patients with cervical cancer treated with definitive EBRT +/− concomitant chemotherapy and MRI-based IGABT between patients with local recurrence (LR) and patients in continuous complete local remission (CCLR). Material and methods From 1998 to 2010, 265 patients were treated with definitive EBRT +/− concomitant chemotherapy and IGABT. Twenty-four LRs were documented. For the statistical analysis all patients with LR were matched to patients in CCLR from our database according to the following criteria: FIGO stage, histology, lymph node status, tumour size and chemotherapy. DVH parameters (D50, D90, D98, D100) were reported for HR CTV and IR CTV. In order to report the minimum dose in the region where the recurrence occurred, the HR CTV/IR CTV were divided into four quadrants on transversal planes. The minimum dose at the HR CTV/IR CTV contour was measured (within the corresponding quadrant closest to the LR) in the treatment planning system. A mean minimum point dose (MPD) was calculated by averaging these measurements on four consecutive slices at the level of the recurrence for each of the 4 brachytherapy fractions. EQD2 doses were calculated by summation of all BT and external beam therapy fractions. For each matched patient in the control group the measurements were performed on the same quadrant and at the same level. Results Sufficient image data were available for 21 LRs. Eight central failures and 13 non-central failures were observed. The mean D90 and D100 for HR CTV were 77 Gy and 61 Gy for patients with LR and 95 Gy and 71 Gy for patients in CCLR, respectively (p < 0.01). The MPD for HR
Robust reconstruction of the rate constant distribution using the phase function method.
Zhou, Yajun; Zhuang, Xiaowei
2006-12-01
Many biological processes exhibit complex kinetic behavior that involves a nontrivial distribution of rate constants. Characterization of the rate constant distribution is often critical for mechanistic understandings of these processes. However, it is difficult to extract a rate constant distribution from data measured in the time domain. This is due to the numerical instability of the inverse Laplace transform, a long-standing mathematical challenge that has hampered data analysis in many disciplines. Here, we present a method that allows us to reconstruct the probability distribution of rate constants from decay data in the time domain, without fitting to specific trial functions or requiring any prior knowledge of the rate distribution. The robustness (numerical stability) of this reconstruction method is numerically illustrated by analyzing data with realistic noise and theoretically proved by the continuity of the transformations connecting the relevant function spaces. This development enhances our ability to characterize kinetics and dynamics of biological processes. We expect this method to be useful in a broad range of disciplines considering the prevalence of complex exponential decays in many experimental systems.
How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function
NASA Astrophysics Data System (ADS)
Manohar, Aneesh; Nason, Paolo; Salam, Gavin P.; Zanderighi, Giulia
2016-12-01
It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (e p ) scattering data, in effect viewing the e p →e +X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of e p data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.
Measurements of neutral and ion velocity distribution functions in a Hall thruster
NASA Astrophysics Data System (ADS)
Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny
2015-11-01
Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.
Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy
NASA Astrophysics Data System (ADS)
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco
2016-08-01
Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.
NASA Astrophysics Data System (ADS)
Di Troia, C.
2015-11-01
A class of parametric distribution functions was proposed in (Di Troia 2012 Plasma Phys. Control. Fusion 54 105017) as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection and Ion Cyclotron Heating scenarios. Moreover, those EDFs can be used to represent also nearly isotropic equilibria for Slowing-Down alpha particles and core thermal plasma populations. Such EDFs depend on constants of motion (COMs). In axisymmetric system with no equilibrium electric field, they depend on toroidal canonical momentum {{P}φ} , kinetic energy w and magnetic moment μ. In the present work, the same EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes’ Theorem. The bayesian argument is used to describe how the plasma is far from the prior probability distribution function (pdf), e.g. Maxwellian, based on the information obtained from magnetic moment and guiding center velocity pdf. Once the general functional form of the EDF has been settled, it is shown how to associate a modified Landau collision operator in the Fokker-Planck equation, to describe the system relaxation towards the proposed EDF.
2016-01-01
Although liver function test abnormality is frequently noted in children, there is no report about the distribution of the etiology and natural recovery time of the abnormal liver function. From March 2005 to February 2014, clinical information was retrospectively collected from 559 children who had abnormal liver function and were hospitalized or visited the outpatient clinic at the Jeju National University Hospital. The etiology of abnormal liver function was classified into groups and the natural recovery time of abnormal liver function was analyzed. The etiological groups of 559 patients included ‘nonspecific hepatitis’ in 42 (7.5%), ‘infection’ in 323 (57.8%), ‘rheumatologic and autoimmune’ in 66 (11.8%), ‘nonalcoholic fatty liver disease’ in 57 (10.2%), ‘anatomic’ in 12 (2.1%), ‘toxic’ in 13 (2.1%), ‘metabolic’ in 8 (1.4%), ‘hematologic’ in 7 (1.3%), ‘hemodynamic’ in 4 (0.7%), and ‘others’ in 27 (4.8%). Among the ‘infection’ group (57.8%), the ‘viral infection in the respiratory tract’ subgroup, which had 111 patients (19.8%), was the most common. The natural recovery time of the abnormal liver function was 27 days (median) in ‘nonspecific hepatitis’, 13 days (median) in ‘viral respiratory tract disease’, 16 days (median) in ‘viral gastroenteritis’, 42 days (median) in ‘viral febrile illness”, and 7 days (median) in “Kawasaki disease”. The information on the natural recovery time of abnormal liver function may help the physician to perform good clinical consultation for patients and their parents. PMID:27709857
NASA Astrophysics Data System (ADS)
Hanel, R.; Thurner, S.
2011-01-01
Motivated by the hope that the thermodynamical framework might be extended to strongly interacting statistical systems —complex systems in particular— a number of generalized entropies has been proposed in the past. So far the understanding of their fundamental origin has remained unclear. Here we address this question from first principles. We start by observing that many statistical systems fulfill a set of three general conditions (Shannon-Khinchin axioms, K1-K3). A fourth condition (separability) holds for non-interacting, uncorrelated or Markovian systems only (Shannon-Khinchin axiom, K4). If all four axioms hold the Shannon theorem provides a unique entropy, S=\\sum_i^W p_i \\ln p_i , i.e. Boltzmann-Gibbs entropy. Here we ask about the consequences of violating the 4th axiom while assuming the first three to hold. By a simple scaling argument we prove that under these conditions each statistical system is characterized by a unique pair of scaling exponents (c, d) in the large size limit. These exponents define equivalence classes for all interacting and non-interacting systems and parametrize a unique entropy, S_{c,d}\\propto \\sum_i ^W \\Gamma(d+1, 1- c \\ln p_i) , where Γ(a,b) is the incomplete Gamma function. It covers all systems respecting K1-K3. A series of known entropies can be classified in terms of these equivalence classes. Corresponding distribution functions are special forms of Lambert-{\\cal W} exponentials containing —as special cases— Boltzmann, stretched exponential and Tsallis distributions (power laws) —all widely abundant in Nature. In the derivation we assume S=\\sum_i g(p_i) , with g some function, however more general entropic forms can be classified along the same lines. This is to our knowledge the first ab initio justification for generalized entropies. We discuss a physical example displaying two sets of scaling exponents depending on the external parameters.
Schlickeiser, R.; Krakau, S.; Supsar, M. E-mail: steffen.krakau@rub.de
2013-11-01
The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10{sup –4}. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.
Pair extended coupled cluster doubles
Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.
2015-06-07
The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.
Analysis of electron energy distribution function in the Linac4 H{sup −} source
Mochizuki, S. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.
2016-02-15
To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H{sup −} negative ion production by reducing the gas pressure.
Analysis of electron energy distribution function in the Linac4 H- source
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Mattei, S.; Nishida, K.; Hatayama, A.; Lettry, J.
2016-02-01
To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H- negative ion production by reducing the gas pressure.
Shkilev, V. P.
2012-01-15
Based on the random-trap model and using the mean-field approximation, we derive an equation that allows the distribution of a functional of the trajectory of a particle making random walks over inhomogeneous-lattice site to be calculated. The derived equation is a generalization of the Feynman-Kac equation to an inhomogeneous medium. We also derive a backward equation in which not the final position of the particle but its position at the initial time is used as an independent variable. As an example of applying the derived equations, we consider the one-dimensional problem of calculating the first-passage time distribution. We show that the average first-passage times for homogeneous and inhomogeneous media with identical diffusion coefficients coincide, but the variance of the distribution for an inhomogeneous medium can be many times larger than that for a homogeneous one.
Analysis of electron energy distribution function in the Linac4 H⁻ source.
Mochizuki, S; Mattei, S; Nishida, K; Hatayama, A; Lettry, J
2016-02-01
To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H(-) negative ion production by reducing the gas pressure.
NASA Astrophysics Data System (ADS)
Sohn, Kee-Sun; Lee, Sunghak; Baik, Sunggi
1995-05-01
In order to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina, an analytical model has been proposed based on the relationship between bridging stress and crack opening displacement. The crack opening displacement was measured using an in situ SEM fracture method, and then used for a fitting procedure to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation, and that the grain size distribution was closely related to the bridging stress. Thus, the current model explained well the correlation between the bridging stress distribution and the local-fracture-controlling microstructural parameter to interpret the microfracture mechanism, including the R-curve behavior.
Theiler, James P
2009-01-01
Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric
1999-01-01
We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The
Estimation of non-negative ODFs using the eigenvalue distribution of spherical functions.
Schwab, Evan; Afsari, Bijan; Vidal, René
2012-01-01
Current methods in high angular resolution diffusion imaging (HARDI) estimate the probability density function of water diffusion as a continuous-valued orientation distribution function (ODF) on the sphere. However, such methods could produce an ODF with negative values, because they enforce non-negativity only at finitely many directions. In this paper, we propose to enforce non-negativity on the continuous domain by enforcing the positive semi-definiteness of Toeplitz-like matrices constructed from the spherical harmonic representation of the ODF. We study the distribution of the eigenvalues of these matrices and use it to derive an iterative semi-definite program that enforces non-negativity on the continuous domain. We illustrate the performance of our method and compare it to the state-of-the-art with experiments on synthetic and real data.
CDFTBL: A statistical program for generating cumulative distribution functions from data
Eslinger, P.W. )
1991-06-01
This document describes the theory underlying the CDFTBL code and gives details for using the code. The CDFTBL code provides an automated tool for generating a statistical cumulative distribution function that describes a set of field data. The cumulative distribution function is written in the form of a table of probabilities, which can be used in a Monte Carlo computer code. A a specific application, CDFTBL can be used to analyze field data collected for parameters required by the PORMC computer code. Section 2.0 discusses the mathematical basis of the code. Section 3.0 discusses the code structure. Section 4.0 describes the free-format input command language, while Section 5.0 describes in detail the commands to run the program. Section 6.0 provides example program runs, and Section 7.0 provides references. The Appendix provides a program source listing. 11 refs., 2 figs., 19 tabs.
Zhang Fengkui; Wu Xiande; Ding Yongjie; Li Hong; Yu Daren
2011-10-15
In Hall thrusters, the electron velocity distribution function is not only depleted at high energies, but also strongly anisotropic. With these electrons interacting with the channel wall, the sheath will be changed in its dynamic characteristics. In the present letter, a two dimensional particle-in-cell code is used to simulate these effects in a collisionless plasma slab. The simulated results indicate that the sheath changes from steady regime to temporal oscillation regime when the electron velocity distribution function alters from isotropy to anisotropy. Moreover, the temporal oscillation sheath formed by the anisotropic electrons has a much greater oscillating amplitude and a much smaller average potential drop than that formed by the isotropic electrons has. The anisotropic electrons are also found to lower the critical value of electron temperature needed for the appearance of the spatial oscillation sheath.
The time-varying electron energy distribution function in the plume of a Hall thruster
NASA Astrophysics Data System (ADS)
Dannenmayer, K.; Mazouffre, S.; Kudrna, P.; Tichý, M.
2014-12-01
Time-resolved Langmuir probe measurements have been performed in the plume of the 1.5 kW class PPS®1350-ML Hall thruster. The time-dependent electron energy distribution function (EEDF) has been inferred from the probe current-voltage characteristic curves obtained after active stabilization of the discharge. The distribution function changes in the course of time at the breathing oscillation frequency (13.8 kHz). The EEDF is Maxwellian with a depleted tail above the xenon ionization energy whatever the location and the time. The electron density and temperature computed from the EEDF also oscillate at the breathing mode frequency. Experimental outcomes indicate the existence of a low-frequency plasma wave that propagates axially. The wave front speed (2700 m s-1) was found to be compatible with the ion acoustic speed (2300 m s-1).
NASA Astrophysics Data System (ADS)
Kusina, A.; Stavreva, T.; Berge, S.; Olness, F. I.; Schienbein, I.; Kovařík, K.; Ježo, T.; Yu, J. Y.; Park, K.
2012-05-01
Global analyses of parton distribution functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark parton distribution function has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.
Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.
2010-09-15
The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)
Pathi, B.; Kinsey, S. T.; Howdeshell, M. E.; Priester, C.; McNeill, R. S.; Locke, B. R.
2012-01-01
SUMMARY Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O2 concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the
Distribution and Other Properties of Zeros of Mittag-Leffler Functions
NASA Astrophysics Data System (ADS)
Hanneken, John W.; Narahari Achar, B. N.; Puzio, Raymond
2005-03-01
The zeros of the Mittag-Leffler function play a significant role in the solutions of dynamic problems in fractional calculus. For example see the book Fractional Differential Equations by Podlubny, or for a specific application see the fractional oscillator by Achar et. al. Physica A297 (2001) 361-367; A309 (2002) 275-288; A339 (2204) 311-319. Very little, however, is known about these zeros. A summary of the available information about the zeros of Mittag-Leffler functions will be given and new results pertaining to their distribution will be presented.
Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function
NASA Astrophysics Data System (ADS)
Summers, Danny; Xue, Song; Thorne, Richard M.
1994-06-01
Expressions are derived for the elements of the dielectric tensor for linear waves propagating at an arbitrary angle to a uniform magnetic field in a fully hot plasma whose constituent particle species σ are modeled by generalized Lorentzian distribution functions. The expressions involve readily computable single integrals whose integrands involve only elementary functions, Bessel functions, and modified plasma dispersion functions, the latter being available in the form of finite algebraic series. Analytical forms for the integrals are derived in the limits λ→0 and λ→∞, where λ=(k⊥ρLσ)2/2, with k⊥ the component of wave vector perpendicular to the ambient magnetic field, and ρLσ the Larmor radius for the particle species σ. Consideration is given to the important limits of wave propagation parallel and perpendicular to the ambient magnetic field, and also to the cold plasma limit. Since most space plasmas are well modeled by generalized Lorentzian particle distribution functions, the results obtained in this paper provide a powerful tool for analyzing kinetic (micro-) instabilities in space plasmas in a very general context, limited only by the assumptions of linear plasma theory.
Corradini, M G; Normand, M D; Nussinovitch, A; Horowitz, J; Peleg, M
2001-05-01
Industrial microbial count records usually form an irregular fluctuating time series. If the series is truly random or weakly autocorrelated, the fluctuations can be considered as the outcome of the interplay of numerous factors that promote or inhibit growth. These factors usually balance each other, although not perfectly, hence, the random fluctuations. If conditions are unchanged, then at least in principle the probability that they will produce a coherent effect, i.e., an unusually high (or low) count of a given magnitude, can be calculated from the count distribution. This theory was tested with miscellaneous industrial records (e.g., standard plate count, coliforms, yeasts) of various food products, including a dairy-based snack, frozen foods, and raw milk, using the normal, log normal, Laplace, log Laplace, Weibull, extreme value, beta, and log beta distribution functions. Comparing predicted frequencies of counts exceeding selected levels with those actually observed in fresh data assessed their efficacy. No single distribution was found to be inherently or consistently superior. It is, therefore, suggested that, when the probability of an excessive count is estimated, several distribution functions be used simultaneously and a conservative value be used as the measure of the risk.
NASA Astrophysics Data System (ADS)
Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia
2016-10-01
Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin i, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin i data directly without the need for any convergence criteria.