Science.gov

Sample records for pair distribution functions

  1. Extracting differential pair distribution functions using MIXSCAT

    SciTech Connect

    Wurden, Caroline; Page, Katharine; Llobet, Anna; White, Claire E.; Proffen, Thomas

    2010-08-27

    Differently weighted experimental scattering data have been used to extract partial or differential structure factors or pair distribution functions in studying many materials. However, this is not done routinely partly because of the lack of user-friendly software. This paper presents MIXSCAT, a new member of the DISCUS program package. MIXSCAT allows one to combine neutron and X-ray pair distribution functions and extract their respective differential functions.

  2. Pair distribution function and structure factor of spherical particles

    SciTech Connect

    Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.

    2006-03-01

    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.

  3. A pair distribution function analysis of zeolite beta

    SciTech Connect

    Martinez-Inesta, M.M.; Peral, I.; Proffen, T.; Lobo, R.F.

    2010-07-20

    We describe the structural refinement of zeolite beta using the local structure obtained with the pair distribution function (PDF) method. A high quality synchrotron and two neutron scattering datasets were obtained on two samples of siliceous zeolite beta. The two polytypes that make up zeolite beta have the same local structure; therefore refinement of the two structures was possible using the same experimental PDF. Optimized structures of polytypes A and B were used to refine the structures using the program PDFfit. Refinements using only the synchrotron or the neutron datasets gave results inconsistent with each other but a cyclic refinement with the two datasets gave a good fit to both PDFs. The results show that the PDF method is a viable technique to analyze the local structure of disordered zeolites. However, given the complexity of most zeolite frameworks, the use of both X-ray and neutron radiation and high-resolution patterns is essential to obtain reliable refinements.

  4. Algorithm for systematic peak extraction from atomic pair distribution functions.

    PubMed

    Granlund, L; Billinge, S J L; Duxbury, P M

    2015-07-01

    The study presents an algorithm, ParSCAPE, for model-independent extraction of peak positions and intensities from atomic pair distribution functions (PDFs). It provides a statistically motivated method for determining parsimony of extracted peak models using the information-theoretic Akaike information criterion (AIC) applied to plausible models generated within an iterative framework of clustering and chi-square fitting. All parameters the algorithm uses are in principle known or estimable from experiment, though careful judgment must be applied when estimating the PDF baseline of nanostructured materials. ParSCAPE has been implemented in the Python program SrMise. Algorithm performance is examined on synchrotron X-ray PDFs of 16 bulk crystals and two nanoparticles using AIC-based multimodeling techniques, and particularly the impact of experimental uncertainties on extracted models. It is quite resistant to misidentification of spurious peaks coming from noise and termination effects, even in the absence of a constraining structural model. Structure solution from automatically extracted peaks using the Liga algorithm is demonstrated for 14 crystals and for C60. Special attention is given to the information content of the PDF, theory and practice of the AIC, as well as the algorithm's limitations. PMID:26131896

  5. Temperature effects on atomic pair distribution functions of melts

    SciTech Connect

    Ding, J. Ma, E.; Xu, M.; Guan, P. F.; Deng, S. W.; Cheng, Y. Q.

    2014-02-14

    Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds.

  6. Pair distribution function study on compression of liquid gallium

    SciTech Connect

    Luo, Shengnian; Yu, Tony; Chen, Jiuhua; Ehm, Lars; Guo, Quanzhong; Parise, John

    2008-01-01

    Integrating a hydrothermal diamond anvil cell (HDAC) and focused high energy x-ray beam from the superconductor wiggler X17 beamline at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL), we have successfully collected high quality total x-ray scattering data of liquid gallium. The experiments were conducted at a pressure range from 0.1GPa up to 2GPa at ambient temperature. For the first time, pair distribution functions (PDF) for liquid gallium at high pressure were derived up to 10 {angstrom}. Liquid gallium structure has been studied by x-ray absorption (Di Cicco & Filipponi, 1993; Wei et al., 2000; Comez et al., 2001), x-ray diffraction studies (Waseda & Suzuki, 1972), and molecular dynamics simulation (Tsay, 1993; Hui et al., 2002). These previous reports have focused on the 1st nearest neighbor structure, which tells us little about the atomic arrangement outside the first shell in non- crystalline materials. This study focuses on the structure of liquid gallium and the atomic structure change due to compression. The PDF results show that the observed atomic distance of the first nearest neighbor at 2.78 {angstrom} (first G(r) peak and its shoulder at the higher Q position) is consistent with previous studies by x-ray absorption (2.76 {angstrom}, Comez et al., 2001). We have also observed that the first nearest neighbor peak position did not change with pressure increasing, while the farther peaks positions in the intermediate distance range decreased with pressure increasing. This leads to a conclusion of the possible existence of 'locally rigid units' in the liquid. With the addition of reverse Monte Carlo modeling, we have observed that the coordination number in the local rigit unit increases with pressure. The bulk modulus of liquid gallium derived from the volume compression curve at ambient temperature (300K) is 12.1(6) GPa.

  7. Uncovering the intrinsic geometry from the atomic pair distribution function of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Ming; de Graff, Adam M. R.; Thorpe, M. F.; Wells, Stephen A.; Sartbaeva, Asel

    2009-07-01

    Atomic pair distribution functions are useful because they have an easy intuitive interpretation and can be obtained both experimentally and from computer-generated structure models. For bulk materials, atomic pair distribution functions are solely determined by the intrinsic atomic geometry, i.e., how atoms are positioned with respect to one another. For a nanomaterial, however, the atomic pair distribution function also depends on the shape and size of the nanomaterial. A modified form of the radial distribution function is discussed that decouples shape and size effects from intrinsic effects so that nanomaterials of any shape and size, sharing a common atomic geometry, map onto a universal curve, by using a form factor. Mapping onto this universal curve allows differences in the intrinsic atomic geometry of nanomaterials of various shapes and sizes to be directly compared. This approach is demonstrated on nanoscale amorphous and crystalline silica models. It is shown how form factors can be computed for arbitrary shapes and this is illustrated for tetrahedral nanoparticles of vitreous silica.

  8. Thermal expansion of a glassy alloy studied using a real-space pair distribution function

    SciTech Connect

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Yavari, Alain R.; Vaughan, Gavin

    2006-03-20

    Thermal expansion of a glassy Cu{sub 55}Hf{sub 25}Ti{sub 15}Pd{sub 5} alloy studied by using reciprocal space functions is verified using a real-space pair distribution function. The experimental results obtained by real-time diffraction during heating in a synchrotron beam and their Fourier transformation processing to derive radial distribution functions indicate that both reciprocal and real-space distribution functions give good agreement in the calculation of thermal expansion data. In addition to providing structural information, these findings indicate that the change in the average atomic nearest-neighbor distance evaluated from the variation of the position of the main broad diffraction maximum can provide good thermal expansion data for metallic glasses.

  9. Computation of pair distribution functions and three-dimensional densities with a reduced variance principle

    NASA Astrophysics Data System (ADS)

    Borgis, Daniel; Assaraf, Roland; Rotenberg, Benjamin; Vuilleumier, Rodolphe

    2013-12-01

    No fancy statistical objects here, we go back to the computation of one of the most basic and fundamental quantities in the statistical mechanics of fluids, namely the pair distribution functions. Those functions are usually computed in molecular simulations by using histogram techniques. We show here that they can be estimated using a global information on the instantaneous forces acting on the particles, and that this leads to a reduced variance compared to the standard histogram estimators. The technique is extended successfully to the computation of three-dimensional solvent densities around tagged molecular solutes, quantities that are noisy and very long to converge, using histograms.

  10. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis

    SciTech Connect

    Billinge, S.J.L.; Thorpe, M.F.

    2002-06-24

    We have been taking advantage of recent experimental developments, which involve utilizing diffraction data from x-rays or neutrons out to very large wave-vectors, to obtain a detailed structural characterization of semiconductor alloys. This approach allows an accurate Pair Distribution Function (PDF) to be obtained to 20A and beyond and reveals the local structure of the alloy directly. These data can be modeled explicitly to learn about local correlations and short-range order in materials. We are combining theory, modeling and experiments to study a range of materials from semiconductors to thermoelectrics and proton conductors.

  11. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  12. Quantitative Nanostructure Characterization Using Atomic Pair Distribution Functions Obtained From Laboratory Electron Microscopes

    SciTech Connect

    Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.

    2012-05-01

    Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.

  13. Finite Size Effects on the Real-Space Pair Distribution Function of Nanoparticles

    SciTech Connect

    Gilbert, Benjamin

    2008-10-01

    The pair distribution function (PDF) method is a powerful approach for the analysis of the structure of nanoparticles. An important approximation used in nanoparticle PDF simulations is the incorporation of a form factor describing nanoparticle size and shape. The precise effect of the form factor on the PDF is determined by both particle shape and structure if these characteristics are both anisotropic and correlated. The correct incorporation of finite size effects is important for distinguishing and quantifying the structural consequences of small particle size in nanomaterials.

  14. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    SciTech Connect

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L.

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  15. Quantitative high-pressure pair distribution function analysis of nanocrystalline gold

    NASA Astrophysics Data System (ADS)

    Martin, C. David; Antao, Sytle M.; Chupas, Peter J.; Lee, Peter L.; Shastri, Sarvjit D.; Parise, John B.

    2005-02-01

    Using a diamond anvil cell with high-energy monochromatic x rays, we have studied the total scattering of nanocrystalline gold to 20Å-1 at pressures up to 10GPa in a hydrostatic alcohol pressure-medium. Through direct Fourier transformation of the structure function [S(Q)], pair distribution functions (PDFs) [G(r)] are calculated without Kaplow-type iterative corrections. Quantitative high-pressure PDF (QHP-PDF) analysis is performed via full-profile least-squares modeling and confirmed through comparison of Rietveld analysis of Bragg diffraction. The quality of the high pressure PDFs obtained demonstrates the integrity of our technique and suggests the feasibility of future QHP-PDF studies of liquids, disordered solids, and materials at phase transition under pressure.

  16. Novel trends in pair distribution function approaches on bulk systems with nanoscale heterogeneities

    DOE PAGES

    Emil S. Bozin; Billinge, Simon J. L.

    2016-07-29

    Novel materials for high performance applications increasingly exhibit structural order on the nanometer length scale; a domain where crystallography, the basis of Rietveld refinement, fails [1]. In such instances the total scattering approach, which treats Bragg and diffuse scattering on an equal basis, is a powerful approach. In recent years, the analysis of the total scattering data became an invaluable tool and the gold standard for studying nanocrystalline, nanoporous, and disordered crystalline materials. The data may be analyzed in reciprocal space directly, or Fourier transformed to the real-space atomic pair distribution function (PDF) and this intuitive function examined for localmore » structural information. Here we give a number of illustrative examples, for convenience picked from our own work, of recent developments and applications of total scattering and PDF analysis to novel complex materials. There are many other wonderful examples from the work of others.« less

  17. The total scattering atomic pair distribution function: New methodology for nanostructure analysis

    NASA Astrophysics Data System (ADS)

    Masadeh, Ahmad

    The conventional xray diffration (XRD) methods probe for the presence of long-range order (periodic structure) which are reflected in the Bragg peaks. Local structural deviations or disorder mainly affect the diffuse scattering intensity. In order to obtain structural information about both long-range order and local structure disorder, a technique that takes in account both Bragg and diffuse scattering need to be employed, such as the atomic pair distribution function (PDF) technique. This work introduces a PDF based methodology to quantitatively investigate nanostructure materials in general. The introduced methodology can be applied to extract quantitatively structural information about structure, crystallinity level, core/shell size, nanoparticle size, and inhomogeneous internal strain in the measured nanoparticles. This method is generally applicable to the characterization of the nano-scale solid, many of which may exhibit complex disorder and strain

  18. Organic-modified and biological silica studied by synchrotron x-ray pair distribution function measurements

    NASA Astrophysics Data System (ADS)

    Dimasi, Elaine; Jeffryes, Clayton; Rorrer, Gregory; Belton, David; Perry, Carole

    2007-03-01

    Biomineralization is a process by which living organisms create composite organic/mineral tissues which have hierarchical structures on micron and submicron scales. Fine control over mineral phase and morphology make biomineralization an important inspiration for materials science. It is often not appreciated that even amorphous minerals such as silica can exhibit hierarchical structure and special properties. One difficulty is that the molecular structures of amorphous phases can be hard to elucidate. We are exploring the use of pair distribution function measurements from synchrotron x-ray scattering to study silica structures, comparing both synthetic organic-modifed silicas and germanium-containing biosilica from diatoms. The raw scattering patterns show clear differences. We will discuss how these data can be scrutinized to determine what differences may be created at the molecular level by different silicification processes.

  19. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    SciTech Connect

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam-damage of the sample are possible to resolve.

  20. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve. PMID:25510245

  1. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  2. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    PubMed

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data. PMID:26697868

  3. Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study

    SciTech Connect

    Bell, J.; Sarin, P; Provis, J; Haggerty, R; Driemeyer, P; Chupas, P; van Deventer, J; Kriven, W

    2008-01-01

    The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer. The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000C resulted in formation of crystalline pollucite (CsAlSi{sub 2}O{sub 6}). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 {angstrom} range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 {angstrom} due to an additional amorphous phase present in the heated geopolymer. On the basis of PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of 9 {angstrom}, despite some differences. Our results suggest that hydrated Cs{sup +} ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds.

  4. X-ray Pair Distribution Function Analysis of Potassium Based Geopolymer

    SciTech Connect

    Bell, J.; Sarin, P; Driemeyer, P; Haggerty, R; Chupas, P; Kriven, W

    2008-01-01

    The atomic structure of geopolymers is often described as amorphous with a local structure that is equivalent to that of crystalline zeolites. However, this structural relationship has never been quantified beyond a first-nearest-neighbor bonding environment. In this study, the short to medium range (1 nm) structural order of metakaolin-based KAlSi{sub 2}O{sub 6}{center_dot}5.5H{sub 2}O geopolymer was quantified and compared to zeolitic tetragonal leucite (KAlSi2O6) using the X-ray atomic pair distribution function technique. Unheated KAlSi{sub 2}O{sub 6}{center_dot}5.5H{sub 2}O was found to be structurally similar to leucite out to a length of 8 {angstrom}, but had increased medium range disorder over the 4.5 {angstrom} < r < 8 {angstrom} range. On heating to >300 C, changes in the short to medium range structure were observed due to dehydration and removal of chemically bound water. Crystallization of leucite occurred in samples heated beyond 1050 C. Refinements of a leucite model against the PDF data for geopolymer heated to 1100 C for 24 h yielded a good fit.

  5. Pair distribution function X-ray analysis explains dissolution characteristics of felodipine melt extrusion products.

    PubMed

    Nollenberger, K; Gryczke, A; Meier, Ch; Dressman, J; Schmidt, M U; Brühne, S

    2009-04-01

    Solid solutions of felodipine with EUDRAGIT E and EUDRAGIT E/NE were shown to dramatically increase the dissolution rate of felodipine in biorelevant media. Of the two polymer systems, extrudates containing 5% EUDRAGIT NE showed a faster dissolution rate and less recrystallization (no precipitation within 2 h). Although differential scanning calorimetry (DSC) and conventional X-ray powder diffraction (XRPD) were able to verify the amorphous state of the drug after melt extrusion, it was not possible to differentiate the two extrudate compositions further with these methods. We then applied pair distribution function (PDF) analysis to investigate extrudates. It was possible to more closely characterize the solid state of the amorphous extrudates in terms of local structural order: PDF analysis revealed that addition of minor amounts of EUDRAGIT NE to the main component EUDRAGIT E during extrusion changed the local structure of EUDRAGIT E in a nonadditive way. We conclude that local ordering can be important to the release characteristics of extrudates, even when the components are present in the amorphous state.

  6. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    SciTech Connect

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; Schmidt, Martin U.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  7. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    DOE PAGES

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; Schmidt, Martin U.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may bemore » used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.« less

  8. Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN

    SciTech Connect

    Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.

    2016-01-01

    The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that (110) Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.

  9. Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titaniumzirconium phosphates

    SciTech Connect

    Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.

    2010-07-24

    Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti1-xZrx)(HPO4)2 • H2O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H3PO4 in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits.

  10. Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN

    DOE PAGES

    Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.

    2016-01-01

    The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separationmore » distances and the fact that (110) Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less

  11. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    PubMed

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  12. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  13. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example. PMID:23450172

  14. Pair distribution function analysis of La(Fe{sub 1−x}Ru{sub x})AsO compounds

    SciTech Connect

    Martinelli, A.; Palenzona, A.; Ferdeghini, C.; Mazzani, M.; Bonfa', P.; Allodi, G.

    2014-12-15

    The local structures of La(Fe{sub 1−x}Ru{sub x})AsO (0.00≤x≤0.80) compounds were investigated by means of pair distribution function analysis at room temperature; as a result, no phase separation or clustering takes place. Local distortions are no longer correlated beyond ∼15 Å for both pure and substituted samples, indicating that the presence of Ru atoms does not determine a notable variation in the length scale of the local distortion. Different types of short range correlation between Fe and Ru atoms do not produce significant changes in the pair distribution function. - Graphical abstract: Fe–As and Ru–As bond length distributions as obtained by pair distribution function analysis of La(Fe{sub 0.70}Ru{sub 0.30})AsO; As atoms (purple spheres) undergo a random shifting around their crystallographic positions (red spheres: Fe/Ru atoms). - Highlights: • No phase separation or clustering takes place in La(Fe{sub 1−x}Ru{sub x})AsO solid solutions. • Local distortions are no longer correlated beyond ∼15 Å. • Ru displays a tendency towards local enrichment in the transition metal sublattice.

  15. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    SciTech Connect

    Fry-Petit, A. M. E-mail: afry@fullerton.edu; Sheckelton, J. P.; McQueen, T. M. E-mail: afry@fullerton.edu; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn{sub 2}Mo{sub 3}O{sub 8}, this approach allows direct assignment of the constrained rotational mode of Mo{sub 3}O{sub 13} clusters and internal modes of MoO{sub 6} polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  16. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique.

    PubMed

    Fry-Petit, A M; Rebola, A F; Mourigal, M; Valentine, M; Drichko, N; Sheckelton, J P; Fennie, C J; McQueen, T M

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  17. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    NASA Astrophysics Data System (ADS)

    Fry-Petit, A. M.; Rebola, A. F.; Mourigal, M.; Valentine, M.; Drichko, N.; Sheckelton, J. P.; Fennie, C. J.; McQueen, T. M.

    2015-09-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  18. Relationship Between the Atomic Pair Distribution Function and Small-Angle Scattering: Implications for Modeling of Nanoparticles

    SciTech Connect

    Billinge, S.; Farrowa, C.L.

    2009-05-01

    The relationship between the equations used in the atomic pair distribution function (PDF) method and those commonly used in small-angle-scattering (SAS) analyses is explicitly shown. The origin of the sloping baseline, -4{pi}r{rho}{sub 0}, in PDFs of bulk materials is identified as originating from the SAS intensity that is neglected in PDF measurements. The nonlinear baseline in nanoparticles has the same origin, and contains information about the shape and size of the nanoparticles.

  19. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE PAGES

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  20. Local structure study of disordered crystalline materials with the atomic pair distribution function method

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun

    The employed experimental method in this Ph.D. dissertation research is the atomic pair distribution function (PDF) technique specializing in high real space resolution local structure determination. The PDF is obtained via Fourier transform from powder total scattering data including the important local structural information in the diffuse scattering intensities underneath, and in-between, the Bragg peaks. Having long been used to study liquids and amorphous materials, the PDF technique has been recently successfully applied to highly crystalline materials owing to the advances in modern X-ray and neutron sources and computing power. An integral part of this thesis work has been to make the PDF technique accessible to a wider scientific community. We have recently developed the rapid acquisition PDF (RA-PDF) method featuring high energy X-rays coupled with an image plate area detector, allowing three to four orders of magnitude decrease of data collection time. Correspondingly in software development, I have written a complete X-ray data correction program PDFgetX2 (user friendly with GUI, 32,000+ lines). Those developments sweep away many barriers to the wide-spread application of the PDF technique in complex materials. The RA-PDF development also opens up new fields of research such as time-resolved studies, pump-probe measurements and so on, where the PDF analysis can provide unique insights. Two examples of the RA-PDF applications are described: the distorted T12 square nets in the new binary antimonide Ti2Sb and in-situ chemical reduction of CuO to Cu. The most intellectually enriching has been the local structure studies of the colossal magneto-resistive (CMR) manganites with intrinsic inhomogeneities. The strong coupling between electron, spin, orbital, and lattice degrees of freedom result in extremely rich and interesting phase diagrams. We have carried out careful PDF analysis of neutron powder diffraction data to study the local MnO6 octahedral

  1. Nyquist-Shannon sampling theorem applied to refinements of the atomic pair distribution function

    SciTech Connect

    Farrow, Christopher L.; Shaw, Margaret; Kim, Hyunjeong; Juhás, Pavol; Billinge, Simon J.L.

    2011-12-07

    We have systematically studied the optimal real-space sampling of atomic pair distribution (PDF) data by comparing refinement results from oversampled and resampled data. Based on nickel and a complex perovskite system, we show that not only is the optimal sampling bounded by the Nyquist interval described by the Nyquist-Shannon (NS) sampling theorem as expected, but near this sampling interval, the data points in the PDF are minimally correlated, which results in more reliable uncertainty estimates in the modeling. Surprisingly, we find that PDF refinements quickly become unstable for data on coarser grids. Although the Nyquist-Shannon sampling theorem is well known, it has not been applied to PDF refinements, despite the growing popularity of the PDF method and its adoption in a growing number of communities. Here, we give explicit expressions for the application of NS sampling theorem to the PDF case, and establish through modeling that it is working in practice, which lays the groundwork for this to become more widely adopted. This has implications for the speed and complexity of possible refinements that can be carried out many times faster than currently with no loss of information, and it establishes a theoretically sound limit on the amount of information contained in the PDF that will prevent over-parametrization during modeling.

  2. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE PAGES

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine

    2015-01-01

    This study discusses the potential problems and currently available solutions in modeling powder-diffraction-based pair distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometre length scale, such as finite nanoparticles, nanoporous networks and nanoscale precipitates in bulk materials. The implications of an experimental finite minimumQvalue are reviewed by simulation, which also demonstrates the advantages of combining PDF data with small-angle scattering data. A simple Fortran90 code, DShaper, is introduced, which may be incorporated into PDF data fitting routines in order to approximate the so-called `shape function' for any atomistic model.

  3. Kinetic Equation for Two-Particle Distribution Function in Boltzmann Gas Mixtures and Equation of Motion for Quasiparticle Pairs

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.

    2011-05-01

    Pair collisions is the main interaction process in the Boltzmann gas dynamics. By making use of exactly the same physical assumptions as was used by Ludwig Boltzmann we write the kinetic equation for two-particle distribution function of molecules in the gas mixtures. Instead of the collision integral, there are the linear scattering operator and the chaos projector in the right part of this equation. Because the scattering operator is more simple then Boltzmann collision integral this equation opens new opportunities for mathematical description of the Boltzmann gas dynamics.

  4. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis.

    PubMed

    Du, Pingwu; Kokhan, Oleksandr; Chapman, Karena W; Chupas, Peter J; Tiede, David M

    2012-07-11

    Pair distribution function (PDF) analysis was applied for structural characterization of the cobalt oxide water-splitting catalyst films using high energy X-ray scattering. The catalyst was found to be composed of domains consistent with a cobalt dioxide lattice sheet structure, possibly containing a Co(4)O(4) cubane-type "defect". The analysis identifies the film to consist of domains composed of 13-14 cobalt atoms with distorted coordination geometries that can be modeled by alteration in terminal oxygen atom positions at the domain edge. Phosphate is seen as a disordered component in the films. This work establishes an approach that can be applied to study the structure of in situ cobalt oxide water-splitting film under functional catalytic conditions.

  5. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    SciTech Connect

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.

    2015-09-04

    In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). In addition, we introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for any atomistic model.

  6. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE PAGES

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.

    2015-09-04

    In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). In addition, we introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for anymore » atomistic model.« less

  7. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    DOE PAGES

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less

  8. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis.

    PubMed

    Yang, Xiaohao; Masadeh, Ahmad S; McBride, James R; Božin, Emil S; Rosenthal, Sandra J; Billinge, Simon J L

    2013-06-14

    The atomic pair distribution function (PDF) analysis of X-ray powder diffraction data has been used to study the structure of small and ultra-small CdSe nanoparticles. A method is described that uses a wurtzite and zinc-blende mixed phase model to account for stacking faults in CdSe particles. The mixed-phase model successfully describes the structure of nanoparticles larger than 2 nm yielding a stacking fault density of about 30%. However, for ultrasmall nanoparticles smaller than 2 nm, the models cannot fit the experimental PDF showing that the structure is significantly modified from that of larger particles and the bulk. The observation of a significant change in the average structure at ultra-small size is likely to explain the unusual properties of the ultrasmall particles such as their white light emitting ability.

  9. Association constants and distribution functions for ion pairs in binary solvent mixtures: Application to a cyanine dye system

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Basilevsky, M. V.; Nikitina, E. A.

    2011-10-01

    The computations of the association constants Kass were performed at the microscopic level for the ion pair Cy+I- composed of the complex cyanine dye cation Cy+ coupled to the negative iodine counterion. The wide array of Kass values is arranged by a variation of the composition of the binary solvent mixtures toluene/dimethylsulfoxide with the accompanying change of the solvent polarity. The potentials of mean force (PMFs) are calculated for a set of interionic separations R in the Cy+I- by a methodology which combines the quantum-chemical techniques for the treatment of the electronic structure of the Cy+I- system with the recent dielectric continuum approach which accounts for the solvation effects. For a given solute/solvent system the probability function P(R), which describes the distribution of interionic separations, is constructed in terms of the PMFs and implemented for the evaluation of the Kass.

  10. Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis

    SciTech Connect

    Zhu, Mengqiang; Farrow, Christopher L.; Post, Jeffrey E.; Livi, Kenneth J.T.; Billinge, Simon J.L.; Ginder-Vogel, Matthew; Sparks, Donald L.

    2012-03-15

    Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), {delta}-MnO{sub 2}, polymeric MnO{sub 2} (PolyMnO{sub 2}) and a bacteriogenic Mn oxide (BioMnO{sub x}), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO{sub 6} layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO{sub 6} layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnOx, {delta}-MnO{sub 2} and PolyMnO{sub 2}, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO{sub 2}, {delta}-MnO{sub 2} and BioMnO{sub x} are at the nanometer scale, comprising one to three MnO{sub 6} layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment.

  11. Structural Study of Biotic and Abiotic Poorly-crystalline Manganese Oxides Using Atomic Pair Distribution Function Analysis

    SciTech Connect

    Billinge S. J.; Zhu, M.; Farrow, C.L.; Post, J.E.; Livi, K.J.T.; Ginder-Vogel, M.; Sparks, D.L.

    2012-03-15

    Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), {delta}-MnO{sub 2}, polymeric MnO{sub 2} (PolyMnO{sub 2}) and a bacteriogenic Mn oxide (BioMnO{sub x}), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO{sub 6} layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO{sub 6} layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnO{sub x}, {delta}-MnO{sub 2} and PolyMnO{sub 2}, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO{sub 2}, {delta}-MnO{sub 2} and BioMnO{sub x} are at the nanometer scale, comprising one to three MnO{sub 6} layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment.

  12. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory. PMID:27232042

  13. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  14. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  15. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  16. Conditional pair distribution functions for ideal fluids. (Spanish Title: Funciones de distribución de pares condicionales para fluidos ideales)

    NASA Astrophysics Data System (ADS)

    Zurbriggen, E.; Rohrmann, R. D.

    The description of the microscopical spatial structure of a gas in equilibrium can be enriched by using the so-called space partition method. This thermo-statistical formalism makes use of a novel kind of conditional pair distribution function denoted g_{vv'}. The aim of the present work is to continue the analysis of the function g_{vv'} for gases composed of independent, randomly distributed particles.

  17. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    SciTech Connect

    Morandeau, Antoine E.; White, Claire E.

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  18. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin.

    PubMed

    White, Claire E; Provis, John L; Proffen, Thomas; Riley, Daniel P; van Deventer, Jannie S J

    2010-04-01

    Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale. PMID:20237714

  19. Pair distribution function analysis: The role of structural degrees of freedom in the high-pressure insulator to metal transition of VO2

    NASA Astrophysics Data System (ADS)

    Baldini, M.; Postorino, P.; Malavasi, L.; Marini, C.; Chapman, K. W.; Mao, Ho-kwang

    2016-06-01

    The evolution of the local structure of VO2 was investigated across the pressure-induced insulator to metal transition (IMT) by means of pair distribution function measurements. The pressure behavior of the V-V and V-O bond lengths have been determined. The data demonstrated that the pressure-driven IMT is not activated by the suppression of the Peierls-type distortion. A clear octahedra symmetrization is observed in the metallic phase, suggesting a link between structural degree of freedom and the metallization process.

  20. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    SciTech Connect

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine

    2015-01-01

    This study discusses the potential problems and currently available solutions in modeling powder-diffraction-based pair distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometre length scale, such as finite nanoparticles, nanoporous networks and nanoscale precipitates in bulk materials. The implications of an experimental finite minimumQvalue are reviewed by simulation, which also demonstrates the advantages of combining PDF data with small-angle scattering data. A simple Fortran90 code, DShaper, is introduced, which may be incorporated into PDF data fitting routines in order to approximate the so-called `shape function' for any atomistic model.

  1. The functional significance of density and distribution of outgrowths on co-opted contact pairs in biological arresting systems

    PubMed Central

    Filippov, Alexander E.; Popov, Valentin L.; Gorb, Stanislav N.

    2015-01-01

    Microstructures responsible for temporary arresting of contacting surfaces are widely distributed on surfaces in different organisms. Recent morphological studies show that these structures have different density of outgrowths and not ideal distribution pattern on both complementary parts of the contact. One can suggest that this difference is optimized by natural selection to get stronger mechanical arrest within the system. In this paper, we simulate such a system numerically, both in the frames of continuous contact and discrete dynamical models to prove this hypothesis and elucidate other aspects of optimization of such mechanical adhesive systems. PMID:25533090

  2. Manifestation of Negative Compressibility in Low-Density Electron Liquids: Anomaly in the Ion-Pair Distribution Function in Supercritical Fluid Rb

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami

    2006-03-01

    It is a well-known fact that the electronic compressibility κ diverges in the 3D electron gas as the density parameter rs approaches 5.25. A recent investigation clarifies that this divergence is due to the excitonic effect in the electron-hole pair excitation, in particular, to its zero-energy excitation [1]. For rs>5.25, κ becomes negative, leading to the negative static dielectric function ɛ(q,0) for at least small q owing to the compressibility sum rule. Then we can expect that two positive test charges do not repel but attract to each other in such a system. Keeping this situation in mind, we have calculated the ion-pair distribution function g(R) in the expanded Rb liquid metal by using the Monte Carlo method and found interesting features in g(R) characteristic to the negative ɛ(q,0) [2]. Such features have been observed by the recent measurement of g(R) in the supercritical fluid Rb metal with continuously increasing rs from 5.25 [3]. This confirms the situation of κ<0 in the low-density 3D electron gas for the first time. [1] YT, J. Superconductivity 18, No.3 (2005). [2] H. Maebashi and YT, to be submitted. [3] K. Matsuda and K. Tamura, private communication.

  3. Phase separation and nanostructuring in the thermoelectric material PbTe[subscript 1−x]S[subscript x] studied using the atomic pair distribution function technique

    SciTech Connect

    Lin, He; Božin, E.S.; Billinge, S.J.L.; Androulakis, J.; Malliakas, C.D.; Lin, C.H.; Kanatzidis, M.G.

    2009-08-13

    The average and local structures of the (PbTe){sub 1-x}(PbS){sub x} system of thermoelectric materials has been studied using the Rietveld and atomic pair distribution function methods. Samples with 0.25 {le} x are macroscopically phase separated. Phase separation was suppressed in a quenched x=0.5 sample which, nonetheless, exhibited a partial spinodal decomposition. The promising thermoelectric material with x=0.16 showed intermediate behavior. Combining TEM and bulk scattering data suggests that the sample is a mixture of PbTe-rich material and a partially spinodally decomposed phase similar to the quenched 50% sample. This confirms that, in the bulk, this sample is inhomogeneous on a nanometer length scale, which may account for its enhanced thermoelectric figure of merit.

  4. Pair-distribution function analysis of the structural valence transition in Cp{sub 2}{sup *}Yb(4,4'-Me{sub 2}-bipy)

    SciTech Connect

    Booth, C H; Bauer, E D; Bozin, E S; Billinge, S J L; Walter, M D

    2010-07-20

    The Cp{sup *}{sub 2} Yb(L) class of compounds, where Cp{sup *}=pentamethylcyclopentadienyl = C{sub 5}Me{sub 5} and L is either a 1,4-diazabutadiene or bipy = 2,2'bipyridine related ligand, have provided excellent analogies to the Kondo state on the nanoscale. Cp{sup *}{sub 2} Yb(4,4'-Me{sub 2}-bipy) furthers this analogy by demonstrating a valence transition as the sample is cooled below 200 K. Here, pair-distribution function (PDF) analysis of x-ray powder diffraction data demonstrate that the Cp{sup *}{sub 2}Yb(4,4'Me{sub 2}-bipy) molecule is virtually unchanged through the valence transition. However, the molecule’s stacking arrangement is altered through the valence transition.

  5. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.

    PubMed

    Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie; Grey, Clare P

    2011-01-26

    Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems with electrochemical performance. We apply a combination of local structure probes, ex situ (7)Li nuclear magnetic resonance (NMR) studies, and pair distribution function (PDF) analysis of X-ray data to investigate the changes in short-range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the first discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. For example, the first process seen on the second discharge is associated with the lithiation of the amorphous Si, forming small clusters. These clusters are broken in the second process to form isolated silicon anions. The (de)lithiation model helps explain the hysteresis and the steps in the electrochemical profile observed during the lithiation and delithiation of silicon.

  6. Reverse Monte Carlo Modeling of Pair Distribution Function Data as a Tool for Separating the Coordination Environments of Multiple Atoms Disordered Over a Single Site

    NASA Astrophysics Data System (ADS)

    King, Graham; Llobet, Anna; Ricciardo, Rebecca; Soliz, Jennifer; Woodward, Patrick; Ramezanipour, Farshid; Greedan, John

    2012-02-01

    The local structures of 8 perovskite compounds which contain equal concentrations of 2 transition metal cations disordered over the B-sites have been investigated using reverse Monte Carlo (RMC) modeling of neutron pair distribution function (PDF) data. Such compounds are known to display a number of interesting magnetic and electronic properties which, due to the cation disorder, cannot be correlated with the average long range structure and so remain poorly understood. In compounds with B=Mn/Ru there exists a valence degeneracy between Mn^3+/Ru^5+ and Mn^4+/Ru^4+. We demonstrate that the RMC method can be used as an effective tool to separate out the individual coordination environments of these cations and also to monitor the relative concentrations of the different oxidation states. We find that the valency ratio is governed by the size of the A-site cations. In a different series of Sr2FeMnO6-x perovskites we find that locally the structures are quite different from the average cubic structures, with the local coordination environments more closely resembling those of the brownmillerite structure. In all compounds the octahedra containing Mn^3+ are Jahn-Teller distorted, even if this distortion is not evident in the average structure.

  7. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.

    PubMed

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S; Weidner, Donald J

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  8. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    PubMed Central

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  9. Total scattering and pair distribution function analysis in modelling disorder in PZN (PbZn1/3Nb2/3O3).

    PubMed

    Whitfield, Ross E; Goossens, Darren J; Welberry, T Richard

    2016-01-01

    The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site-O separation distances and the fact that 〈110〉 Pb(2+) displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378

  10. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  11. Evaluation of effects of pharmaceutical processing on structural disorders of active pharmaceutical ingredient crystals using nanoindentation and high-resolution total scattering pair distribution function analysis.

    PubMed

    Chen, Shuang; Sheikh, Ahmad Y; Ho, Raimundo

    2014-12-01

    Pharmaceutical unit operations such as milling and compaction can often generate disordered regions in crystals of active pharmaceutical ingredients (APIs). This may lead to changes in a number of important pharmaceutical properties including dissolution, stability, hygroscopicity, and so on. It is therefore important for pharmaceutical industry to evaluate the effects of pharmaceutical processing on API structural orders, and to investigate and develop analytical tools that are capable of accurately detecting and assessing subtle process-induced structural disorders in pharmaceutical crystals. In this study, nanoindentation was first used to determine the intrinsic mechanical properties including hardness and Young's modulus of two API crystals, compounds 1 and 2. These crystals of different mechanical properties were then milled and compacted under various conditions. The resulting structural disorders in these crystals were subsequently evaluated using synchrotron-based high-resolution total scattering pair distribution function (TS-PDF) analysis. Furthermore, principal component analysis was applied to the PDF data to assess the relative extents of disorders in the API crystals, which showed a good correlation with the process conditions. The study demonstrates that high-resolution TS-PDF analysis coupled with nanoindentation measurement is a valuable and effective tool for detecting and assessing process-induced subtle structural disorders in API crystals.

  12. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  13. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.

    PubMed

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S; Weidner, Donald J

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  14. Total scattering and pair distribution function analysis in modelling disorder in PZN (PbZn1/3Nb2/3O3)

    PubMed Central

    Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard

    2016-01-01

    The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378

  15. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    DOE PAGES

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less

  16. An atomistic MD simulation and pair-distribution-function study of disorder and reactivity of [alpha]-AlF[subscript 3] nanoparticles

    SciTech Connect

    Chaudhuri, Santanu; Chupas, Peter; Morgan, Benjamin J.; Madden, Paul A.; Grey, Clare P.

    2008-06-18

    Cubic nanoparticles of {alpha}-AlF{sub 3} containing 864 and 2048 atoms were investigated by using molecular dynamics simulations. Significant structural rearrangements of these particles occurred, primarily at the edges and corners of the particles, and 3 and 5 membered (Al-F-){sub n} ring structures were observed in addition to the 4-membered rings seen in bulk {alpha}-AlF{sub 3}. These 3 and 5 membered ring structures are, however, present in other metastable forms of AlF{sub 3}, which are formed at low temperatures from high surface area precursors. The surfaces of the nanoparticles were very dynamic on the timescale of the MD run, Al-F bonds being continually broken and formed, resulting in the movement of the low coordinate Lewis acid Al sites on the surfaces of the particles. The Lewis acid sites, which represent the catalytically active sites for F/Cl exchange reactions, are largely present at the corners and edges of the particles. The particles show larger rhombohedral distortions than present in the bulk phase and do not undergo a rhombohedral to cubic phase transition at elevated temperatures. The results are compared with pair distribution function (PDF) analysis results from fluorinated {gamma}-Al{sub 2}O{sub 3}, nanoparticles of AlF{sub 3} prepared by plasma routes and {alpha}- and {beta}-AlF{sub 3}. Broad peaks between 3.3 and 4.5 {angstrom} in the PDF plots of the fluorinated Al{sub 2}O{sub 3} and the nanoparticles indicate a distribution of Al-F distances arising from Al and F atoms in connected AlF{sub 6} octahedra; this is consistent with the presence of ring structures other than those found in {alpha}-AlF{sub 3}.

  17. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.

    PubMed

    Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P

    2016-02-24

    Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.

  18. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis.

    PubMed

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W; Chupas, Peter J; Du, Pingwu; Tiede, David M

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

  19. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    SciTech Connect

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  20. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films.

    PubMed

    Jensen, Kirsten M Ø; Blichfeld, Anders B; Bauers, Sage R; Wood, Suzannah R; Dooryhée, Eric; Johnson, David C; Iversen, Bo B; Billinge, Simon J L

    2015-09-01

    By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The 'tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  1. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis

    PubMed Central

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-01-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical ‘artificial leaf’ devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity. PMID:26634728

  2. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    SciTech Connect

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

  3. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  4. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE PAGES

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  5. Application of high-energy x-rays and pair-distribution-function analysis to nano-scale structural studies in catalysis.

    SciTech Connect

    Chupas, P. J.; Chapman, K. W.; Chen, H.; Grey, C.; X-Ray Science Division; State Univ. of New York

    2009-07-30

    We investigate the structure of supported Pt catalysts using high-energy X-ray scattering coupled with Pair-Distribution-Function (PDF) analysis. Recently, experimental approaches that enable the collection of PDF data in situ have been developed with time-resolution sufficient to study the structure of Pt nano-particles as they form. The differential PDF approach is utilized which allows the atom-atom correlations involving only Pt to be selectively recovered, enabling structural investigation of the supported particles and the mechanism of their formation. In parallel to the in situ analysis, we have examined samples prepared ex situ. Data collected on the ex situ samples show that the initial deposition of Pt{sup 4+} occurs as the PtCl{sub 6}{sup 2-} species which are retained even when annealed in an oxygen atmosphere. The Pt differential PDFs of the samples reduced in hydrogen at 200 and 500 C indicated nano-crystalline face-centered-cubic (fcc) metallic Pt particles. The ex situ reduced samples also contain a weak correlations at 2.1 {angstrom}, which we assign to Pt-O interactions between the particles and the support surface. The in situ experiments, following the reduction of Pt{sup 4+} from 0 to 227 C, indicate that the initial Pt nano-particles formed are ca. 1 nm in size, and become larger and more crystalline by 200 C. The data suggest a particle growth mechanism where the initial particles that form are small (<1 nm), then agglomerate into ensembles of many small particles and lastly anneal to form larger well-ordered particles. Lastly, we discus potential future developments in operando PDF studies, and identify opportunities for synchronous application of complementary methods.

  6. Fingerprinting analysis of non-crystalline pharmaceutical compounds using high energy X-rays and the total scattering pair distribution function

    NASA Astrophysics Data System (ADS)

    Davis, Timur D.

    2011-12-01

    In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure

  7. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.

    PubMed

    Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P

    2016-02-24

    Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  8. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    PubMed Central

    2016-01-01

    Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  9. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage

  10. Local structure of germanium selenide glasses around the rigidity percolation threshold using atomic pair distribution function and X-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Shatnawi, Moneeb Taiseer

    A search for a structural response to a recently proposed self-organized and stress-free intermediate phase [1, 2] in semiconductor chalcogenide Ge xSe1-x glasses has been performed in this study. These glasses, according to the mean-field approach, undergo a structural phase transition from floppy to rigid network that occurs at a mean coordination number of 2.4. Based on thermodynamic and spectroscopic measurements, these glasses appear to exhibit two transitions instead of one [3]. The region between these transitions has been called the intermediate phase (IP) [3, 4]. The original theoretical work assumed that the network was generic and the connectivity random [5]. It was therefore suggested [1] that the IP phase is a region of finite width in composition where the network could self-organize in such a way that maintains a rigid but unstressed state. However, it has proved difficult to establish this result experimentally. High-resolution atomic pair distribution functions (PDF), derived from high energy synchrotron radiation, coupled with high-resolution X-ray absorption fine structure (XAFS) measurements on 18 compositions of well-prepared Ge xSe1-x glasses that span the range of the IP have been performed to elucidate aspects of rigidity percolation and the IP. These data sets are the most complete and the highest resolution data set on this system to date. Analysis of the structure functions (in reciprocal space) and the PDFs (in real space) as well as the XAFS data at both Ge and Se edges show no correlations with the IP. The network evolves smoothly without any break in slope or discontinuity that might be linked due to the IP. The results obtained in this study contradict previously published work [1, 2] that claim experimental evidence for a structural origin of the IP. The so-called first sharp diffraction peak (FSDP), which is a signature of the medium range order in these glasses, changes systematically with Ge content. It develops smoothly from a

  11. Density functional theory for pair correlation functions in polymeric liquids

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun; Fynewever, Herb; Shew, Chwen-Yang

    2001-03-01

    A density functional theory is presented for the pair correlation functions in polymeric liquids. The theory uses the Yethiraj-Woodward free-energy functional for the polymeric liquid, where the ideal gas free-energy functional is treated exactly and the excess free-energy functional is obtained using a weighted density approximation with the simplest choice of the weighting function. Pair correlation functions are obtained using the Percus trick, where the external field is taken to be a single polymer molecule. The minimization of the free energy in the theory requires a two molecule simulation at each iteration. The theory is very accurate for the pair correlation functions in freely jointed tangent-hard-sphere chains and freely rotating fused-hard-sphere chains, especially at low densities and for long chains. In addition, the theory allows the calculation of the virial pressure in these systems and shows a remarkable degree of consistency between the virial and compressibility pressure.

  12. Local Structure of Proton-Conducting Lanthanum Tungstate La28-xW4+xO54+δ: a Combined Density Functional Theory and Pair Distribution Function Study

    SciTech Connect

    Kalland, Liv-Elisif; Magrasó, Anna; Mancini, Alessandro; Tealdi, Cristina; Malavasi, Lorenzo

    2013-10-02

    Lanthanum tungstate (La28–xW4+xO54+δ) is a good proton conductor and exhibits a complex fluorite-type structure. To gain further understanding of the short-range order in the structure we correlate the optimized configurations obtained by density functional theory (DFT) with the experimental atomic pair distribution function analysis (PDF) of time-of-flight neutron and synchrotron X-ray data, collected at room temperature. The local atomic arrangements cannot be described by means of any average symmetric structure. Tungsten forms WO6 octahedra in alternating directions, La1 is mainly 8-fold coordinated in relatively symmetric cubes, and La2 is coordinated with 6 or 7 oxygens in heavily distorted cubes. Both DFT and PDF confirm that the excess tungsten (x) is incorporated in La2 (1/4, 1/4, 1/4) sites in the La27W5O55.5 composition. This additional tungsten can be considered as a donor self-dopant in the material and has implications to the conducting properties and the defect structure.

  13. Interacting pairs in natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Piris, M.

    2014-07-01

    An interacting-pair model is considered to attain a new natural orbital functional (NOF). The new approach, which will be termed PNOF6, belongs to the JKL-only family of NOFs known in the literature as PNOFi. Accordingly, the approximated two-particle reduced density matrix (RDM) is reconstructed from the one-particle RDM, considering an explicit form of the two-particle cumulant in terms of the occupation numbers, and enforcing (2,2)-positivity conditions for the N-representability of the 2-RDM. PNOF6 is superior to its predecessor, PNOF5, which is an independent-pair approach. The functional is able to treat both dynamic and static correlations, thereby putting together the advantages of the other members of this series. The theory is applied to the dissociation of selected diatomic molecules. The equilibrium distances, dipole moments, harmonic frequencies, anharmonicity constants, and binding energies of the considered molecules are presented. Comparative potential energy curves for the deformation of benzene are given at the PNOF5 and PNOF6 levels of theory. In benzene, PNOF5 breaks the symmetry by about 1.5°, with an energy lowering of almost 3 kcal/mol, whereas PNOF6 provides the correct D6h symmetry.

  14. Pair correlation function integrals: Computation and use

    NASA Astrophysics Data System (ADS)

    Wedberg, Rasmus; O'Connell, John P.; Peters, Günther H.; Abildskov, Jens

    2011-08-01

    We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O'Connell, G. H. Peters, and J. Abildskov, Mol. Simul. 36, 1243 (2010);, 10.1080/08927020903536366 Fluid Phase Equilib. 302, 32 (2011)], 10.1016/j.fluid.2010.10.004, but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.

  15. Partition function and base pairing probabilities of RNA heterodimers

    PubMed Central

    Bernhart, Stephan H; Tafer, Hakim; Mückstein, Ulrike; Flamm, Christoph; Stadler, Peter F; Hofacker, Ivo L

    2006-01-01

    Background RNA has been recognized as a key player in cellular regulation in recent years. In many cases, non-coding RNAs exert their function by binding to other nucleic acids, as in the case of microRNAs and snoRNAs. The specificity of these interactions derives from the stability of inter-molecular base pairing. The accurate computational treatment of RNA-RNA binding therefore lies at the heart of target prediction algorithms. Methods The standard dynamic programming algorithms for computing secondary structures of linear single-stranded RNA molecules are extended to the co-folding of two interacting RNAs. Results We present a program, RNAcofold, that computes the hybridization energy and base pairing pattern of a pair of interacting RNA molecules. In contrast to earlier approaches, complex internal structures in both RNAs are fully taken into account. RNAcofold supports the calculation of the minimum energy structure and of a complete set of suboptimal structures in an energy band above the ground state. Furthermore, it provides an extension of McCaskill's partition function algorithm to compute base pairing probabilities, realistic interaction energies, and equilibrium concentrations of duplex structures. Availability RNAcofold is distributed as part of the Vienna RNA Package, . Contact Stephan H. Bernhart – berni@tbi.univie.ac.at PMID:16722605

  16. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    SciTech Connect

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T stands for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.

  17. Multi-user distribution of polarization entangled photon pairs

    SciTech Connect

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I.; Ghalbouni, J.

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  18. Distributed wireless quantum communication networks with partially entangled pairs

    NASA Astrophysics Data System (ADS)

    Yu, Xu-Tao; Zhang, Zai-Chen; Xu, Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.

  19. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE PAGES

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  20. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  1. Spatial Distribution of Pair Production Over the Pulsar Polar Cap

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Parfrey, Kyle

    2016-10-01

    Using an analytic, axisymmetric approach that includes general relativity, coupled to a condition for pair production deduced from simulations, we derive general results about the spatial distribution of pair-producing field lines over the pulsar polar cap. In particular, we show that pair production on magnetic field lines operates over only a fraction of the polar cap for an aligned rotator for general magnetic field configurations, assuming the magnetic field varies spatially on a scale that is larger than the size of the polar cap. We compare our result to force-free simulations of a pulsar with a dipole surface field and find excellent agreement. Our work has implications for first-principles simulations of pulsar magnetospheres and for explaining observations of pulsed radio and high-energy emission.

  2. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    PubMed

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  3. Evolution of local structures in polycrystalline Zn1−xMgxO (0<=x<=0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis

    SciTech Connect

    Kim, Young-Il; Page, Katharine; Limarga, Andi M.; Clarke, David R.; Seshadri, Ram

    2008-09-18

    The local structures of Zn{sub 1-x}Mg{sub x}O alloys have been studied by Raman spectroscopy and by synchrotron x-ray pair-distribution-function (PDF) analysis. Within the solid solution range (0 {le} x {le} 0.15) of Zn{sub 1-x}Mg{sub x}O, the wurtzite framework is maintained with Mg homogeneously distributed throughout the wurtzite lattice. The E{sub 2}{sup high} Raman line of Zn{sub 1-x}Mg{sub x}O displays systematic changes in response to the evolution of the crystal lattice upon the Mg substitution. The redshift and broadening of the E{sub 2}{sup high} mode are explained by the expansion of hexagonal ab dimensions and compositional disorder of Zn/Mg, respectively. Synchrotron x-ray PDF analyses of Zn{sub 1-x}Mg{sub x}O reveal that the Mg atoms have a slightly reduced wurtzite parameter u and more regular tetrahedral bond distances than the Zn atoms. For both Zn and Mg, the internal tetrahedral geometries are independent of the alloy composition.

  4. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; et al

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  5. Element-specific structure of materials with intrinsic disorder by high-energy resonant x-ray diffraction and differential atomic pair-distribution functions: A study of PtPd nanosized catalysts

    NASA Astrophysics Data System (ADS)

    Petkov, V.; Shastri, S. D.

    2010-04-01

    We demonstrate how high-energy resonant x-ray diffraction (XRD) and differential atomic-pair-distribution function (PDF) analysis can be used to characterize the atomic ordering in materials of limited structural coherence with both excellent spatial resolution and element specificity. First we prove that this experimental approach is feasible by probing the K -absorption edge of Au(˜81keV) atoms in chemically ordered and disordered bulk Cu3Au alloys. The resulting Au-differential PDFs show very clearly the different ways Au atoms are known to occupy the sites of otherwise identical cubic lattices of those materials. Next we apply it to a more complex material: PtPd alloy and core-shell nanosized (˜2-4nm) particles by probing the K -absorption edge of Pt(˜78keV) . The resulting Pt-differential atomic PDFs reveal how exactly the atomic ordering of catalytically active Pt atoms is affected by the nanoparticles’ design, thus providing a firm structural basis for understanding their properties. The work is a step forward in expanding the limits of applicability of nontraditional XRD to the rapidly growing field of materials of unusual structural complexity.

  6. A Multiscale Modeling Demonstration Based on the Pair Correlation Function

    SciTech Connect

    Gao, Carrie Y; Nicholson, Don M; Keffer, David; Edwards, Brian J

    2008-01-01

    For systems with interatomic interactions that are well described by pair-wise potentials, the pair correlation function provides a vehicle for passing information from the molecular level to the macroscopic level of description. In this work, we present a complete demonstration of the use of the pair correlation function to simulate a fluid at the molecular and macroscopic levels. At the molecular level, we describe a monatomic fluid using the Ornstein-Zernike integral equation theory closed with the Percus-Yevick approximation. We show that all of the required thermodynamic properties can be evaluated knowing the pair correlation function. At the macroscopic level, we perform a multiscale simulation with macroscopic evolution equations for the mass, momentum, temperature, and pair correlation function, using molecular-level simulation to provide the boundary conditions. We perform a self-consistency check by comparing the pair correlation function that evolved from the multiscale simulation with the one evaluated at the molecular-level; excellent agreement is achieved.

  7. Synergy between pair coupled cluster doubles and pair density functional theory

    SciTech Connect

    Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  8. Nucleon and nucleon-pair momentum distributions in A≤12 nuclei

    DOE PAGES

    Wiringa, Robert B.; Schiavilla, Rocco; Pieper, Steven C.; Carlson, Joseph A.

    2014-02-10

    We report variational Monte Carlo calculations of single-nucleon momentum distributions for A≤12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A≤8. The wave functions have been generated for a Hamiltonian containing the Argonne ν18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, αd inmore » 6Li,αt in 7Li, and αα in 8Be. Detailed tables are provided on-line for download.« less

  9. Nuclear Parton Distribution Functions

    SciTech Connect

    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens

    2009-06-01

    We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.

  10. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect

    Mao, James X; Lee, Anita S; Kitchin, John R; Nulwala, Hunaid B; Luebke, David R; Damodaran, Krishnan

    2013-04-24

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  11. Structure functions and parton distributions

    SciTech Connect

    Olness, F.; Tung, Wu-Ki

    1991-04-01

    Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed.

  12. Cluster pair correlation function of simple fluids: energetic connectivity criteria.

    PubMed

    Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando

    2006-11-21

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.

  13. Conditional pair distributions in many-body systems: exact results for Poisson ensembles.

    PubMed

    Rohrmann, René D; Zurbriggen, Ernesto

    2012-05-01

    We introduce a conditional pair distribution function (CPDF) which characterizes the probability density of finding an object (e.g., a particle in a fluid) to within a certain distance of each other, with each of these two having a nearest neighbor to a fixed but otherwise arbitrary distance. This function describes special four-body configurations, but also contains contributions due to the so-called mutual nearest neighbor (two-body) and shared neighbor (three-body) configurations. The CPDF is introduced to improve a Helmholtz free energy method based on space partitions. We derive exact expressions of the CPDF and various associated quantities for randomly distributed, noninteracting points at Euclidean spaces of one, two, and three dimensions. Results may be of interest in many diverse scientific fields, from fluid physics to social and biological sciences.

  14. Radial distribution function in polymers

    NASA Astrophysics Data System (ADS)

    Przygocki, Wladyslaw

    1997-02-01

    Radial distribution function is a very useful tool for determination of the polymer structure. The connection between the scattered X-ray intensity and radial distribution function is presented. Some examples of RDF for polyethylene and for poly(ethylene terephtalate).

  15. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  16. Kinematic distributions for electron pair production by muons

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Cross sections and kinematic distributions for the trident production process plus or negative muon plus charge yields plus or minus muon plus electron plus positron plus charge (with charge = dipion moment and Fe) are given for beam energies of 100 to 300 GeV at fixed (electron positron) masses from 5 to 15 GeV. This process is interesting as a test of quantum electrodynamics at high energies, and in particular as a test of the form of the photon propagator at large timelike (four-momentum) squared. For this purpose, it is desirable to impose kinematic cuts that favor those Bethe-Heitler graphs which contain a timelike photon propagator. It is found that there are substantial differences between the kinematic distributions for the full Bethe-Heitler matrix element and the distributions for the two timelike-photon graphs alone; these differences can be exploited in the selection of appropriate kinematic cuts.

  17. Distributed Pair Programming Using Collaboration Scripts: An Educational System and Initial Results

    ERIC Educational Resources Information Center

    Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios

    2015-01-01

    Since pair programming appeared in the literature as an effective method of teaching computer programming, many systems were developed to cover the application of pair programming over distance. Today's systems serve personal, professional and educational purposes allowing distributed teams to work together on the same programming project. The…

  18. Density and pair-density scaling for deriving the Euler equation in density-functional and pair-density-functional theory

    SciTech Connect

    Nagy, A.

    2011-09-15

    A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).

  19. Structure functions and parton distributions

    SciTech Connect

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1995-07-01

    The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.

  20. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    SciTech Connect

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  1. Non-empirical pairing energy functional in nuclear matter and finite nuclei

    SciTech Connect

    Hebeler, K.; Duguet, T.; Lesinski, T.; Schwenk, A.

    2009-10-15

    We study {sup 1}S{sub 0} pairing gaps in neutron and nuclear matter as well as T=1 pairing in finite nuclei on the basis of microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend only weakly on approximation schemes for the normal self-energy, required in present energy-density functional calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation scheme.

  2. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  3. The mean hydration of carbohydrates as studied by normalized two-dimensional radial pair distributions.

    PubMed

    Andersson, C; Engelsen, S B

    1999-04-01

    The hydration of carbohydrates plays a key role in many biological processes. Molecular dynamics simulations provide an effective tool for investigating the hydration of complex solutes such as carbohydrates. In this article we devise an algorithm for the calculation of two-dimensional radial pair distributions describing the probability of finding a water molecule in a site defined by two reference atoms. The normalized 2D radial pair distribution is proposed as an effective tool for investigating and comparing localized or ordered water sites around flexible molecules such as carbohydrates when analyzing molecular dynamics simulations and the utility of 2D radial pair distributions is demonstrated using sucrose as an example. In this relatively simple structure, 2D radial pair distributions were able to characterize and quantify the importance of two unique interresidue hydration sites in which a water molecule is forming a bridge between the glycopyranosyl and fructofuranosyl residues. The approach is proposed to be a valuable tool for comparing and understanding the hydration of flexible biomolecules such as carbohydrates. PMID:10680115

  4. Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers.

    PubMed

    Noureddine, Achraf; Lichon, Laure; Maynadier, Marie; Garcia, Marcel; Gary-Bobo, Magali; Zink, Jeffrey I; Cattoën, Xavier; Wong Chi Man, Michel

    2015-07-14

    The synthesis of mesoporous silica nanoparticles bearing organic functionalities is strained by the careful adjustment of the reaction parameters, as the incorporation of functional and/or voluminous organosilanes during the sol-gel synthesis strongly affects the final structure of the nanoparticles. In this paper we describe the design of new clickable mesoporous silica nanoparticles as spheres or rods, synthesized by the co-condensation of TEOS with two clickable organosilanes (bearing alkyne and azide groups) and readily multi-functionalizable by CuAAC click chemistry. We show that controlled loadings of clickable functions can be homogeneously distributed within the MSN, allowing us to efficiently click-graft various pairs of functionalities while preserving the texture and morphology of the particles. The homogeneous distribution of the grafted functionalities was probed by FRET experiments between two anchored fluorophores. Moreover, a communication by proton transfer between two functions was demonstrated by constructing a light-actuated nanomachine that works through a proton transfer between a photoacid generator and a pH-sensitive supramolecular nanogate. The activation of the nanomachine enabled the successful release of rhodamine B in buffered solutions and the delivery of doxorubicin in breast cancer cells (MCF-7) upon blue irradiation.

  5. Unbiased estimators for spatial distribution functions of classical fluids.

    PubMed

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  6. Unbiased estimators for spatial distribution functions of classical fluids.

    PubMed

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions. PMID:15638649

  7. Distribution of 1-alkyl-3-methylimidazolium ions and their ion pairs between dichloromethane and water.

    PubMed

    Katsuta, Shoichi; Yamaguchi, Naoko; Ogawa, Ryuji; Kudo, Yoshihiro; Takeda, Yasuyuki

    2008-10-01

    The distribution behavior of the salts of a series of 1-alkyl-3-methylimidazolium cations (RMeIm(+); R = butyl, hexyl, and octyl) with tetrafluoroborate (BF(4)(-)), hexafluorophosphate (PF(6)(-)), bis(trifluoromethanesulfonyl)amide (NTf(2)(-)), and 2,4,6-trinitrophenolate (Pic(-)) anions has been investigated in a dichloromethane-water system at 25 degrees C. The distribution constants (K(D)) of the ion pairs and the transfer activity coefficients ((o)gamma(w)) of the single ions were determined. For the ion pairs with a given anion, the log K(D) value increases linearly with the number of methylene groups (N(CH2)) in the cation, which can be explained by using the regular solution theory. A similar relationship was observed between log (o)gamma(w) and N(CH2) for the free RMeIm(+) ions, and the result was discussed by decomposing the transfer activity coefficient into the Born-type electrostatic contribution and the non-electrostatic one. For the free anions and their ion pairs with a given cation, the (o)gamma(w) and K(D) values increase with increasing molar volume of the anion: i.e., BF(4)(-) < PF(6)(-) < Pic(-) < NTf(2)(-). The features of the RMeIm(+) salts in the liquid-liquid distribution and the ion-pair formation in water are also discussed by comparing the present results with those of tetraalkylammonium salts previously reported.

  8. Pair-correlation function of a metastable helium Bose-Einstein condensate

    SciTech Connect

    Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz

    2004-02-01

    The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.

  9. Influence of ionic liquid film thickness on ion pair distributions and orientations at graphene and vacuum interfaces.

    PubMed

    Wang, Yong-Lei; Laaksonen, Aatto; Lu, Zhong-Yuan

    2013-08-28

    Microscopic structures, orientational preferences together with mass, number and electron density distributions of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been studied on a neutral hydrophobic graphene surface, and at the IL-vacuum interface using atomistic Molecular Dynamics simulations. At the IL-graphene interface, distinct mass, number and electron density distributions are observed oscillating into the bulk region with several compact structural layers. The imidazolium ring of [BMIM] cations lies preferentially flat on the graphene surface, with its methyl and butyl side chains elongated along the graphene surface. At the IL-vacuum interface, however, the distributions of [BMIM][PF6] ion pairs are strongly influenced by the thickness of IL film. With the increase of IL film thickness, the orientations of [BMIM] cations at the IL-vacuum interface change gradually from dominant flat distributions along the graphene surface to orientations where the imidazolium rings are either parallel or perpendicular to the IL-vacuum interface with tilted angles. The outmost layers are populated with alkyl groups and imparted with distinct hydrophobic character. The calculated radial distribution functions suggest that ionic structures of [BMIM][PF6] ion pairs in IL-graphene and IL-vacuum interfacial regions are significantly different from each other and also from that in bulk regions.

  10. Saddlepoint distribution function approximations in biostatistical inference.

    PubMed

    Kolassa, J E

    2003-01-01

    Applications of saddlepoint approximations to distribution functions are reviewed. Calculations are provided for marginal distributions and conditional distributions. These approximations are applied to problems of testing and generating confidence intervals, particularly in canonical exponential families.

  11. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    PubMed

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-01

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.

  12. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    PubMed

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-01

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively. PMID:26722961

  13. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies

    NASA Astrophysics Data System (ADS)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-01

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE

  14. Mutation analysis of the base-pair connecting two functional modules in the DSL ribozyme.

    PubMed

    Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya

    2008-01-01

    The class DSL ribozyme is one of artificial RNA enzymes generated by module-based molecular design. In the structure of this ribozyme, two most important functional modules are connected by a U-A base-pair. We have examined the possible importance of this base-pair by site-directed mutation experiments using the DSL-1S ribozyme and its derivative possessing altered modular organization. The analysis indicated that the DSL-1S ribozyme preferred U-A pair at the positions whereas the derivative preferred A-U pair.

  15. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    PubMed

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum. PMID:27160891

  16. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    PubMed

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.

  17. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor.

    PubMed

    Wang, Fa; Zhai, Hui; Ran, Ying; Vishwanath, Ashvin; Lee, Dung-Hai

    2009-01-30

    We apply the fermion functional renormalization-group method to determine the pairing symmetry and pairing mechanism of the FeAs-Based materials. Within a five band model with pure repulsive interactions, we find an electronic-driven superconducting pairing instability. For the doping and interaction parameters we have examined, extended s wave, whose order parameter takes on opposite sign on the electron and hole pockets, is always the most favorable pairing symmetry. The pairing mechanism is the inter-Fermi-surface Josephson scattering generated by the antiferromagnetic correlation.

  18. Sweet complementarity: the functional pairing of glycans with lectins.

    PubMed

    Gabius, H-J; Manning, J C; Kopitz, J; André, S; Kaltner, H

    2016-05-01

    Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited. PMID:26956894

  19. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  20. Measurement of Vertical Temperature Distribution Using a Single Pair of Loudspeaker and Microphone with Acoustic Reflection

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Mizutani, Koichi; Wakatsuki, Naoto; Kawabe, Satoshi

    2009-07-01

    It is important to maintain an adequate indoor temperature for comfortable working conditions, improvement of the rate of production of farm goods grown in greenhouses, and for saving energy. Thus, it is necessary to measure the temperature distribution to realize efficient air-conditioning systems. However, we have to use many conventional instruments to measure the temperature distribution. We proposed a measurement system for vertical temperature distribution using a single pair of loudspeaker (SP) and microphone (MIC), and acoustic reflectors. This system consists of SP, MIC, and multiple acoustic reflectors, and it can be used to determine the temperature distribution from the mean temperature of the area bounded by two reflectors. In experiments, the vertical temperature distribution was measured using five sound probes in a large facility every 20 s for 24 h. From the results of this experiment, it was verified that this system can be used to measure the vertical temperature distribution from the mean temperature of each area bounded by two reflectors. This system could be used to measure the change in the temperature distribution over time. We constructed a simple system to measure the vertical temperature distribution.

  1. Function Transfer in Human Operant Experiments: The Role of Stimulus Pairings

    ERIC Educational Resources Information Center

    Tonneau, Francois; Gonzalez, Carmen

    2004-01-01

    Although function transfer often has been studied in complex operant procedures (such as matching to sample), whether operant reinforcement actually produces function transfer in such settings has not been established. The present experiments, with high school students as subjects, suggest that stimulus pairings can promote function transfer in…

  2. Symmetric time warping, Boltzmann pair probabilities and functional genomics.

    PubMed

    Clote, Peter; Straubhaar, Jürg

    2006-07-01

    Given two time series, possibly of different lengths, time warping is a method to construct an optimal alignment obtained by stretching or contracting time intervals. Unlike pairwise alignment of amino acid sequences, classical time warping, originally introduced for speech recognition, is not symmetric in the sense that the time warping distance between two time series is not necessarily equal to the time warping distance of the reversal of the time series. Here we design a new symmetric version of time warping, and present a formal proof of symmetry for our algorithm as well as for one of the variants of Aach and Church [1]. We additionally design quadratic time dynamic programming algorithms to compute both the forward and backward Boltzmann partition functions for symmetric time warping, and hence compute the Boltzmann probability that any two time series points are aligned. In the future, with the availability of increasingly long and accurate time series gene expression data, our algorithm can provide a sense of biological significance for aligned time points - e.g. our algorithm could be used to provide evidence that expression values of two genes have higher Boltzmann probability (say) in the G1 and S phase than in G2 and M phases. Algorithms, source code and web interface, developed by the first author, are made publicly available via the Boltzmann Time Warping web server at bioinformatics.bc.edu/clotelab/. PMID:16791652

  3. Lepton distributions from the decay of wino pairs at e/sup +/e/sup -/ colliders

    SciTech Connect

    Schimert, T.; Burgess, C.; Tata, X.

    1984-07-01

    We have computed, in detail, the energy and angular distribution of the leptons (l) produced by the decay of winos (W-tilde) via the reaction e/sup +/e/sup -/ ..-->.. W-tilde/sup +/ + W-tilde/sup -/ ..-->.. l/sup +/nu..gamma..-tilde + l/sup -/anti nu..gamma..-tilde within the framework of a supergravity electroweak model. We have also computed the backgrounds to this reaction from the production and subsequent decays of tau/sup +/tau/sup -/ pairs or pairs of new sequential heavy leptons. We conclude that it is possible to distinguish the wino from an ordinary heavy lepton and, moreover, that winos lighter than the W-boson would be clearly identifiable at LEP energies. 22 refs., 3 figs.

  4. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs.

    PubMed

    Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard

    2011-02-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  5. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs.

    PubMed

    Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard

    2011-02-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  6. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  7. Exact treatment of pairing correlations in Yb isotopes with covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Zhao, Peng-Wei

    2014-07-01

    The effects of pairing correlation in Yb isotopes are investigated by covariant density functional theory with pairing correlations and blocking effects treated exactly by a shell model like approach (SLAP). Experimental one- and two-neutron separation energies are reproduced quite well. The traditional BCS calculations always give larger pairing energies than those given by SLAP calculations, particularly for the nuclei near the proton and neutron drip lines. This may be caused because many of the single particle orbits above the Fermi surface are involved in the BCS calculations, but many of them are excluded in the SLAP calculations.

  8. d sigma/dy Distribution of Drell-Yan Dielectron Pairs

    SciTech Connect

    Han, Jiyeon; Bodek, A.; Sakumoto, W.; Chung, Y.; /Rochester U.

    2007-11-01

    The authors report on the measurement of the rapidity distribution, d{sigma}/dY, over the full kinematic range for e{sup +}e{sup -} pairs produced in p{bar p} collisions at {radical}s = 1.96 TeV in the Z boson region of 66 < M{sub ee} < 116 GeV/c{sup 2}. The data sample consists of 1.1 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV taken by the Collider Detector at Fermilab (CDF). The d{sigma}/dy is compared with the NLO theory prediction.

  9. Angular distribution of positrons in coherent pair production in deformed crystals.

    PubMed

    Parazian, V V

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  10. Linear Response Calculation using Canonical-basis TDHFB with a schematic pairing functional

    SciTech Connect

    Ebata, S.; Nakatsukasa, T.; Inakura, T.; Hashimoto, Y.; Yabana, K.

    2010-08-12

    We derive the Canonical-basis Time-Dependent Hartree-Fock-Bogoliubov (CbTDHFB) equations using time-dependent variational principle with a special pairing energy functional. We obtain the isoscalar quadrupole strength functions for Neon isotopes with small-amplitude CbTDHFB calculation in the three-dimensional coordinate-space representation.

  11. Effect of nonuniform hole-content distribution within the interlayer pair-tunneling mechanism of layered HTSC

    NASA Astrophysics Data System (ADS)

    Angilella, Giuseppe G. N.; Pucci, Renato

    1999-04-01

    The interlayer pair-tunneling (ILPT) mechanism for high- Tc superconductivity predicts the dependence of the (optimal) critical temperature Tc on the number of layers n within a homologous series of layered cuprate oxides. We generalize the mean-field procedure employed to evaluate Tc within an extended in-plane Hubbard model in the presence of ILPT, developed for a bilayer complex ( n=2), to the case of n=3,4 inequivalent superconducting layers. As a function of doping, we show how a nonuniform hole-content distribution among different layers affects Tc. In particular, depending on doping, the onset of superconductivity may be ruled by inner or outer layers. The latter result may be related to recent experimental data of Tc as a function of pressure in Tl- and Bi-based layered superconductors.

  12. Measurement device-independent quantum key distribution with heralded pair coherent state

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; Lei, Shi

    2016-10-01

    The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.

  13. Measurement device-independent quantum key distribution with heralded pair coherent state

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; Lei, Shi

    2016-07-01

    The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.

  14. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  15. A Photographic View of Cumulative Distribution Functions

    ERIC Educational Resources Information Center

    Jernigan, Robert W.

    2008-01-01

    This article shows a concrete and easy recognizable view of a cumulative distribution function(cdf). Photograph views of the search tabs on dictionaries are used to increase students' understanding and facility with the concept of a cumulative distribution function. Projects for student investigations are also given. This motivation and view helps…

  16. Photophysical properties of charge transfer pairs encapsulated inside macrocycle cage: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arkamita; Pati, Swapan K.

    2015-03-01

    Density functional theory calculations have been performed on three charge transfer donor-acceptor (D-A) molecular pairs, i.e. naphthalene-diamine (Naph) and tetrathiafulvalene (TTF) molecules as electron donors and benzene-diimide (Diimide) and tetracyanoquinodimethane (TCNQ) as electron acceptors. Structural, charge transfer and optical properties of the systems have been studied. The D-A pairs then has been considered inside a macrocycle (cucurbit[8]uril) cavity and Naph-Diimide and TTF-Diimide pairs have been shown to exhibit changes in their structures and orientations, TTF-TCNQ pair does not show any significant structural change. Our work suggests that these changes in structures or orientations are result of electronic repulsion between the keto group oxygen atoms and it can lead to tuning of charge transfer and optical properties of the systems.

  17. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    NASA Astrophysics Data System (ADS)

    Solov'yov, Ilia A.; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state with the FAD and Trp partners separated beyond a critical distance. The large radical pair separation reached establishes cryptochrome's sensitivity to the geomagnetic field through weakening of distance-dependent exchange and dipole-dipole interactions. It is estimated that the key secondary electron transfer step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer.

  18. The parton distribution function library

    SciTech Connect

    Plothow-Besch, H.

    1995-07-01

    This article describes an integrated package of Parton Density Functions called PDFLIB which has been added to the CERN Program Library Pool W999 and is labelled as W5051. In this package all the different sets of parton density functions of the Nucleon, Pion and the Photon which are available today have been put together. All these sets have been combined in a consistent way such that they all have similar calling sequences and no external data files have to be read in anymore. A default set has been prepared, although those preferring their own set or wanting to test a new one may do so within the package. The package also offers a program to calculate the strong coupling constant {alpha}, to first or second order. The correct {Lambda}{sub QCD} associated to the selected set of structure functions and the number of allowed flavours with respect to the given Q{sup 2} is automatically used in the calculation. The selection of sets, the program parameters as well as the possibilities to modify the defaults and to control errors occurred during execution are described.

  19. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules

    PubMed Central

    Kimoto, Michiko; Kawai, Rie; Mitsui, Tsuneo; Yokoyama, Shigeyuki; Hirao, Ichiro

    2009-01-01

    Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies. PMID:19073696

  20. Fully self-consistent calculations of momentum distributions of annihilating electron-positron pairs in SiC

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Barthe, Marie-France; Bertolus, Marjorie

    2016-05-01

    We performed calculations of momentum distributions of annihilating electron-positron pairs in various fully relaxed vacancy defects in SiC. We used self-consistent two-component density functional theory schemes to find the electronic and positronic densities and wave functions in the considered systems. Using the one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) we calculated the line-shape parameters S and W . We emphasize the effect of the experimental resolution and the choice of the integration ranges for the S and W parameters on the distributions of the points corresponding to different defects in the S (W ) plot. We performed calculation for two polytypes of SiC, 3 C , and 6 H and showed that for silicon vacancies and clusters containing this defect there were no significant differences between the Doppler spectra. The results of the Doppler spectra calculations were compared with experimental data obtained for n -type 6 H -SiC samples irradiated with 4-MeV Au ions. We observed a good general agreement between the measured and calculated points.

  1. Particulate distribution function evolution for ejecta transport

    SciTech Connect

    Hammerberg, James Edward; Plohr, Bradley J

    2010-01-01

    The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.

  2. Plasma Dispersion Function for the Kappa Distribution

    NASA Technical Reports Server (NTRS)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  3. Fog droplet distribution functions for lidar.

    PubMed

    Mallow, J V

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  4. Fog droplet distribution functions for lidar

    SciTech Connect

    Mallow, J.V.

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  5. Extracting the kaon Collins function from e+e- hadron pair production data

    NASA Astrophysics Data System (ADS)

    Anselmino, M.; Boglione, M.; D'Alesio, U.; Hernandez, J. O. Gonzalez; Melis, S.; Murgia, F.; Prokudin, A.

    2016-02-01

    The latest data released by the BABAR Collaboration on azimuthal correlations measured for pion-kaon and kaon-kaon pairs produced in e+e- annihilations allow, for the first time, a direct extraction of the kaon Collins functions. These functions are then used to compute the kaon Collins asymmetries in semi-inclusive deep inelastic scattering processes, which result in good agreement with the measurements performed by the HERMES and COMPASS collaborations.

  6. Pair correlation functions of FeAs-based superconductors: Quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kashurnikov, V. A.; Krasavin, A. V.

    2015-01-01

    The new generalized quantum continuous time world line Monte Carlo algorithm was developed to calculate pair correlation functions for two-dimensional FeAs-clusters modeling of iron-based superconductors within the framework of the two-orbital model. The analysis of pair correlations depending on the cluster size, temperature, interaction, and the type of symmetry of the order parameter is carried out. The data obtained for clusters with sizes up to 1 0x1 0 FeAs-cells favor the possibility of an effective charge carrier's attraction that is corresponding the A1g-symmetry, at some parameters of interaction.

  7. Pair-flowered cymes in the Lamiales: structure, distribution and origin

    PubMed Central

    Weber, Anton

    2013-01-01

    Background and Aims In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) ‘pair-flowered cymes’ (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood. Methods The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences). Key Results PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers. Conclusions From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable. PMID:23884395

  8. Sum Rules for the Pair-Correlation Functions of Inhomogeneous Fluids: Results for the Hard-Sphere-Hard-Wall System

    NASA Astrophysics Data System (ADS)

    Henderson, D.; Plischke, M.

    1987-04-01

    Starting from well-known relations for the derivatives of the radial distribution functions of a mixture of fluids, and allowing the diameter of one particle to become exceedingly large, three sum rules for a fluid with density inhomogeneities are obtained. None of these sum rules are new. However, the relation between the Lovett-Mou-Buff-Wertheim and the Born-Green hierarchy of equations seems not well known. The accuracy of a recent parametrization of the pair correlation of hard spheres near a hard wall and of the solutions of the Percus-Yevick and hypernetted-chain equation for this same function are examined by determination of how well these functions satisfy these sum rules and the accuracy of their surface tension, calculated from the sum rule of Triezenberg and Zwanzig. Generally speaking, the Percus-Yevick theory gives the best results and the hypernetted-chain approximation gives the worst results with the parametrization being intermediate.

  9. Pairing and rotational properties of actinides and superheavy nuclei in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abdurazakov, O.

    2013-07-01

    The cranked relativistic Hartree-Bogoliubov theory has been applied for a systematic study of pairing and rotational properties of actinides and light superheavy nuclei. Pairing correlations are taken into account by the Brink-Booker part of finite-range Gogny D1S force. For the first time, in the covariant density functional theory (CDFT) framework, the pairing properties of deformed nuclei are studied via the quantities (such as three-point Δ(3) indicators) related to odd-even mass staggerings. The investigation of the moments of inertia at low spin and the Δ(3) indicators shows the need for an attenuation of the strength of the Brink-Booker part of the Gogny D1S force in pairing channel. The investigation of rotational properties of even-even and odd-mass nuclei at normal deformation, performed in the density functional theory framework in such a systematic way for the first time, reveals that in the majority of the cases the experimental data are well described. These include the evolution of the moments of inertia with spin, band crossings in the A≥242 nuclei, the impact of the particle in specific orbital on the moments of inertia in odd-mass nuclei. The analysis of the discrepancies between theory and experiment in the band crossing region of A≤240 nuclei suggests the stabilization of octupole deformation at high spin, not included in the present calculations. The evolution of pairing with deformation, which is important for the fission barriers, has been investigated via the analysis of the moments of inertia in the superdeformed minimum. The dependence of the results on the CDFT parametrization has been studied by comparing the results of the calculations obtained with the NL1 and NL3* parametrizations.

  10. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  11. Distance distributions recovered from steady-state fluorescence measurements on thirteen donor-acceptor pairs with different Förster distances.

    PubMed

    Wiczk, W; Eis, P S; Fishman, M N; Johnson, M L; Lakowicz, J R

    1991-12-01

    The end-to-end distance distribution of a flexible molecule was recovered from steady-state fluorescence energy transfer measurements using the method suggested by Cantor and Pechukas (Proc. Natl. Acad. Sci. USA 68, 2099-2101, 1971). In this method, the Förster distance (R 0) is varied by attaching different donor-acceptor (D-A) pairs to the flexible linker of interest. Distance distributions are then recovered from energy transfer efficiency measurements on the set of D-A pairs with differentR 0 values. Thirteen D-A pair compounds were synthesized withR 0 values ranging from 6 to 32 Å. Each compound contained a tryptamine donor linked by an alkyl chain (∼10 carbons) to 1 of 13 acceptors. Using these compounds, we have experimentally confirmed the Cantor and Pechukas method for recovering distance distributions. The measured transfer efficiencies, as a function ofR 0, were fit to the transfer efficiencies predicted for both Gaussian and skewed Gaussian distance distributions. The data support the existence of a skewed Gaussian distribution, and we believe that this is the first experimental observation of an asymmetric distribution for a flexible molecule using fluorescence resonance energy transfer measurements. Finally, the experimentally recovered distance distribution was found to be in good agreement with the distribution predicted from the rotational isomeric state model of Flory (Statistical Mechanics of Chain Molecules, John Wiley & Sons, New York, 1969, Chaps. 1, 3, and 5) but not with the predicted distribution for a freely rotating or freely jointed chain. PMID:24243077

  12. Global optimum protein threading with gapped alignment and empirical pair score functions.

    PubMed

    Lathrop, R H; Smith, T F

    1996-02-01

    We describe a branch-and-bound search algorithm for finding the exact global optimum gapped sequence-structure alignment ("threading") between a protein sequence and a protein core or structural model, using an arbitrary amino acid pair score function (e.g. contact potentials, knowledge-based potentials, potentials of mean force, etc.). The search method imposes minimal conditions on how structural environments are defined or the form of the score function, and allows arbitrary sequence-specific functions for scoring loops and active site residues. Consequently the search method can be used with many different score functions and threading methodologies; this paper illustrates five from the literature. On a desktop workstation running LISP, we have found the global optimum protein sequence-structure alignment in NP-hard search spaces as large as 9.6 x 10(31), at rates ranging as high as 6.8 x 10(28) equivalent threadings per second (most of which are pruned before they ever are examined explicitly). Continuing the procedure past the global optimum enumerates successive candidate threadings in monotonically increasing score order. We give efficient algorithms for search space size, uniform random sampling, segment placement probabilities, mean, standard deviation and partition function. The method should prove useful for structure prediction, as well as for critical evaluation of new pair score functions. PMID:8568903

  13. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation.

    PubMed

    Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura

    2016-02-01

    A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications. PMID:26794241

  14. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  15. Hyperdynamics for entropic systems: time-space compression and pair correlation function approximation.

    PubMed

    Zhou, Xin; Jiang, Yi; Kremer, Kurt; Ziock, Hans; Rasmussen, Steen

    2006-09-01

    We develop a generalized hyperdynamics method that is able to simulate slow dynamics in atomistic general (both energy- and entropy-dominated) systems. We show that a few functionals of the pair correlation function, involving two-body entropy, form a low-dimensional collective space, which is a good approximation that is able to distinguish stable and transitional conformations. A bias potential, which raises the energy in stable regions, is constructed on the fly. We examine the slow nucleation processes of a Lennard-Jones gas and show that our method can generate correct long-time dynamics without prior knowledge.

  16. Molecular Interactions in 1-Ethyl-3-methylimidazolium Acetate Ion Pair: A Density Functional Study

    NASA Astrophysics Data System (ADS)

    Dhumal, Nilesh R.; Kim, Hyung J.; Kiefer, Johannes

    2009-08-01

    The density functional method is used to obtain the molecular structure, electron density topography, and vibrational frequencies of the ion pair 1-ethyl-3-methylimidazolium acetate. Different conformers are simulated on the basis of molecular interactions between the 1-ethyl-3-methylimidazolium cation and acetate anion. The lowest energy conformers exhibit strong C-H···O interionic interactions compared with other conformers. Characteristic vibrational frequencies of the ion pair and their shifts with respect to free ions are analyzed via the natural bond orbitals and difference electron density maps coupled with molecular electron density topology. Theoretically scaled vibrational frequencies are also compared with the spontaneous Raman scattering and attenuated total reflection infrared absorption measurements.

  17. Calculation of the Poisson cumulative distribution function

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Nolty, Robert G.; Scheuer, Ernest M.

    1990-01-01

    A method for calculating the Poisson cdf (cumulative distribution function) is presented. The method avoids computer underflow and overflow during the process. The computer program uses this technique to calculate the Poisson cdf for arbitrary inputs. An algorithm that determines the Poisson parameter required to yield a specified value of the cdf is presented.

  18. Probability distribution functions in turbulent convection

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Sirovich, L.

    1991-01-01

    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.

  19. Electron energy-distribution functions in gases

    SciTech Connect

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)

  20. Functional research and cognitive-process research in behavioural science: An unequal but firmly connected pair.

    PubMed

    Fiedler, Klaus

    2016-02-01

    Drawing on illustrative examples of the functional and cognitive psychology in contemporary research, the present article emphasizes the primacy of functional relationships, which provide the fundament for all attempts to uncover invisible cognitive processes. Cognitive research is not only inherently more difficult and much more ambitious than functional research. It also suffers from several home-made problems, such as unwarranted inferences from model fitting, the mediation-analysis cult and the failure to take environmental influences into account. However, despite the primacy of functional psychology and the problems associated with the ambitious goals of cognitive research, the two partners in this unequal pair are firmly connected and jointly responsible for the most impressive examples of progress in behavioural science.

  1. Recent progress on nuclear parton distribution functions

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Kumano, S.; Saito, K.

    2011-09-01

    We report current status of global analyses on nuclear parton distribution functions (NPDFs). The optimum NPDFs are determined by analyzing high-energy nuclear reaction data. Due to limited experimental measurements, antiquark modifications have large uncertainties at x > 0.2 and gluon modifications cannot be determined. A nuclear modification difference between u and d quark distributions could be an origin of the long-standing NuTeV sin2θw anomaly. There is also an issue of nuclear modification differences between the structure functions of charged-lepton and neutrino reactions. Next, nuclear clustering effects are discussed in structure functions F2A as a possible explanation for an anomalous result in the 9Be nucleus at the Thomas Jefferson National Accelerator Facility (JLab). Last, tensor-polarized quark and antiquark distribution functions are extracted from HERMES data on the polarized structure function b1 of the deuteron, and they could be used for testing theoretical models and for proposing future experiments, for example, the one at JLab. Such measurements could open a new field of spin physics in spin-one hadrons.

  2. Functional neuroimaging study in identical twin pairs discordant for regular cigarette smoking.

    PubMed

    Lessov-Schlaggar, Christina N; Lepore, Rebecca L; Kristjansson, Sean D; Schlaggar, Bradley L; Barnes, Kelly Anne; Petersen, Steven E; Madden, Pamela A F; Heath, Andrew C; Barch, Deanna M

    2013-01-01

    Despite the tremendous public health and financial burden of cigarette smoking, relatively little is understood about brain mechanisms that subserve smoking behavior. This study investigated the effect of lifetime regular smoking on brain processing in a reward guessing task using functional magnetic resonance imaging and a co-twin control study design in monozygotic (MZ) twin pairs that maximally controls for genetic and family background factors. Young adult (24-34 years) MZ female twin pairs (n = 15 pairs), discordant for regular smoking defined using Centers for Disease Control criteria as having smoked ≥100 cigarettes in their lifetime, were recruited from an ongoing genetic epidemiological longitudinal study of substance use and psychopathology. We applied hypothesis-driven region of interest (ROI) and whole-brain analyses to investigate the effect of regular smoking on reward processing. Reduced response to reward and punishment in regular compared with never-regular smokers was seen in hypothesis-driven ROI analysis of bilateral ventral striatum. Whole-brain analysis identified bilateral reward-processing regions that showed activation differences in response to winning or losing money but no effect of regular smoking; and frontal/parietal regions, predominantly in the right hemisphere, that showed robust effect of regular smoking but no effect of winning or losing money. Altogether, using a study design that maximally controls for group differences, we found that regular smoking had modest effects on striatal reward processing regions but robust effects on cognitive control/attentional systems. PMID:22340136

  3. Functional Neuroimaging Study in Identical Twin Pairs Discordant for Regular Cigarette Smoking

    PubMed Central

    Lessov-Schlaggar, Christina N.; Lepore, Rebecca L.; Kristjansson, Sean D.; Schlaggar, Bradley L.; Barnes, Kelly Anne; Petersen, Steven E.; Madden, Pamela A. F.; Heath, Andrew C.; Barch, Deanna M.

    2012-01-01

    Despite the tremendous public health and financial burden of cigarette smoking, relatively little is understood about brain mechanisms that subserve smoking behavior. This study investigated the effect of lifetime regular smoking on brain processing in a reward guessing task using functional magnetic resonance imaging (fMRI) and a cotwin-control study design in monozygotic (MZ) twin pairs that maximally controls for genetic and family background factors. Young adult (24–34 years) MZ female twin pairs (n=15 pairs), discordant for regular smoking defined using Centers for Disease Control (CDC) criteria as having smoked ≥100 cigarettes lifetime were recruited from an ongoing genetic epidemiological longitudinal study of substance use and psychopathology. We applied hypothesis-driven region of interest and whole brain analyses to investigate the effect of regular smoking on reward processing. Reduced response to reward and punishment in regular compared to never-regular smokers was seen in hypothesis-driven region of interest analysis of bilateral ventral striatum. Whole brain analysis identified bilateral reward-processing regions that showed activation differences in response to winning or losing money but no effect of regular smoking; and frontal/parietal regions, predominantly in the right hemisphere, that showed robust effect of regular smoking but no effect of winning or losing money. Altogether, using a study design that maximally controls for group differences, we found that regular smoking had modest effects on striatal reward processing regions but robust effects on cognitive control/attentional systems. PMID:22340136

  4. Planetesimal Scattering and its Implications for the Period-Ratio Distribution of Kepler Planet Pairs

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Krantzler, Seth O.; Ford, Eric B.; Tasker, Elizabeth; Rasio, Fred

    2015-12-01

    Period ratios of most adjacent planet pairs in Kepler's multiplanet systems seem random. However, there is a clear excess and dearth of systems just exterior and interior to major mean motion resonances, respectively. We show that dynamical interactions between initially resonant planet pairs and planetesimals in a planetesimal disk can naturally produce the observed asymmetric abundances in period ratios of near-resonant pairs for a wide variety of planet and planetesimal disk properties (Chatterjee & Ford 2015). We further extend this study to include planet pairs initially not in resonance. We will present our key results from this large suite of simulations. We will also discuss implications of planetesimal scattering for the observable properties of these planets including their TTV signal and mass-radius properties as a result of planetesimal accretion.

  5. Dynamical correlation effects on pair-correlation functions of spin polarized two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kumar, Krishan; Garg, Vinayak; Moudgil, R. K.

    2013-06-01

    We report a theoretical study on the spin-resolved pair-correlation functions gσσ'(r) of a two-dimensional electron gas having arbitrary spin polarization ζ by including the dynamics of exchange-correlations within the dynamical self-consistent mean-field theory of Hasegawa and Shimizu. The calculated g↑↑(r), g↓↓(r) and g↑↓(r) exhibit a nice agreement with the recent quantum Monte Carlo simulation data of Gori-Giorgi et al. However, the agreement for the minority spin correlation function g↓↓(r) decreases with increase in ζ and/or decrease in electron density. Nevertheless, the spin-summed correlation function remains close to the simulation data.

  6. Contact pair correlation functions of binary mixtures of additive hard spheres from the virial expansion

    NASA Astrophysics Data System (ADS)

    Barrio, C.; Solana, J. R.

    2003-08-01

    Density expansions of the contact pair correlation functions for binary mixtures of additive hard spheres are obtained from the virial expansion of the equation of state. The procedure is based on the use consistency conditions. The resulting expansions are exact up to first order in the density. This corresponds to the third virial coefficient which is exactly known for these mixtures. Analytical expressions for the second and third order terms are obtained on the basis of very accurate approximate analytical expressions for the fourth and fifth virial coefficients. It is found that the series converge slowly, but the convergency can be accelerated by means of a resummation procedure.

  7. Contact pair correlation functions and equation of state for additive hard disk fluid mixtures

    NASA Astrophysics Data System (ADS)

    Barrio, C.; Solana, J. R.

    2001-10-01

    The contact pair correlation functions and the equation of state for a binary mixture of additive hard disks is obtained using a procedure similar to that leading to the Boublı´k-Mansoori-Carnahan-Starling-Leland equation of state for mixtures of additive hard spheres. The results from the derived equations are tested against new Monte Carlo data obtained for several diameter ratios and mole fractions. The overall agreement is excellent. The equation of state reproduces exactly the second virial coefficient of the mixture and the third with great accuracy. Predicted values of the fourth and fifth virial coefficients are also in very good agreement with numerical data.

  8. Comparing Functional Analysis and Paired-choice Assessment Results in Classroom Settings

    PubMed Central

    Berg, Wendy K; Wacker, David P; Cigrand, Karla; Merkle, Steve; Wade, Jeanie; Henry, Kim; Wang, Yu-Chia

    2007-01-01

    The results of a functional analysis of problem behavior and a paired-choice assessment were compared to determine whether the same social reinforcers were identified for problem behavior and an appropriate response (time allocation). The two assessments were conducted in classroom settings with 4 adolescents with mental retardation who engaged in severe problem behavior. Each student's classroom teacher served as the therapist for all phases of assessment. The two assessment procedures identified the same social reinforcers for problem and appropriate behavior for 3 of 4 participants. PMID:17970268

  9. Selected topics on parton distribution functions

    SciTech Connect

    Hirai, M.; Saito, K.; Kawamura, H.; Kumano, S.

    2011-12-14

    We report recent studies on structure functions of the nucleon and nuclei. First, clustering effects are investigated in the structure function F{sub 2} of {sup 9}Be for explaining an unusual nuclear correction found in a JLab experiment. We propose that high densities created by formation of clustering structure like 2{alpha}+neutron in {sup 9}Be is the origin of the unexpected JLab result by using the antisymmetrized molecular dynamics (AMD). There is an approved proposal at JLab to investigate the structure functions of light nuclei including the cluster structure, so that much details will become clear in a few years. Second, tensor-polarized quark and antiquark distributions are obtained by analyzing HERMES measurements on the structure function b{sub 1} for the deuteron. The result suggests a finite tensor polarization for antiquark distributions, which is an interesting topic for further theoretical and experimental investigations. An experimental proposal exists at JLab for measuring b{sub 1} of the deuteron as a new tensor-structure study in 2010's. Furthermore, the antiquark tensor polarization could be measured by polarized deuteron Drell-Yan processes at hadron facilities such as J-PARC and GSI-FAIR. Third, the recent CDF dijet anomaly is investigated within the standard model by considering possible modifications of the strange-quark distribution. We find that the shape of a dijet-mass spectrum changes depending on the strange-quark distribution. It indicates that the CDF excess could be partially explained as a PDF effect, particularly by the strangeness in the nucleon, within the standard model if the excess at m{sub jj}{approx_equal}140 GeV is not a sharp peak.

  10. Functional connectivity of paired default mode network subregions in primary insomnia

    PubMed Central

    Nie, Xiao; Shao, Yi; Liu, Si-yu; Li, Hai-jun; Wan, Ai-lan; Nie, Si; Peng, De-chang; Dai, Xi-jian

    2015-01-01

    Objective The aim of this study is to explore the resting-state functional connectivity (FC) differences between the paired default mode network (DMN) subregions in patients with primary insomnia (PIs). Methods Forty-two PIs and forty-two age- and sex-matched good sleepers (GSs) were recruited. All subjects underwent the resting-state functional magnetic resonance imaging scans. The seed-based region-to-region FC method was used to evaluate the abnormal connectivity within the DMN subregions between the PIs and the GSs. Pearson correlation analysis was used to investigate the relationships between the abnormal FC strength within the paired DMN subregions and the clinical features in PIs. Results Compared with the GSs, the PIs showed higher Pittsburgh Sleep Quality Index score, Hamilton Anxiety Rating Scale score, Hamilton Depression Rating Scale score, Self-Rating Depression Scale score, Self Rating Anxiety Scale score, Self-Rating Scale of Sleep score, and Profile of Mood States score (P<0.001). Compared with the GSs, the PIs showed significant decreased region-to-region FC between the medial prefrontal cortex and the right medial temporal lobe (t=−2.275, P=0.026), and between the left medial temporal lobe and the left inferior parietal cortices (t=−3.32, P=0.001). The abnormal FC strengths between the DMN subregions did not correlate with the clinical features. Conclusion PIs showed disrupted FC within the DMN subregions. PMID:26719693

  11. The two-loop soft function for heavy quark pair production at future linear colliders

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing

    2015-08-01

    We report on the calculation of the threshold soft function for heavy quark pair production in e+e- annihilation at two-loop order. Our main result is a generalization of the familiar Drell-Yan threshold soft function to the case of nonzero primary quark mass. We set up a framework based on the method of differential equations which allows for the straightforward calculation of the bare soft function to arbitrarily high orders in the dimensional regularization parameter. Remarkably, we find that we can obtain the bare two-loop Drell-Yan soft function from the heavy quark soft function to the order in epsilon required for a two-loop calculation by making simple replacements. We expect that our results will be of use, both as an important input for precision physics calculations at linear colliders and, more formally, as a first step toward a better understanding of the connection between vacuum matrix elements of massive soft Wilson lines and vacuum matrix elements of massless soft Wilson lines.

  12. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.

    PubMed

    Forsberg, Zarah; Mackenzie, Alasdair K; Sørlie, Morten; Røhr, Åsmund K; Helland, Ronny; Arvai, Andrew S; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2014-06-10

    For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms. PMID:24912171

  13. Regulation of a duplicated locus: Drosophila sloppy paired is replete with functionally overlapping enhancers.

    PubMed

    Fujioka, Miki; Jaynes, James B

    2012-02-15

    In order to investigate regulation and redundancy within the sloppy paired (slp) locus, we analyzed 30 kilobases of DNA encompassing the tandem, coordinately regulated slp1 and slp2 transcription units. We found a remarkable array of stripe enhancers with overlapping activities surrounding the slp1 transcription unit, and, unexpectedly, glial cell enhancers surrounding slp2. The slp stripe regulatory region generates 7 stripes at blastoderm, and later 14 stripes that persist throughout embryogenesis. Phylogenetic analysis among drosophilids suggests that the multiplicity of stripe enhancers did not evolve through recent duplication. Most of the direct integration among cis-regulatory modules appears to be simply additive, with one notable exception. Despite the apparent redundancy among stripe enhancers, transgenic rescue suggests that most are required for full function, to maintain wingless expression and parasegment boundaries throughout embryogenesis. Transgenic rescue also reveals indirect positive autoregulation by the 7 early stripes, without which alternate stripes within the 14-stripe pattern are lost, leading to embryos with a pair-rule phenotype.

  14. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  15. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum.

    PubMed

    Yen Shin, Jae; Lopez-Garrido, Javier; Lee, Sang-Hyuk; Diaz-Celis, Cesar; Fleming, Tinya; Bustamante, Carlos; Pogliano, Kit

    2015-05-07

    SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.

  16. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  17. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals.

    PubMed

    Garza, Alejandro J; Sousa Alencar, Ana G; Scuseria, Gustavo E

    2015-12-28

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f(0) actinyl series (UO2(2+), NpO2(3+), PuO2(4+)), the isoelectronic NUN, and thorium (ThO, ThO(2+)) and nobelium (NoO, NoO2) oxides are studied.

  18. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.; Swan, James W.; Su, Yu

    2015-12-01

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation

  19. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    SciTech Connect

    Zia, Roseanna N. Su, Yu; Swan, James W.

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle

  20. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.

    PubMed

    Zia, Roseanna N; Swan, James W; Su, Yu

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation

  1. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.

    PubMed

    Zia, Roseanna N; Swan, James W; Su, Yu

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation

  2. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals.

    PubMed

    Garza, Alejandro J; Sousa Alencar, Ana G; Scuseria, Gustavo E

    2015-12-28

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f(0) actinyl series (UO2(2+), NpO2(3+), PuO2(4+)), the isoelectronic NUN, and thorium (ThO, ThO(2+)) and nobelium (NoO, NoO2) oxides are studied. PMID:26723650

  3. Measurements of Correlated Pair Momentum Distributions in {sup 3}He(e,e{prime}pp)n with CLAS

    SciTech Connect

    Rustam Niyazov

    2003-05-01

    We have measured the {sup 3}He(e,e{prime}pp)n reaction at 2.2 and 4.4 GeV over a wide kinematic range. The kinetic energy distribution for ''fast'' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less and the third or ''leading'' nucleon carries most of the transferred energy. These fast nucleon pairs (both pp and pn) are back-to-back and carry very little momentum along {rvec q}, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured NN correlations in {sup 3}He(e,e{prime}pp)n by striking the third nucleon and detecting the spectator correlated pair.

  4. Distribution function approach to redshift space distortions

    SciTech Connect

    Seljak, Uroš; McDonald, Patrick E-mail: pvmcdonald@lbl.gov

    2011-11-01

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter

  5. Audio feature extraction using probability distribution function

    NASA Astrophysics Data System (ADS)

    Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.

    2015-05-01

    Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.

  6. Pion valence-quark parton distribution function

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Thomas, Anthony W.

    2015-10-01

    Within the Dyson-Schwinger equation formulation of QCD, a rainbow ladder truncation is used to calculate the pion valence-quark distribution function (PDF). The gap equation is renormalized at a typical hadronic scale, of order 0.5 GeV, which is also set as the default initial scale for the pion PDF. We implement a corrected leading-order expression for the PDF which ensures that the valence-quarks carry all of the pion's light-front momentum at the initial scale. The scaling behavior of the pion PDF at a typical partonic scale of order 5.2 GeV is found to be (1 - x) ν, with ν ≃ 1.6, as x approaches one.

  7. Pair correlation function decay in models of simple fluids that contain dispersion interactions.

    PubMed

    Evans, R; Henderson, J R

    2009-11-25

    We investigate the intermediate-and longest-range decay of the total pair correlation function h(r) in model fluids where the inter-particle potential decays as -r(-6), as is appropriate to real fluids in which dispersion forces govern the attraction between particles. It is well-known that such interactions give rise to a term in q(3) in the expansion of [Formula: see text], the Fourier transform of the direct correlation function. Here we show that the presence of the r(-6) tail changes significantly the analytic structure of [Formula: see text] from that found in models where the inter-particle potential is short ranged. In particular the pure imaginary pole at q = iα(0), which generates monotonic-exponential decay of rh(r) in the short-ranged case, is replaced by a complex (pseudo-exponential) pole at q = iα(0)+α(1) whose real part α(1) is negative and generally very small in magnitude. Near the critical point α(1)∼-α(0)(2) and we show how classical Ornstein-Zernike behaviour of the pair correlation function is recovered on approaching the mean-field critical point. Explicit calculations, based on the random phase approximation, enable us to demonstrate the accuracy of asymptotic formulae for h(r) in all regions of the phase diagram and to determine a pseudo-Fisher-Widom (pFW) line. On the high density side of this line, intermediate-range decay of rh(r) is exponentially damped-oscillatory and the ultimate long-range decay is power-law, proportional to r(-6), whereas on the low density side this damped-oscillatory decay is sub-dominant to both monotonic-exponential and power-law decay. Earlier analyses did not identify the pseudo-exponential pole and therefore the existence of the pFW line. Our results enable us to write down the generic wetting potential for a 'real' fluid exhibiting both short-ranged and dispersion interactions. The monotonic-exponential decay of correlations associated with the pseudo-exponential pole introduces additional terms into

  8. Carotenoids in algae: distributions, biosyntheses and functions.

    PubMed

    Takaichi, Shinichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b(6)f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.

  9. Functionalization of Intramolecular Frustrated Lewis Pairs by 1,1-Carboboration with Conjugated Enynes.

    PubMed

    Feldmann, Andreas; Kehr, Gerald; Daniliuc, Constantin G; Mück-Lichtenfeld, Christian; Erker, Gerhard

    2015-08-24

    The vicinal P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 undergoes 1,1-carboboration reactions with the Me3Si-substituted enynes to give ring-enlarged functionalized C3-bridged P/B FLPs. These serve as active FLPs in the activation of dihydrogen to give the respective zwitterionic [P]H(+)/[B]H(-) products. One such product shows activity as a metal-free catalyst for the hydrogenation of enamines or a bulky imine. The ring-enlarged FLPs contain dienylborane functionalities that undergo "bora-Nazarov"-type ring-closing rearrangements upon photolysis. A DFT study had shown that the dienylborane cyclization of such systems itself is endothermic, but a subsequent C6F5 migration is very favorable. Furthermore, substituted 2,5-dihydroborole products are derived from cyclization and C6F5 migration from the photolysis reaction. In the case of the six-membered annulation product, a subsequent stereoisomerization reaction takes place and the resultant compound undergoes a P/B FLP 1,2-addition reaction with a terminal alkyne with rearrangement. PMID:26284948

  10. Nuclear modifications of Parton Distribution Functions

    NASA Astrophysics Data System (ADS)

    Adeluyi, Adeola Adeleke

    This dissertation addresses a central question of modern nuclear physics: how does the behavior of fundamental degrees of freedom (quarks and gluons) change in the nuclear environment? This is an important aspect of experimental studies at current facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Laboratory (JLAB). It is also highly relevant to planned experimental efforts at the Large Hadron Collider (LHC) and the future Electron Ion Collider (EIC). All these facilities probe matter via collisions involving nuclei; thus complications arise due to the presence of the attendant nuclear medium. Theoretical efforts to understand and interpret experimental results from such collisions are therefore largely dependent on the resolution of this question. The development of nuclear physics demonstrates that theoretical description is most efficient in terms of the effective degrees of freedom relevant to the scale (energy) being probed. Thus at low energies, nuclei are described as bound states of protons and neutrons (nucleons). At higher energies, the nucleons are no longer elementary, but are revealed to possess an underlying substructure: they are made up of quarks and gluons, collectively termed partons. The mometum distributions of these partons in the nucleon are referred to as Parton Distribution Functions (PDFs). Parton distributions can be determined from experimental measurements of structure functions. The ratio of nuclear structure functions to nucleon structure functions (generically referred to as nuclear ratio) is a measure of the nuclear modifications of the free nucleon PDFs. Thus a study of the nuclear ratio suffices to gain an understanding of nuclear modifications. In this dissertation we aim to describe theoretically nuclear modifications in a restricted region where the nuclear ratio is less than unity, the so

  11. Linear dispersion properties of ring velocity distribution functions

    SciTech Connect

    Vandas, Marek

    2015-06-15

    Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambient magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.

  12. Productivity of Pair Programming in a Distributed Environment - Results from Two Controlled Case Studies

    NASA Astrophysics Data System (ADS)

    Pietinen, Sami; Tenhunen, Vesa; Tukiainen, Markku

    Several methods and techniques have surfaced to address the ongoing concerns of quality and productivity of software development. Among these is the Pair Programming (PP) method, which has gained a lot off attention through being an essential part of an agile software development methodology called the eXtreme Programming (XP). In this paper, we present the results of two controlled case studies that investigate the possible productivity improvement through the incorporation of PP over solo programming. The main focus is on implementation task, more specifically in programming, although PP is suitable for other tasks too. Our results show that very high level of PP use might be difficult to achieve in a very tightly scheduled software development project, but some of the benefits can be seen to come true even with proportional use of PP. In our case, PP added the additional effort of 13% over solo programming.

  13. Increasing Occurrences and Functional Roles for High Energy Purine-Pyrimidine Base-Pairs in Nucleic Acids

    PubMed Central

    Kimsey, Isaac; Al-Hashimi, Hashim M.

    2014-01-01

    There are a growing number of studies reporting the observation of purine-pyrimidine base-pairs that are seldom observed in unmodified nucleic acids because they entail the loss of energetically favorable interactions or require energetically costly base ionization or tautomerization. These high energy purine-pyrimidine base-pairs include G•C+ and A•T Hoogsteen base-pairs, which entail ~180° rotation of the purine base in a Watson-Crick base-pair, protonation of cytosine N3, and constriction of the C1′–C1′ distance by ~2.5 Å. Other high energy pure-pyrimidine base-pairs include G•T, G•U, and A•C mispairs that adopt Watson-Crick like geometry through either base ionization or tautomerization. Although difficult to detect and characterize using biophysical methods, high energy purine-pyrimidine base-pairs appear to be more common than once thought. They further expand the structural and functional diversity of canonical and noncanonical nucleic acid base-pairs. PMID:24721455

  14. Tests of structure functions using lepton pairs: W-charge asymmetry at CDF

    NASA Astrophysics Data System (ADS)

    Sakumoto, W. K.

    1994-09-01

    Large asymmetry of W-bosons produced in p(bar-p) collisions has been measured using 19 039 W yields e nu and W yields mu nu decays recorded by the CDF detector during the 1992-1993 Tevatron collider run. The asymmetry is sensitive to the slope of the proton's d/u quark distribution ratio down to x less than 0.01 at Q(exp 2) approximately M(sub w)(exp 2), where nonperturbative QCD effects are minimal. Of recent parton distribution functions, those of Martin, Roberts, and Stirling are favored over those of the CTEQ collaboration. This difference is seen even though both sets agree, at the level of the nuclear shadowing corrections, with the recent NMC measurements of F(sub 2)(sup mu n)/F(sub 2)(sup mu p).

  15. Tests of structure functions using lepton pairs: W-charge asymmetry at CDF

    SciTech Connect

    Sakumoto, W.K.; CDF Collaboration

    1994-09-01

    Large asymmetry of W-bosons produced in p{bar p} collisions has been measured using 19 039 W {yields} e{nu} and W {yields} {mu}{nu} decays recorded by the CDF detector during the 1992--1993 Tevatron collider run. The asymmetry is sensitive to the slope of the proton`s d/u quark distribution ratio down to x < 0.01 at Q{sup 2} {approx} M{sub w}{sup 2}, where nonperturbative QCD effects are minimal. Of recent parton distribution functions, those of Martin, Roberts and Stirling are favored over those of the CTEQ collaboration. This difference is seen even though both sets agree, at the leval of the nuclear shadowing corrections, with the recent NMC measurements of F{sub 2}{sup mu}n/F{sub 2}{sup mu}p.

  16. ATP binds to proteasomal ATPases in pairs with distinct functional effects implying an ordered reaction cycle

    PubMed Central

    Smith, David M.; Fraga, Hugo; Reis, Christian; Kafri, Galit; Goldberg, Alfred L.

    2011-01-01

    In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits, and in archaea by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules, or two ATPγS plus two ADP molecules it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate-opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and “wobble” on top of the heptameric 20S proteasome. PMID:21335235

  17. Pair correlation function of short-ranged square-well fluids

    NASA Astrophysics Data System (ADS)

    Largo, J.; Solana, J. R.; Yuste, S. B.; Santos, A.

    2005-02-01

    We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths λ -1 ranging from 0.1 to 1.0, in units of the diameter σ of the particles. For each one of these widths, several densities ρ and temperatures T in the ranges 0.1⩽ρσ3⩽0.8 and Tc(λ)≲T≲3Tc(λ), where Tc(λ) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 3079 (1994); 100, 6665 (1994)] and the nonperturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. 101 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory works for long ranges and high densities.

  18. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum

    DOE PAGES

    Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk; Diaz-Celis, Cesar; Fleming, Tinya; Bustamante, Carlos; Pogliano, Kit

    2015-05-07

    SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reversesmore » membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less

  19. Density functional theory studies of interactions of ruthenium-arene complexes with base pair steps.

    PubMed

    Mutter, Shaun T; Platts, James A

    2011-10-20

    Density functional theory (DFT) calculations have been performed to determine the strength and geometry of intermolecular interactions of "piano-stool" ruthenium arene complexes, which show potential as anticancer treatments. Model complexes with methane and benzene indicate that the coordinated arene has C-H···π acceptor ability similar to that of free benzene, whereas this arene acts as a much stronger C-H donor or partner in π-stacking than free benzene. The source of these enhanced interactions is identified as a combination of electrostatic and dispersion effects. Complexes of Ru-arene complexes with base-pair step fragments of DNA, in which the arene has the potential to act as an intercalator, have also been investigated. Binding energies are found to be sensitive to the size and nature of the arene, with larger and more flexible arenes having stronger binding. π-stacking and C-H···π interactions between arene and DNA bases and hydrogen bonds from coordinated N-H to DNA oxygen atoms, as well as covalent Ru-N bonding, contribute to the overall binding. The effect of complexation on DNA structure is also examined, with larger rise and more negative slide values than canonical B-DNA observed in all cases.

  20. Functional model for the [Fe] hydrogenase inspired by the frustrated Lewis pair concept.

    PubMed

    Kalz, Kai F; Brinkmeier, Alexander; Dechert, Sebastian; Mata, Ricardo A; Meyer, Franc

    2014-11-26

    [Fe] hydrogenase (Hmd) catalyzes the heterolytic splitting of H2 by using, in its active site, a unique organometallic iron-guanylylpyridinol (FeGP) cofactor and, as a hydride acceptor, the substrate methenyltetrahydromethanopterin (methenyl-H4MPT(+)). The combination FeGP/methenyl-H4MPT(+) and its reactivity bear resemblance to the concept of frustrated Lewis pairs (FLPs), some of which have been shown to heterolytically activate H2. The present work exploits this interpretation of Hmd reactivity by using the combination of Lewis basic ruthenium metalates, namely K[CpRu(CO)2] (KRp) and a related polymeric Cp/Ru/CO compound (Rs), with the new imidazolinium salt 1,3-bis(2,6-difluorophenyl)-2-(4-tolyl)imidazolinium bromide ([(Tol)Im(F4)](+)Br(-)) that was designed to emulate the hydride acceptor properties of methenyl-H4MPT(+). Solid-state structures of [(Tol)Im(F4)](+)Br(-) and the corresponding imidazolidine H(Tol)Im(F4) reveal that the heterocycle undergoes similar structural changes as in the biological substrate. DFT calculations indicate that heterolytic splitting of dihydrogen by the FLP Rp(-)/[(Tol)Im(F4)](+) is exothermic, but the formation of the initial Lewis pair should be unfavorable in polar solvents. Consequently the combination Rp(-)/[(Tol)Im(F4)](+) does not react with H2 but leads instead to side products from nucleophilic substitution (k = 4 × 10(-2) L mol (-1) s(-1) at room temperature). In contrast, the heterogeneous combination Rs/[(Tol)Im(F4)](+) does split H2 heterolytically to give H(Tol)Im(F4) and HRuCp(CO)2 (HRp) or D(Tol)Im(F4) and DRp when using D2. The reaction has been followed by (1)H/(2)H and (19)F NMR spectroscopy as well as by IR spectroscopy and reaches 96% conversion after 1 d. Formation of H(Tol)Im(F4) under these conditions demonstrates that superelectrophilic activation by protonation, which has been proposed for methenyl-H4MPT(+) to increase its carbocationic character, is not necessarily required for an imidazolinium ion to

  1. A critical base pair in k-turns determines the conformational class adopted, and correlates with biological function

    PubMed Central

    Huang, Lin; Wang, Jia; Lilley, David M. J.

    2016-01-01

    k-turns are commonly-occurring motifs that introduce sharp kinks into duplex RNA, thereby facilitating tertiary contacts. Both the folding and conformation of k-turns are determined by their local sequence. k-turns fall into two conformational classes, called N3 and N1, that differ in the pattern of hydrogen bonding in the core. We show here that this is determined by the basepair adjacent to the critical G•A pairs. We determined crystal structures of a series of Kt-7 variants in which this 3b,3n position has been systematically varied, showing that this leads to a switch in the conformation. We have previously shown that the 3b,3n position also determines the folding characteristics of the k-turn, i.e. whether or not the k-turn can fold in the presence of metal ions alone. We have analyzed the distribution of 3b,3n sequences from four classes of k-turns from ribosomes, riboswitches and U4 snRNA, finding a strong conservation of properties for a given k-turn type. We thus demonstrate a strong association between biological function, 3b,3n sequence and k-turn folding and conformation. This has strong predictive power, and can be applied to the modeling of large RNA architectures. PMID:27016741

  2. A critical base pair in k-turns determines the conformational class adopted, and correlates with biological function.

    PubMed

    Huang, Lin; Wang, Jia; Lilley, David M J

    2016-06-20

    k-turns are commonly-occurring motifs that introduce sharp kinks into duplex RNA, thereby facilitating tertiary contacts. Both the folding and conformation of k-turns are determined by their local sequence. k-turns fall into two conformational classes, called N3 and N1, that differ in the pattern of hydrogen bonding in the core. We show here that this is determined by the basepair adjacent to the critical G•A pairs. We determined crystal structures of a series of Kt-7 variants in which this 3b,3n position has been systematically varied, showing that this leads to a switch in the conformation. We have previously shown that the 3b,3n position also determines the folding characteristics of the k-turn, i.e. whether or not the k-turn can fold in the presence of metal ions alone. We have analyzed the distribution of 3b,3n sequences from four classes of k-turns from ribosomes, riboswitches and U4 snRNA, finding a strong conservation of properties for a given k-turn type. We thus demonstrate a strong association between biological function, 3b,3n sequence and k-turn folding and conformation. This has strong predictive power, and can be applied to the modeling of large RNA architectures. PMID:27016741

  3. Direct space decomposition of ELI-D: interplay of charge density and pair-volume function for different bonding situations.

    PubMed

    Wagner, Frank R; Kohout, Miroslav; Grin, Yuri

    2008-10-01

    The topological features, i.e., gradients and curvatures of the same-spin electron pair restricted electron localizability indicator (ELI-D) in position space are analyzed in terms of those of the electron density and the pair-volume function. The analysis of the topology of these constituent functions and their interplay on ELI-D attractor formation for a number of molecules representing chemically different bonding situations allows distinguishing between different chemical bonding scenarios on a quantum mechanical basis without the recourse to orbitals. The occurrence of the Laplacian of the electron density in the expression for the Laplacian of ELI-D allows us to establish a physical link between electron localizability and electron pairing as displayed by ELI-D and the role of Laplacian of the density in this context.

  4. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-01

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.

  5. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-01

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels. PMID:24621192

  6. The determination of pair-distance distribution by double electron-electron resonance: regularization by the length of distance discretization with Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Dzuba, Sergei A.

    2016-08-01

    Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.

  7. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    SciTech Connect

    Ploetz, Elizabeth A.; Smith, Paul E.

    2015-03-07

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.

  8. The function of one-word mediators in the recall of word pairs.

    PubMed

    Bellezza, F S; Poplawsky, A J

    1974-05-01

    The problem of demonstrating that natural language mediators play a role in learning and are not epiphenomena resulting from learning is an important problem in cognitive learning theories. Using a cued-recall and a free-recall learning task, Ss were requested to add a one-word mediator to some of the pairs of concrete nouns presented, The mediated pairs were learned better than the control pairs in both tasks. Both words were recalled only when the mediator was also recalled. Also, one-word mediators were the most effective recall cues and were the best recalled words in free recall. A two-stage learning model adequately described the data. However, a counterargument can be made which considers the mediator to be a high associate of one of the words presented and actually has no direct link to the other presented word. A possible experimental resolution of the problem is discussed. PMID:21274772

  9. Extractions of polarized and unpolarized parton distribution functions

    SciTech Connect

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  10. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis.

    PubMed

    Reimers, Jeffrey R; Hush, Noel S

    2004-04-01

    We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.

  11. Bizarre Mnemonic Aids on Paired Associate Retention as a Function of Context, Delay, and Presentation Pace.

    ERIC Educational Resources Information Center

    Iaccino, James F.; Sowa, Stephen J.

    In order to test the hypothesis that bizarre imagery can be an effective mnemonic aid with delayed testing, a context of mixed materials, and an adequate stimulus presentation pace, a study examined 40 undergraduates who were randomly presented with three paired-associate lists (normal, bizarre, and mixed). Within each list the sentences consisted…

  12. Distribution of paired immunoglobulin-like receptor B in the nervous system related to regeneration difficulties after unilateral lumbar spinal cord injury

    PubMed Central

    Peng, Wan-shu; Qi, Chao; Zhang, Hong; Gao, Mei-ling; Wang, Hong; Ren, Fei; Li, Xia-qing

    2015-01-01

    Paired immunoglobulin-like receptor B (PirB) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of PirB on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of PirB (via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for PirB increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, PirB was mainly distributed along neuronal and axonal membranes. PirB was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for PirB was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of PirB immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that PirB may suppress repair after injury. PMID:26330840

  13. A QCD calculation of the transverse momentum distribution of Drell-Yan pairs including soft emission and non-abelian effects

    NASA Astrophysics Data System (ADS)

    Odorico, R.

    1982-05-01

    The well-known Parisi and Petronzio LLA result for the QCD transverse momentum distribution of Drell-Yan pairs at pT≪ Q takes into account the non-singlet contribution only and totally neglects non-abelian effects due to the singlet contribution. The latter becomes substantial and sometimes dominant at pp and overlinepp collider energies, and thus any comparison with data from these machines will require computation of its effects. We present a QCD Monte Carlo procedure which allows one to calculate the transverse momentum distribution with both non-singlet and singlet contributions included. At the same time it computes the evolution of parton density functions and the correlations between transverse and longitudinal distributions. Phase-space effects are duly taken into account. It is found that, at collider energies, the singlet contribution completely alters QCD predictions for dimuon transverse momenta giving at times < pT> ˜ 4 times larger than the non-singlet contribution. Quantitative results are presented and a comparison with existing data is made, showing satisfactory agreement with the experimentally observed behaviours.

  14. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    PubMed Central

    Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  15. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum.

    PubMed

    Sepehrband, Farshid; Alexander, Daniel C; Clark, Kristi A; Kurniawan, Nyoman D; Yang, Zhengyi; Reutens, David C

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  16. Optimal Reward Functions in Distributed Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan

    2000-01-01

    We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.

  17. Radial evolution of ion distribution functions

    NASA Technical Reports Server (NTRS)

    Marsch, E.

    1983-01-01

    A survey of solar wind ion velocity distributions and derived parameters (temperature, ion differential speed, heat flux, adiabatic invariants) is presented with emphasis on the heliocentric distance range between 0.3 and 1 AU traversed by the Helios solar probe. The radial evolution of nonthermal features are discussed which are observed to be most pronounced at perihelion. Within the framework of quasilinear plasma theory, wave particle interactions that may shape the ion distributions are considered. Some results of a self consistent model calculation are presented accounting for ion acceleration and heating by resonant momentum and energy exchange with ion cyclotron and magnetosonic waves propagating away from the Sun along the interplanetary magnetic field. Another tentative explanation for the occurrence of large perpendicular proton temperatures is offered in terms of heating by Landau damping of lower hybrid waves.

  18. A new family of distribution functions for spherical galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin E.

    1991-06-01

    The present study describes a new family of anisotropic distribution functions for stellar systems designed to keep control of the orbit distribution at fixed energy. These are quasi-separable functions of energy and angular momentum, and they are specified in terms of a circularity function h(x) which fixes the distribution of orbits on the potential's energy surfaces outside some anisotropy radius. Detailed results are presented for a particular set of radially anisotropic circularity functions h-alpha(x). In the scale-free logarithmic potential, exact analytic solutions are shown to exist for all scale-free circularity functions. Intrinsic and projected velocity dispersions are calculated and the expected properties are presented in extensive tables and graphs. Several applications of the quasi-separable distribution functions are discussed. They include the effects of anisotropy or a dark halo on line-broadening functions, the radial orbit instability in anisotropic spherical systems, and violent relaxation in spherical collapse.

  19. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  20. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Astrophysics Data System (ADS)

    Witherow, William K.

    1988-09-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  1. Self-Organizing Maps and Parton Distribution Functions

    SciTech Connect

    K. Holcomb, Simonetta Liuti, D. Z. Perry

    2011-05-01

    We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.

  2. Messenger RNA modifications: Form, distribution, and function.

    PubMed

    Gilbert, Wendy V; Bell, Tristan A; Schaening, Cassandra

    2016-06-17

    RNA contains more than 100 distinct modifications that promote the functions of stable noncoding RNAs in translation and splicing. Recent technical advances have revealed widespread and sparse modification of messenger RNAs with N(6)-methyladenosine (m(6)A), 5-methylcytosine (m(5)C), and pseudouridine (Ψ). Here we discuss the rapidly evolving understanding of the location, regulation, and function of these dynamic mRNA marks, collectively termed the epitranscriptome. We highlight differences among modifications and between species that could instruct ongoing efforts to understand how specific mRNA target sites are selected and how their modification is regulated. Diverse molecular consequences of individual m(6)A modifications are beginning to be revealed, but the effects of m(5)C and Ψ remain largely unknown. Future work linking molecular effects to organismal phenotypes will broaden our understanding of mRNA modifications as cell and developmental regulators. PMID:27313037

  3. Distribution and Functions of Sterols and Sphingolipids

    PubMed Central

    Hannich, J. Thomas; Umebayashi, Kyohei; Riezman, Howard

    2011-01-01

    Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking. PMID:21454248

  4. Distributed implementation of functional program evaluation

    SciTech Connect

    Fasel, J.H.; Douglass, R.J.; Michelsen, R.; Hudak, P.

    1985-01-01

    In this paper, we explore the potential of the functional model, particularly as it pertains to architecture. In Section 2, we describe the graph-reduction operational model of computation and its relation to AI problems. In Section 3, we discuss a class of architectures that implement graph reduction and a prototype implementation in this class being developed at Los Alamos. Finally, we speculate on the applicability of graph reduction to some other classes of architecture.

  5. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.

    1983-01-01

    Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  6. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.H.

    1980-01-01

    Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  7. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.

    PubMed

    Halder, Antarip; Bhattacharya, Sohini; Datta, Ayan; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2015-10-21

    The roles of protonated nucleobases in stabilizing different structural motifs and in facilitating catalytic functions of RNA are well known. Among different polar sites of all the nucleobases, N7 of guanine has the highest protonation propensity at physiological pH. However, unlike other easily protonable sites such as N1 and N3 of adenine or N3 of cytosine, N7 protonation of guanine does not lead to the stabilization of base pairs involving its protonated Hoogsteen edge. It also does not facilitate its participation in any acid-base catalysis process. To explore the possible roles of N7 protonated guanine, we have studied its base pairing potentials involving WatsonCrick and sugar edges, which undergo major charge redistribution upon N7 protonation. We have carried out quantum chemical geometry optimization at the M05-2X/6-311G+(2d,2p) level, followed by interaction energy calculation at the MP2/aug-cc-pVDZ level, along with the analysis of the context of occurrence for selected base pairs involving the sugar edge or the WatsonCrick edge of guanine within a non-redundant set of 167 RNA crystal structures. Our results suggest that, four base pairs - G:C W:W trans, G:rC W:S cis, G:G W:H cis and G:G S:H trans may involve N7 protonated guanine. These base pairs deviate significantly from their respective experimental geometries upon QM optimization, but they retain their experimental geometries if guanine N7 protonation is considered during optimization. Our study also reveals the role of guanine N7 protonation (i) in stabilizing important RNA structural motifs, (ii) in providing a framework for designing pH driven molecular motors and (iii) in providing an alternative strategy to mimic the effect of post-transcriptional changes. PMID:26382322

  8. Relation between transverse momentum dependent distribution functions and parton distribution functions in the covariant parton model approach

    SciTech Connect

    A.V. Efremov, P. Schweitzer, O.V. Teryaev, P. Zavada

    2011-03-01

    We derive relations between transverse momentum dependent distribution functions (TMDs) and the usual parton distribution functions (PDFs) in the 3D covariant parton model, which follow from Lorentz invariance and the assumption of a rotationally symmetric distribution of parton momenta in the nucleon rest frame. Using the known PDFs f_1(x) and g_1(x) as input we predict the x- and pT-dependence of all twist-2 T-even TMDs.

  9. An Orientation Distribution Function for Trabecular Bone

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-10-08

    We describe a new method for quantifying the orientation of trabecular bone from three-dimensional images. Trabecular lattices from five human vertebrae were decomposed into individual trabecular elements, and the orientation, mass, and thickness of each element were recorded. Continuous functions that described the total mass (M({var_phi},{theta})) and mean thickness ({tau}({var_phi},{theta})) of all trabeculae as a function of orientation were derived. The results were compared with experimental measurements of the elastic modulus in the three principal anatomic directions. A power law scaling relationship between the anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 (R{sup 2} = 0.88). As expected, the preponderance of trabecular mass was oriented along the cranial-caudal direction; on average, there was 3.4 times more mass oriented vertically than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than the horizontal trabeculae. The vertical trabecular thickness was inversely related to the connectivity (R{sup 2} = 0.70; p = 0.07), suggesting a possible organization into either few, thick trabeculae or many thin trabeculae. The method, which accounts for the mechanical connectedness of the lattice, provides a rapid way to both visualize and quantify the three-dimensional organization of trabecular bone.

  10. Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes.

    PubMed

    Dunn, John J; McCorkle, Sean R; Everett, Logan; Anderson, Carl W

    2007-01-01

    Because paired-end genomic signature tags are sequenced-based, they have the potential to become an alternate tool to tiled microarray hybridization as a method for genome-wide localization of transcription factors and other sequence-specific DNA binding proteins. As outlined here the method also can be used for global analysis of DNA methylation. One advantage of this approach is the ability to easily switch between different genome types without having to fabricate a new microarray for each and every DNA type. However, the method does have some disadvantages. Among the most rate-limiting steps of our PE-GST protocol are the need to concatemerize the diTAGs, size fractionate them and then clone them prior to sequencing. This is usually followed by additional steps to amplify and size select for long (> or = 500) concatemer inserts prior to sequencing. These time-consuming steps are important for standard DNA sequencing as they increase efficiency approximately 20-30-fold since each amplified concatemer can now provide information on multiple tags; the limitation on data acqui- sition is read length during sequencing. However, the development of new sequencing methods such as Life Sciences' 454 new nanotechnology-based sequencing instrument (41) could increase tag sequencing efficiency by several orders of magnitude (> or = 100,000 diTAG reads/run), which is sufficient to provide in-depth global analysis of all ChIP PE-GSTs in a single run. This is because the lengths of our paired-end diTAGs (approximately 60 bp) fall well within the region of high accuracy for read lengths on this instrument. In principle, sequence analysis of diTAGs could begin as soon as they are generated, thereby completely bypassing the need for the concatemerization, sizing, downstream cloning steps and sequencing template purification. In addition, our protocol places any one of several unique four-base long nucleotide sequences, such as GATC, between each and every diTAG pair, which could

  11. EFG Component Distribution Functions in Inhomogeneous Broadening in PAC Spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Mike; Matheson, P.; Evenson, W. E.; Zacate, M. O.

    2010-10-01

    Perturbed Angular Correlation (PAC) spectroscopy is used to study the distribution and mobility of defects within crystals. The angular correlation of multiple gamma rays emitted from probe nuclei, affected by the net electric field gradient (EFG) in a probe's vicinity, are used to produce the PAC spectrum, G2(t). The distribution of EFGs from many random defects in a crystal, results in inhomogeneous broadening (IHB) of G2(t). Our EFG component probability distribution functions are found by summing 20,000 net EFGs, each found from taking a random distribution of vacancies of a particular concentration, combined with a single trapped vacancy in a near neighbor position to a probe nucleus. The derived EFG component distributions allow us to reconstruct the G2(t) as a function of defection concentration. The EFG component distribution functions are characterized by weighted sums of either Gamma, Lorenztian or Gaussian distributions. A systematic change in the type and number of distribution functions required to model IHB is apparent as defect concentration increases. In particular, the EFG distributions become increasingly skewed with increasing defect concentration. Results for the EFG components in simple cubic (SC), face-centered cubic (FCC) and body-centered cubic (BCC) lattices are presented.

  12. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at √s= 1.96 TeV

    DOE PAGES

    Aaltonen, T

    2011-04-28

    We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

  13. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  14. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  15. Role of chain pairing for the production of functional soluble IA major histocompatibility complex class II molecules

    PubMed Central

    1996-01-01

    Structural studies of cellular receptor molecules involved in immune recognition require the production of large quantities of the extracellular domains of these glycoproteins. The murine major histocompatibility complex (MHC) class II-restricted response has been extensively studied by functional means, but the engineering and purification of the native, empty form of the most-studied murine MHC class II molecule, IA, has been difficult to achieve. IA molecules, which are the murine equivalent of human histocompatibility leukocyte antigen-DQ molecules, have a low efficiency of chain pairing, which results in poor transport to the cell surface and in the appearance of mixed isotype pairs. We have engineered soluble IA molecules whose pairing has been forced by the addition of leucine zipper peptide dimers at their COOH-terminus. The molecules are secreted "empty" into the extracellular medium and can be loaded with single peptide after purification. These IA molecules have been expressed in milligram quantity for crystallization as well as for activation of T cells and measurement of MHC class II-T cell receptor interactions. PMID:8642319

  16. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes

    PubMed Central

    Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara

    2015-01-01

    2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900

  17. Relativistic effects on the back-to-back correlation functions of boson-antiboson pairs in high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yang, Jing; Zhang, Wei-Ning

    2015-03-01

    We calculate the back-to-back correlation (BBC) functions of relativistic boson-antiboson pairs in high energy heavy ion collisions using the Monte Carlo method. The relativistic effects on the BBC functions of φφ and K+K- pairs are investigated. The investigations indicate that the relativistic effects on the BBC functions of K+K- pairs with large momenta are significant, and the effect is sensitive to the particle freeze-out temperature. Supported by National Natural Science Foundation of China (11275037)

  18. Locational distribution of gene functional classes in Arabidopsis thaliana

    PubMed Central

    Riley, Michael C; Clare, Amanda; King, Ross D

    2007-01-01

    Background We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results. Results We have developed a novel bioinformatics method based on Monte Carlo methods and Greenwood's spacing statistic for the computational analysis of the distribution of individual functional classes of genes (from GO). We used this to make the first comprehensive statistical analysis of the relationship between gene functional class and location on a genome. Analysis of the distribution of all genes except tandem duplicates on the five chromosomes of A. thaliana reveals that the distribution on chromosomes I, II, IV and V is clustered at P = 0.001. Many functional classes are clustered, with the degree of clustering within an individual class generally consistent across all five chromosomes. A novel and surprising result was that the locational distribution of some functional classes were significantly more evenly spaced than would be expected by chance. Conclusion Analysis of the A. thaliana genome reveals evidence of unexplained order in the locational distribution of genes. The same general analysis method can be applied to any genome, and indeed any sequential data involving classes. PMID:17397552

  19. Generalised partition functions: inferences on phase space distributions

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2016-06-01

    It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs-Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1/|q - 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel-Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs-Boltzmann partition function is fundamental not only to Gibbs-Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.

  20. Pion and kaon valence-quark parton distribution functions

    SciTech Connect

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-15

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  1. Pion and kaon valence-quark parton distribution functions.

    SciTech Connect

    Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.

    2011-06-16

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  2. New insight on the Sivers transverse momentum dependent distribution function

    SciTech Connect

    M. Anselmino, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin

    2011-05-01

    Polarised Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes allow to study Transverse Momentum Dependent partonic distributions (TMDs), which reveal a non trivial three dimensional internal structure of the hadrons in momentum space. One of the most representative of the TMDs is the so-called Sivers function that describes the distribution of unpolarized quarks inside a transversely polarized proton. We present a novel extraction of the Sivers distribution functions from the most recent experimental data of HERMES and COMPASS experiments. Using suitable parametrizations, within the TMD factorization scheme, and a simple fitting strategy, we also perform a preliminary exploration of the role of the proton sea quarks.

  3. Pion and kaon valence-quark parton distribution functions

    NASA Astrophysics Data System (ADS)

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-01

    A rainbow-ladder truncation of QCD’s Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to π-N Drell-Yan data for the pion’s u-quark distribution and to Drell-Yan data for the ratio uK(x)/uπ(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  4. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: quantum Monte Carlo simulations.

    PubMed

    Neumann, Martin; Zoppi, Marco

    2002-03-01

    We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good.

  5. Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-05-01

    As part of our ongoing investigation of the combustion chemistry of oxygenated molecules using multireference correlated wave function methods, we report bond dissociation energies (BDEs) in C1-C4 alcohols (from methanol to the four isomers of butanol) and C1-C4 aldehydes (from methanal to butanal). The BDEs are calculated with a multireference averaged coupled-pair functional-based scheme. We compare these multireference BDEs with those derived from experiment and single-reference methods. Trends in BDEs for the alcohols and aldehydes are rationalized by considering geometry relaxations of dissociated radical fragments, resonance stabilization, and hyperconjugation. Lastly, we discuss the conjectured association between bond strengths and rates of hydrogen abstraction by hydroxyl radicals. In general, abstraction reaction rates are higher at sites where the C-H bond energies are lower (and vice versa). However, comparison with available rate data shows this inverse relationship between bond strengths and abstraction rates does not hold at all temperatures.

  6. Density functional theory-based derivation of an interatomic pair potential for helium impurities in nickel

    NASA Astrophysics Data System (ADS)

    Torres, E.; Pencer, J.; Radford, D. D.

    2016-10-01

    Helium is formed in nickel as a by-product of neutron irradiation. Although helium is chemically inert and essentially insoluble in metals, under specific conditions it is known to cause metal embrittlement. Early experimental and theoretical studies on helium diffusion mechanisms have been a source of controversy. Recent density functional theory (DFT) studies of helium impurities in nickel contradict earlier theoretical studies. In this paper, a new functional form and parameters for a helium-nickel interatomic potential are proposed. The new potential used in molecular dynamics (MD) simulations correctly reproduces the relative stability of helium defects and the interstitial migration of helium in nickel. Furthermore, the computed activation energy for diffusion of helium in nickel corroborates experimental findings. The transferability of the potential is verified through a comparison with DFT predictions of the formation energies of the most stable He clusters in a Ni monovacancy.

  7. Analyzing Distributed Functions in an Integrated Hazard Analysis

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Massie, Michael J.

    2010-01-01

    Large scale integration of today's aerospace systems is achievable through the use of distributed systems. Validating the safety of distributed systems is significantly more difficult as compared to centralized systems because of the complexity of the interactions between simultaneously active components. Integrated hazard analysis (IHA), a process used to identify unacceptable risks and to provide a means of controlling them, can be applied to either centralized or distributed systems. IHA, though, must be tailored to fit the particular system being analyzed. Distributed systems, for instance, must be analyzed for hazards in terms of the functions that rely on them. This paper will describe systems-oriented IHA techniques (as opposed to traditional failure-event or reliability techniques) that should be employed for distributed systems in aerospace environments. Special considerations will be addressed when dealing with specific distributed systems such as active thermal control, electrical power, command and data handling, and software systems (including the interaction with fault management systems). Because of the significance of second-order effects in large scale distributed systems, the paper will also describe how to analyze secondary functions to secondary functions through the use of channelization.

  8. Functional RelBE-Family Toxin-Antitoxin Pairs Affect Biofilm Maturation and Intestine Colonization in Vibrio cholerae

    PubMed Central

    Hay, Amanda J.; Zhong, Zengtao; Zhu, Jun; Kan, Biao

    2015-01-01

    Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology. PMID:26275048

  9. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  10. Attacking mechanism of hydroxyl radical to DNA base-pair: density functional study in vacuum and in water.

    PubMed

    Shimizu, Eisuke; Tokuyama, Yuki; Okutsu, Naoko; Nomura, Kazuya; Danilov, Victor I; Kurita, Noriyuki

    2015-01-01

    Recently, the influence of radiation on human body has been recognized as a serious problem. In particular, highly reactive hydroxyl radicals *OH produced by the radiation react with DNA, resulting in a great damage on its structure and electronic properties. It is thus important to investigate the reaction mechanism of *OH to DNA for elucidating the initial damage in DNA induced by the radiation. In the present study, we search for transition states (TS) of the reaction between G-C/A-T base-pair and [Formula: see text] in vacuum and in water, by the density functional theory (DFT) calculations. At first, we obtain the stable structures for the dehydrogenated G-C and A-T, in which the hydrogen atom of NH2 group of G or A base is abstracted by [Formula: see text]. From the structures of the dehydrogenated as well as the natural base-pairs, the TS between these structures is searched for and the activation free energy (AFE) is estimated for the reaction. In vacuum, AFEs for the G-C and A-T are almost the same each other, while the stabilization energy by the reaction for G-C is about 4.9 kcal/mol larger than that for A-T, indicating that the population of the dehydrogenated G-C is remarkably larger than that of the dehydrogenated A-T in vacuum. On the other hand, in water approximated by the continuum solvation model, the AFE for A-T is 2.6 kcal/mol smaller than that for G-C, indicating that the reaction dehydrogenated by [Formula: see text] occurs more frequently for the solvated A-T base-pair than G-C.

  11. Measurement of the transverse momentum and $$\\phi ^*_{\\eta }$$ distributions of Drell–Yan lepton pairs in proton–proton collisions at $$\\sqrt{s}=8$$ TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-05-23

    Distributions of transverse momentum pTℓℓ and the related angular variablemore » $$\\phi ^*_{\\eta }$$ of Drell-Yan lepton pairs are measured in 20.3 fb–1 of proton-proton collisions at √s=8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7 TeV these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z -boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $$\\phi ^*_{\\eta }$$<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $$\\phi ^*_{\\eta }$$ this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pTℓℓ while the fixed-order prediction of Dynnlo falls below the data at high values of pTℓℓ. Here, ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $$\\phi ^*_{\\eta }$$ and pTℓℓ distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.« less

  12. Measurement of the transverse momentum and φ ^*_{η } distributions of Drell-Yan lepton pairs in proton-proton collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-05-01

    Distributions of transverse momentum p_T^{ℓ ℓ } and the related angular variable φ ^*_η of DrellΓÇôYan lepton pairs are measured in 20.3┬áfb^{-1} of protonΓÇôproton collisions at √{s}=8┬áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √{s}=7┬áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of φ ^*_η < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of φ ^*_η this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p_T^{ℓ ℓ } while the fixed-order prediction of Dynnlo falls below the data at high values of p_T^{ℓ ℓ }. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the φ ^*_η and p_T^{ℓ ℓ } distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.

  13. Global NLO Analysis of Nuclear Parton Distribution Functions

    SciTech Connect

    Hirai, M.; Kumano, S.; Nagai, T.-H.

    2008-02-21

    Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A{sup '}} and Drell-Yan cross section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A{sup '}}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of {alpha}{sub s}. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.

  14. Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type functions: An analysis of functional proximity

    NASA Astrophysics Data System (ADS)

    Medina, J. S.; Prosmiti, R.; Villarreal, P.; Delgado-Barrio, G.; Alemán, J. V.

    2011-12-01

    An approximation to the Fourier transform (FT) of the Kohlrausch function (stretched exponential) with shape parameter 0<β⩽1 is presented by using Havriliak-Negami-like functions. Mathematical expressions to fit their parameters α, γ, and τ, as functions of β (0<β⩽1 and 1<β<2) are given, which allows a quick identification in the frequency domain of the corresponding shape factor β. Reconstruction via fast Fourier transform of frequency approximants to time domain are shown as good substitutes in short times though biased in long ones (increasing discrepancies as β→1). The method is proposed as a template to commute time and frequency domains when analyzing complex data. Such a strategy facilitates intensive algorithmic search of parameters while adjusting the data of one or several Kohlrausch-Williams-Watts relaxations.

  15. Measured quantum probability distribution functions for Brownian motion

    SciTech Connect

    Ford, G. W.; O'Connell, R. F.

    2007-10-15

    The quantum analog of the joint probability distributions describing a classical stochastic process is introduced. A prescription is given for constructing the quantum distribution associated with a sequence of measurements. For the case of quantum Brownian motion this prescription is illustrated with a number of explicit examples. In particular, it is shown how the prescription can be extended in the form of a general formula for the Wigner function of a Brownian particle entangled with a heat bath.

  16. Nonclassicality indicator for the real phase-space distribution functions

    SciTech Connect

    Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah

    2010-07-15

    Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.

  17. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes.

    PubMed

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-03

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  18. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    PubMed Central

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-ichi

    2016-01-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour. PMID:27140831

  19. Reference hypernetted chain theory for ferrofluid bilayer: distribution functions compared with Monte Carlo.

    PubMed

    Polyakov, Evgeny A; Vorontsov-Velyaminov, Pavel N

    2014-08-28

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r(12)) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented. PMID:25173007

  20. Pair-correlation properties and momentum distribution of finite number of interacting trapped bosons in three dimensions

    SciTech Connect

    Biswas, Anindya; Das, Tapan Kumar; Chakrabarti, Barnali

    2010-09-14

    We study the ground state pair-correlation properties of a weakly interacting trapped Bose gas in three dimensions by using a correlated many-body method. The use of the van der Waals interaction potential and an external trapping potential shows realistic features. We also test the validity of shape-independent approximation in the calculation of correlation properties.

  1. Two-integral distribution functions for axisymmetric galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, C.; Qian, Edward

    1993-01-01

    The new method presented for finding distribution functions, which depend only on the classical integrals of energy and angular momentum for stellar systems with known axisymmetric densities, is the analog for the axisymmetric case of Eddington's classical solution for the isotropic distribution function, depending only on energy, of a known spherical density. It is required that density be expressed as a function of the potential and of a radial coordinate. Our solution is also an integral which is derived directly from the density, and hence can be used with complicated densities. A numerical quadrature is generally required to evaluate this solution, but contour integrals can be computed accurately by numerical quadrature; this is preferable to an explicit evaluation if the latter is an infinite series, such as is obtained using Fricke's method. We give several examples, including some for which our distribution functions are new. Our method can be extended simply to the related problems of finding anisotropic distribution functions for spherical or disk systems.

  2. Simulations of circular dichroism spectra of a pair of diterpene enantiomers by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liaw, Chih-Chuang; Chang, Jia-Lin; Chen, Shou-Fong; Huang, Jhih-Hong; Sie, Jyun-Fu; Cheng, Yung-Yi

    2011-11-01

    We present the first theoretical study on a pair of diterpene enantiomers of formula C 21H 34O 5, which were newly isolated from plants and identified as 3β,5β-dihydroxy-16 α/ β-methoxyhalima-13(14)-en-15,16-olide. The equilibrium geometries and harmonic vibrational frequencies of their low-lying conformers were obtained by using the AM1 and B3LYP/6-31+G(d) methods. At the optimized geometries, rotatory strengths of six excited states of each conformer were computed by the time-dependent density functional theory. The electronic circular dichroism spectra were simulated by taking Boltzmann averaging and considering the solvent effect, from which the absolute configurations of the enantiomers were determined. Their vibrational circular dichroism spectra were also predicted.

  3. Wave function anatomy of ultracold fermions in a double well: Attractive-pairing, Wigner-molecules, and entanglement

    NASA Astrophysics Data System (ADS)

    Brandt, Benedikt B.; Yannouleas, Consatntine; Landman, Uzi

    We report on exact benchmark configuration-interaction computational solutions of the many-body Hamiltonian, uncovering the spectral evolution, wave function anatomy, and entanglement properties of a few interacting ultracold fermions in the entire parameter range, including crossover from an single-well to a double-well confinement and a controllable energy imbalance between the wells. According to recent experiments, the two wells are taken as quasi-one-dimensional and both the linear and parrallel configurations of them are considered. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold Wigner molecules, associated with the emergence of Heisenberg spin chains. For two fermions, the entanglement measure of the von-Neumann entropy is used as a diagnostic tool for identifying maximally entangled two-qubit Bell states. Supported by the Air Force Office of Scientific Research.

  4. Functional cross‐hemispheric shift between object‐place paired associate memory and spatial memory in the human hippocampus

    PubMed Central

    Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin

    2016-01-01

    ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679

  5. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at √s= 1.96 TeV

    SciTech Connect

    Aaltonen, T

    2011-04-28

    We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

  6. Diaphony, a measure of uniform distribution, and the Patterson function.

    PubMed

    Hornfeck, Wolfgang; Kuhn, Philipp

    2015-07-01

    This paper reviews the number-theoretic concept of diaphony, a measure of uniform distribution for number sequences and point sets based on a Fourier theory approach, and its relation to crystallographic concepts like the largest interplanar spacing of a lattice, the structure-factor equation and the Patterson function. PMID:26131895

  7. Numerical Loading of a Maxwellian Probability Distribution Function

    SciTech Connect

    J. L. V. Lewandowski

    2003-03-24

    A renormalization procedure for the numerical loading of a Maxwellian probability distribution function (PDF) is formulated. The procedure, which involves the solution of three coupled nonlinear equations, yields a numerically loaded PDF with improved properties for higher velocity moments. This method is particularly useful for low-noise particle-in-cell simulations with electron dynamics.

  8. Family Functions' Distribution in Men and Women Concepts

    ERIC Educational Resources Information Center

    Kasimova, Ramilya Sh.; Biktagirova, Gulnara F.

    2016-01-01

    Creating a happy family with a favorable psychological climate is important both for the individual and the society as a whole. One of the factors, that influence the creation of a welfare family, is the content of the spouses' concepts of the family, its functions and their possible distribution. The main purpose of this article is to identify…

  9. Electron-cyclotron-resonant-heated electron distribution functions

    SciTech Connect

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-06-26

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions.

  10. Distributed representations in memory: insights from functional brain imaging.

    PubMed

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses.

  11. Analytic scaling function for island-size distributions.

    PubMed

    Dubrovskii, V G; Sibirev, N V

    2015-04-01

    We obtain an explicit solution for the island-size distribution described by the rate equations for irreversible growth with the simplified capture rates of the form σ(s)(Θ)∝Θ(p)(a+s-1) for all s≥1, where s is the size and Θ is the time-dependent coverage. The intrinsic property of this solution is its scaling form in the continuum limit. The analytic scaling function depends on the two parameters a and p and is capable of describing very dissimilar distribution shapes, both monomodal and monotonically decreasing. The obtained results suggest that the scaling features of the size distributions are closely related to the size linearity of the capture rates. A simple analytic scaling is obtained rigorously here and helps to gain a better theoretical understanding of possible origins of the scaling behavior of the island-size distributions. PMID:25974509

  12. Distributed representations in memory: insights from functional brain imaging.

    PubMed

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  13. The distribution of genome shared identical by descent for a pair of full sibs by means of the continuous time Markov chain

    NASA Astrophysics Data System (ADS)

    Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi

    2015-12-01

    This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.

  14. Microroughness, statistical surface models, and bidirectional reflection distribution function (BRDF): functions of smooth surfaces

    NASA Astrophysics Data System (ADS)

    Harnisch, Bernd; Weigel, Thomas

    1994-09-01

    The calculation of the BRDF (Bi-Directional-Reflection-Distribution-Function) from profile measurements was performed theoretically and verified by measurements on a BK7 sample. The assumptions on the surface topography and approximations done are highlighted.

  15. Transverse momentum-dependent parton distribution functions in lattice QCD

    SciTech Connect

    Engelhardt, Michael G.; Musch, Bernhard U.; Haegler, Philipp G.; Negele, John W.; Schaefer, Andreas

    2013-08-01

    A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.

  16. Detecting landmines using weighted density distribution function features

    NASA Astrophysics Data System (ADS)

    Stanley, Ronald J.; Theera-Umpon, Nipon; Gader, Paul D.; Somanchi, Satish; Ho, Dominic K.

    2001-08-01

    Land mine detection using metal detector (MD) and ground penetrating radar (GPR) sensors in hand-held units is a difficult problem. Detection difficulties arise due to: 1) the varying composition and type of metal in land mines, 2) the time-varying nature of background and 3) the variation in height and velocity of the hand-held unit in data measurement. This research introduces new spatially distributed MD features for differentiating land mine signatures from background. The spatially distributed features involve correlating sequences of MD energy values with six weighted density distribution functions. These features are evaluated using a standard back propagation neural network on real data sets containing more than 2,300 mine encounters of different size, shape, content and metal composition that are measured under different soil conditions.

  17. Size distribution of microbubbles as a function of shell composition.

    PubMed

    Dicker, Stephen; Mleczko, Michał; Schmitz, Georg; Wrenn, Steven P

    2013-09-01

    The effect of modifying the shell composition of a population of microbubbles on their size demonstrated through experiment. Specifically, these variations include altering both the mole fraction and molecular weight of functionalized polymer, polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell (1-15 mol% PEG, and 1000-5000 g/mole, respectively). The size distribution is measured with an unbiased image segmentation program written in MATLAB which identifies and sizes bubbles from micrographs. For a population of microbubbles with a shell composition of 5 mol% PEG2000, the mean diameter is 1.42 μm with a variance of 0.244 μm. For the remainder of the shell compositions studied herein, we find that the size distributions do not show a statistically significant correlation to either PEG molecular weight or mole fraction. All the measured distributions are nearly Gaussian in shape and have a monomodal peak.

  18. Pair correlation functions of two- and three-dimensional hard-core fluids confined into narrow pores: exact results from transfer-matrix method.

    PubMed

    Gurin, Péter; Varga, Szabolcs

    2013-12-28

    The effect of confinement is studied on the local structure of two- and three-dimensional hard-core fluids. The hard disks are confined between two parallel lines, while the hard spheres are in a cylindrical hard pore. In both cases only nearest neighbour interactions are allowed between the particles. The vertical and longitudinal pair correlation functions are determined by means of the exact transfer-matrix method. The vertical pair correlation function indicates that the wall induced packing constraint gives rise to a zigzag (up-down sequence) shaped close packing structure in both two- and three-dimensional systems. The longitudinal pair correlation function shows that both systems transform continuously from a one-dimensional gas-like behaviour to a zigzag solid-like structure with increasing density.

  19. Extraction of electron plasma energy distribution function using distortion meters

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.

    2006-06-01

    A new method for direct evaluation of the electron energy distribution function in plasmas is suggested, which involves the use of audio frequencies distortion factor meters. The amount of distortion suffered by a Langmuir probe AC current produced by superimposing a clean AC voltage on the DC probe voltage is measured. Although such distortions are proportional to the second derivative of the probe characteristic at any point when its neighborhood can be approximated by a second-degree polynomial, the instrument function is always sharper than that of harmonic differentiation. The method is analyzed theoretically, and tested experimentally. It is also shown that distortion additionally provides a direct measure of the electron temperature.

  20. Hyaluronan and synovial joint: function, distribution and healing

    PubMed Central

    2013-01-01

    Synovial fluid is a viscous solution found in the cavities of synovial joints. The principal role of synovial fluid is to reduce friction between the articular cartilages of synovial joints during movement. The presence of high molar mass hyaluronan (HA) in this fluid gives it the required viscosity for its function as lubricant solution. Inflammation oxidation stress enhances normal degradation of hyaluronan causing several diseases related to joints. This review describes hyaluronan properties and distribution, applications and its function in synovial joints, with short review for using thiol compounds as antioxidants preventing HA degradations under inflammation conditions. PMID:24678248

  1. The distributional zeta-function in disordered field theory

    NASA Astrophysics Data System (ADS)

    Svaiter, B. F.; Svaiter, N. F.

    2016-09-01

    In this paper, we present a new mathematical rigorous technique for computing the average free energy of a disordered system with quenched randomness, using the replicas. The basic tool of this technique is a distributional zeta-function, a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which cannot be written as a series of the integer moments, can be made as small as desired. This result supports the use of integer moments of the partition function, computed via replicas, for expressing the average free energy of the system. One advantage of the proposed formalism is that it does not require the understanding of the properties of the permutation group when the number of replicas goes to zero. Moreover, the symmetry is broken using the saddle-point equations of the model. As an application for the distributional zeta-function technique, we obtain the average free energy of the disordered λφ4 model defined in a d-dimensional Euclidean space.

  2. Confronting species distribution model predictions with species functional traits.

    PubMed

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  3. Ion escape from Venus using statistical distribution functions

    NASA Astrophysics Data System (ADS)

    Nordstrom, T.; Stenberg, G.; Nilsson, H.; Barabash, S.; Futaana, Y.

    2012-04-01

    We use more than three years of data from the ASPERA-4 instrument onboard Venus Express to compile statistical distribution functions of ion flux in and around induced magnetosphere of Venus. We present samples of statistical distribution functions, as well average flux patterns in the near Venus space based on the statistical distribution functions. The statistical distribution functions allows for a compensation of biased sampling regarding both position and angular coverage of the instrument. Protons and heavy ions (mass/charge > 16) are the major ion species escaping from Venus. The escape is due to acceleration of planetary ions by energy transfer from the solar wind. The ion escape appears to exclusively take place in the induced magnetotail region and no heavy ions are present in the magnetosheath. Protons of solar wind origin are travelling around the planet and penetrating the tail, resulting in a mix of planetary and solar wind protons inside the induced magnetosphere boundary. The escape rates of ions inside the tail agree with results from recent published studies, where other analysis methods have been used. We also compare our results for Venus with a recent study of ion escape from Mars, where the same analysis method has been applied to data from the ASPERA-3 instrument on Mars Express. Both Mars and Venus are unmagnetized planets and are expected to interact similarly with the solar wind. On Mars the heavy ions are seen escaping in both the magnetosheath and tail regions as opposed to Venus where escape only takes place inside the tail. A possible explanation is that the magnetosphere of Mars is smaller compared to the ion gyroradius, making it easier for the ions to pass through the induced magnetosphere boundary. On both planets the escape rates of heavy ions in the tail are constant with increasing tail distance, verifying that the ions are leaving the planet in this region.

  4. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  5. Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory.

    PubMed

    Bork, Nicolai; Bonanos, Nikolaos; Rossmeisl, Jan; Vegge, Tejs

    2011-09-01

    A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen-hydrogen defect interactions in the cubic SrTiO(3) perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV compared to two non-interacting H defects. The main cause of the net attractive potential is elastic defect interactions through lattice deformation. Two possible diffusion paths for the hydrogen defect pair are investigated and are both determined to be faster than the corresponding diffusion path for single hydrogen atoms. Finally, we set up a simple model to determine the contribution from the double hydrogen defect to the total hydrogen flux, and find the double defect to be the main diffusing species at temperatures below ca. 400 °C. Post submission infrared absorption experiments show excellent agreement with the proposed properties of the double hydrogen defect. PMID:21769355

  6. Search for function coefficient distribution in traditional Chinese medicine network

    NASA Astrophysics Data System (ADS)

    He, Yue; Zhang, Peipei; Sun, Anzheng; Su, Beibei; He, Da-Ren

    2004-03-01

    We suggest a model for a simulation on development of traditional Chinese medicine system. Suppose there are a certain number of Chinese medicines. Each of them is given randomly a "function coefficient", which has a value between 0 and 1. The larger it is the stronger is its function for solving one healthy problem and serving as an "emperor" in a prescription formulation. The smaller it is the stronger is its function for harmonizing and/or accessorizing a prescription formulation. In every step of time a new medicine is discovered. With a probability, P(m), which is determined according to our statistical investigation results, it can produce a new prescription formulation with other m-1 medicines. We assume that the probability for choosing the function coefficients of these m medicines follow a distribution function, which is everywhere smooth. A program has been set up to perform a search for this function form so that the simulation results show a best agreement to our statistical data. We believe the result function form will be helpful for an understanding on real development of traditional Chinese medicine system.

  7. Dense-medium modifications to jet-induced hadron pair distributions in Au+Au collisions at sqrt s NN=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2006-08-01

    Azimuthal correlations of jet-induced high-p(T) charged hadron pairs are studied at midrapidity in Au+Au collisions at sqrt[s(NN)]=200 GeV. The distribution of jet-associated partner hadrons (1.0

  8. Probing the top-Higgs coupling through the secondary lepton distributions in the associated production of the top-quark pair and Higgs boson at the LHC

    NASA Astrophysics Data System (ADS)

    Kołodziej, Karol; Słapik, Aleksandra

    2015-10-01

    We complement the analysis of the anomalous top-Higgs coupling effects on the secondary lepton distributions in the associated production of the top-quark pair and Higgs boson in proton-proton collisions at the LHC of the former work by one of the present authors by taking into account the quark-antiquark production mechanism. We also present simple arguments which explain why the effects of the scalar and pseudoscalar anomalous couplings on the unpolarized cross section of the process are completely insensitive to the sign of either of them.

  9. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    SciTech Connect

    Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  10. Lepton distributions from the decay of wino and scalar-lepton pairs at electron-positron colliders and heavy-mass power-counting theorem and decoupling

    SciTech Connect

    Not Available

    1985-01-01

    The author computed in detail the energy and angular distributions of leptons from the decay of wino and scalar lepton pairs produced in e/sup +/e/sup -/ collisions within the framework of a supergravity electroweak model. The author has also computed backgrounds to these reactions coming from the production and subsequent decays of tau pairs or pairs of sequential heavy leptons. The author concludes that it is possible to distinguish the wino from an ordinary heavy lepton and, moreover, the wino and the scalar lepton (if light enough) would clearly by identifiable at CERN LEP energies. In the second part of this work the author establishes a heavy-mass power-counting theorem which provides a prescription for extracting the low-energy heavy-mass dependence from an arbitrary Feynman diagram rendered finite within the momentum subtraction scheme. Furthermore, in the absence of heavy-mass dependent vertices the author obtain as a consequence of this power-counting theorem a simple proof of the Appelquist-Carazzone decoupling theorem valid for theories with unbroken internal symmetry.

  11. Progress on Bayesian Inference of the Fast Ion Distribution Function

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.; Chen, X.; Salewski, W.; Grierson, B. A.

    2013-10-01

    The fast-ion distribution function (DF) has a complicated dependence on several phase-space variables. The standard analysis procedure in energetic particle research is to compute the DF theoretically, use that DF in forward modeling to predict diagnostic signals, then compare with measured data. However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and weight functions that describe the phase space sensitivity of the measurements are incorporated into Bayesian likelihood probabilities. Prior probabilities describe physical constraints. This poster will show reconstructions of classically described, low-power, MHD-quiescent distribution functions from actual FIDA measurements. A description of the full weight functions will also be shown. This work is supported in part by the US Department of Energy under SC-G903402, DE-FC02-04ER54698 and DE-AC02-09CH11466.

  12. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  13. Improving Project Management with Simulation and Completion Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.

    2004-01-01

    Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. A major culprit in late projects is uncertainty, which most, if not all, projects are inherently subject to. This uncertainty resides in the estimates for activity durations, the occurrence of unplanned and unforeseen events, and the availability of critical resources. In response to this problem, this research developed a comprehensive simulation based methodology for conducting quantitative project completion time risk analysis. It is called the Project Assessment by Simulation Technique (PAST). This new tool enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used within PAST to determine the completion distribution function for the project of interest. The simulation is populated with both deterministic and stochastic elements. The deterministic inputs include planned project activities, precedence requirements, and resource requirements. The stochastic inputs include activity duration growth distributions, probabilities for events that can impact the project, and other dynamic constraints that may be placed upon project activities and milestones. These stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Repeating the simulation hundreds or thousands of times allows one to create the project completion distribution function. The Project Assessment by Simulation Technique was demonstrated to be effective for the on-going NASA project to assemble the International Space Station. Approximately $500

  14. Elucidating the structures and cooperative binding mechanism of cesium salts to the multitopic ion-pair receptor through density functional theory calculations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Velmurugan, Gunasekaran; Venuvanalingam, Ponnambalam

    2015-09-21

    Designing new and innovative receptors for the selective binding of radionuclides is central to nuclear waste management processes. Recently, a new multi-topic ion-pair receptor was reported which binds a variety of cesium salts. Due to the large size of the receptor, quantum chemical calculations on the full ion-pair receptors are restricted, thus the binding mechanisms are not well understood at the molecular level. We have assessed the binding strengths of various cesium salts to the recently synthesized multi-topic ion-pair receptor molecule using density functional theory based calculations. Our calculations predict that the binding of cesium salts to the receptor predominantly occurs via the cooperative binding mechanism. Cesium and the anion synergistically assist each other to bind favorably inside the receptor. Energy decomposition analysis on the ion-pair complexes shows that the Cs salts are bound to the receptor mainly through electrostatic interactions with small contribution from covalent interactions for large ionic radius anions. Further, QTAIM analysis characterizes the importance of different inter-molecular interactions between the ions and the receptor inside the ion-pair complexes. The role of the crystallographic solvent molecule contributes significantly by ~10 kcal mol(-1) to the overall binding affinities which is quite significant. Further, unlike the recent molecular mechanics (MM) calculations, our calculated binding affinity trends for various Cs ion-pair complexes (CsF, CsCl and CsNO3) are now in excellent agreement with the experimental binding affinity trends. PMID:26227949

  15. Measures of daily distribution patterns of cow calf pairs using global positioning systems on both cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GPS collars were used to describe the daily distribution patterns of cows and their calves from 18 to 60 days postpartum on pinyon juniper-shortgrass rangeland in central New Mexico. Eighteen, 3 year old cows and their calves were fitted weekly with GPS collars for seven consecutive weeks. Twenty da...

  16. The length distribution function of semiconductor filamentary nanocrystals

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2016-07-01

    The length distribution function of semiconductor filamentary nanocrystals is analyzed based on the adsorption-diffusion growth model. It is demonstrated that the asymptotic distribution has a Gaussian shape. If the diffusion flux to the apex comes from the entire lateral surface, the average length increases exponentially with time, and the mean-square deviation is proportional to the average length (exponential growth regime). If the diffusion collection of adatoms is limited to the top of the crystal, the average length increases linearly and the mean-square deviation equals the square root of average length (linear Poisson growth regime). In real-world systems, transition from exponential to Poisson growth occurs at lengths of the order of the diffusion length of adatoms. The dispersion of the distribution is actually defined at the exponential stage. The general classification of length distributions of various crystals is given. It is demonstrated that self-induced GaN- and Ga-catalytic III-V filamentary nanocrystals should be more homogeneous than Au-catalytic ones.

  17. Illuminating the 1/x Moment of Parton Distribution Functions

    SciTech Connect

    Brodsky, Stanley J.; Llanes-Estrada, Felipe J.; Szczepaniak, Adam P.; /Indiana U.

    2007-10-15

    The Weisberger relation, an exact statement of the parton model, elegantly relates a high-energy physics observable, the 1/x moment of parton distribution functions, to a nonperturbative low-energy observable: the dependence of the nucleon mass on the value of the quark mass or its corresponding quark condensate. We show that contemporary fits to nucleon structure functions fail to determine this 1/x moment; however, deeply virtual Compton scattering can be described in terms of a novel F1/x(t) form factor which illuminates this physics. An analysis of exclusive photon-induced processes in terms of the parton-nucleon scattering amplitude with Regge behavior reveals a failure of the high Q2 factorization of exclusive processes at low t in terms of the Generalized Parton-Distribution Functions which has been widely believed to hold in the past. We emphasize the need for more data for the DVCS process at large t in future or upgraded facilities.

  18. Big bang nucleosynthesis with independent neutrino distribution functions

    SciTech Connect

    Smith, Christel J.; Fuller, George M.; Smith, Michael S.

    2009-05-15

    We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community.

  19. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    PubMed Central

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  20. Reliable distribution networks design with nonlinear fortification function

    NASA Astrophysics Data System (ADS)

    Li, Qingwei; Savachkin, Alex

    2016-03-01

    Distribution networks have been facing an increased exposure to the risk of unpredicted disruptions causing significant economic losses. The current literature features a limited number of studies considering fortification of network facilities. In this paper, we develop a reliable uncapacitated fixed-charge location model with fortification to support the design of distribution networks. The model considers heterogeneous facility failure probabilities, one layer of supplier backup, and facility fortification within a finite budget. Facility reliability improvement is modelled as a nonlinear function of fortification investment. The problem is formulated as a nonlinear mixed integer programming model proven to be ?-hard. A Lagrangian relaxation-based heuristic algorithm is developed and its computational efficiency for solving large-scale problems is demonstrated.

  1. A Functional Representation of the Cosmological Reduced Void Probability Distribution as the Fox H Function

    NASA Astrophysics Data System (ADS)

    Andrew, Keith; Smailhodzic, A.; Carini, M.; Barnaby, D.

    2010-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 and 2dF Galaxy Redshift surveys and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1. The Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a generalized power law. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale “sponge-like” appearance with voids of all scales permeating the field of observation. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. Several expressions for the probability distribution differ at the long end tail of the distribution which is sensitive to the Levy index of the distribution. Almost all of the distributions can be expressed as special cases of the Fox H function which has an asymptotic form whose tail depends upon the Levy index. We analyze the Levy index expressions and link them to the Fox H function parameters and to an anomalous diffusion equation that gives rise to the observed LSS void pattern. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  2. Emergence of untaught mands or tacts of novel adjective-object pairs as a function of instructional history

    PubMed Central

    Nuzzolo-Gomez, Robin; Greer, R. Douglas

    2004-01-01

    We tested the effects of multiple exemplar instruction (MEI) on the emergence of untaught mands or tacts of adjective-object pairs in a multiple-probe design across four students with autism/developmental disabilities. None of the students emitted either mands or tacts for three sets of three adjective-object pairs (word sets counterbalanced across students and conditions) in pre-experimental probe trials. In the baseline phase, either mands or tacts were taught for the first adjective-object pairs to each student who then received probe trials for the untaught verbal operants. None of the students emitted the verbal operant that was not directly taught. In the MEI condition, a second set of adjective-object pairs was taught under alternating mand and tact conditions until both operants were mastered. Following mastery of the second set in the MEI condition, students were again probed for the untaught mands or tacts for the adjective-object pairs that were not in their repertoires when a single verbal operant was taught in baseline (the first set). All students emitted the untaught mands or tacts for the first set. Finally, a third set of adjective-object pairs was taught as tacts or mands and the untaught mands or tacts emerged. The data are discussed in terms of generative verbal behavior, abstraction of establishing operation control, and multiple exemplar instruction. PMID:22477290

  3. Nucleon and pion distribution functions in the valence region

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.; Roberts, Craig D.

    2010-10-01

    An experimental and theoretical perspective is provided on the behavior of unpolarized distribution functions for the nucleon and pion on the valence-quark domain, namely, Bjorken x≳0.4 . This domain is a key to much of hadron physics; e.g., a hadron is defined by its flavor content and that is a valence-quark property. Furthermore, its accurate parametrization is crucial to the provision of reliable input for large collider experiments. The focus is on experimental extractions of distribution functions via electron and muon inelastic scattering, and from Drell-Yan interactions; and on theoretical treatments that emphasize an explanation of the distribution functions, providing an overview of major contemporary approaches and issues. Valence-quark physics is a compelling subject, which probes at the heart of our understanding of the standard model. There are numerous outstanding and unresolved challenges, which experiment and theory must confront. In connection with experiment, an explanation that an upgraded Jefferson Laboratory facility is well suited to provide new data on the nucleon is provided, while a future electron-ion collider could provide essential new data for the mesons. There is also great potential in using Drell-Yan interactions, at FNAL, CERN, J-PARC, and GSI, to push into the large- x domain for both mesons and nucleons. Furthermore, it is argued that explanation, in contrast to modeling and parametrization, requires a widespread acceptance of the need to adapt theory: to the lessons learnt already from the methods of nonperturbative quantum-field theory and a fuller exploitation of those methods.

  4. Nucleon and pio distribution functions in the valence region.

    SciTech Connect

    Holt, R. J.; Roberts, C. D.

    2010-10-28

    An experimental and theoretical perspective is provided on the behavior of unpolarized distribution functions for the nucleon and pion on the valence-quark domain, namely, Bjorken x {ge} 0.4. This domain is a key to much of hadron physics; e.g., a hadron is defined by its flavor content and that is a valence-quark property. Furthermore, its accurate parametrization is crucial to the provision of reliable input for large collider experiments. The focus is on experimental extractions of distribution functions via electron and muon inelastic scattering, and from Drell-Yan interactions; and on theoretical treatments that emphasize an explanation of the distribution functions, providing an overview of major contemporary approaches and issues. Valence-quark physics is a compelling subject, which probes at the heart of our understanding of the standard model. There are numerous outstanding and unresolved challenges, which experiment and theory must confront. In connection with experiment, an explanation that an upgraded Jefferson Laboratory facility is well suited to provide new data on the nucleon is provided, while a future electron-ion collider could provide essential new data for the mesons. There is also great potential in using Drell-Yan interactions, at FNAL, CERN, J-PARC, and GSI, to push into the large-x domain for both mesons and nucleons. Furthermore, it is argued that explanation, in contrast to modeling and parametrization, requires a widespread acceptance of the need to adapt theory: to the lessons learnt already from the methods of nonperturbative quantum-field theory and a fuller exploitation of those methods.

  5. Transfer function modeling of damping mechanisms in distributed parameter models

    NASA Technical Reports Server (NTRS)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  6. Are there approximate relations among transverse momentum dependent distribution functions?

    SciTech Connect

    Harutyun AVAKIAN; Anatoli Efremov; Klaus Goeke; Andreas Metz; Peter Schweitzer; Tobias Teckentrup

    2007-10-11

    Certain {\\sl exact} relations among transverse momentum dependent parton distribution functions due to QCD equations of motion turn into {\\sl approximate} ones upon the neglect of pure twist-3 terms. On the basis of available data from HERMES we test the practical usefulness of one such ``Wandzura-Wilczek-type approximation'', namely of that connecting $h_{1L}^{\\perp(1)a}(x)$ to $h_L^a(x)$, and discuss how it can be further tested by future CLAS and COMPASS data.

  7. NUCLEAR MODIFICATION TO PARTON DISTRIBUTION FUNCTIONS AND PARTON SATURATION.

    SciTech Connect

    QIU, J.-W.

    2006-11-14

    We introduce a generalized definition of parton distribution functions (PDFs) for a more consistent all-order treatment of power corrections. We present a new set of modified DGLAP evolution equations for nuclear PDFs, and show that the resummed {alpha}{sub s}A{sup 1/3}/Q{sup 2}-type of leading nuclear size enhanced power corrections significantly slow down the growth of gluon density at small-x. We discuss the relation between the calculated power corrections and the saturation phenomena.

  8. Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*

    DOE PAGES

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; et al

    2015-01-01

    In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.

  9. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  10. Comparison of the bidirectional reflectance distribution function of various surfaces

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.

    1988-01-01

    Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.

  11. Enhancing the Reliability of Spectral Correlation Function with Distributed Computing

    NASA Astrophysics Data System (ADS)

    Alfaqawi, M. I.; Chebil, J.; Habaebi, M. H.; Ramli, N.; Mohamad, H.

    2013-12-01

    Various random time series used in signal processing systems are cyclostationary due to the sinusoidal carriers, pulse trains, periodic motion, or physical phenomenon. The cyclostationarity of the signal could be analysed by using the spectral correlation function (SCF). However, SCF is considered high complex due to the 2-D functionality and the required long observation time. The SCF could be computed in various methods however there are two methods used in practice such as FFT accumulation method (FAM) and strip spectral correlation algorithm (SSCA). This paper shows the benefit on the complexity and the reliability due to the workload distribution of one processor over different cooperated processors. The paper found that with increasing the reliability of the SCF, the number of the cooperated processors to achieve the half of the maximum complexity will reduce.

  12. Functional platform for controlled subcellular distribution of carbon nanotubes.

    PubMed

    Serag, Maged F; Kaji, Noritada; Venturelli, Enrica; Okamoto, Yukihiro; Terasaka, Kazuyoshi; Tokeshi, Manabu; Mizukami, Hajime; Braeckmans, Kevin; Bianco, Alberto; Baba, Yoshinobu

    2011-11-22

    As nanoparticles can cross different cellular barriers and access different tissues, control of their uptake and cellular fate presents a functional approach that will be broadly applicable to nanoscale technologies in cell biology. Here we show that the trafficking of single-walled carbon nanotubes (SWCNTs) through various subcellular membranes of the plant cell is facilitated or inhibited by attaching a suitable functional tag and controlling medium components. This enables a unique control over the uptake and the subcellular distribution of SWCNTs and provides a key strategy to promote their cellular elimination to minimize toxicity. Our results also demonstrate that SWCNTs are involved in a carrier-mediated transport (CMT) inside cells; this is a phenomenon that scientists could use to obtain novel molecular insights into CMT, with the potential translation to advances in subcellular nanobiology.

  13. Probability distribution function for reorientations in Maier-Saupe potential

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2016-06-01

    Exact analytic solution for the probability distribution function of the non-inertial rotational diffusion equation, i.e., of the Smoluchowski one, in a symmetric Maier-Saupe uniaxial potential of mean torque is obtained via the confluent Heun's function. Both the ordinary Maier-Saupe potential and the double-well one with variable barrier width are considered. Thus, the present article substantially extends the scope of the potentials amenable to the treatment by reducing Smoluchowski equation to the confluent Heun's one. The solution is uniformly valid for any barrier height. We use it for the calculation of the mean first passage time. Also the higher eigenvalues for the relaxation decay modes in the case of ordinary Maier-Saupe potential are calculated. The results obtained are in full agreement with those of the approach developed by Coffey, Kalmykov, Déjardin and their coauthors in the whole range of barrier heights.

  14. A DERIVATION OF (HALF) THE DARK MATTER DISTRIBUTION FUNCTION

    SciTech Connect

    Hansen, Steen H.; Sparre, Martin E-mail: sparre@dark-cosmology.dk

    2012-09-01

    All dark matter structures appear to follow a set of universalities, such as phase-space density or velocity anisotropy profiles; however, the origin of these universalities remains a mystery. Any equilibrated dark matter structure can be fully described by two functions, namely the radial and tangential velocity distribution functions (VDFs), and once these two are understood we will understand all the observed universalities. Here, we demonstrate that if we know the radial VDF then we can derive and understand the tangential VDF. This is based on simple dynamical arguments about properties of collisionless systems. We use a range of controlled numerical simulations to demonstrate the accuracy of this result. We therefore boil the question of the dark matter structural properties down to understanding the radial VDF.

  15. The mass distribution function of planets in the Galaxy

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2016-05-01

    I will describe some deductions about the planet mass function from the observational data of exoplanets and theoretical considerations of dynamical stability of planetary systems. The Kepler mission has carried out a systematic survey for planets in the Galaxy, and obtained data on several hundred exo-planetary systems. Analysis of these data indicates that planetary orbital separations have an approximately log-normal distribution. Taken together with plausible ansatzs for the dynamical stability of multi-planet systems, it appears that the planet mass function is peaked in logarithm of mass, with the most probable value of log m/M_Earth ˜ (0.6 - 1.0). A modest extrapolation finds that Earth mass planets are about ~1000 times more common than Jupiter mass planets, and that the most common planets in the Galaxy may be of lunar-to-Mars mass.This research was supported by NSF (grant AST-1312498) and NASA (grant NNX14AG93G).

  16. High Resolution Radial Distribution Function of Pure Amorphous Silicon

    SciTech Connect

    Laaziri, K.; Roorda, S.; Chicoine, M.; Kycia, S.; Robertson, J.L.; Wang, J.; Moss, S.C.

    1999-04-01

    The structure factor S(Q) of high purity amorphous Si membranes prepared by ion implantation was measured over an extended Q range (0.03{endash}55 {Angstrom} {sup {minus}1} ). Calculation of the first neighbor shell coordination (C{sub 1} ) as a function of maximum Q indicates that measurement of S(Q) out to at least 40 {Angstrom}{sup {minus}1} is required to reliably determine the radial distribution function (RDF). A 2{percent} change in C{sub 1} and subtle changes in the rest of the RDF were observed upon annealing, consistent with point defect removal. After annealing at 600thinsp{degree}C, C{sub 1}=3.88 , which would explain why amorphous Si is less dense than crystalline Si. {copyright} {ital 1999} {ital The American Physical Society}

  17. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  18. Functional distribution of synapsin I in human sperm

    PubMed Central

    Coleman, William L.; Kulp, Adam C.; Venditti, Jennifer J.

    2015-01-01

    Proteins known to function during cell–cell communication and exocytosis in neurons and other secretory cells have recently been reported in human sperm. Synapsins are a group of proteins that have been very well characterized in neurons, but little is known about synapsin function in other cell types. Based upon previous findings and the known function of synapsin, we tested the hypothesis that synapsin I was present in human sperm. Washed, capacitated, and acrosome induced sperm preparations were used to evaluate the functional distribution of synapsin I using immunocytochemistry. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were used for protein blotting techniques. Immunolocalization revealed synapsin I was enriched in the sperm equatorial segment. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were positive for synapsin I using several different antibodies, and dot blot results were confirmed by Western blot analyses. Finally, treatment of capacitated and acrosome reaction induced samples with anti-synapsin antibodies significantly reduced sperm motility. Localization of synapsin I in human sperm is a novel finding. The association of synapsin I with the sperm equatorial segment and effects on motility are suggestive of a role associated with capacitation and/or acrosome reaction, processes that render sperm capable of fertilizing an oocyte. PMID:26566474

  19. Functional distribution of synapsin I in human sperm.

    PubMed

    Coleman, William L; Kulp, Adam C; Venditti, Jennifer J

    2015-01-01

    Proteins known to function during cell-cell communication and exocytosis in neurons and other secretory cells have recently been reported in human sperm. Synapsins are a group of proteins that have been very well characterized in neurons, but little is known about synapsin function in other cell types. Based upon previous findings and the known function of synapsin, we tested the hypothesis that synapsin I was present in human sperm. Washed, capacitated, and acrosome induced sperm preparations were used to evaluate the functional distribution of synapsin I using immunocytochemistry. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were used for protein blotting techniques. Immunolocalization revealed synapsin I was enriched in the sperm equatorial segment. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were positive for synapsin I using several different antibodies, and dot blot results were confirmed by Western blot analyses. Finally, treatment of capacitated and acrosome reaction induced samples with anti-synapsin antibodies significantly reduced sperm motility. Localization of synapsin I in human sperm is a novel finding. The association of synapsin I with the sperm equatorial segment and effects on motility are suggestive of a role associated with capacitation and/or acrosome reaction, processes that render sperm capable of fertilizing an oocyte.

  20. Hydrogen-like atom with nonnegative quantum distribution function

    SciTech Connect

    Zorin, A. V. Sevastianov, L. A.

    2007-04-15

    Among numerous approaches to probabilistic interpretation of conventional quantum mechanics (CQM), the closest to N. Bohr's idea of the correspondence principle is the Blokhintzev-Terletsky approach of the quantum distribution function (QDF) on the coordinate-momentum (q, p) phase space. The detailed investigation of this approach has led to the correspondence rule of V.V. Kuryshkin parametrically dependent on a set of auxiliary functions. According to investigations of numerous authors, the existence and the explicit form of QDF depends on the correspondence rule between classical functions A(q, p) and quantum operator A. At the same time, the QDF corresponding to all known quantization rules turns out to be alternating in sign or overly complex valued. Finally nonexistence of nonnegative QDF in CQM was proved. On the other hand, from this follows the possibility to construct quantum mechanics where a nonnegative QDF exists. We consider a certain set of auxiliary functions to construct explicit expressions for operators O(H) for the hydrogen atom. Naturally, these operators differ from the related operator H in CQM, so that spherical coordinates are no longer separable for a hydrogen-like atom in quantum mechanics with nonnegative QDF.

  1. A meta-analysis of parton distribution functions

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Nadolsky, Pavel

    2014-07-01

    A "meta-analysis" is a method for comparison and combination of nonperturbative parton distribution functions (PDFs) in a nucleon obtained with heterogeneous procedures and assumptions. Each input parton distribution set is converted into a "meta-parametrization" based on a common functional form. By analyzing parameters of the meta-parametrizations from all input PDF ensembles, a combined PDF ensemble can be produced that has a smaller total number of PDF member sets than the original ensembles. The meta-parametrizations simplify the computation of the PDF uncertainty in theoretical predictions and provide an alternative to the 2010 PDF4LHC convention for combination of PDF uncertainties. As a practical example, we construct a META ensemble for computation of QCD observables at the Large Hadron Collider using the next-to-next-to-leading order PDF sets from CTEQ, MSTW, and NNPDF groups as the input. The META ensemble includes a central set that reproduces the average of LHC predictions based on the three input PDF ensembles and Hessian eigenvector sets for computing the combined PDF+α s uncertainty at a common QCD coupling strength of 0.118.

  2. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    PubMed Central

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  3. Changing Ionization Conditions in SDSS Galaxies with Active Galactic Nuclei as a Function of Environment from Pairs to Clusters

    NASA Astrophysics Data System (ADS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  4. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  5. Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs

    SciTech Connect

    Patra, Amritraj; Harp, Joel; Pallan, Pradeep S.; Zhao, Linlin; Abramov, Mikhail; Herdewijn, Piet; Egli, Martin

    2012-12-28

    The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2'-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed., 50, 7109–7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.

  6. Correlated-Participating-Orbitals Pair-Density Functional Method and Application to Multiplet Energy Splittings of Main-Group Divalent Radicals.

    PubMed

    Bao, Junwei Lucas; Sand, Andrew; Gagliardi, Laura; Truhlar, Donald G

    2016-09-13

    Predicting the singlet-triplet splittings of divalent radicals is a challenging task for electronic structure theory. In the present work, we investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) for computing the singlet-triplet splitting for small main-group divalent radicals for which accurate experimental data are available. In order to define theoretical model chemistries that can be assessed consistently, we define three correlated participating orbitals (CPO) schemes (nominal, moderate, and extended, abbreviated as nom, mod, and ext) to define the constitution of complete active spaces, and we test them systematically. Broken-symmetry Kohn-Sham DFT calculations have also been carried out for comparison. We found that the extended CPO-PDFT scheme with translated on-top pair-density functionals have smaller mean unsigned errors than weighted-average broken-symmetry Kohn-Sham DFT with the corresponding exchange-correlation functional. The accuracy of the translated Perdew-Burke-Ernzerhof (tPBE) on-top pair-density functionals with ext-CPO active space is even better than some of the more accurately parametrized exchange-correlation density functionals that we tested; this is very encouraging for MC-PDFT theory. PMID:27438755

  7. Correlated photon pairs generated from a warm atomic ensemble

    SciTech Connect

    Willis, R. T.; Orozco, L. A.; Rolston, S. L.; Becerra, F. E.

    2010-11-15

    We present measurements of the cross-correlation function of photon pairs at 780 and 1367 nm, generated in a hot rubidium vapor cell. The temporal character of the biphoton is determined by the dispersive properties of the medium where the pair generation takes place. We show that short correlation times occur for optically thick samples, which can be understood in terms of off-resonant pair generation. By modifying the linear response of the sample, we produce near-resonant photon pairs, which could in principle be used for entanglement distribution.

  8. Asymptotic behavior of joint distributions of characteristics of a pair of randomly chosen individuals in discrete-time Fisher-Wright models with mutations and drift.

    PubMed

    Bobrowski, Adam; Kimmel, Marek

    2004-12-01

    This is a continuation of the series of articles (C.R. Rao, D.N. Shanbhag (Eds.), Handbook of Statistics 19: Stochastic Processes: Theory and Methods, Elsevier Science, Amsterdam, 2001 (Chapter 8); Math. Biosci. 175 (2002) 83; Math. Meth. Appl. Sci. 26 (2003) 1587; Adv. Appl. Probab. 36 (2004) 57) devoted to a study of the interplay between two of the main forces of population genetics, mutations and drift, in the Fisher-Wright model. We provide discrete-time versions of theorems describing asymptotic behavior of joint distributions of characteristics of a pair of individuals in this model; their continuous-time counterparts were presented in the previous papers. Furthermore, we show that imbalance index, introduced in Kimmel et al. (Genetics 148 (1998) 1921) and King et al. (Mol. Biol. Evol. 17(12) (2000) 1895) in the context of continuous-time models, may also be used in discrete-time models to detect past population growth. PMID:15560913

  9. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study

    PubMed Central

    Allam, Sushmita L.; Bouteiller, Jean-Marie C.; Hu, Eric Y.; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics. PMID:26480028

  10. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study.

    PubMed

    Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric Y; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.

  11. Ion distribution function in a plasma with uniform electric field

    SciTech Connect

    Lampe, M.; Joyce, G.; Roecker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Morfill, G. E.

    2012-11-15

    For a homogeneous partially ionized plasma subject to a uniform electric field E, several methods and models are used to calculate the distribution function f(v) for ions subject to charge-exchange collisions. The exact solution for f(v), based on the energy-dependent cross section for Ar, is obtained by Monte Carlo (MC) simulation. This is compared to the MC results for f(v), based on either a constant cross section {sigma} or a constant collision frequency {nu}. The constant-{sigma} model is found to accurately represent f(v) for any value of E, whereas the constant-{nu} results are qualitatively incorrect for large fields. Under the constant-{sigma} assumption, a simple, easily solvable ordinary differential equation is obtained which reproduces the MC results with good accuracy.

  12. From Bethe-Salpeter Wave functions to Generalised Parton Distributions

    NASA Astrophysics Data System (ADS)

    Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2016-09-01

    We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.

  13. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    SciTech Connect

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-02-19

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency.

  14. Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*

    SciTech Connect

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Grados Luyando, J.; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J. P.; Lykasov, G.; Madrigal Martinez, J. D.; Mulders, P. J.; Nocera, E. R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Signori, A.; Szymanowski, L.; Taheri Monfared, S.; Van der Veken, F. F.; van Haevermaet, H. J.; Van Mechelen, P.; Vladimirov, A. A.; Wallon, S.

    2015-01-01

    In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.

  15. Constitutive relations associated with the Mott-Smith distribution function

    USGS Publications Warehouse

    Nathenson, M.; Baganoff, D.

    1973-01-01

    It is shown that the distribution function assumed by Mott-Smith determines a unique relation between heat flux, stress, and fluid velocity given by q = (3/2)??u, i.e., it provides a constitutive relation for heat flux, and it also determines a simple expression for this ratio of third-order central moments Q = . These expressions allow the equation of transfer for c x2 to be cast in a form that yields a nonlinear constitutive relation for stress. The results obtained from the Mott-Smith ansatz are compared with the theory of Baganoff and Nathenson and results from a numerical solution of the Boltzmann equation for shock-wave structure obtained by Hicks and Yen.

  16. Solute-Solvent Energetics Based on Proximal Distribution Functions.

    PubMed

    Ou, Shu-Ching; Pettitt, B Montgomery

    2016-08-25

    We consider the hydration structure and thermodynamic energetics of solutes in aqueous solution. On the basis of the dominant local correlation between the solvent and the chemical nature of the solute atoms, proximal distribution functions (pDF) can be used to quantitatively estimate the hydration pattern of the macromolecules. We extended this technique to study the solute-solvent energetics including the van der Waals terms representing excluded volume and tested the method with butane and propanol. Our results indicate that the pDF-reconstruction algorithm can reproduce van der Waals solute-solvent interaction energies to useful kilocalorie per mole accuracy. We subsequently computed polyalanine-water interaction energies for a variety of conformers, which also showed agreement with the simulated values. PMID:27095487

  17. Smooth conditional distribution function and quantiles under random censorship.

    PubMed

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine

    2002-09-01

    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  18. Polarized reflectance and transmittance distribution functions of the ocean surface.

    PubMed

    Hieronymi, Martin

    2016-07-11

    Two aspects of ocean modelling are treated: representation of ocean waves considering all size-classes of waves and tracing of light-interactions at the wavy sea surface. Nonlinear wave profiles are realized accounting for a wide range of climatologically relevant sea states and wind speeds. Polarized ray tracing is used to investigate air-incident and whitecap-free reflectance and transmittance distributions with high angular resolution subject to sea-characterizing parameters, such as significant wave height, peak wave period, wind speed, and surface roughness. Wave-shadowing effects of incident and multiple reflected rays are fully considered. Their influence mostly starts with incidence angles greater than 60°, i.e., when the sun is near the horizon, and is especially pronounced for steep sea states. The net effect of multiple reflections is a redistribution of reflectance and transmittance fractions in their respective hemispheres and a slight increase of the net transmission of light into the sea. Revised reflectance and transmittance distribution functions, RDF and TDF, are provided depending on surface roughness in terms of the mean-square slope; reference is made to other sea state parameters. In comparison with the slope statistics approach, uncertainties related to sun near the horizon are reduced and on average this study yields somewhat higher reflectance values with some variability related to the sea state. By means of provided data, irradiance and radiance reflectances can be computed using desired sky radiance distributions, e.g., clear sky, overcast or partly cloudy sky, as well as wind or sea state information including wave propagation direction. PMID:27410893

  19. Polarized reflectance and transmittance distribution functions of the ocean surface.

    PubMed

    Hieronymi, Martin

    2016-07-11

    Two aspects of ocean modelling are treated: representation of ocean waves considering all size-classes of waves and tracing of light-interactions at the wavy sea surface. Nonlinear wave profiles are realized accounting for a wide range of climatologically relevant sea states and wind speeds. Polarized ray tracing is used to investigate air-incident and whitecap-free reflectance and transmittance distributions with high angular resolution subject to sea-characterizing parameters, such as significant wave height, peak wave period, wind speed, and surface roughness. Wave-shadowing effects of incident and multiple reflected rays are fully considered. Their influence mostly starts with incidence angles greater than 60°, i.e., when the sun is near the horizon, and is especially pronounced for steep sea states. The net effect of multiple reflections is a redistribution of reflectance and transmittance fractions in their respective hemispheres and a slight increase of the net transmission of light into the sea. Revised reflectance and transmittance distribution functions, RDF and TDF, are provided depending on surface roughness in terms of the mean-square slope; reference is made to other sea state parameters. In comparison with the slope statistics approach, uncertainties related to sun near the horizon are reduced and on average this study yields somewhat higher reflectance values with some variability related to the sea state. By means of provided data, irradiance and radiance reflectances can be computed using desired sky radiance distributions, e.g., clear sky, overcast or partly cloudy sky, as well as wind or sea state information including wave propagation direction.

  20. LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION

    SciTech Connect

    Nierenberg, A. M.; Treu, T.; Auger, M. W.; Marshall, P. J.; Fassnacht, C. D.; Busha, Michael T.

    2012-06-20

    We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log{sub 10}[M*{sub h}/M{sub Sun }] > 10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology, and satellite luminosity. Exploiting the depth and resolution of the COSMOS Hubble Space Telescope images, we detect satellites up to 8 mag fainter than the host galaxies and as close as 0.3 (1.4) arcsec (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R){proportional_to}R{sup {gamma}{sub p}}, we find {gamma}{sub p} = -1.1 {+-} 0.3. We find no dependency of {gamma}{sub p} on host stellar mass, redshift, morphology, or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, possibly indicating that they reside in more massive halos. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using SubHalo Abundance Matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.

  1. New Empirical Potential Energy Functions for the Heavier Homonuclear Rare Gas Pairs: {Ne}_2, {Ar}_2, {Kr}_2, and {Xe}_2

    NASA Astrophysics Data System (ADS)

    Myatt, Philip Thomas; Baker, Matthew T.; Kang, Ju-Hee; Escobar Moya, Andres; McCourt, Frederick R. W.; Le Roy, Robert J.

    2016-06-01

    The many decades of work on determining accurate analytic pair potentials for rare gas dimers from experimental data focussed largely on the use of bulk non-ideal gas and collisional properties, with the use of spectroscopic data being somewhat of an afterthought, for testing the resulting functions. This was a natural result of experimental challenges, as the very weak binding of ground-state rare gas pairs made high resolution spectroscopy a relatively late arrival as a practical tool in this area. However, we believe that it is now time for a comprehensive reassessment. Following up on a preliminary report at this meeting five years ago, this paper describes work to determine a new generation of empirical potential energy functions for the four heavier (i.e., not involving He) homonuclear rare gas pairs from direct fits to all available spectroscopic, pressure virial, and acoustic virial coefficient data, with the resulting functions being `tuned' by comparisons with available thermal transport property data: viscosity, mass diffusion and thermal diffusion, and thermal conductivity data, and tested against the best available ab initio potentials. The resulting functions are everywhere smooth and differentiable to all orders, incorporate the correct (damped) theoretical inverse-power long-range behaviour, and have sensible short-range extrapolation behaviour. R.J. Le Roy, C.J.W. Mackie, P. Chandrasekhar and K.M. Sentjens, ``Accurate New Potential Energy Functions From Spectroscopic and Virial Coefficient Data for the Ten Rare Gas Pairs formed from Ne, Ar, Kr and Xe, paper MF03 at the 66th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 13-17 (2011).

  2. Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Turner, Kagan

    2005-01-01

    The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.

  3. PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION

    SciTech Connect

    Takahashi, Ryuichi; Oguri, Masamune; Sato, Masanori; Hamana, Takashi

    2011-11-20

    We perform high-resolution ray-tracing simulations to investigate probability distribution functions (PDFs) of lensing convergence, shear, and magnification on distant sources up to the redshift of z{sub s} = 20. We pay particular attention to the shot noise effect in N-body simulations by explicitly showing how it affects the variance of the convergence. We show that the convergence and magnification PDFs are closely related to each other via the approximate relation {mu} = (1 - {kappa}){sup -2}, which can reproduce the behavior of PDFs surprisingly well up to the high magnification tail. The mean convergence measured in the source plane is found to be systematically negative, rather than zero as often assumed, and is correlated with the convergence variance. We provide simple analytical formulae for the PDFs, which reproduce simulated PDFs reasonably well for a wide range of redshifts and smoothing sizes. As explicit applications of our ray-tracing simulations, we examine the strong-lensing probability and the magnification effects on the luminosity functions of distant galaxies and quasars.

  4. Family of Oxygen-Oxygen Radial Distribution Functions for Water.

    PubMed

    Brookes, David H; Head-Gordon, Teresa

    2015-08-01

    In a typical X-ray diffraction experiment, the elastically scattered intensity, I(Q), is the experimental observable. I(Q) contains contributions from both intramolecular as well as intermolecular correlations embodied in the scattering factors, HOO(Q) and HOH(Q), with negligible contributions from HHH(Q). Thus, to accurately define the oxygen-oxygen radial distribution function, gOO(r), a model of the electron density is required to accurately weigh the HOO(Q) component relative to the intramolecular and oxygen-hydrogen correlations from the total intensity observable. In this work, we carefully define the electron density model and its underlying assumptions and more explicitly utilize two restraints on the allowable gOO(r) functions, which must conform to both very low experimental errors at high Q and the need to satisfy the isothermal compressibility at low Q. Although highly restrained by these conditions, the underdetermined nature of the problem is such that we present a family of gOO(r) values that provide equally good agreement with the high-Q intensity and compressibility restraints and with physically correct behavior at small r. PMID:26267185

  5. The mass distribution function of planets in the Galaxy

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2016-05-01

    I will describe some deductions about the planet mass function from the observational data of exoplanets and theoretical considerations of dynamical stability of planetary systems. The Kepler mission has carried out a systematic survey for planets in the Galaxy, and obtained data on several hundred exo-planetary systems. Analysis of these data indicates that planetary orbital separations have an approximately log-normal distribution. Taken together with plausible ansatzs for the dynamical stability of multi-planet systems, it appears that the planet mass function is peaked in logarithm of mass, with the most probable value of log m/M_Earth ∼ (0.6 ‑ 1.0). A modest extrapolation finds that Earth mass planets are about ~1000 times more common than Jupiter mass planets, and that the most common planets in the Galaxy may be of lunar-to-Mars mass.This research was supported by NSF (grant AST-1312498) and NASA (grant NNX14AG93G).

  6. A global reanalysis of nuclear parton distribution functions

    NASA Astrophysics Data System (ADS)

    Eskola, Kari J.; Kolhinen, Vesa J.; Paukkunen, Hannu; Salgado, Carlos A.

    2007-05-01

    We determine the nuclear modifications of parton distribution functions of bound protons at scales Q2 >= 1.69 GeV2 and momentum fractions 10-5 <= x <= 1 in a global analysis which utilizes nuclear hard process data, sum rules and leading-order DGLAP scale evolution. The main improvements over our earlier work EKS98 are the automated χ2 minimization, simplified and better controllable fit functions, and most importantly, the possibility for error estimates. The resulting 16-parameter fit to the N = 514 datapoints is good, χ2/d.o.f = 0.82. Within the error estimates obtained, the old EKS98 parametrization is found to be fully consistent with the present analysis, with no essential difference in terms of χ2 either. We also determine separate uncertainty bands for the nuclear gluon and sea quark modifications in the large-x region where they are not stringently constrained by the available data. Comparison with other global analyses is shown and uncertainties demonstrated. Finally, we show that RHIC-BRAHMS data for inclusive hadron production in d+Au collisions lend support for a stronger gluon shadowing at x < 0.01 and also that fairly large changes in the gluon modifications do not rapidly deteriorate the goodness of the overall fits, as long as the initial gluon modifications in the region x ~ 0.02-0.04 remain small.

  7. On the electron equilibrium distribution function in the kinetic theory of electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Shenggang, Liu

    1981-11-01

    The problems concerning the specification of electron equilibrium distribution function for the kinetic theory of ECRM are investigated in this paper. After detailed analysis of the published equilibium distribution functions, several conclusion have been achieved.

  8. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  9. Conductance Distributions for Empirical Orthogonal Function Analysis and Optimal Interpolation

    NASA Astrophysics Data System (ADS)

    Knipp, Delores; McGranaghan, Ryan; Matsuo, Tomoko

    2016-04-01

    We show the first characterizations of the primary modes of ionospheric Hall and Pedersen conductance variability as empirical orthogonal functions (EOFs). These are derived from six satellite years of Defense Meteorological Satellite Program (DMSP) particle data acquired during the rise of solar cycles 22 and 24. The 60 million DMSP spectra were each processed through the Global Airlglow Model. This is the first large-scale analysis of ionospheric conductances completely free of assumption of the incident electron energy spectra. We show that the mean patterns and first four EOFs capture ˜50.1 and 52.9% of the total Pedersen and Hall conductance variabilities, respectively. The mean patterns and first EOFs are consistent with typical diffuse auroral oval structures and quiet time strengthening/weakening of the mean pattern. The second and third EOFs show major disturbance features of magnetosphere-ionosphere (MI) interactions: geomagnetically induced auroral zone expansion in EOF2 and the auroral substorm current wedge in EOF3. The fourth EOFs suggest diminished conductance associated with ionospheric substorm recovery mode. These EOFs are then used in a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (estimated by EOF analysis) to infer complete distributions of the high-latitude ionospheric conductances for a week in late 2011. The OI technique captures: 1) smaller-scaler ionospheric conductance features associated with discrete precipitation and 2) brings ground- and space-based data into closer agreement. We show quantitatively and qualitatively that this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity.

  10. ALPHA ENHANCEMENT AND THE METALLICITY DISTRIBUTION FUNCTION OF PLAUT'S WINDOW

    SciTech Connect

    Johnson, Christian I.; Michael Rich, R.; Fulbright, Jon P.; Valenti, Elena; McWilliam, Andrew E-mail: rmr@astro.ucla.edu E-mail: evalenti@eso.org

    2011-05-10

    We present Fe, Si, and Ca abundances for 61 giants in Plaut's window (l = -1{sup 0}, b = -8.{sup 0}5) and Fe abundances for an additional 31 giants in a second, nearby field (l = 0{sup 0}, b = -8{sup 0}) derived from high-resolution (R {approx} 25,000) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. The median metallicity of red giant branch (RGB) stars in the Plaut's field is {approx}0.4 dex lower than those in Baade's window, and confirms the presence of an iron abundance gradient along the bulge minor axis. The full metallicity range of our (biased) RGB sample spans -1.5 < [Fe/H] < +0.3, which is similar to that found in other bulge fields. We also derive a photometric metallicity distribution function for RGB stars in the (l = -1{sup 0}, b = -8{sup 0}.5) field and find very good agreement with the spectroscopic metallicity distribution. The radial velocity (RV) and dispersion data for the bulge RGB stars are in agreement with previous results of the Bulge Radial Velocity Assay survey, and we find evidence for a decreasing velocity dispersion with increasing [Fe/H]. The [{alpha}/Fe] enhancement in Plaut field stars is nearly identical to that observed in Baade's window, and suggests that an [{alpha}/Fe] gradient does not exist between b = -4{sup 0} and -8{sup 0}. Additionally, a subset of our sample (23 stars) appears to be foreground red clump stars that are very metal rich, exhibit small metallicity and RV dispersions, and are enhanced in {alpha} elements. While these stars likely belong to the Galactic inner disk population, they exhibit [{alpha}/Fe] ratios that are enhanced above the thin and thick disk.

  11. Coarse graining the distribution function of cold dark matter - II

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2004-12-01

    We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the

  12. A Tale of Two Narrow-line Regions: Ionization, Kinematics, and Spectral Energy Distributions for a Local Pair of Merging Obscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S.; Goulding, Andrew D.

    2016-05-01

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (˜23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton. These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”

  13. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  14. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    SciTech Connect

    Georgiev, Georgi T.; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  15. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  16. Controlling the Electron Energy Distribution Function Using an Anode

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Barnat, Edward V.; Hopkins, Mathew M.

    2014-10-01

    Positively biased electrodes inserted into plasmas influence the electron energy distribution function (EEDF) by providing a sink for low energy electrons that would otherwise be trapped by ion sheaths at the chamber walls. We develop a model for the EEDF in a hot filament generated discharge in the presence of positively biased electrodes of various surface areas, and compare the model results with experimental Langmuir probe measurements and particle-in-cell simulations. In the absence of an anode, the EEDF is characterized by a cool trapped population at energies below the sheath energy, and a comparatively warm tail population associated with the filament primaries. Anodes that are small enough to collect a negligible fraction of the electrons exiting the plasma have little affect on the EEDF, but as the anode area approaches √{me /mi }Aw , where Aw is the chamber wall area, the anode collects most of the electrons leaving the plasma. This drastically reduces the density of the otherwise trapped population, causing an effective heating of the electrons and a corresponding density decrease. A global model is developed based on the EEDF model and current balance, which shows the interconnected nature of the electron temperature, density and the plasma potential. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000, and by the University of Iowa Old Gold Program.

  17. The distribution function of the Galaxy's dark halo

    NASA Astrophysics Data System (ADS)

    Binney, J.; Piffl, T.

    2015-12-01

    Starting from the hypothesis that the Galaxy's dark halo responded adiabatically to the infall of baryons, we have constructed a self-consistent dynamical model of the Galaxy that satisfies a large number of observations, including measurements of gas terminal velocities and masers, the kinematics of 180 000 giant stars from the RAVE (RAdial Velocity Experiment) survey and star-count data from the Sloan Digital Sky Survey. The stellar disc and the dark halo are both specified by distribution functions of the action integrals. The model is obtained by extending the work of Piffl et al. from the construction of a single model to a systematic search of model space. Whereas the model of Piffl et al. violated constraints on the terminal-velocity curve, our model respects these constraints by adopting a long scalelength Rd = 3.66 kpc for the thin and thick discs. The model is, however, inconsistent with the measured optical depth for microlensing of bulge stars because it attributes too large a fraction of the density at R ≲ 3 kpc to dark matter rather than stars. Moreover, it now seems likely that the thick disc's scalelength is significantly shorter than the model implies. Shortening this scalelength would cause the constraints from the rotation curve to be violated anew. We conclude that we can now rule out adiabatic compression of our Galaxy's dark halo.

  18. Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing.

    PubMed

    Lin, Jiangguo; Countryman, Preston; Chen, Haijiang; Pan, Hai; Fan, Yanlin; Jiang, Yunyun; Kaur, Parminder; Miao, Wang; Gurgel, Gisele; You, Changjiang; Piehler, Jacob; Kad, Neil M; Riehn, Robert; Opresko, Patricia L; Smith, Susan; Tao, Yizhi Jane; Wang, Hong

    2016-07-27

    Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding. PMID:27298259

  19. On Interpreting and Extracting Information from the Cumulative Distribution Function Curve: A New Perspective with Applications

    ERIC Educational Resources Information Center

    Balasooriya, Uditha; Li, Jackie; Low, Chan Kee

    2012-01-01

    For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the density…

  20. Distribution functions and probes of far-from-equilibrium topological matter

    NASA Astrophysics Data System (ADS)

    Liao, Yunxiang; Foster, Matthew

    2015-03-01

    We investigate radio-frequency (RF) spectroscopy and superconductor-normal metal tunneling as probes of out-of-equilibrium topological systems. As an example, we study a 2D p +ip superfluid following an instantaneous quench of the coupling strength [Foster et al. PRB 2013, PRL 2014]. The long-time asymptotic order parameter of this system can be constant or time-periodic. In both cases, the post-quench Cooper pairs each occupy a linear combination of two states, with coefficients determined by the distribution function. In strong quenches where the order parameter is periodic, the bases are two Floquet states with opposite quasi-energy. We derive expressions for the RF and tunneling spectra for these post-quench states, examining both average values and harmonics. While the distribution function strongly affects the RF signal, it disappears from the tunneling spectrum. We show that the bulk RF signal obtained by occupying the lower Floquet band is dramatically different from that of the post-quench states. This is intimately related to the difference between the topology of the state, which cannot change under closed evolution, versus the topology of the non-equilibrium excitation spectrum. We also look for signatures of Majorana edge states in systems with an edge. We compute the local RF signal, which depends upon the non-equilibrium excitation spectrum of bulk and edge states as well as their occupation. This research was supported by the Welch Foundation under Grant No. C-1809 and by an Alfred P. Sloan Research Fellowship (BR2014-035).

  1. Constructing a bivariate distribution function with given marginals and correlation: application to the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsutomu T.

    2010-08-01

    We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.

  2. Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment

    NASA Technical Reports Server (NTRS)

    Pilipp, W. G.; Muehlhaeuser, K.-H.; Miggenrieder, H.; Montgomery, M. D.; Rosenbauer, H.

    1987-01-01

    The details of the shapes of three typical electron distribution functions observed by the Helios 1 and 2 probes in the solar wind between 0.3 AU and 1 AU are analyzed and compared with theoretical predictions. These are (1) a distribution function with a narrow 'strahl' (narrow beam), which is extremely anisotropic and skewed with respect to the magnetic field direction at particle energies above 100 eV; (2) a distribution function with a broad 'strahl', less anisotropic and skewed; and (3) a nearly isotropic distribution function. For each distribution function, a sudden change in the slope was discerned, separating the 'core' at lower energies from the 'halo' at higher energies. The most obvious differences of the analyzed electron distribution functions were observed at energies above 50-100 eV. The possible origins for the observed features of the distribution functions are discussed.

  3. Mars: New Determination of Impact Crater Production Function Size Distribution

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11m

  4. Partner Abuse of Mothers Compromises Children's Behavioral Functioning Through Maternal Mental Health Dysfunction: Analysis of 300 Mother-Child Pairs.

    PubMed

    Maddoux, John A; Liu, Fuqin; Symes, Lene; McFarlane, Judith; Paulson, Rene; Binder, Brenda K; Fredland, Nina; Nava, Angeles; Gilroy, Heidi

    2016-04-01

    Partner violence is associated with numerous negative consequences for victims, especially poor mental health. Children who are exposed to partner violence are more likely to have behavior problems. Nevertheless, research on the relationship between severity of abuse, maternal mental health functioning following partner violence, and child behavior problems is limited. We explored the direct and indirect effects on the child's behavioral functioning of severity of maternal abuse and maternal mental health functioning following abuse. A sample of 300 mothers was recruited when they sought assistance for abuse for the first time at shelters for abused women or at the district attorney's office. Severity of abuse, mothers' mental health functioning, and child behavioral functioning were measured by maternal self-report at entry into the study and 4 months later. In SEM analysis, at both entry and 4 months, severity of abuse had a direct effect on maternal mental health functioning, which in turn had a direct effect on child behavioral functioning. The path from severity of abuse to child behavioral functioning also was significant but became non- significant once maternal mental health functioning was added to the equation, indicating that the path from severity of abuse to child behavioral functioning was indirect and occurred as a result of the mother's mental health functioning, which remained directly linked to child behavioral problems. Intergenerational interventions are needed to address both maternal mental health and child behavioral functioning when a mother reports partner violence and is experiencing mental health problems.

  5. Nongyrotropic electron velocity distribution functions near the lunar surface

    NASA Astrophysics Data System (ADS)

    Harada, Yuki; Machida, Shinobu; Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Nishino, Masaki N.; Tsunakawa, Hideo; Shibuya, Hidetoshi; Takahashi, Futoshi; Matsushima, Masaki; Shimizu, Hisayoshi

    2012-07-01

    We have analyzed nongyrotropic electron velocity distribution functions (VDFs) obtained near the lunar surface. Electron VDFs, measured at ˜10-100 km altitude by Kaguya in both the solar wind and the Earth's magnetosphere, exhibit nongyrotropic empty regions associated with the ‘gyroloss’ effect; i.e., electron absorption by the lunar surface combined with electron gyromotion. Particle-trace calculations allow us to derive theoretical forbidden regions in the electron VDFs, thereby taking into account the modifications due to nonuniform magnetic fields caused by diamagnetic-current systems, lunar-surface charging, and electric fields perpendicular to the magnetic field. Comparison between the observed empty regions with the theoretically derived forbidden regions suggests that various components modify the characteristics of the nongyrotropic electron VDFs depending on the ambient-plasma conditions. On the lunar nightside in the magnetotail lobes, negative surface potentials slightly reduce the size of the forbidden regions, but there are no distinct effects of either the diamagnetic current or perpendicular electric fields. On the dayside in the solar wind, the observations suggest the presence of either the diamagnetic-current or solar wind convection electric field effects, or both. In the terrestrial plasma sheet, all three mechanisms can substantially modify the characteristics of the forbidden regions. The observations imply the presence of a local electric field of at least 5 mV/m although the mechanism responsible for production of such a strong electric field is unknown. Analysis of nongyrotropic VDFs associated with the gyroloss effect near solid surfaces can promote a better understanding of the near-surface plasma environment and of plasma-solid-surface interactions.

  6. Spaceflight effects on T lymphocyte distribution, function and gene expression

    PubMed Central

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  7. Predictions of Geospace Drivers By the Probability Distribution Function Model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C.; Ridley, A. J.

    2014-12-01

    Geospace drivers like the solar wind speed, interplanetary magnetic field (IMF), and solar irradiance have a strong influence on the density of the thermosphere and the near-Earth space environment. This has important consequences on the drag on satellites that are in low orbit and therefore on their position. One of the basic problems with space weather prediction is that these drivers can only be measured about one hour before they affect the environment. In order to allow for adequate planning for some members of the commercial, military, or civilian communities, reliable long-term space weather forecasts are needed. The study presents a model for predicting geospace drivers up to five days in advance. This model uses the same general technique to predict the solar wind speed, the three components of the IMF, and the solar irradiance F10.7. For instance, it uses Probability distribution functions (PDFs) to relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. The PDF Model has been compared to other models for predictions of the speed. It has been found that it is better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 hours. Once the drivers are predicted, and the uncertainty on the drivers are specified, the density in the thermosphere can be derived using various models of the thermosphere, such as the Global Ionosphere Thermosphere Model. In addition, uncertainties on the densities can be estimated, based on ensembles of simulations. From the density and uncertainty predictions, satellite positions, as well as the uncertainty in those positions can be estimated. These can assist operators in determining the probability of collisions between objects in low Earth orbit.

  8. "Distribution and functional identification of complex class 1 integrons".

    PubMed

    Quiroga, María Paula; Arduino, Sonia Marina; Merkier, Andrea Karina; Quiroga, Cecilia; Petroni, Alejandro; Roy, Paul H; Centrón, Daniela

    2013-10-01

    The emergence of extended-spectrum β-lactamases and plasmid-mediated resistance to quinolones has been previously found to be associated with the dissemination of complex class 1 integrons in Argentina. In this study, we analyzed their distribution through time and evaluated the functionality of the Orf513 protein, which is the putative recombinase of the ISCR1 mobile element. We investigated the presence of the orf513, blaCTX-M-2, dfrA3b, qnrB10 and blaDHA-1 genes by PCR and DNA sequencing as well as their linkage to class 1 integrons in 451 non-epidemiologically related nosocomial strains resistant to at least one expanded-spectrum cephalosporin and to one aminoglycoside, isolated between 1989 and 2010 from 7 hospitals from Buenos Aires City. The epidemiology of complex class 1 integrons was found to be notably different among fermenting (94/171) and non-fermenting clinical bacilli isolates (1/280). The ISCR1::qnrB10 positive isolates were found since 1993, confirming its presence in clinical isolates more than a decade before its first description. As expected, In35::ISCR1::blaCTX-M-2 was the most common complex class 1 integron among Enterobacteriaceae isolates, particularly in Proteus mirabilis. Experimental analysis corroborated the activity of the Orf513 protein, which was found to bind specific DNA sequences containing the previously suggested oriIS region. These findings showed the high dispersion and maintenance of complex class 1 integrons across time in our nosocomial isolates. The contribution of the ISCR1 mobile element to multidrug resistant phenotypes is significant due to its sustained association to class 1 integrons. PMID:23838285

  9. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  10. A convenient alumination of functionalized aromatics by using the frustrated Lewis pair Et3 Al and TMPMgCl⋅LiCl.

    PubMed

    Unsinn, Andreas; Wunderlich, Stefan H; Jana, Anukul; Karaghiosoff, Konstantin; Knochel, Paul

    2013-10-18

    A straightforward and efficient alumination of functionalized arenes by using the frustrated Lewis pair Et3 Al and TMPMgCl⋅LiCl (TMP=2,2,6,6-tetramethylpiperidyl) has been developed. In particular, halogenated electron-rich aromatics can be smoothly functionalized by using the frustrated Lewis pair Et3 Al and TMPMgCl⋅LiCl. Compared with previously described alumination methods, this procedure avoids extensive cooling and the need for an excess of base. This in situ procedure has proven to be most practical and allows for regio- and chemoselective metalation of a wide range of aromatics with sensitive functional groups (CONEt2 , CO2 Me, CN, OCONMe2 ) or halogens (F, Cl, Br, I). The resulting aromatic aluminates, which were characterized by using NMR spectroscopy, were subjected to allylations, acylations, and palladium-catalyzed cross-coupling reactions after transmetalation to zinc. It was shown that the nature of the Zn salt used for transmetalation is crucial. Thus, compared with ZnCl2 (2 equiv), the use of Zn(OPiv)2 (2 equiv; OPiv=pivalate) allows the subsequent quenching reactions to be performed with only a slight excess of electrophile (1.2 equiv) and provides interesting functionalized aromatics in good yields.

  11. Required distribution of noise sources for Green's function recovery in diffusive fields

    NASA Astrophysics Data System (ADS)

    Shamsalsadati, S.; Weiss, C. J.

    2011-12-01

    In the most general sense, noise is the part of the signal of little or no interest, due to a multitude of reasons such as operator error, imperfect instrumentation, experiment design, or inescapable background interference. Considering the latter, it has been shown that Green's function can be extracted from cross-correlation of the ambient, diffusive wavefields arising from background random noise sources. Pore pressure and low-frequency electromagnetic induction are two such examples of diffusive fields. In theory, applying Green's function method in geophysical exploration requires infinity of volumetrically distributed sources; however, in the real world the number of noise sources in an area is limited, and furthermore, unevenly distributed in time, space and spectral content. Hence, quantification of the requisite noise sources that enable us to calculate Green's function acceptably well remains an open research question. The purpose of this study is to find the area of noise sources that contribute most to the Green's function estimation in diffusive systems. We call such a region the Volume of Relevance (VoR). Our analysis builds upon recent work in 1D homogeneous system where it was shown that sources located between two receivers positions are the most important ones for the purpose of Green's function recovery. Our results confirm the previous finding but we also examine the effect of heterogeneity, dimensionality and receiver location in both 1D and 2D at a fixed frequency. We demonstrate that for receivers located symmetrically across an interface between regions of contrasting diffusivity, the VoR rapidly shifts from one side of the interface to the other, and back again, as receiver separation increases. We also demonstrate that where the receiver pair is located on the interface itself, the shifting is less rapid, and for moderate to high diffusivity contrasts, the VoR remains entirely on the more diffusive side. In addition, because classical

  12. The stellar initial mass function, core mass function and the last-crossing distribution

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2012-07-01

    Hennebelle & Chabrierattempted to derive the stellar initial mass function (IMF) as a consequence of lognormal density fluctuations in a turbulent medium, using an argument similar to Press & Schechter for Gaussian random fields. Like that example, however, the solution there does not resolve the 'cloud-in-cloud' problem; it also does not extend to the large scales that dominate the velocity and density fluctuations. In principle, these can change the results at the order-of-magnitude level or more. In this paper, we use the results from Hopkins to generalize the excursion set formalism and derive the exact solution in this regime. We argue that the stellar IMF and core mass function (CMF) should be associated with the last-crossing distribution, i.e. the mass spectrum of bound objects defined on the smallest scale on which they are self-gravitating. This differs from the first-crossing distribution (mass function on the largest self-gravitating scale) which is defined in cosmological applications and which, Hopkins shows, corresponds to the giant molecular cloud (GMC) mass function in discs. We derive an analytic equation for the last-crossing distribution that can be applied for an arbitrary collapse threshold shape in interstellar medium and cosmological studies. With this, we show that the same model that predicts the GMC mass function and large-scale structure of galaxy discs also predicts the CMF - and by extrapolation stellar IMF - in good agreement with observations. The only adjustable parameter in the model is the turbulent velocity power spectrum, which in the range ? gives similar results. We also use this to formally justify why the approximate solution in Hennebelle & Chabrier is reasonable (up to a normalization constant) over the mass range of the CMF/IMF; however, there are significant corrections at intermediate and high masses. We discuss how the exact solutions here can be used to predict additional quantities such as the clustering of stars

  13. The unique paired retinal vascular pattern in marsupials: structural, functional and evolutionary perspectives based on observations in a range of species

    PubMed Central

    McMenamin, Paul G

    2007-01-01

    the CNS of a few other classes of non‐mammalian vertebrates, suggest that retinal vascularisation may have evolved independently in marsupial and eutherian mammals and that the former may have evolved from a common primitive mammal‐like reptilian ancestor which possessed paired vasculature in the CNS. Eutherian mammals may have evolved from an ancestor with anastomotic networks in the CNS or this pattern may have evolved later in eutherian mammal evolutionary radiation. The possible functional and physiological significance of the paired vessels is discussed. PMID:17475712

  14. Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl8(2-).

    PubMed

    Carlson, Rebecca K; Truhlar, Donald G; Gagliardi, Laura

    2015-09-01

    We extend the on-top density functional of multiconfiguration pair-density functional theory (MC-PDFT) to include the gradient of the on-top density as well as the gradient of the density. We find that the theory is reasonably stable to this extension; furthermore, it provides improved accuracy for molecules containing transition metals. We illustrate the extended on-top density functionals by applying them to Cr2, Cu2, Ag2, Os2, and Re2Cl8(2-) as well as to our previous database of 56 data for bond dissociation energies, barrier heights, reaction energies, proton affinities, and the water dimer. The performance of MC-PDFT is comparable to or better than that of CASPT2. PMID:26575903

  15. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  16. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  17. Distributing Functionality in the Drift Scan Camera System

    NASA Astrophysics Data System (ADS)

    Nicinski, T.; Constanta-Fanourakis, P.; MacKinnon, B.; Petravick, D.; Pluquet, C.; Rechenmacher, R.; Sergey, G.

    Although Fermilab is a High Energy Physics (HEP) laboratory, its experience in producing high speed data acquisition systems was essential in the development of the Drift Scan Camera System (DSC). It integrates high speed CCD (2048 2048 pixels) readout over fiber optics into an embedded VMEbus single board computer with a backend UNIX analysis system. Functionality is distributed across heterogeneous platforms through tight and loose coupling of machines client/server protocols a common interpretive command language Besides being a prototype for the Sloan Digital Sky Survey, the DSC System will be used for independent scientific objectives. It will be installed on the ARC 3.5m telescope at Apache Point Observatory, New Mexico in late 1993. The DSC core consists of two machines: the Instrument Control Computer (ICC) and the Online Analysis Computer (OAC). The ICC, a VMEbus-based Motorola MVME167b, and the OAC, a Silicon Graphics 4D/35, are tightly coupled through a VMEbus repeater. The ICC acquires image data from a 2048 2048 pixels CCD at rates up to 922 KBytes/second and stores this data, packaged into Frames up to 8 MBytes in size, in a local Frame Pool (on disk) in real-time. Frames in the Pool are served by the ICC to the Archiver (tape logger) and/or various OAC clients in near-real-time. As a Frame Pool client, the OAC requests Frames from the ICC via backplane-based RPCs (Remote Procedure Calls) and shared memory. Tight backplane coupling is necessary to provide the OAC with Frames as fast as they become available. This allows quick analysis, during the acquisition of the next Frame, to determine whether the current Frame should be retained, logged, etc. With observation time being precious, it also permits the observer to quickly discover problems (non-visually) and to correct them. The ICC is usually controlled by the OAC. But, as the ICC uses servers that interpret a common command language (Tcl), any machine (including the ICC) can issue commands to it

  18. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  19. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  20. Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family

    PubMed Central

    On, Jason S.W.; Duan, Cumming; Chow, Billy K.C.; Lee, Leo T.O.

    2015-01-01

    Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand–receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand–receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates. PMID:25841489

  1. Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family.

    PubMed

    On, Jason S W; Duan, Cumming; Chow, Billy K C; Lee, Leo T O

    2015-08-01

    Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand-receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand-receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates.

  2. Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family.

    PubMed

    On, Jason S W; Duan, Cumming; Chow, Billy K C; Lee, Leo T O

    2015-08-01

    Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand-receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand-receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates. PMID:25841489

  3. Renormdynamics, multiparticle production, negative binomial distribution, and Riemann zeta function

    SciTech Connect

    Makhaldiani, N. V.

    2013-09-15

    After short introduction, we consider different aspects of the renormdynamics. Then scaling functions of the multiparticle production processes and corresponding stochastic dynamics are considered. Nonperturbative quasi-particle dynamics is considered on the base of the toy QCD-O(N)-sigma model. Last section concerns to the NBD-Riemann zeta function connection.

  4. Distribution function of continuously created newborn and pickup ions in outer cometary exospheres

    NASA Technical Reports Server (NTRS)

    Gaffey, J. D., Jr.; Wu, C. S.

    1989-01-01

    The time evolution of the distribution function of newborn ions in the solar wind is investigated using a quasi-linear-type diffusion equation. The initial distribution is taken to be a ring beam, which is approximated by delta function in pitch angle and velocity, and it is assumed that the ions are created at a constant rate with a similar distribution. A long-time asymptotic form of ion distribution is obtained, which is a mixture of newborn ions and ions generated throughout the entire process. It is shown that the time asymptotic distribution function exists even in the presence of a continuous ionization process. The stability of the long-time asymptotic distribution was examined for the case of parallel propagation, and the results show that the distribution function can be unstable to low-frequency hydromagnetic waves. The results of the analysis were found to agree with recent satellite observations.

  5. Examination of the Atomic Pair Distribution Function (PDF) of SiC Nanocrystals by In-situ High Pressure Diffraction

    NASA Technical Reports Server (NTRS)

    Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.

    2003-01-01

    Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.

  6. Data synthesis and display programs for wave distribution function analysis

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  7. Efficient Implementation of the Pair Atomic Resolution of the Identity Approximation for Exact Exchange for Hybrid and Range-Separated Density Functionals

    PubMed Central

    2015-01-01

    An efficient new molecular orbital (MO) basis algorithm is reported implementing the pair atomic resolution of the identity approximation (PARI) to evaluate the exact exchange contribution (K) to self-consistent field methods, such as hybrid and range-separated hybrid density functionals. The PARI approximation, in which atomic orbital (AO) basis function pairs are expanded using auxiliary basis functions centered only on their two respective atoms, was recently investigated by Merlot et al. [J. Comput. Chem.2013, 34, 1486]. Our algorithm is significantly faster than quartic scaling RI-K, with an asymptotic exchange speedup for hybrid functionals of (1 + X/N), where N and X are the AO and auxiliary basis dimensions. The asymptotic speedup is 2 + 2X/N for range separated hybrids such as CAM-B3LYP, ωB97X-D, and ωB97X-V which include short- and long-range exact exchange. The observed speedup for exchange in ωB97X-V for a C68 graphene fragment in the cc-pVTZ basis is 3.4 relative to RI-K. Like conventional RI-K, our method greatly outperforms conventional integral evaluation in large basis sets; a speedup of 19 is obtained in the cc-pVQZ basis on a C54 graphene fragment. Negligible loss of accuracy relative to exact integral evaluation is demonstrated on databases of bonded and nonbonded interactions. We also demonstrate both analytically and numerically that the PARI-K approximation is variationally stable. PMID:25691831

  8. Pairing phase transition and thermodynamical quantities in 148,149Sm

    NASA Astrophysics Data System (ADS)

    Razavi, R.; Behkami, A. N.; Dehghani, V.

    2014-10-01

    The nuclear level densities and entropies in 148,149Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature.

  9. Dispersion relations for a general anisotropic distribution function represented as a sum over Legendre polynomials

    SciTech Connect

    Shaisultanov, Rashid; Eichler, David

    2011-03-15

    The dielectric tensor is obtained for a general anisotropic distribution function that is represented as a sum over Legendre polynomials. The result is valid over all of k-space. We obtain growth rates for the Weibel instability for some basic examples of distribution functions.

  10. THE INITIAL MASS FUNCTION MODELED BY A LEFT TRUNCATED BETA DISTRIBUTION

    SciTech Connect

    Zaninetti, Lorenzo

    2013-03-10

    The initial mass function for stars is usually fitted by three straight lines, which means it has seven parameters. The presence of brown dwarfs (BDs) increases the number of straight lines to four and the number of parameters to nine. Another common fitting function is the lognormal distribution, which is characterized by two parameters. This paper is devoted to demonstrating the advantage of introducing a left truncated beta probability density function, which is characterized by four parameters. The constant of normalization, the mean, the mode, and the distribution function are calculated for the left truncated beta distribution. The normal beta distribution that results from convolving independent normally distributed and beta distributed components is also derived. The chi-square test and the Kolmogorov-Smirnov test are performed on a first sample of stars and BDs that belongs to the massive young cluster NGC 6611, and on a second sample that represents the masses of the stars of the cluster NGC 2362.

  11. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function.

    PubMed

    Throup, J P; Zappacosta, F; Lunsford, R D; Annan, R S; Carr, S A; Lonsdale, J T; Bryant, A P; McDevitt, D; Rosenberg, M; Burnham, M K

    2001-08-28

    Systematic analysis of the entire two-component signal transduction system (TCSTS) gene complement of Staphylococcus aureus revealed the presence of a putative TCSTS (designated SrhSR) which shares considerable homology with the ResDE His-Asp phospho-relay pair of Bacillus subtilis. Disruption of the srhSR gene pair resulted in a dramatic reduction in growth of the srhSR mutant, when cultured under anaerobic conditions, and a 3-log attenuation in growth when analyzed in the murine pyelonephritis model. To further understand the role of SrhSR, differential display two-dimensional gel electrophoresis was used to analyze the cell-free extracts derived from the srhSR mutant and the corresponding wild type. Proteins shown to be differentially regulated were identified by mass spectrometry in combination with protein database searching. An srhSR deletion led to changes in the expression of proteins involved in energy metabolism and other metabolic processes including arginine catabolism, xanthine catabolism, and cell morphology. The impaired growth of the mutant under anaerobic conditions and the dramatic changes in proteins involved in energy metabolism shed light on the mechanisms used by S. aureus to grow anaerobically and indicate that the staphylococcal SrhSR system plays an important role in the regulation of energy transduction in response to changes in oxygen availability. The combination of proteomics, bio-informatics, and microbial genetics employed here represents a powerful set of techniques which can be applied to the study of bacterial gene function.

  12. All-polyethylene and metal-backed tibial components in total knee arthroplasty: a matched pair analysis of functional outcome.

    PubMed

    Najibi, Soheil; Iorio, Richard; Surdam, Jonathan W; Whang, William; Appleby, David; Healy, William L

    2003-10-01

    A group of 98 patients who had primary unilateral total knee arthroplasty (TKA) with cemented, posterior-stabilized knee implants for osteoarthritis were matched for age, diagnosis, weight, body mass index, and presence of comorbid conditions. The patients were followed up with clinical, radiographic, and outcome measures including SF-36 scales and patient outcome questionnaires. Forty-nine patients had all-polyethylene tibial implants (APT), and 49 patents had metal backed tibial implants (MBT) with similar knee implant design and articular geometry. There is no difference among these patient cohorts in the clinical performance or functional outcome of TKA using APT or MBT components in primary TKA at intermediate term follow-up. In consideration of concerns about polyethylene wear, osteolysis, and cost associated with MBT components, these findings may present an opportunity for quality improvement and cost savings with increased utilization of APT in TKA operations. PMID:14560404

  13. Cumulative overlap distribution function in realistic spin glasses

    NASA Astrophysics Data System (ADS)

    Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D.

    2014-09-01

    We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between replica symmetry breaking-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a replica symmetry breaking-like behavior for the 3D Edwards-Anderson model.

  14. On the intensity distribution function of blazed reflective diffraction gratings.

    PubMed

    Casini, R; Nelson, P G

    2014-10-01

    We derive from first principles the expression for the angular/wavelength distribution of the intensity diffracted by a blazed reflective grating, according to a scalar theory of diffraction. We considered the most common case of a groove profile with rectangular apex. Our derivation correctly identifies the geometric parameters of a blazed reflective grating that determine its diffraction efficiency, and fixes an incorrect but commonly adopted expression in the literature. We compare the predictions of this scalar theory with those resulting from a rigorous vector treatment of diffraction from one-dimensional blazed reflective gratings.

  15. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  16. Velocity distribution function of electrons plasma produced by high power laser pulse interacting aluminum target

    NASA Astrophysics Data System (ADS)

    Mahdieh, M. H.; Razi, E. M.

    2010-09-01

    This paper presents the experimental results of studying the distribution function of electrons plasma produced by irradiating aluminum target by nanosecond pulsed laser in vacuum. The laser beam was provided by second harmonic of a Q-switched Nd:YAG pulsed laser with ~10 nsec pulse duration and energy of 70 mJ. A home made Faraday cup was used for detecting the current signal. From analyzing the time of flight (TOF) experimental distribution function was determined. Comparing the experimental distribution function with Maxwell-Boltzamnn and effusion distribution functions, the electron temperature was estimated. From the experimental results, the velocity of maximum electron flux was determined. In this study the influence of the probe position and biasing voltage was investigated. The results show that the velocity of maximum electron flux and associated temperature rises with distance from the target surface. The results also show that effusion distribution function is more appropriate for modeling such plasma.

  17. Light-cone wavefunction representations of the Sivers and the Boer-Mulders distribution functions

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Sung

    2013-02-01

    We find the light-cone wavefunction representations of the Sivers and the Boer-Mulders distribution functions. A necessary condition for the existence of these representations is that the light-cone wavefunctions have complex phases. We induce the complex phases by incorporating the final-state interactions into the light-cone wavefunctions. For the scalar and the axial-vector diquark models for a nucleon, we calculate explicitly the Sivers and the Boer-Mulders distribution functions from the light-cone wavefunction representations. We obtain the results that the Sivers distribution function has opposite signs with a factor of 3 difference in magnitude for the two models, whereas the Boer-Mulders distribution function has the same sign and magnitude. We can understand these results from the properties of the light-cone wavefunction representations of the Sivers and the Boer-Mulders distribution functions.

  18. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  19. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    NASA Astrophysics Data System (ADS)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer

  20. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    NASA Astrophysics Data System (ADS)

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.

    2016-07-01

    We present a characterization of short-term stability of Kauffman's N K (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.

  1. Characterizing short-term stability for Boolean networks over any distribution of transfer functions.

    PubMed

    Seshadhri, C; Smith, Andrew M; Vorobeychik, Yevgeniy; Mayo, Jackson R; Armstrong, Robert C

    2016-07-01

    We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness. PMID:27575142

  2. Characterizing short-term stability for Boolean networks over any distribution of transfer functions.

    PubMed

    Seshadhri, C; Smith, Andrew M; Vorobeychik, Yevgeniy; Mayo, Jackson R; Armstrong, Robert C

    2016-07-01

    We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.

  3. Multi-level methods and approximating distribution functions

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Baker, R. E.

    2016-07-01

    Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie's direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie's direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146-179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.

  4. Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming

    NASA Astrophysics Data System (ADS)

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  5. Messenger RNA modifications – Form, distribution, and function

    PubMed Central

    Gilbert, Wendy V.; Bell, Tristan A.; Schaening, Cassandra

    2016-01-01

    RNA contains more than 100 distinct modifications that promote the functions of stable non-coding RNAs in translation and splicing. Recent technical advances have revealed widespread and sparse modification of messenger RNAs with N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ). Here we discuss the rapidly evolving understanding of the location, regulation and function of these dynamic mRNA marks, collectively termed the epitranscriptome. We highlight differences among modifications and between species that could instruct ongoing efforts to understand how specific mRNAs target sites are selected and how their modification is regulated. Diverse molecular consequences of individual m6A modifications are beginning to be revealed but the effects of m5C and Ψ remain largely unknown. Future work linking molecular effects to organismal phenotypes will broaden our understanding of mRNA modifications as cell and developmental regulators. PMID:27313037

  6. B/N pair and Si doped ultra-small-diameter single-walled carbon nanotubes: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Wang, Yue; Shao, QingYi

    2014-11-01

    The structures and electronic properties of Si-doped ultra-small-diameter single-wall carbon nanotubes (SWCNTs) are studied through the first principle calculations based on density functional theory. To investigate their structural properties, a detailed calculation of bond length is performed for Si-doped (3, 3) armchair and (5, 0) zigzag nanotubes. The total energy and the formation energy show us that the doping configurations are energetically stable structures. The results reveal that Si-doped metallic carbon nanotubes can open their band gap, converting them into semiconductors. In addition, we also discuss the electronic structures of Si and B/N co-doped SWCNTs. B/N pair doping SWCNTs, in which Si has been doped, can increase or decrease their band gaps. For doping atoms, the band gap increases the closer they get to the vertical direction of the nanotube axis.

  7. Crossed cerebral lateralization for verbal and visuo-spatial function in a pair of handedness discordant monozygotic twins: MRI and fMRI brain imaging

    PubMed Central

    Lux, Silke; Keller, Simon; Mackay, Clare; Ebers, George; Marshall, John C; Cherkas, Lynne; Rezaie, Roozbeh; Roberts, Neil; Fink, Gereon R; Gurd, Jennifer M

    2008-01-01

    To examine the nature of hemispheric lateralization for neural processes underlying verbal fluency and visuo-spatial attention, we investigated a single pair of handedness discordant monozygotic (MzHd) twins. Imaging of the brain was undertaken using magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) in combination with manual performance tasks. The twins were discordant for MRI anatomical asymmetries of the pars triangularis and planum temporale, whose asymmetry was consistent with verbal laterality on fMRI. Thus, the right-handed twin had left lateralized verbal with right lateralized visuo-spatial attention, while the left-handed twin had right lateralized verbal with left lateralized visuo-spatial activation; these data lend further support for to the conclusions of Sommer et al. PMID:18304205

  8. Study of hole pair condensation based on the SU(2) Slave-Boson approach to the t-J Hamiltonian: Temperature, momentum and doping dependences of spectral functions

    SciTech Connect

    Salk, S.H.S.; Lee, S.S.

    1999-11-01

    Based on the U(1) and SU(2) slave-boson approaches to the t-J Hamiltonian, the authors evaluate the one electron spectral functions for the hole doped high {Tc} cuprates for comparison with the angle resolved photoemission spectroscopy (ARPES) data. They find that the observed quasiparticle peak in the superconducting state is correlated with the hump which exists in the normal state. They find that the spectral weight of the quasiparticle peak increases as doping rate increases, which is consistent with observation. As a consequence of the phase fluctuation effects of the spinon and holon pairing order parameters the spectral weight of the predicted peak obtained from the SU(2) theory is found to be smaller than the one predicted from U(1) mean field theory.

  9. Distributed Language: Biomechanics, Functions, and the Origins of Talk

    NASA Astrophysics Data System (ADS)

    Cowley, Stephen J.

    Emphasizing that word-forms are culturally selected, the paper takes a distributed view of language. This is used to frame evidence that, in ontogenesis, language emerges under dual control by adult and child. Since parties gear to each other's biomechanics, norm-based behaviour prompts affective processes that drive prepared learning. This, it is argued, explains early stages in learning to talk. Next, this approach to external symbol grounding (ESG) is contrasted with ones where a similar problem is treated as internal to the agent. Then, turning to synthetic models, I indicate how the ESG can be used to model either populations of agents or dyads who, using complex signals, transform each other's agency.

  10. Transverse momentum-dependent parton distribution functions from lattice QCD

    SciTech Connect

    Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer

    2012-12-01

    Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particular on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.

  11. A decentralized mechanism for improving the functional robustness of distribution networks.

    PubMed

    Shi, Benyun; Liu, Jiming

    2012-10-01

    Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm. PMID:22547458

  12. Primate natal coats: a preliminary analysis of distribution and function.

    PubMed

    Treves, A

    1997-09-01

    Pelage coloration of infants was compiled for 138 species of primates. Three functional hypotheses--alloparental, infant defense, and paternity cloak--for primate natal coats are tested. Neonatal pelage contrasted with adult pelage in over half of the species examined. Subtle or inconspicuous contrast was more common than flamboyant contrast. Natal coats began to change at 5.7 weeks and disappeared by 18.0 weeks postpartum on average. The first body part to lose natal coloration was the head and/or dorsum in the majority of species. Functional analyses provided no support for the only published hypothesis--alloparental--while providing partial support for two new hypotheses--infant defense and paternity cloak. A significant association between testes weight and natal coat contrast supports a link between mating system and infant contrast. This is discussed in terms of infanticide avoidance. Natal coats are proposed to be categorically differentiated into inconspicuous and flamboyant types, not differentiated by a continuous gradation, such as color. Subspecific differentiation and patterns of shared ancestry are assessed.

  13. Extrahypophysial distribution of corticotropin as a function of brain size.

    PubMed Central

    Moldow, R; Yalow, R S

    1978-01-01

    Determination by radioimmunoassay of corticotropin in the brains of rats, rabbits, dogs, monkeys, and human beings reveals that the dimensions within which the hormone is found is about the same for each of these species but that the anatomical regions in which the hormone is found depends on brain size. Corticotropin is widely distributed in the brain of rats but is found only in the hypothalamic region of the primate brain. The patterns of immunoreactivity observed after Sephadex gel filtration confirm that the molecular forms of corticotropin found in extrahypophysial regions are similar to those in the pituitary of each species. These findings suggest that the mammalian pituitary is the sole site of synthesis of the hormone. The observation of persistence of corticotropin in the brains of commerically hypophysectomized rats has been interpreted by others as suggesting diencephalic as well as pituitary origin for this peptide. However, our studies demonstrate that 8 weeks after hypophysectomy the rats we have received from commerical sources manifest stress-stimulated plasma corticotropin concentrations about 80% of that found in intact rats in spite of the fact that residual pituitary tissue was not found by visual inspection of the sella. Scrapings from the sella revealed a corticotropin content up to 5% that of the average rat pituitary. Images PMID:204943

  14. [Opioid receptors of the CNS: function, structure and distribution].

    PubMed

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  15. Garbage collection for functional languages in a distributed system

    SciTech Connect

    Eckart, J.D.

    1987-01-01

    Garbage collection is a helpful facility provided by many applicative languages such as Prolog, SISAL, FP, and Lisp. While these, and other, languages provide easy recognition of actions that may be executed in parallel, the garbage-collection algorithms used for single-machine environments become significantly more inefficient in multi-machine environments. Thus, in order to make effective use of these languages, more-efficient algorithms for collecting inter-machine structures is needed. Reference marking is the algorithm developed to meet these needs. It takes advantage of the semantics of applicative languages allowing each parallel action to be responsible for collecting any discarded structures it was responsible for creating. Simulation results comparing the performance of reference marking with other distributed garbage-collection algorithms are given. A variety of problem types and sizes are examined to determine the effects of particular styles of computation on each of the garbage-collection algorithms. The results gathered demonstrate the usefulness of the reference-marking algorithm in both uni- and multi-machine systems.

  16. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    PubMed

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  17. Spectral analysis of pair-correlation bandwidth: application to cell biology images

    PubMed Central

    Binder, Benjamin J.; Simpson, Matthew J.

    2015-01-01

    Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time. PMID:26064605

  18. Functional modulation of power-law distribution in visual perception

    NASA Astrophysics Data System (ADS)

    Shimono, Masanori; Owaki, Takashi; Amano, Kaoru; Kitajo, Keiichi; Takeda, Tsunehiro

    2007-05-01

    Neuronal activities have recently been reported to exhibit power-law scaling behavior. However, it has not been demonstrated that the power-law component can play an important role in human perceptual functions. Here, we demonstrate that the power spectrum of magnetoencephalograph recordings of brain activity varies in coordination with perception of subthreshold visual stimuli. We observed that perceptual performance could be better explained by modulation of the power-law component than by modulation of the peak power in particular narrow frequency ranges. The results suggest that the brain operates in a state of self-organized criticality, modulating the power spectral exponent of its activity to optimize its internal state for response to external stimuli.

  19. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions.

    PubMed

    Rogov, A G; Sukhanova, E I; Uralskaya, L A; Aliverdieva, D A; Zvyagilskaya, R A

    2014-12-01

    The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.

  20. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development

    PubMed Central

    Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao

    2016-01-01

    Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii. PMID:26732855

  1. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development.

    PubMed

    Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao

    2016-01-01

    Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii. PMID:26732855

  2. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    SciTech Connect

    Schweigert, I. V.; Kaganovich, I. D.; Demidov, V. I.

    2013-10-15

    The electron energy distribution functions are studied in the low voltage dc discharge with a constriction, which is a diaphragm with an opening. The dc discharge glows in helium and is sustained by the electron current emitted from a heated cathode. We performed kinetic simulations of dc discharge characteristics and electron energy distribution functions for different gas pressures (0.8 Torr-4 Torr) and discharge current of 0.1 A. The results of these simulations indicate the ability to control the shape of the electron energy distribution functions by variation of the diaphragm opening radius.

  3. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms.

    PubMed

    Dammeyer, Thorben; Frankenberg-Dinkel, Nicole

    2008-10-01

    Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.

  4. Distribution function approach to irreversible adsorption of interacting colloidal particles

    NASA Astrophysics Data System (ADS)

    Faraudo, Jordi; Bafaluy, Javier

    2000-01-01

    A statistical-mechanical description of the irreversible adsorption of interacting colloidal particles is developed. Our approach describes in a consistent way the interaction of particles from the bulk with adsorbed particles during the transport process towards the adsorbing surface. The macroscopic physical quantities corresponding to the actual process are expressed as averages over simpler auxiliary processes which proceed in the presence of a fixed number n of adsorbed particles. The adsorption rate verifies a generalized Langmuir equation, in which the kinetic resistance (the inverse of the kinetic coefficient) is expressed as the sum of a diffusional resistance and a resistance due to interaction with adsorbed particles during the transport process (blocking effect). Contrary to previous approaches, the blocking effect is not due to geometrical exclusion, instead it measures how the transport from the bulk is affected by the adsorbed particles. From the general expressions obtained, we have derived coverage expansions for the adsorption rate and the surface correlation function. The theory is applied to the case of colloidal particles interacting through DLVO potentials. This form of the kinetic coefficient is shown to be in agreement with recent experimental results, in which RSA fails.

  5. Evaluation of the NAL-NL1 and the DSL v.4.1 prescriptions for children: Paired-comparison intelligibility judgments and functional performance ratings.

    PubMed

    Ching, Teresa Y C; Scollie, Susan D; Dillon, Harvey; Seewald, Richard; Britton, Louise; Steinberg, Jane; Gilliver, Megan; King, Katrina A

    2010-01-01

    This paper reports intelligibility judgments and real-life functional performance of 48 children in a double-blind, cross-over trial comparing the NAL-NL1 and the DSL v.4.1 prescriptions. Intelligibility judgments were obtained by using a paired-comparisons procedure with audiovisual stimuli. Functional performance of children during two eight-week periods, each with hearing aids adjusted to one prescription, was assessed by parents and teachers (PEACH and TEACH) and by children's self reports (SELF). Consistently across reports, performance was significantly better in quiet than in noise. On average, better performance in noise (a higher Noise subscale score) was associated with NAL-NL1 than with DSL v.4.1, both for the PEACH and the SELF. This difference was significant for the SELF in Australia. Intelligibility judgments revealed preferences that were equally split between prescriptions in both countries, on average. In the Australian sample, intelligibility judgments agreed with the questionnaire ratings and with parents' ratings. An increase in preference for NAL was significantly associated with lesser hearing loss. The effect was not significant in the Canadian sample.

  6. A molecular dynamics study of the lateral free energy profile of a pair of cholesterol molecules as a function of their distance in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Oono, Kimiko; Okazaki, Susumu; Hatta, Ichiro

    2012-04-01

    Free energy profile of a pair of cholesterol molecules in a leaflet of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers in the liquid-crystalline phase has been calculated as a function of their lateral distance using a combination of NPT-constant atomistic molecular dynamics calculations (P = 1 atm and T = 310.15 K) and the thermodynamic integration method. The calculated free energy clearly shows that the two cholesterol molecules form a dimer separated by a distance of 1.0-1.5 nm in POPC bilayers. Well depth of the free energy profile is about 3.5 kJ/mol, which is comparable to the thermal energy kBT at 310.15 K. This indicates that the aggregation of cholesterol molecules in the bilayers depends on the temperature as well as the concentration of the system. The free energy function obtained here may be used as a reference when coarse grained potential model is investigated for this two-component system. Local structure of POPC molecules around two cholesterol molecules has also been investigated.

  7. Adsorption on heterogeneous surfaces: site energy distribution functions from Fritz-Schlüender isotherms.

    PubMed

    Kumar, Kannuchamy Vasanth; Monteiro de Castro, Mateus Carvalho; Martinez-Escandell, Manuel; Molina-Sabio, Miguel; Rodriguez-Reinoso, Francisco

    2010-08-23

    Different site energy distribution functions based on the condensation approximation method are proposed for the liquid-phase or gas-phase adsorption equilibrium data following the Fritz-Schlüender isotherm. Energy distribution functions for the four limiting cases of the Fritz-Schlüender isotherm are also discussed. The proposed models are successfully applied to the experimental equilibrium data of nitrogen molecules at 77 K on a pitch-based activated carbon (PA) and a pitch-based activated carbon containing boron (PBA). An energy distribution function based on FS isotherm containing five parameters suggest a unimodal distribution of binding sites for carbon PA, the binding site energies being distributed as exponential or unimodal, depending on the pressure, in the case of carbon PBA. The advantages of the proposed models are discussed.

  8. Distribution function of continuously created newborn and pickup ions in outer cometary exospheres

    SciTech Connect

    Gaffey, J.D. Jr.; Wu, C.S. )

    1989-07-01

    The time evolution of the distribution function of newborn ions in the solar wind is investigated within the context of a quasilinear theory in which the level of intrinsic turbulence is assumed to be moderate and known. The initial distribution is taken to be a ring beam, which is approximated by delta functions in pitch angle and velocity, and it is assumed that the ions are created at a constant rate with a similar distribution. The long-time asymptotic form of the distribution is obtained. This distribution is a mixture of ions created recently and ions generated throughout the entire process. The results obtained in the present analysis are found to be in good agreement with recent satellite observations. The time asymptotic distribution is also found to be unstable to low-frequency hydromagnetic waves propagating parallel to the ambient magnetic field.

  9. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    NASA Technical Reports Server (NTRS)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  10. TESTING FOR DIFFERENCES BETWEEN CUMULATIVE DISTRIBUTION FUNCTIONS FROM COMPLEX ENVIRONMENTAL SAMPLING SURVEYS

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) employs the cumulative distribution function (cdf) to measure the status of quantitative variables for resources of interest. The ability to compare cdf's for a resource from, say,...

  11. Solution of nonlinear Gribov-Levin-Ryskin-Mueller-Qiu evolution equation for gluon distribution function

    NASA Astrophysics Data System (ADS)

    Devee, Mayuri; Sarma, J. K.

    2014-03-01

    In this paper we have determined the behavior of gluon distribution function by solving the Gribov-Levin-Reskin-Mueller-Qiu (GLR-MQ) evolution equation,which is nonlinear in gluon density. The moderate Q2 behavior of G(x, t), where t = ln(Q2/Λ2), is obtained by employing the Regge like behaviour of gluon distribution function at small-x. Here Q2 behavior of nonlinear gluon distribution function is investigated for small values x = 10-2, 10-3, 10-4 and 10-5 rexpectively. Our predictions are compared with different parametrisations and are found in good agreement. It is observed from our results that with the nonlinear corrections incorporated, the strong growth of G(x,t) that corresponds to the linear QCD evolution equation is slowed down. Moreover essential taming of gluon distribution function is observed for R = 2 GeV-1 as expected.

  12. Energy distribution functions of kilovolt ions in a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.

  13. What probability distribution functions tell us about the processes of star formation

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Klessen, R. S.; Csengeri, T.; Girichidis, P.; Federrath, C.; Tremblin, P.; Bontemps, S.; Peretto, N.; Simon, R.

    2016-05-01

    Probability distribution functions of column density (N-PDFs) are used to evaluate the relative importance of gravity, turbulence, magnetic fields, geometry, and radiative feedback governing the cloud's density structure and star-formation activity. These proce- sses influence the N-PDF and thus determine their shape, ranging from a purely lognormal distribution to one with power-law tail(s).

  14. The probability distribution function for the sum of squares of independent random variables

    NASA Astrophysics Data System (ADS)

    Fateev, Yury; Dmitriev, Dmitry; Tyapkin, Valery; Kremez, Nikolai; Shaidurov, Vladimir

    2016-08-01

    In the present paper, the probability distribution function is derived for the sum of squares of random variables for nonzero expectations. This distribution function enables one to develop an efficient one-step algorithm for phase ambiguity resolution when determining the spatial orientation from signals of satellite radio-navigation systems. Threshold values for rejecting false solutions and statistical properties of the algorithm are obtained.

  15. Stationary electron velocity distribution function in crossed electric and magnetic fields with collisions

    SciTech Connect

    Shagayda, Andrey

    2012-08-15

    Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.

  16. SEP distribution function and probability of the maximum magnitudes of events

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    Based on the current knowledge the magnitude of specific anticipated SEP event is a random variable taken from large array of expected values. This set of expected values can be determined in terms of the distribution function. Form of the distribution function of SЕР events is usually determined from the data of continuous satellite measurement. Sometimes but without much effect indirect evidences, such as isotopes of samples of lunar rocks, data on the density of radioactive isotopes in the annual rings of ancient trees are used to determine the SEPE distribution function. The most successful was the attempt to describe the distribution function for 21-23 solar cycles by power-low function with exponential cutoff in the area of large events. Significant addition to the available information are relatively new data (McCracken et al., JGR 106(A10), 21585-21498, 2001) on the radioactive isotopes in the Greenland ice, which gives the additional information about the extreme SEP events since 1561. However, the lack of information about full set of events (mainly on small events) does not allow to use these data directly to determine the distribution function. However, using correlation between the number of sunspots and the corresponding mean number of SEP events, one can determine the distribution function since 1561 based on Greenland data. Surprisingly, the parameter values of this function coincide with those calculated from satellite data. Analysis of the obtained parameters of the distribution function shows that the maximum fluence of protons with energies above 30 MeV does not exceed 1011 cm-2 protons with about 10-11 midget probability.

  17. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface.

    PubMed

    Parry, A O; Rascón, C; Willis, G; Evans, R

    2014-09-01

    We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  18. Spontaneous electromagnetic fluctuations in unmagnetized plasmas. VI. Transverse, collective mode for arbitrary distribution functions

    SciTech Connect

    Felten, T.; Schlickeiser, R.

    2013-10-15

    Using the general expressions for the magnetic fluctuation spectrum from uncorrelated plasma particles, it is shown that an isotropic, unmagnetized plasma with arbitrary momentum distribution function spontaneously emits an aperiodic, collective, transverse, damped mode. The collective mode with the dispersion relation γ(k) provides the strongest contribution to the magnetic field fluctuation spectrum. Its existence has been proven before for Maxwellian and Lorentzian plasma distribution functions. Here it is demonstrated that this collective aperiodic mode exists in any isotropic unmagnetized, irrespective of the explicit form of the momentum distribution of plasma particles.

  19. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    SciTech Connect

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  20. Spherical harmonic analysis of particle velocity distribution function: Comparison of moments and anisotropies using Cluster data

    NASA Astrophysics Data System (ADS)

    Viñas, Adolfo F.; Gurgiolo, Chris

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective ``compression'' technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  1. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  2. Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function.

    PubMed

    Debieu, Marilyne; Huard-Chauveau, Carine; Genissel, Anne; Roux, Fabrice; Roby, Dominique

    2016-05-01

    Although quantitative disease resistance (QDR) is a durable and broad-spectrum form of resistance in plants, the identification of the genes underlying QDR is still in its infancy. RKS1 (Resistance related KinaSe1) has been reported recently to confer QDR in Arabidopsis thaliana to most but not all races of the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc). We therefore explored the genetic bases of QDR in A. thaliana to diverse races of X. campestris (Xc). A nested genome-wide association mapping approach was used to finely map the genomic regions associated with QDR to Xcc12824 (race 2) and XccCFBP6943 (race 6). To identify the gene(s) implicated in QDR, insertional mutants (T-DNA) were selected for the candidate genes and phenotyped in response to Xc. We identified two major QTLs that confer resistance specifically to Xcc12824 and XccCFBP6943. Although QDR to Xcc12824 is conferred by At5g22540 encoding for a protein of unknown function, QDR to XccCFBP6943 involves the well-known immune receptor pair RRS1/RPS4. In addition to RKS1, this study reveals that three genes are involved in resistance to Xc with strikingly different ranges of specificity, suggesting that QDR to Xc involves a complex network integrating multiple response pathways triggered by distinct pathogen molecular determinants.

  3. Double-Well Ultracold-Fermions Computational Microscopy: Wave-Function Anatomy of Attractive-Pairing and Wigner-Molecule Entanglement and Natural Orbitals

    NASA Astrophysics Data System (ADS)

    Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi

    2015-10-01

    "Bottom-up" approaches to the many-body physics of fermions have demonstrated recently precise number and site-resolved preparations with tunability of interparticle interactions in single-well, SW, and double-well, DW, nano-scale confinements created by manipulating ultracold fermionic atoms with optical tweezers. These experiments emulate an analogue-simulator mapping onto the requisite microscopic hamiltonian, approaching realization of Feynman's vision of quantum simulators that "will do exactly the same as nature". Here we report on exact benchmark configuration-interaction computational microscopy solutions of the hamiltonian, uncovering the spectral evolution, wave-function anatomy, and entanglement properties of the interacting fermions in the entire parameter range, including crossover from a SW to a DW confinement and a controllable energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly-correlated, ultracold Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nano-clustered and condensed-matter phases and ultracold-atoms quantum information.

  4. Wave-Particle Interactions Associated with Nongyrotropic Distribution Functions: A Hybrid Simulation Study

    NASA Technical Reports Server (NTRS)

    Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.

    2002-01-01

    Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.

  5. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  6. Pairing Properties of Superheavy Nuclei

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.

  7. Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. Paper 1: Estimate of the electron velocity distribution functions

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1979-01-01

    It was shown that, in the presence of the steep temperature gradients characteristic of EUV models of the solar transition region, the electron and proton velocity distribution functions are non-Maxwellian and are characterized by high energy tails. The magnitude of these tails are estimated for a model of the transition region and the heat flux is calculated at a maximum of 30 percent greater than predicted by collision-dominated theory.

  8. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  9. Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment - Double-strahl distributions and distributions with an extremely anisotropic core

    NASA Technical Reports Server (NTRS)

    Pilipp, W. G.; Muehlhaeuser, K.-H.; Miggenrieder, H.; Montgomery, M. D.; Rosenbauer, H.

    1987-01-01

    Electron distribution functions with unusual features, which have been observed on rare occasions in the solar wind by the Helios probes, are presented. Two examples show a strong symmetric bidirectional anisotropy in the energy regime of the halo up to particle energies of 800 eV (double-strahl distributions). Another example shows an unusually strong bidirectional anisotropy in the energy regime of the core (below 150 eV). The infrequently observed double-strahl distributions provide evidence that magnetic field loops can exist in the solar wind where electrons are trapped. In addition, they provide evidence that in the case of electrons trapped in closed magnetic field structures the break in the energy spectrum separating the core from the halo is produced only by collisions. On the other hand, the class of distribution functions with strongly anisotropic cores indicates that in the case of 'open' magnetic field lines the break between core and halo is largely determined both by the interplanetary electrostatic potential and by collisions.

  10. Tensor-polarized quark and antiquark distribution functions in a spin-one hadron

    NASA Astrophysics Data System (ADS)

    Kumano, S.

    2010-07-01

    It is becoming crucial to understand orbital-angular-momentum contributions for clarifying the nucleon-spin issue in the parton level. Twist-two structure functions b1 and b2 for spin-one hadrons could probe orbital-angular-momentum effects, which reflect a different aspect from current studies for the spin-1/2 nucleon. The structure functions b1 and b2 are described by tensor-polarized quark and antiquark distributions δTq and δTq¯. Using HERMES data on the b1 structure function for the deuteron, we made an analysis of extracting the distributions δTq and δTq¯ in a simple x-dependent functional form. Optimum distributions are proposed for the tensor-polarized valence and antiquark distribution functions from the analysis. A finite tensor polarization is obtained for antiquarks if we impose a constraint that the first moments of tensor-polarized valence-quark distributions vanish.

  11. USING KAPPA FUNCTIONS TO CHARACTERIZE OUTER HELIOSPHERE PROTON DISTRIBUTIONS IN THE PRESENCE OF CHARGE-EXCHANGE

    SciTech Connect

    Zirnstein, E. J.; McComas, D. J. E-mail: dmccomas@swri.edu

    2015-12-10

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  12. Using Kappa Functions to Characterize Outer Heliosphere Proton Distributions in the Presence of Charge-exchange

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; McComas, D. J.

    2015-12-01

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  13. Powered Tate Pairing Computation

    NASA Astrophysics Data System (ADS)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  14. The functional response predicts the effect of resource distribution on the optimal movement rate of consumers.

    PubMed

    Calcagno, Vincent; Grognard, Frédéric; Hamelin, Frédéric M; Wajnberg, Éric; Mailleret, Ludovic

    2014-12-01

    Understanding how often individuals should move when foraging over patchy habitats is a central question in ecology. By combining optimality and functional response theories, we show analytically how the optimal movement rate varies with the average resource level (enrichment) and resource distribution (patch heterogeneity). We find that the type of functional response predicts the effect of enrichment in homogeneous habitats: enrichment should decrease movement for decelerating functional responses, but increase movement for accelerating responses. An intermediate resource level thus maximises movement for type-III responses. Counterintuitively, greater movement costs favour an increase in movement. In heterogeneous habitats predictions further depend on how enrichment alters the variance of resource distribution. Greater patch variance always increases the optimal rate of movement, except for type-IV functional responses. While the functional response is well established as a fundamental determinant of consumer-resource dynamics, our results indicate its importance extends to the understanding of individual movement strategies.

  15. Chord-length and free-path distribution functions for many-body systems

    NASA Astrophysics Data System (ADS)

    Lu, Binglin; Torquato, S.

    1993-04-01

    We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case

  16. Construction Learning as a Function of Frequency, Frequency Distribution, and Function

    ERIC Educational Resources Information Center

    Ellis, Nick C.; Ferreira-Junior, Fernando

    2009-01-01

    This article considers effects of construction frequency, form, function, and prototypicality on second language acquisition (SLA). It investigates these relationships by focusing on naturalistic SLA in the European Science Foundation corpus (Perdue, 1993) of the English verb-argument constructions (VACs): verb locative (VL), verb object locative…

  17. Dust heating by Alfvén waves using non-Maxwellian distribution function

    SciTech Connect

    Zubia, K.; Shah, H. A.; Yoon, P. H.

    2015-08-15

    Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvén waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvén waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.

  18. Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.

    2006-01-01

    We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 < 1. This anti-correlation and small polytropic gamma-values is interpreted in the context of the presence of highly non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.

  19. Formation of Kappa Distribution Functions and Eddy Diffusion in the Magnetosphere of the Earth

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Stepanova, Marina; Kirpichev, Igor; Vovchenko, Vadim; Ovchinnikov, Ilyav

    2016-07-01

    One of the main features of collisionless magnetospheric plasma is the comparatively quick relaxation of distribution functions to kappa distributions. The form of the kappa distribution consists of a Maxwellian core at low energies and a power law spectrum at high energies. Kappa functions describe particle distributions for the systems that are in stationary state but out of thermal equilibrium. Simultaneous determination of the parameters of kappa distributions in different magnetospheric regions is important for understanding the role of different processes of particle acceleration and relaxation of kappa distribution functions to the Maxwellian ones. We analyze the applicability of kappa approximation for different magnetocpheric regions using the data of the Time History of Events and Macroscale Interactions during Substorms spacecraft (THEMIS) mission. We selected events when at least four satellites of THEMIS mission were aligned along the tail between approximately 7 and 30Re. It was found that for the majority of events the values of power index is increased tailwards. We consider such feature as the result of the existence of the inner magnetosphere sources of particle acceleration. We analyze the role of regular bulk transport and the turbulent transport by eddies of different scale in the formation of observed dependences.

  20. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) ‑ Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  1. Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Bessho, N.; Chen, L.-J.; Hesse, M.

    2016-01-01

    We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.

  2. Explicit expressions of the Pietra index for the generalized function for the size distribution of income

    NASA Astrophysics Data System (ADS)

    Sarabia, José María; Jordá, Vanesa

    2014-12-01

    The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.

  3. Alfvénic oscillations of the electron distribution function: Linear theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.

    2015-12-01

    Wave propagation can be an accurate method for determining material properties. High frequency whistler mode waves (0.7 < ω/|Ωce| < 1) in an overdense plasma (ωpe > |Ωce|) are damped primarily by Doppler-shifted electron cyclotron resonance. A kinetic description of whistler mode propagation parallel to the background magnetic field shows that damping is proportional to the parallel electron distribution function. This property enables an experimental determination of the parallel electron distribution function using a measurement of whistler mode wave absorption. The whistler mode wave absorption diagnostic uses this technique on UCLA's Large Plasma Device (LaPD) to measure the distribution of high energy electrons (5 - 10vte) with 0.1% precision. The accuracy is limited by systematic effects that need to be considered carefully. Ongoing research uses this diagnostic to investigate the effect of inertial Alfvén waves on the electron distribution function. Results presented here verify experimentally the linear effects of inertial Alfvén waves on the reduced electron distribution function, a necessary step before nonlinear physics can be tested. Ongoing experiments with the whistler mode wave absorption diagnostic are making progress toward the first direct detection of electrons nonlinearly accelerated by inertial Alfvén waves, a process believed to play an important role in auroral generation.

  4. Alfvénic oscillations of the electron distribution function: Linear theory and experimental measurements

    SciTech Connect

    Schroeder, J. W. R. Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.

    2015-12-10

    Wave propagation can be an accurate method for determining material properties. High frequency whistler mode waves (0.7 < ω/|Ω{sub ce}| < 1) in an overdense plasma (ω{sub pe} > |Ω{sub ce}|) are damped primarily by Doppler-shifted electron cyclotron resonance. A kinetic description of whistler mode propagation parallel to the background magnetic field shows that damping is proportional to the parallel electron distribution function. This property enables an experimental determination of the parallel electron distribution function using a measurement of whistler mode wave absorption. The whistler mode wave absorption diagnostic uses this technique on UCLA’s Large Plasma Device (LaPD) to measure the distribution of high energy electrons (5 − 10v{sub te}) with 0.1% precision. The accuracy is limited by systematic effects that need to be considered carefully. Ongoing research uses this diagnostic to investigate the effect of inertial Alfvén waves on the electron distribution function. Results presented here verify experimentally the linear effects of inertial Alfvén waves on the reduced electron distribution function, a necessary step before nonlinear physics can be tested. Ongoing experiments with the whistler mode wave absorption diagnostic are making progress toward the first direct detection of electrons nonlinearly accelerated by inertial Alfvén waves, a process believed to play an important role in auroral generation.

  5. The calculation of moment uncertainties from velocity distribution functions with random errors

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; F.-Viñas, Adolfo; Pollock, Craig J.

    2015-08-01

    Instrumentation that detects individual plasma particles is susceptible to random counting errors. These errors propagate into the calculations of moments of measured particle velocity distribution functions. Although rules of thumb exist for the effects of random errors on the calculation of lower order moments (e.g., density, velocity, and temperature) of Maxwell-Boltzmann distributions, they do not generally apply to nonthermal distributions or to higher-order moments. To date, such errors have only been estimated using brute force Monte Carlo techniques, i.e., repeated (~50) samplings of distribution functions. Here we present a mathematical formalism for analytically obtaining uncertainty estimates of plasma moments due to random errors either measured in situ by instruments or synthesized by particle simulations. Our uncertainty estimates precisely match the statistical variation of simulated plasma moments and carry the computational cost equivalent of only ~15 Monte Carlo samplings. In addition, we provide the means to calculate a covariance matrix that can be reported along with typical plasma moments. This matrix enables the propagation of statistical errors into arbitrary coordinate systems or functions of plasma moments without the need to reanalyze full distribution functions. Our methodology, which is applied to electron data from Plasma Electron and Current Experiment on the Cluster spacecraft as an example, is relevant to both existing and future data sets and requires only instrument-measured counts and phase space densities reported for a set of calibrated energy-angle targets.

  6. Field theory for the global density of states distribution function of disordered conductors.

    PubMed

    Yudson, V I

    2005-04-22

    A field-theoretical representation is suggested for the electron global density of states distribution function P(nu) in extended disordered conductors. This opens a way to study the complete statistics of fluctuations. The approach is based on a functional integration over bilocal functions Psir(1)(r(2)) instead of the integration over local functions in the usual functional representation for moments of physical quantities. The formalism allows one to perform the disorder averaging and to derive an analog of the usual nonlinear sigma model-a slow functional of a supermatrix field Qr(1)(r(2))(r) approximately Psi(rr(1)) composite functionPsi (r(2)r). As an application of the formalism, the long-tail asymptotics of P(nu) is derived.

  7. Diffusion-relaxation distribution functions of sedimentary rocks in different saturation states.

    PubMed

    Hürlimann, M D; Flaum, M; Venkataramanan, L; Flaum, C; Freedman, R; Hirasaki, G J

    2003-01-01

    We present diffusion-relaxation distribution functions measured on four rock cores that were prepared in a succession of different saturation states of brine and crude oil. The measurements were performed in a static gradient field at a Larmor frequency of 1.76 MHz. The diffusion-relaxation distribution functions clearly separate the contributions from the two fluid phases. The results can be used to identify the wetting and non-wetting phase, to infer fluid properties of the phases, and to obtain additional information on the geometrical arrangement of the phases. We also observe effects due to restricted diffusion and susceptibility induced internal gradients.

  8. On the approximations of the distribution function of fusion alpha particles

    SciTech Connect

    Bilato, R. Brambilla, M.; Poli, E.

    2014-10-15

    The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

  9. Distribution of functional traits in subtropical trees across environmental and forest use gradients

    NASA Astrophysics Data System (ADS)

    Blundo, Cecilia; Malizia, Lucio R.; González-Espinosa, Mario

    2015-11-01

    The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.

  10. PAND: A Distribution to Identify Functional Linkage from Networks with Preferential Attachment Property

    PubMed Central

    Li, Hua; Tong, Pan; Gallegos, Juan; Dimmer, Emily; Cai, Guoshuai; Molldrem, Jeffrey J.; Liang, Shoudan

    2015-01-01

    Technology advances have immensely accelerated large-scale mapping of biological networks, which necessitates the development of accurate and powerful network-based algorithms to make functional inferences. A prevailing approach is to leverage functions of neighboring nodes to predict unknown molecular function. However, existing neighbor-based algorithms have ignored the scale-free property hidden in many biological networks. By assuming that neighbor sharing is constrained by the preferential attachment property, we developed a Preferential Attachment based common Neighbor Distribution (PAND) to calculate the probability of the neighbor-sharing event between any two nodes in scale-free networks, which nearly perfectly matched the observed probability in simulations. By applying PAND to a human protein-protein interaction (PPI) network, we showed that smaller probabilities represented closer functional linkages between proteins. With the PAND-derive linkages, we were able to build new networks where the links are more functionally reliable than those of the human PPI network. We then applied simple annotation schemes to a PAND-derived network to make reliable functional predictions for proteins. We also developed an R package called PANDA (PAND-derived functional Associations) to implement the methods proposed in this study. In conclusion, PAND is a useful distribution to calculate the probability of the neighbor-sharing events in scale-free networks. With PAND, we are able to extract reliable functional linkages from real biological networks and builds new networks that are better bases for further functional inference. PMID:26158709

  11. Influence of longitudinal temperature distribution on current limiting function of Superconducting Fault Current Limiting Cable (SFCLC)

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Osawa, T.; Hayakawa, N.; Hanai, M.; Okubo, H.

    2014-05-01

    We have proposed a Superconducting Fault Current Limiting Cable (SFCLC), which is an HTS cable with fault current limiting function. SFCLC is expected to limit the fault current and also immediately recover the cable function after the fault clearance. In the SFCLC operation, a longitudinal temperature distribution will exist due to heat penetration, AC loss, dielectric loss and the performance of cryocooling system, which will influence its current limitation characteristics. In this paper, we investigate the influence of the longitudinal temperature distribution on current limiting function and temperature rise after the current limitation of SFCLC. We suggested the effective measures of parameter control, i.e. decreasing the critical current (Ic@77K), n value at flux flow region (n1-0), increasing the coefficient of longitudinal temperature gradient (α), inflow temperature (Tin) to achieve both the higher current limiting function and the lower temperature rise.

  12. An Empirical Formula for the Distribution Function of a Thin Exponential Disc

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib; Bland-Hawthorn, Joss

    2013-08-01

    An empirical formula for a Shu distribution function that reproduces a thin disc with exponential surface density to good accuracy is presented. The formula has two free parameters that specify the functional form of the velocity dispersion. Conventionally, this requires the use of an iterative algorithm to produce the correct solution, which is computationally taxing for applications like Markov Chain Monte Carlo model fitting. The formula has been shown to work for flat, rising, and falling rotation curves. Application of this methodology to one of the Dehnen distribution functions is also shown. Finally, an extension of this formula to reproduce velocity dispersion profiles that are an exponential function of radius is also presented. Our empirical formula should greatly aid the efficient comparison of disc models with large stellar surveys or N-body simulations.

  13. Fluid limit of the continuous-time random walk with general Levy jump distribution functions

    SciTech Connect

    Cartea, A.; Del-Castillo-Negrete, Diego B

    2007-01-01

    The continuous time random walk (CTRW) is a natural generalization of the Brownian random walk that allows the incorporation of waiting time distributions psi(t) and general jump distribution functions eta(x). There are two well-known fluid limits of this model in the uncoupled case. For exponential decaying waiting times and Gaussian jump distribution functions the fluid limit leads to the diffusion equation. On the other hand, for algebraic decaying waiting times psi similar to t(-(1+beta)) and algebraic decaying jump distributions eta similar to x(-(1+alpha)) corresponding to Levy stable processes, the fluid limit leads to the fractional diffusion equation of order alpha in space and order beta in time. However, these are two special cases of a wider class of models. Here we consider the CTRW for the most general Levy stochastic processes in the Levy-Khintchine representation for the jump distribution function and obtain an integrodifferential equation describing the dynamics in the fluid limit. The resulting equation contains as special cases the regular and the fractional diffusion equations. As an application we consider the case of CTRWs with exponentially truncated Levy jump distribution functions. In this case the fluid limit leads to a transport equation with exponentially truncated fractional derivatives which describes the interplay between memory, long jumps, and truncation effects in the intermediate asymptotic regime. The dynamics exhibits a transition from superdiffusion to subdiffusion with the crossover time scaling as tau(c)similar to lambda(-alpha/beta), where 1/lambda is the truncation length scale. The asymptotic behavior of the propagator (Green's function) of the truncated fractional equation exhibits a transition from algebraic decay for t <>tau(c).

  14. Method of pair exchange of fuel assemblies and its use in optimizing the energy distribution of water-cooled/water-moderated reactors

    SciTech Connect

    Simonov, V.D.; Pavlov, V.I.; Perminov, A.A.; Pechikin, V.A.; Filimonov, P.E.; Yuskov, A.M.

    1987-03-01

    The authors review various computer codes for determining the power distribution and optimizing the fueling procedure for water cooled and moderated reactors and assess their relative efficiencies in terms of computation time required. The algorithms take into account reactivity coefficients and neutron diffusion theory. A sensitivity analysis of the codes is given and steps are outlined for implementation of the codes for various reactor core configurations.

  15. 3-(Dicyanomethylidene)indan-1-one-Functionalized Calix[4]arene-Calix[4]pyrrole Hybrid: An Ion-Pair Sensor for Cesium Salts.

    PubMed

    Yeon, Yerim; Leem, Soojung; Wagen, Corin; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-09-01

    A chromogenic calix[4]arene-calix[4]pyrrole hybrid ion pair receptor bearing an indane substituent at a β-pyrrolic position has been prepared. On the basis of solution-phase UV-vis spectroscopic analysis and (1)H NMR spectroscopic studies carried out in 10% methanol in chloroform, receptor 1 is able to bind only cesium ion pairs (e.g., CsF, CsCl, and CsNO3) but not the constituent cesium cation (as its perchlorate salt) or the F(-), Cl(-), or NO3(-) anions (as the tetrabutylammonium salts). It thus displays rudimentary AND logic gate behavior. Receptor 1 shows a colorimetric response to cesium ion pairs under conditions of solid-liquid (nitrobenzene) and liquid-liquid (D2O-nitrobenzene-d5) extraction. PMID:27533478

  16. Electron distribution functions in solar flares from combined X-ray and extreme-ultraviolet observations

    SciTech Connect

    Battaglia, M.; Kontar, E. P.

    2013-12-20

    Simultaneous solar flare observations with SDO and RHESSI provide spatially resolved information about hot plasma and energetic particles in flares. RHESSI allows the properties of both hot (≳8 MK) thermal plasma and non-thermal electron distributions to be inferred, while SDO/AIA is more sensitive to lower temperatures. We present and implement a new method to reconstruct electron distribution functions from SDO/AIA data. The combined analysis of RHESSI and AIA data allows the electron distribution function to be inferred over the broad energy range from 0.1 keV up to a few tens of keV. The analysis of two well-observed flares suggests that the distributions in general agree to within a factor of three when the RHESSI values are extrapolated into the intermediate range 1-3 keV, with AIA systematically predicting lower electron fluxes. Possible instrumental and numerical effects, as well as potential physical origins for this discrepancy, are discussed. The inferred electron distribution functions in general show one or two nearly Maxwellian components at energies below ∼15 keV and a non-thermal tail above.

  17. ON THE \\overline{\\partial}-NEUMANN PROBLEM FOR SMOOTH FUNCTIONS AND DISTRIBUTIONS

    NASA Astrophysics Data System (ADS)

    Kytmanov, A. M.

    1991-02-01

    We consider the following \\overline{\\partial}-Neumann problem for functions: given a function \\varphi on the boundary of a domain D\\subset\\mathbf{C}^n with boundary of class C^\\infty, find a harmonic function F in D such that \\overline{\\partial}_nF=\\varphi on \\partial D (where \\overline{\\partial}_nF is the normal part of the differential form \\overline{\\partial} F). It is shown that with the homogeneous boundary condition \\overline{\\partial}_nF=0, the only solutions of this problem are holomorphic functions. Solvability of this problem is proved in strictly pseudoconvex domains if the function (or distribution) \\varphi is orthogonal to holomorphic functions f for integration over \\partial D. An integral formula for the solution of the \\overline{\\partial}-Neumann problem in the ball is given. The proof uses known results on solvability of the \\overline{\\partial}-Neumann problem for forms of type (p,\\,q) for q>0.

  18. Determination of nuclear parton distribution functions and their uncertainties at next-to-leading order

    SciTech Connect

    Hirai, M.; Kumano, S.; Nagai, T.-H.

    2007-12-15

    Nuclear parton distribution functions (NPDFs) are determined by global analyses of experimental data on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A'} and Drell-Yan cross-section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A'}. The analyses are done in the leading order (LO) and next-to-leading order (NLO) of running coupling constant {alpha}{sub s}. Uncertainties of the NPDFs are estimated in both LO and NLO for finding possible NLO improvement. Valence-quark distributions are well determined, and antiquark distributions are also determined at x<0.1. However, the antiquark distributions have large uncertainties at x>0.2. Gluon modifications cannot be fixed at this stage. Although the advantage of the NLO analysis, in comparison with the LO one, is generally the sensitivity to the gluon distributions, gluon uncertainties are almost the same in the LO and NLO. It is because current scaling-violation data are not accurate enough to determine precise nuclear gluon distributions. Modifications of the PDFs in the deuteron are also discussed by including data on the proton-deuteron ratio F{sub 2}{sup D}/F{sub 2}{sup p} in the analysis. A code is provided for calculating the NPDFs and their uncertainties at given x and Q{sup 2} in the LO and NLO.

  19. A model for gust amplitude and gust length based on the bivariate gamma probability distribution function

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.

    1981-01-01

    A model of the largest gust amplitude and gust length is presented which uses the properties of the bivariate gamma distribution. The gust amplitude and length are strongly dependent on the filter function; the amplitude increases with altitude and is larger in winter than in summer.

  20. Functional possibilities for forming different inverse population distributions in diode-side-pumped laser heads

    SciTech Connect

    Grechin, S G; Nikolaev, P P; Sharandin, E A

    2014-10-31

    The functional possibilities of diode-side-pumped laser heads of solid-state lasers for forming inverse population distributions of different types are analysed. The invariants determining the relationship between the laser head parameters upon scaling are found. The results of comparative experimental studies are presented. (lasers)