Science.gov

Sample records for paired cut-wire arrays

  1. Paired Cut-Wire Arrays for Enhanced Transmission of Transverse-Electric Fields Through Subwavelength Slits in a Thin Metallic Screen

    NASA Astrophysics Data System (ADS)

    Gallina, Ilaria; Castaldi, Giuseppe; Galdi, Vincenzo; Di Gennaro, Emiliano; Andreone, Antonello

    It has recently been shown that the transmission of electromagnetic fields through sub-wavelength slits (parallel to the electric field direction) in a thin metallic screen can be greatly enhanced by covering one side of the screen with a metallic cut-wire array laid on a dielectric layer. In this Letter, we show that a richer phenomenology (which involves both electric- and magnetic-type resonances) can be attained by pairing a second cut-wire array at the other side of the screen. Via a full-wave comprehensive parametric study, we illustrate the underlying mechanisms and explore the additional degrees of freedom endowed, as well as their possible implications in the engineering of enhanced transmission phenomena.

  2. Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    NASA Astrophysics Data System (ADS)

    di Gennaro, Emiliano; Gallina, Ilaria; Andreone, Antonello; Castaldi, Giuseppe; Galdi, Vincenzo

    2010-12-01

    Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or paired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.

  3. Plasmon switching effect based on graphene nanoribbon pair arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  4. Template ordered open-grid arrays of paired endohedral fullerenes.

    PubMed

    Deak, David S; Silly, Fabien; Porfyrakis, Kyriakos; Castell, Martin R

    2006-11-01

    Developing useful molecular systems, such as planar networks for novel molecular electronics, requires the ability to control the way molecules assemble at surfaces. Here we report how an oxide crystal surface can be used as a template to controllably order endohedral fullerenes, Er3N@C80, into two-dimensional (2D) open-grid arrays. The crystal surface is made of highly ordered oxide nanostructures which self-assemble on the surface of SrTiO3(001). This method of molecular ordering can be applied to other fullerenes and has the potential to provide a basis for developing a wide range of molecular architectures. PMID:17061850

  5. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  6. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications

    NASA Astrophysics Data System (ADS)

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Li, Jingqi; Wu, Ying; Chen, Longqing; Ooi, Boon; Wang, Xianbin; Zhang, Xi-Xiang

    2014-06-01

    Extraordinary optical transmission (EOT) through arrays of gold nanoholes was studied with light across the visible to the near-infrared spectrum. The EOT effect was found to be improved by bridging pairs of nanoholes due to the concentration of the electromagnetic field in the slit between the holes. The geometrical shape and separation of the holes in these pairs of nanoholes affected the intensity of the transmission and the wavelength of resonance. Changing the geometrical shapes of these nanohole pairs from triangles to circles to squares leads to increased transmission intensity as well as red-shifting resonance wavelengths. The performance of bridged nanohole pairs as a plasmonic sensor was investigated. The bridged nanohole pairs were able to distinguish methanol, olive oil and microscope immersion oil for the different surface plasmon resonance in transmission spectra. Numerical simulation results were in agreement with experimental observations.

  7. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Kang, AhRan; Takayama, Shuichi; Lee, Sang-Hoon; Park, Joong Yull

    2015-03-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis.

  8. Magnetographic array for the capture and enumeration of single cells and cell pairs.

    PubMed

    Shields, C Wyatt; Livingston, Carissa E; Yellen, Benjamin B; López, Gabriel P; Murdoch, David M

    2014-07-01

    We present a simple microchip device consisting of an overlaid pattern of micromagnets and microwells capable of capturing magnetically labeled cells into well-defined compartments (with accuracies >95%). Its flexible design permits the programmable deposition of single cells for their direct enumeration and pairs of cells for the detailed analysis of cell-cell interactions. This cell arraying device requires no external power and can be operated solely with permanent magnets. Large scale image analysis of cells captured in this array can yield valuable information (e.g., regarding various immune parameters such as the CD4:CD8 ratio) in a miniaturized and portable platform.

  9. Rabi oscillations of surface plasmon polaritons in graphene-pair arrays.

    PubMed

    Wang, Feng; Qin, Chengzhi; Wang, Bing; Ke, Shaolin; Long, Hua; Wang, Kai; Lu, Peixiang

    2015-11-30

    We investigate the Bloch mode conversion of surface plasmon polaritons in a periodic array of graphene pairs with each consisting of two separated parallel graphene sheets. The employment of graphene pair as a unit cell in the array yields two Bloch modes belonging to different bands. By periodically modulating the permittivity of dielectrics between graphene along the propagation direction, the interband transitions occur and the modes will alternatively couple to each other, similar to traditional Rabi oscillations in quantum systems. The indirect Rabi oscillations can also be observed through introducing transverse modulation momentum. The period of Rabi oscillations can be optimized by taking advantage of the flexible tunability of graphene. The study suggests that the structure have applications in optical switches and mode converters operating on deep-subwavelength scale.

  10. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue.

    PubMed

    Tews, D; Schwar, V; Scheithauer, M; Weber, T; Fromme, T; Klingenspor, M; Barth, T F; Möller, P; Holzmann, K; Debatin, K M; Fischer-Posovszky, P; Wabitsch, M

    2014-09-01

    Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis. PMID:25102227

  11. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks.

    PubMed

    Jones, Felicity C; Chan, Yingguang Frank; Schmutz, Jeremy; Grimwood, Jane; Brady, Shannon D; Southwick, Audrey M; Absher, Devin M; Myers, Richard M; Reimchen, Thomas E; Deagle, Bruce E; Schluter, Dolph; Kingsley, David M

    2012-01-10

    Genes underlying repeated adaptive evolution in natural populations are still largely unknown. Stickleback fish (Gasterosteus aculeatus) have undergone a recent dramatic evolutionary radiation, generating numerous examples of marine-freshwater species pairs and a small number of benthic-limnetic species pairs found within single lakes [1]. We have developed a new genome-wide SNP genotyping array to study patterns of genetic variation in sticklebacks over a wide geographic range, and to scan the genome for regions that contribute to repeated evolution of marine-freshwater or benthic-limnetic species pairs. Surveying 34 global populations with 1,159 informative markers revealed substantial genetic variation, with predominant patterns reflecting demographic history and geographic structure. After correcting for geographic structure and filtering for neutral markers, we detected large repeated shifts in allele frequency at some loci, identifying both known and novel loci likely contributing to marine-freshwater and benthic-limnetic divergence. Several novel loci fall close to genes implicated in epithelial barrier or immune functions, which have likely changed as sticklebacks adapt to contrasting environments. Specific alleles differentiating sympatric benthic-limnetic species pairs are shared in nearby solitary populations, suggesting an allopatric origin for adaptive variants and selection pressures unrelated to sympatry in the initial formation of these classic vertebrate species pairs.

  12. Amperometric detection of heavy metal ions in ion pair chromatography at an array of water/nitrobenzene micro interfaces.

    PubMed

    Wilke, S; Wang, H; Muraczewska, M; Müller, H

    1996-09-01

    A novel amperometric detector for heavy metal ions has been developed and successfully applied for ion pair chromatography. The detector is based on the electrochemical transfer of the metal ions across an array of water/nitrobenzene micro interfaces. The ion transfer is facilitated by the neutral ionophores methylenebis(diphenylphosphineoxide) and methylenebis(di- phenylphosphinesulfide). More than eight metals are separated in less than 15 min on an RP18 column using octyl sulfonate as ion pair reagent. For the heavy metals, the limits of decision are 19(Pb(2+)), 9(Zn(2+)), 9l (Co(2+)), 8(Cd(2+)) and 1.6(Mn(2+)) microg/L. The applicability of the new method for water samples is demonstrated. PMID:15048359

  13. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.

    PubMed

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-02-01

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  14. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    NASA Astrophysics Data System (ADS)

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-02-01

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  15. Array CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor

    PubMed Central

    del Carmen Crespo, María; Vallespín, Elena; Palomares-Bralo, María; Martin-Arenas, Rubén; Rueda-Arenas, Inmaculada; Silvestre de Faria, Paulo Antonio; García-Miguel, Purificación; Lapunzina, Pablo; Regla Vargas, Fernando; Seuanez, Hector N.; Martínez-Glez, Víctor

    2015-01-01

    Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analyzed by aCGH, 22% of chromosome abnormalities were novel. All constitutional alterations identified in blood were segmental (in 28.6% of patients) and were also present in the paired tumor samples. Two segmental gains (2p21 and 20q13.3) and one loss (19q13.31) present in blood had not been previously described in WT. We also describe, for the first time, a small, constitutive partial gain of 3p22.1 comprising 2 exons of CTNNB1, a gene associated to WT. Among somatic alterations, novel structural chromosomal abnormalities were found, like gain of 19p13.3 and 20p12.3, and losses of 2p16.1-p15, 4q32.5-q35.1, 4q35.2-q28.1 and 19p13.3. Candidate genes included in these regions might be constitutively (SIX3, SALL4) or somatically (NEK1, PIAS4, BMP2) operational in the development and progression of WT. To our knowledge this is the first report of CNV in paired blood and tumor samples in sporadic WT. PMID:26317783

  16. Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species.

    PubMed

    Gatphoh, E M; Sharma, S K; Rajkumari, K; Rama Rao, S

    2011-01-01

    The efficacy of random primer-pair arrays compared to conventional RAPD method with a single decamer primer was evaluated using DNA from two species of Cucumis. The banding patterns of amplicons revealed enhanced utility of primer-pair arrays over conventional RAPDs, producing more bands and a higher degree of polymorphism, both at intra- and inter-specific levels. Amplification produced by both methods clearly distinguished a wild from a cultivated species of the genus Cucumis. The main advantage of the primer-pair RAPD over single-primer-based RAPD is the increase in the number of reactions and amplification products in the form of novel/unique bands with a limited number of primers. It also enables the generation of reliable amplicons with a large number of polymorphic bands, which can be linked to gene-governing traits, allowing sequence-characterized partial genome analysis. PMID:21823091

  17. Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species.

    PubMed

    Gatphoh, E M; Sharma, S K; Rajkumari, K; Rama Rao, S

    2011-01-01

    The efficacy of random primer-pair arrays compared to conventional RAPD method with a single decamer primer was evaluated using DNA from two species of Cucumis. The banding patterns of amplicons revealed enhanced utility of primer-pair arrays over conventional RAPDs, producing more bands and a higher degree of polymorphism, both at intra- and inter-specific levels. Amplification produced by both methods clearly distinguished a wild from a cultivated species of the genus Cucumis. The main advantage of the primer-pair RAPD over single-primer-based RAPD is the increase in the number of reactions and amplification products in the form of novel/unique bands with a limited number of primers. It also enables the generation of reliable amplicons with a large number of polymorphic bands, which can be linked to gene-governing traits, allowing sequence-characterized partial genome analysis.

  18. Self Powered Highly Enhanced Dual Wavelength ZnO@CdS Core-Shell Nanorod Arrays Photodetector: An Intelligent Pair.

    PubMed

    Sarkar, Sanjit; Basak, Durga

    2015-08-01

    On the face of the impending energy crisis, developing low-energy or even zero-energy photoelectronic devices is extremely important. A multispectral photosensitivity feature of a self-powered device provides an additional powerful tool. We have developed an unprecedented high performance dual wavelength self-powered ZnO@CdS/PEDOT:PSS core-shell nanorods array photodetector through a simple aqueous chemical method wherein a suitable band alignment between an intelligent material pair, i.e. ZnO and CdS, has been utilized. Besides a noteworthy advantage of the devices being that they show a very sharp and prominent dual wavelength photosensitivity, both the ultraviolet and visible light sensitivity (ratio of current under illumination (Iphoto)/current under dark (Idark)) of the device are two orders of higher magnitude than those of pristine ZnO, attaining values of 2.8 × 10(3) and 1.07 × 10(3), respectively. At the same time, temporal responses faster than 20 ms could be achieved with these solution-processed photodetectors. The present study provides a very important direction to engineer core-shell nanostructured devices for dual wavelength high photosensitivity.

  19. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core–shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  20. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances.

    PubMed

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-09-14

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.

  1. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  2. OH MASER SOURCES IN W49N: PROBING MAGNETIC FIELD AND DIFFERENTIAL ANISOTROPIC SCATTERING WITH ZEEMAN PAIRS USING THE VERY LONG BASELINE ARRAY

    SciTech Connect

    Deshpande, Avinash A.; Goss, W. M.; Mendoza-Torres, J. E. E-mail: mgoss@aoc.nrao.edu

    2013-09-20

    Our analysis of a Very Long Baseline Array 12 hr synthesis observation of the OH masers in the well-known star-forming region W49N has yielded valuable data that enable us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data, consisting of detailed high angular resolution images (with beam width ∼20 mas) of several dozen OH maser sources, or spots, at 1612, 1665, and 1667 MHz, reveal anisotropic scatter broadening with typical sizes of a few tens of milliarcseconds and axial ratios between 1.5 and 3. Such anisotropies have been reported previously by Desai et al. and have been interpreted as being induced by the local magnetic field parallel to the Galactic plane. However, we find (1) apparent angular sizes of, on average, a factor of about 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred previously, and (2) a significant deviation in the average orientation of the scatter-broadened images (by ∼10°) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6σ) are apparent in the scatter-broadened images for the two hands of circular polarization, even when the apparent velocity separation is less than 0.1 km s{sup –1}. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of the magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest possible implications for the structure of magnetic fields within this star-forming region.

  3. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas.

    PubMed

    Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N

    2011-04-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues. PMID:21080181

  4. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  5. Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.

    PubMed

    Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem

    2012-08-01

    The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.

  6. Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.

    PubMed

    Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem

    2012-08-01

    The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates. PMID:22803762

  7. Selective and sensitive speciation analysis of Cr(VI) and Cr(III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction.

    PubMed

    Yousefi, Seyedeh Mahboobeh; Shemirani, Farzaneh

    2013-06-15

    A simple ion pair based-surfactant assisted dispersive liquid-liquid microextraction (IP-SA-DLLME) was evaluated for extraction and preconcentration of Cr(VI) and Cr(III) in aqueous samples. In this method, which was used for the first time for chromium speciation analysis, sodium dodecyl sulfate (SDS) was used as both ion-pairing and disperser agent. Cr(VI) ions were converted into their cationic complex with 1,5-diphenylcarbazide (DPC) and then extracted into 1-octanol dispersed in aqueous solution. Cr(III) ion also can be determined by this procedure after oxidation to Cr(VI). After extraction and phase separation, upper organic phase was transferred to a micro cell of a fiber optic-linear array detection spectrophotometry (FO-LADS). The effects of various parameters on the extraction recovery were investigated. Under the optimized conditions and preconcentration of 10 mL of sample, the enrichment factor of 159 and the detection limit of 0.05 μgL(-1) were obtained. Validation of the method was performed by spiking-recovery method and comparison of results with those obtained by ET-AAS method.

  8. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas

    PubMed Central

    Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.

    2010-01-01

    Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181

  9. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  10. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  11. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  12. Magnetic arrays

    DOEpatents

    Trumper, David L.; Kim, Won-jong; Williams, Mark E.

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  13. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  14. Efficient Array Design for Sonotherapy

    PubMed Central

    Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine

    2008-01-01

    New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for high time-averaged power output suitable for mild hyperthermia applications. The “thermal therapy” design produces more than 4 Watts of acoustic power from the low frequency arrays with only a 10.5 °C internal rise in temperature after 100 seconds of continuous use with an unmodified conventional imaging system, or substantially longer operation at lower acoustic power. The low frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to tissue load. Laboratory verification was successfully performed for the KLM derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating respectively. PMID:18591737

  15. Powered Tate Pairing Computation

    NASA Astrophysics Data System (ADS)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  16. Kokkos Array

    SciTech Connect

    Edwards Daniel Sunderland, Harold Carter

    2012-09-12

    The Kokkos Array library implements shared-memory array data structures and parallel task dispatch interfaces for data-parallel computational kernels that are performance-portable to multicore-CPU and manycore-accelerator (e.g., GPGPU) devices.

  17. Systolic arrays

    SciTech Connect

    Moore, W.R.; McCabe, A.P.H.; Vrquhart, R.B.

    1987-01-01

    Selected Contents of this book are: Efficient Systolic Arrays for the Solution of Toeplitz Systems, The Derivation and Utilization of Bit Level Systolic Array Architectures, an Efficient Systolic Array for Distance Computation Required in a Video-Codec Based Motion-Detection, On Realizations of Least-Squares Estimation and Kalman Filtering by Systolic Arrays, and Comparison of Systolic and SIMD Architectures for Computer Vision Computations.

  18. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  19. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  20. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  1. Characterization and quantification of racemic and meso-ethylenediamine-N,N'-bis(2-hydroxy-5-sulfophenylacetic) acid/iron (III) by ion-pair ultra-high performance liquid chromatography coupled with diode array detector and electrospray tandem mass spectrometry.

    PubMed

    Biasone, Alessandro; Cianci, Giusto; Di Tommaso, Donata; Piaggesi, Alberto; Tagliavini, Emilio; Galletti, Paola; Moretti, Fabio

    2013-03-22

    EDDHSA/Fe is a promising substitute of EDDHA/Fe to fight iron chlorosis. o,o-EDDHSA structure contains two chiral carbons giving the racemic and meso couples of stereoisomers. Ion-pair HPLC and UHPLC-UV/Vis-ESI-MS/MS methods were developed for the determination of racemic and meso-o,o-EDDHSA/Fe in commercial samples of chelates. The lack of a commercial EDDHSA standard was overcome by sulfonation of a commercial available o,o-EDDHA standard and subsequent quantification by (1)H-NMR. Assignment of configurations was carried out starting from racemic and meso-o,o-EDDHA/Fe by direct sulfonation to give the corresponding o,o-EDDHSA/Fe isomers. The performances of these methods were assessed in terms of intra and inter-day precision, linearity and selectivity. The high selectivity and lower detection limit (nanomolar) of the UHPLC-ESI-MS/MS method could allow to deepen the knowledge relative to meso and rac-o,o-EDDHSA/Fe interactions with plants, its fate in different soil conditions, its mobility and other environmental aspects. PMID:23411145

  2. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  3. Optical emission of a molecular nanoantenna pair

    NASA Astrophysics Data System (ADS)

    Rice, E. M.; Andrews, D. L.

    2012-06-01

    The optical emission from a pair of nanoantennas is investigated within the theoretical framework of quantum electrodynamics. The analysis of fluorescent emission from a pair of molecular antenna species in close proximity is prompted by experimental work on oriented semiconductor polymer nanostructures. Each physically different possibility for separation-dependent features in photon emission by any such pair is explored in detail, leading to the identification of three distinct mechanisms: emission from a pair-delocalized exciton state, emission that engages electrodynamic coupling through quantum interference, and correlated photon emission from the two components of the pair. Although each mechanism produces a damped oscillatory dependence on the pair separation, each of the corresponding results exhibits an analytically different form. Significant differences in the associated spatial frequencies enable an apparent ambiguity in the interpretation of experiments to be resolved. Other major differences are found in the requisite conditions, the associated selection rules, and the variation with angular disposition of the emitters, together offering grounds for experimental discrimination between the coupling mechanisms. The analysis paves the way for investigations of pair-wise coupling effects in the emission from nanoantenna arrays.

  4. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  5. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  6. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  7. Pairing Beyond BCS

    NASA Astrophysics Data System (ADS)

    Volya, Alexander; Zelevinsky, Vladimir

    2013-01-01

    We concentrate on the specifics of the nuclear pairing problem from the standpoint of the BCS approach. We consider the properties of nuclear pairing which usually are not discussed in standard texts: how good is the BCS theory in nuclear context compared to the exact large-scale diagonalization, whether it can be improved by the particle number conservation, how to mark the phase transition regions in a mesoscopic system like a nucleus, how may effective many-body forces influence the formation and structure of the pairing condensate, what effect the decay instability has on the paired nuclear structure, etc.

  8. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  9. Cooper Pairs in Insulators?!

    SciTech Connect

    James Valles

    2008-07-23

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  10. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  11. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  12. Underwater acoustic source localization using closely spaced hydrophone pairs

    NASA Astrophysics Data System (ADS)

    Sim, Min Seop; Choi, Bok-Kyoung; Kim, Byoung-Nam; Lee, Kyun Kyung

    2016-07-01

    Underwater sound source position is determined using a line array. However, performance degradation occurs owing to a multipath environment, which generates incoherent signals. In this paper, a hydrophone array is proposed for underwater source position estimation robust to a multipath environment. The array is composed of three pairs of sensors placed on the same line. The source position is estimated by performing generalized cross-correlation (GCC). The proposed system is not affected by a multipath time delay because of the close distance between closely spaced sensors. The validity of the array is confirmed by simulation using acoustic signals synthesized by eigenrays.

  13. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  14. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  15. Microlens arrays

    NASA Astrophysics Data System (ADS)

    Hutley, Michael C.; Stevens, Richard F.; Daly, Daniel J.

    1992-04-01

    Microlenses have been with us for a long time as indeed the very word lens reminds us. Many early lenses,including those made by Hooke and Leeuwenhoek in the 17th century were small and resembled lentils. Many languages use the same word for both (French tilentillelt and German "Linse") and the connection is only obscure in English because we use the French word for the vegetable and the German for the optic. Many of the applications for arrays of inicrolenses are also well established. Lippmann's work on integral photography at the turn of the century required lens arrays and stimulated an interest that is very much alive today. At one stage, lens arrays played an important part in high speed photography and various schemes have been put forward to take advantage of the compact imaging properties of combinations of lens arrays. The fact that many of these ingenious schemes have not been developed to their full potential has to a large degree been due to the absence of lens arrays of a suitable quality and cost.

  16. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  17. Adaptive Pairing Reversible Watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  18. Resonantly paired fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.

    2007-01-01

    We present a theory of a degenerate atomic Fermi gas, interacting through a narrow Feshbach resonance, whose position and therefore strength can be tuned experimentally, as demonstrated recently in ultracold trapped atomic gases. The distinguishing feature of the theory is that its accuracy is controlled by a dimensionless parameter proportional to the ratio of the width of the resonance to Fermi energy. The theory is therefore quantitatively accurate for a narrow Feshbach resonance. In the case of a narrow s-wave resonance, our analysis leads to a quantitative description of the crossover between a weakly paired BCS superconductor of overlapping Cooper pairs and a strongly paired molecular Bose-Einstein condensate of diatomic molecules. In the case of pairing via a p-wave resonance, that we show is always narrow for a sufficiently low density, we predict a detuning-temperature phase diagram, that in the course of a BCS-BEC crossover can exhibit a host of thermodynamically distinct phases separated by quantum and classical phase transitions. For an intermediate strength of the dipolar anisotropy, the system exhibits a px + i py paired superfluidity that undergoes a topological phase transition between a weakly coupled gapless ground state at large positive detuning and a strongly paired fully gapped molecular superfluid for a negative detuning. In two dimensions the former state is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian vortex excitations familiar from fractional quantum Hall systems.

  19. Global Arrays

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  20. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  1. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  2. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  3. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  4. Microdischarge arrays

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui

    Microhollow cathode discharges (MHCDs) are DC or pulsed gas discharges between two electrodes, separated by a dielectric, and containing a concentric hole. The diameter of the hole, in this hollow cathode configuration, is in the hundred-micrometer range. MHCDs satisfy the two conditions necessary for an efficient excimer radiation sources: (1) high energy electrons which are required to provide a high concentration of excited or ionized rare gas atoms; (2) high pressure operation which favors excimer formation (a three-body process). Flat panel excimer sources require parallel operation of MHCDs. Based on the current-voltage characteristics of MHCD discharges, which have positive slopes in the low current (Townsend) mode and in the abnormal glow mode, stable arrays of MHCD discharges in argon and xenon could be generated in these current ranges without ballasting each MHCD separately. In the Townsend range, these arrays could be operated up to pressures of 400 Torr. In the abnormal glow mode, discharge arrays were found to be stable up to atmospheric pressure. By using semi-insulating silicon as the anode material, the stable operation of MHCD arrays could be extended to the current range with constant voltage (normal glow) and also that with negative differential conductance (hollow cathode discharge region). Experiments with a cathode geometry without microholes, i.e. excluding the hollow cathode phase, revealed that stable operation of discharges over an extended area were possible. The discharge structure in this configuration reduces to only the cathode fall and negative glow, with the negative glow plasma serving to conduct the discharge current radially to the circular anode. With decreasing current, a transition from homogenous plasma to self-organized plasma filaments is observed. Array formation was not only studied with discharges in parallel, but also with MHCD discharges in series. By using a sandwich electrode configuration, a tandem discharge was

  5. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  6. Linear array optical edge sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1987-01-01

    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.

  7. Global Arrays

    SciTech Connect

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  8. Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film.

    PubMed

    Ye, Yu Qian; Jin, Yi

    2009-09-01

    By adding an array of metallic cut wires, the transmission of transverse electric (TE) waves (the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold enhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires, due to the excitation of the electric dipolelike resonance, and then effectively squeezed into and through the subwavelength slits.

  9. Retrieval of Mir Solar Array

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  10. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  11. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  12. Modeling Array Stations in SIG-VISA

    NASA Astrophysics Data System (ADS)

    Ding, N.; Moore, D.; Russell, S.

    2013-12-01

    We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.

  13. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  14. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  15. Multiple origins of asteroid pairs

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2016-01-01

    Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  16. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  17. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  18. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  19. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  20. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate. PMID:27573684

  1. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate.

  2. Integrated infrared array technology

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mccreight, C. R.

    1986-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger, than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  3. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  4. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  5. Guanidinium Pairing Facilitates Membrane Translocation.

    PubMed

    Allolio, Christoph; Baxova, Katarina; Vazdar, Mario; Jungwirth, Pavel

    2016-01-14

    Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.

  6. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  7. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  8. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  9. Surface heat transfer and flow properties of vortex arrays induced artificially and from centrifugal instabilities

    NASA Technical Reports Server (NTRS)

    Subramanian, C. S.; Ligrani, P. M.; Tuzzolo, M. F.

    1992-01-01

    The paper presents and compares fluid-flow and heat transfer properties from artificially induced vortices in a flat-plate turbulent boundary layer and naturally occurring vortices due to centrifugal instabilities in a curved-channel laminar flow. Pairs and arrays of vortices are artificially induced by placing half-delta wings on the plate surface. With both arrays and pairs of vortices, streamwise velocities and total pressures are high, and surface heat transfer is locally augmented in vortex downwash regions. In contrast to vortices in the arrays vortices in the pairs tend to move in the streamwise direction with significant divergence (when the common flow between pair is toward the wall) or convergence (when the common flow between pair is away from the wall). The vortices in the arrays cause maximum peak-to-peak heat transfer variations of up to 12 percent of local spanwise-averaged values for initial vortex spacings between 1 to 2.5 generator heights.

  10. Older Galaxy Pair Has Surprisingly Youthful Glow

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version

    A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again.

    Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years).

    The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies.

    This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  11. The role of specialized transcription factories in chromosome pairing.

    PubMed

    Xu, Meng; Cook, Peter R

    2008-11-01

    Homologous chromosomes can pair in somatic and germ line cells, and many mechanisms have been proposed to explain how they do so. One popular class of models involves base-pairing between DNA strands catalyzed by recombination proteins, but pairing still occurs in mutants lacking the relevant functional proteins. We discuss an alternative based on two observations: transcription occurs in factories that specialize in transcribing specific gene sub-sets, and chromosomes only pair when transcribed. Each chromosome in the haploid set has a unique array of transcription units strung along its length; we suggest each is organized into clouds of loops tethered to specialized factories. Only homologs share similar strings of clouds and factories. Pairing begins when a promoter on one chromosome initiates in the homologous and specialized factory organized mainly by its homologous partner. This transiently ties the two homologs together, to increase the chances that adjacent promoters initiate in their homologous factories and that the two homologs will be zipped together. Then, interactions between promoters and RNA polymerases in the factories mediate pairing.

  12. Correlations and thermalization in driven cavity arrays

    SciTech Connect

    Dai Li; Angelakis, Dimitris G.; Kwek, Leong Chuan; Mancini, S.

    2011-09-23

    We show that long-distance steady-state quantum correlations (entanglement) between pairs of cavity-atom systems in an array of lossy and driven coupled resonators can be established and controlled. The maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the coherent trapping of the three-level atoms using two classical coherent fields. Different geometries for coherent control are considered. For finite temperature, the steady state of the coupled lossy atomcavity arrays with driving fields is in general not a thermal state. Using an appropriate distance measure for quantum states, we find that the change rate of the degree of thermalization with respect to the driving strength is consistent with the entanglement of the system.

  13. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  14. Pairing Properties of Superheavy Nuclei

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.

  15. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  16. Coupled heterocellular arrays in the brain.

    PubMed

    Fróes, M M; Menezes, J R L

    2002-11-01

    Gap junctions are transcellular pathways that enable a dynamic metabolic coupling and a selective exchange of biological signaling mediators. Throughout the course of the brain development these intercellular channels are assembled into regionally and temporally defined patterns. The present review summarizes the possibilities of heterocellular gap junctional pairing in the brain parenchyma, involving glial cells, neurons and neural precursors as well as it highlights on the meaningfulness of these coupled arrays to the concept of brain functional compartments.

  17. VERTICAL PILLAR ARRAYS FOR PLASMON NANOCAVITIES

    SciTech Connect

    Bora, M; Fasenfest, B; Behymer, E; Chang, A; Nguyen, H; Britten, J; Larson, C; Bond, T

    2010-04-02

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 10{sup 3} are possible due to plasmon focusing in the inter-wire space.

  18. Dynamical interactions of galaxy pairs

    NASA Technical Reports Server (NTRS)

    Athanassoula, E.

    1990-01-01

    Here the author briefly reviews the dynamics of sinking satellites and the effect of companions on elliptical galaxies. The author then discusses recent work on interacting disk systems, and finally focuses on a favorite interacting pair, NGC 5194/5195.

  19. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  20. Axiom turkey genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  1. Technique for Extension of Small Antenna Array Mutual-Coupling Data to Larger Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    A technique is presented whereby the mutual interaction between a small number of elements in a planar array can be interpolated and extrapolated to accurately predict the combined interactions in a much larger array of many elements. An approximate series expression is developed, based upon knowledge of the analytical characteristic behavior of the mutual admittance between small aperture antenna elements in a conducting ground plane. This expression is utilized to analytically extend known values for a few spacings and orientations to other element configurations, thus eliminating the need to numerically integrate a large number of highly oscillating and slowly converging functions. This paper shows that the technique can predict very accurately the mutual coupling between elements in a very large planar array with a knowledge of the self-admittance of an isolated element and the coupling between only two-elements arranged in eight different pair combinations. These eight pair combinations do not necessarily have to correspond to pairs in the large array, although all of the individual elements must be identical.

  2. Thermophotovoltaic Array Optimization

    SciTech Connect

    SBurger; E Brown; K Rahner; L Danielson; J Openlander; J Vell; D Siganporia

    2004-07-29

    A systematic approach to thermophotovoltaic (TPV) array design and fabrication was used to optimize the performance of a 192-cell TPV array. The systematic approach began with cell selection criteria that ranked cells and then matched cell characteristics to maximize power output. Following cell selection, optimization continued with an array packaging design and fabrication techniques that introduced negligible electrical interconnect resistance and minimal parasitic losses while maintaining original cell electrical performance. This paper describes the cell selection and packaging aspects of array optimization as applied to fabrication of a 192-cell array.

  3. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  4. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  5. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  6. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  7. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  8. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  9. Observation of charmonium pairs produced exclusively in pp collisions

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M. O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch; Cenci, R.; Charles, M.; Charpentier, Ph; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; DʼAmbrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardi nas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; OʼHanlon, D. P.; Oblakowska Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-11-01

    A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of 3f{{b}-1} collected at centre-of-mass energies of 7 and 8 TeV, J/\\psi J/\\psi and J/\\psi \\psi (2S) pairs are observed, which have been produced in the absence of any other activity inside the LHCb acceptance that is sensitive to charged particles in the pseudorapidity ranges (-3.5,-1.5) and (1.5,5.0). Searches are also performed for pairs of P-wave charmonia and limits are set on their production. The cross-sections for these processes, where the dimeson system has a rapidity between 2.0 and 4.5, are measured to be \\begin{array}{rcl} {{σ }J/\\psi J/\\psi } & = & 58+/- 10(stat)+/- 6(syst) pb, \\\\ {{σ }J/\\psi \\psi (2S)} & = & 63-18+27(stat)+/- 10(syst) pb, \\\\ {{σ }\\psi (2S)\\psi (2S)} & \\lt & 237 pb, \\\\ {{σ }{{χ c0}{{χ }c0}}} & \\lt & 69 nb, \\\\ {{σ }{{χ c1}{{χ }c1}}} & \\lt & 45 pb, \\\\ {{σ }{{χ c2}{{χ }c2}}} & \\lt & 141 pb, \\\\ \\end{array} where the upper limits are set at the 90% confidence level. The measured J/\\psi J/\\psi and J/\\psi \\psi (2S) cross-sections are consistent with theoretical expectations.

  10. Designing linear systolic arrays

    SciTech Connect

    Kumar, V.K.P.; Tsai, Y.C. . Dept. of Electrical Engineering)

    1989-12-01

    The authors develop a simple mapping technique to design linear systolic arrays. The basic idea of the technique is to map the computations of a certain class of two-dimensional systolic arrays onto one-dimensional arrays. Using this technique, systolic algorithms are derived for problems such as matrix multiplication and transitive closure on linearly connected arrays of PEs with constant I/O bandwidth. Compared to known designs in the literature, the technique leads to modular systolic arrays with constant hardware in each PE, few control lines, lexicographic data input/output, and improved delay time. The unidirectional flow of control and data in this design assures implementation of the linear array in the known fault models of wafer scale integration.

  11. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  12. Pacific Array (Transportable Broadband Ocean Floor Array)

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  13. Phased-array radars

    NASA Astrophysics Data System (ADS)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  14. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  15. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  16. Cooper pair transfer in nuclei

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2013-10-01

    The second-order distorted wave Born approximation implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects, is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations.

  17. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  18. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  19. Focal plane array with modular pixel array components for scalability

    DOEpatents

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  20. A gate array structure for the efficient project of digital circuits: The unit cell array

    NASA Astrophysics Data System (ADS)

    Geisler, Olaf

    In this study the principles for the development of a unit-cell-array-master, which shows all the advantages of gate-arrays, are presented. By taking the cabling influence on the chip surface into account, a stochastic model of cabling for sea-of-gates-structures is used, which allows establishment of the minimal dimensions of the master-components for the cabling. As regards the cell architecture, the gate isolation technique and smaller asymmetric p-n channel transistor pairs are employed. With logical structures such as Ram, Rom or PLA (programmed logic array), the Gt density increases. The analysis of gate-array cabling capacity shows that transistors with commercial gate-arrays are often of too great dimension. A greater transistor density and a lower dissipation without any performance decrease are possible by using smaller transistors and a parallel connection in circuit paths with higher cabling capacity. Apart from its initial high cost, unit cell array is interesting from an economical point of view.

  1. Solar array deployment mechanism

    NASA Astrophysics Data System (ADS)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  2. Solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Calassa, Mark C.; Kackley, Russell

    1995-01-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  3. Array for detecting microbes

    DOEpatents

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  4. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  5. Simplicity and Typical Rank Results for Three-Way Arrays

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.

    2011-01-01

    Matrices can be diagonalized by singular vectors or, when they are symmetric, by eigenvectors. Pairs of square matrices often admit simultaneous diagonalization, and always admit block wise simultaneous diagonalization. Generalizing these possibilities to more than two (non-square) matrices leads to methods of simplifying three-way arrays by…

  6. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  7. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  8. Photovoltaic array loss mechanisms

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles

    1986-01-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  9. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  10. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  11. Gamma ray polarimetry. [compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Novick, R.

    1978-01-01

    Spectroscopic instruments currently being proposed may possess polarimetric capabilities which sould be nurtured and enhanced to permit characterization of basic emission mechanisms which are impossible using other techniques. Compton scattering and pair production detected the polarization of high energy (E is greater than 50 keV) protons in laboratory experiments. The polarization properties of a detection system consisting of 19 germanium crystals in a closed packed array are examined and the advantages of such a detector over Thompson scattering are discussed. The possiblity of using pair production to detect polarization of high energy gamma rays, and the associated modulation factors are discussed. The central difficulty involved in using pair production polarimeters in astrophysical applications is that the typical opening of the electron or positron direction with respect to the incident photon aircitron is small, of order E/sq mc. Multiple scattering in the material used to convert the photons to an electron positron pair causes deviations in the direction of the electron and positron.

  12. Unexpected controllable pair-structure in ferroelectric nanodomains.

    PubMed

    Ivry, Yachin; Chu, Daping; Scott, James F; Salje, Ekhard K H; Durkan, Colm

    2011-11-01

    The imminent inability of silicon-based memory devices to satisfy Moore's Law is approaching rapidly. Controllable nanodomains of ferroic systems are anticipated to enable future high-density nonvolatile memory and novel electronic devices. We find via piezoresponse force microscopy (PFM) studies on lead zirconate titanate (PZT) films an unexpected nanostructuring of ferroelectric-ferroelastic domains. These consist of c-nanodomains within a-nanodomains in proximity to a-nanodomains within c-domains. These structures are created and annihilated as pairs, controllably. We treat these as a new kind of vertex-antivertex pair and consider them in terms of the Srolovitz-Scott 4-state Potts model, which results in pairwise domain vertex instabilities that resemble the vortex-antivortex mechanism in ferromagnetism, as well as dislocation pairs (or disclination pairs) that are well-known in nematic liquid crystals. Finally, we show that these nanopairs can be scaled up to form arrays that are engineered at will, paving the way toward facilitating them to real technologies.

  13. Pair production in inhomogeneous fields

    SciTech Connect

    Gies, Holger; Klingmueller, Klaus

    2005-09-15

    We employ the recently developed worldline numerics, which combines string-inspired field theory methods with Monte Carlo techniques, to develop an algorithm for the computation of pair-production rates in scalar QED for inhomogeneous background fields. We test the algorithm with the classic Sauter potential, for which we compute the local production rate for the first time. Furthermore, we study the production rate for a superposition of a constant E field and a spatially oscillating field for various oscillation frequencies. Our results reveal that the approximation by a local derivative expansion already fails for frequencies small compared to the electron-mass scale, whereas for strongly oscillating fields a derivative expansion for the averaged field represents an acceptable approximation. The worldline picture makes the nonlocal nature of pair production transparent and facilitates a profound understanding of this important quantum phenomenon.

  14. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  15. One-dimensional Cooper pairing

    NASA Astrophysics Data System (ADS)

    Mendoza, R.; Fortes, M.; de Llano, M.; Solís, M. A.

    2011-09-01

    We study electron pairing in a one-dimensional (1D) fermion gas at zero temperature under zero- and finite-range, attractive, two-body interactions. The binding energy of Cooper pairs (CPs) with zero total or center-of-mass momentum (CMM) increases with attraction strength and decreases with interaction range for fixed strength. The excitation energy of 1D CPs with nonzero CMM display novel, unique properties. It satisfies a dispersion relation with two branches: a phonon-like linear excitation for small CP CMM; this is followed by roton-like quadratic excitation minimum for CMM greater than twice the Fermi wavenumber, but only above a minimum threshold attraction strength. The expected quadratic-in-CMM dispersion in vacuo when the Fermi wavenumber is set to zero is recovered for any coupling. This paper completes a three-part exploration initiated in 2D and continued in 3D.

  16. Segmentation and the pairing hypothesis.

    PubMed

    Bragason, Orn

    2004-09-30

    The effect of stimulus contiguity and response contingency on responding in chain schedules was examined in two experiments. In Experiment 1, four pigeons were trained on two simple three-link chain schedules that alternated within sessions. Initial links were correlated with a variable-interval 30s schedule, and middle and terminal links were correlated with interdependent variable-interval 30s variable-interval 30s schedules. The combined duration of the interdependent schedules summed to 60s. The two chains differed with respect to signaling of the schedule components: a two-stimulus chain had one stimulus paired with the initial link and one stimulus paired with both the middle and the terminal link, while a three-stimulus chain had a different stimulus paired with the each of the three links. The results showed that the two-stimulus chain maintained lower initial-link responding than the three-stimulus chain. In Experiment 2, four pigeons were exposed to three separate conditions, the two- and three-stimulus chains of Experiment 1 and a three-stimulus chain that had a 3s delay to terminal-link entry from the middle-link response that produced it. The two-stimulus chain maintained lower initial-link responding than the three-stimulus chain, as in Experiment 1, and a similar initial-link responding was maintained by the two-stimulus chain and the three-stimulus chain with the delay contingency. The results demonstrate that a stimulus noncontiguous with food can maintain responding that is sometimes greater than a stimulus contiguous with food, depending on the response contingency for terminal-link entry. The results are contrary to the pairing hypothesis of conditioned reinforcement.

  17. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  18. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  19. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  20. An Investigation of Stimulus Pairing and Listener Training to Establish Emergent Intraverbals in Children with Autism

    ERIC Educational Resources Information Center

    Vallinger-Brown, Mary; Rosales, Rocío

    2014-01-01

    We examined two methods to facilitate the emergence of untaught intraverbal responses to children with autism. Listener behavior training (LT) involved reinforcement of a selection-based response following presentation of an array of pictures on an iPad® and an auditory instruction describing a characteristic of the picture. Stimulus pairing (SP)…

  1. A MRI rotary phased array head coil.

    PubMed

    Li, Bing Keong; Weber, Ewald; Crozier, Stuart

    2013-08-01

    A new rotary phased array (RPA) head coil that can provide homogenous brain images comparable to volumetric radiofrequency coils is proposed for magnetic resonance brain imaging applications. The design of the RPA head coil is a departure from conventional circumferential array design method, as coil elements of the RPA head coil have a "paddle-like" structure consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. A prototype 2T receive-only 4-element RPA head coil was constructed and experimentally tested against a conventional receive-only 4-element phased array head coil and a commercial receive-only quadrature birdcage head coil. Homogenous phantom images acquired by the RPA head coil show that signal intensity deep at the center of the phantom was improved as compared to the conventional phased array head coil and this improvement allow the RPA head coil to acquire homogenous brain images similar to brain images acquired with the birdcage head coil. In addition, partial parallel imaging was used in conjunction with the RPA head coil to enable rapid imaging.

  2. Compact stereo endoscopic camera using microprism arrays.

    PubMed

    Yang, Sung-Pyo; Kim, Jae-Jun; Jang, Kyung-Won; Song, Weon-Kook; Jeong, Ki-Hun

    2016-03-15

    This work reports a microprism array (MPA) based compact stereo endoscopic camera with a single image sensor. The MPAs were monolithically fabricated by using two-step photolithography and geometry-guided resist reflow to form an appropriate prism angle for stereo image pair formation. The fabricated MPAs were transferred onto a glass substrate with a UV curable resin replica by using polydimethylsiloxane (PDMS) replica molding and then successfully integrated in front of a single camera module. The stereo endoscopic camera with MPA splits an image into two stereo images and successfully demonstrates the binocular disparities between the stereo image pairs for objects with different distances. This stereo endoscopic camera can serve as a compact and 3D imaging platform for medical, industrial, or military uses.

  3. Teleportation on a quantum dot array.

    PubMed

    de Pasquale, F; Giorgi, G; Paganelli, S

    2004-09-17

    We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, with one excess electron, coupled by tunneling. It is shown how to create a maximally entangled state using an adiabatically increasing Coulomb repulsion between different dot pairs. This entangled state is exploited to perform teleportation again using an adiabatic coupling between itself and the incoming unknown state. Finally, a sudden separation of Bob's qubit allows a time evolution of Alice's, which amounts to a modified version of standard Bell measurement. A transmission over a long distance could be obtained by considering the entangled state of a chain of N coupled double quantum dots. The system is shown to be increasingly robust with N against decoherence due to phonons.

  4. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  5. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  6. Pair Tunneling through Single Molecules

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  7. Expandable LED array interconnect

    DOEpatents

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  8. Multi Sensor Array

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Voska, Ned (Technical Monitor)

    2002-01-01

    This paper presents viewgraphs on the Multi Sensor Array. The topics include: 1) MSA Algorithm; 2) Types of Sensors for the MSA; 3) How to test the MSA; 4) Monte Carlo Simulation; and 5) Accelerated Life Tests.

  9. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  10. Glory Solar Array Deployment

    NASA Video Gallery

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  11. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  12. Oligonucleotide array outperforms SNP array on formalin-fixed paraffin-embedded clinical samples.

    PubMed

    Nasri, Soroush; Anjomshoaa, Ahmad; Song, Sarah; Guilford, Parry; McNoe, Les; Black, Michael; Phillips, Vicky; Reeve, Anthony; Humar, Bostjan

    2010-04-01

    Compromised quality of formalin-fixed paraffin-embedded (FFPE)-derived DNA has compounded the use of archival specimens for array-based genomic studies. Recent technological advances have led to first successes in this field; however, there is currently no general agreement on the most suitable platform for the array-based analysis of FFPE DNA. In this study, FFPE and matched fresh-frozen (FF) specimens were separately analyzed with Affymetrix single nucleotide polymorphism (SNP) 6.0 and Agilent 4x44K oligonucleotide arrays to compare the genomic profiles from the two tissue sources and to assess the relative performance of the two platforms on FFPE material. Genomic DNA was extracted from matched FFPE-FF pairs of normal intestinal epithelium from four patients and were applied to the SNP and oligonucleotide platforms according to the manufacturer-recommended protocols. On the Affymetrix platform, a substantial increase in apparent copy number alterations was observed in all FFPE tissues relative to their matched FF counterparts. In contrast, FFPE and matched FF genomic profiles obtained via the Agilent platform were very similar. Both the SNP and the oligonucleotide platform performed comparably on FF material. This study demonstrates that Agilent oligonucleotide array comparative genomic hybridization generates reliable results from FFPE extracted DNA, whereas the Affymetrix SNP-based array seems less suitable for the analysis of FFPE material.

  13. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  14. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  15. Rashba Splitting of Cooper Pairs.

    PubMed

    Shekhter, R I; Entin-Wohlman, O; Jonson, M; Aharony, A

    2016-05-27

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals. PMID:27284669

  16. Bound Polaron Pair Formation in Poly (phenylenevinylenes)

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES

  17. Pair bonds: arrival synchrony in migratory birds.

    PubMed

    Gunnarsson, T G; Gill, J A; Sigurbjörnsson, T; Sutherland, W J

    2004-10-01

    Synchronous arrival of pairs of migratory birds at their breeding grounds is important for maintaining pair bonds and is achieved by pairs that remain together all year round. Here we show that arrival is also synchronized in paired individuals of a migratory shorebird, the black-tailed godwit (Limosa limosa islandica), even though they winter hundreds of kilometres apart and do not migrate together. The mechanisms required to achieve this synchrony and prevent 'divorce' illustrate the complexity of migratory systems. PMID:15470417

  18. LES investigation of infinite staggered wind-turbine arrays

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-12-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays.

  19. Individuation of Pairs of Objects in Infancy

    ERIC Educational Resources Information Center

    Leslie, Alan M.; Chen, Marian L.

    2007-01-01

    Looking-time studies examined whether 11-month-old infants can individuate two pairs of objects using only shape information. In order to test individuation, the object pairs were presented sequentially. Infants were familiarized either with the sequential pairs, disk-triangle/disk-triangle (XY/XY), whose shapes differed within but not across…

  20. The Associability of CVC Pairs. Research Report.

    ERIC Educational Resources Information Center

    Montague, William E.; Kiess, Harold O.

    To obtain an a priori estimate of natural language mediators (NLM's) 320 pairs of words with the consonant-vowel-consonant-pattern (CVC's) were broken into four series of 90 pairs and presented to 240 male and female undergraduates. Pairs were shown for 15 seconds while the subjects wrote down any associative device or NLM they could generate that…

  1. Sampled Longest Common Prefix Array

    NASA Astrophysics Data System (ADS)

    Sirén, Jouni

    When augmented with the longest common prefix (LCP) array and some other structures, the suffix array can solve many string processing problems in optimal time and space. A compressed representation of the LCP array is also one of the main building blocks in many compressed suffix tree proposals. In this paper, we describe a new compressed LCP representation: the sampled LCP array. We show that when used with a compressed suffix array (CSA), the sampled LCP array often offers better time/space trade-offs than the existing alternatives. We also show how to construct the compressed representations of the LCP array directly from a CSA.

  2. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  3. Microbial Cell Arrays

    NASA Astrophysics Data System (ADS)

    Elad, Tal; Lee, Jin Hyung; Gu, Man Bock; Belkin, Shimshon

    The coming of age of whole-cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines - the whole cell array. In the present chapter, we highlight the state-of-the-art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals, and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high-performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis, and - most importantly - enhanced long term maintenance of viability and activity on the fabricated biochips.

  4. Magnetically actuated microshutter arrays

    NASA Astrophysics Data System (ADS)

    Mott, David B.; Aslam, Shahid; Blumenstock, Kenneth A.; Fettig, Rainer K.; Franz, David E.; Kutyrev, Alexander S.; Li, Mary J.; Monroy, Carlos J.; Moseley, S. Harvey; Schwinger, David S.

    2001-10-01

    Two-dimensional microshutter arrays are being developed at NASA Goddard Space Flight Center (GSFC) for the Next Generation Space Telescope (NGST) for use in the near-infrared region. Functioning as focal plane object selection devices, the microshutter arrays are 2-D programmable masks with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45 K. Arrays are close-packed silicon nitride membranes with a unit cell size of 100x100 micrometer. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with minimized mechanical stress concentration. The mechanical shutter arrays are fabricated with MEMS technologies. The processing includes a RIE front-etch to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and to relieve the shutters from the silicon substrate. A layer of magnetic material is deposited onto each shutter. Onto the side-wall of the support structure a metal layer is deposited that acts as a vertical hold electrode. Shutters are rotated into the support structure by means of an external magnet that is swept across the shutter array for opening. Addressing is performed through a scheme using row and column address lines on each chip and external addressing electronics.

  5. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  6. A 7T Spine Array Based on Electric Dipole Transmitters

    PubMed Central

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut

    2015-01-01

    Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585

  7. Synchronizing large systolic arrays

    SciTech Connect

    Fisher, A.L.; Kung, H.T.

    1982-04-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of systolic array, it may be convenient to think of all processors as operating in lock step. Totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternate means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. This paper represents a first step towards a systematic study of synchronization problems for large systolic arrays.

  8. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  9. Solar array subsystems study

    NASA Technical Reports Server (NTRS)

    Richardson, P. W.; Miller, F. Q.; Badgley, M. B.

    1980-01-01

    The effects on life cycle costs of a number of technology areas are examined for a LEO, 500 kW solar array. A baseline system conceptual design is developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies are then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance and hence life cycle cost.

  10. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1976-01-01

    Manufacturing techniques are evaluated using expenses based on experience and studying basic cost factors for each step to evaluate expenses from a first-principles point of view. A formal cost accounting procedure is developed which is used throughout the study for cost comparisons. The first test of this procedure is a comparison of its predicted costs for array module manufacturing with costs from a study which is based on experience factors. A manufacturing cost estimate for array modules of $10/W is based on present-day manufacturing techniques, expenses, and materials costs.

  11. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  12. Soldered solar arrays

    NASA Astrophysics Data System (ADS)

    Allen, H. C.

    1982-06-01

    The ability of soldered interconnects to withstand a combination of long life and severe environmental conditions was investigated. Improvements in joint life from the use of solder mixes appropriate to low temperature conditons were studied. Solder samples were placed in a 150 C oven for 5 weeks (= 12 yr at 80 C, or 24 at 70 C according to Arrhenius's rule). Conventional and high solder melting point array samples underwent 1000 thermal cycles between -186 and 100 C. Results show that conventional and lead rich soldered arrays can survive 10 yr geostationary orbit missions.

  13. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  14. Array signal processing

    SciTech Connect

    Haykin, S.; Justice, J.H.; Owsley, N.L.; Yen, J.L.; Kak, A.C.

    1985-01-01

    This is the first book to be devoted completely to array signal processing, a subject that has become increasingly important in recent years. The book consists of six chapters. Chapter 1, which is introductory, reviews some basic concepts in wave propagation. The remaining five chapters deal with the theory and applications of array signal processing in (a) exploration seismology, (b) passive sonar, (c) radar, (d) radio astronomy, and (e) tomographic imaging. The various chapters of the book are self-contained. The book is written by a team of five active researchers, who are specialists in the individual fields covered by the pertinent chapters.

  15. Laser diode arrays for expanded mine detection capability

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.; Holloway, John H., Jr.; Petee, Danny A.; Stetson, Suzanne P.; Suiter, Harold R.; Tinsley, Ken R.

    2002-08-01

    A tactical unmanned aerial vehicle-size illumination system for enhanced mine detection capabilities has been designed, developed, integrated, and tested at the Coastal Systems Station. Airborne test flights were performed from June 12, 2001 to February 1, 2002. The Airborne Laser Diode Array Illuminator uses a single-wavelength compact laser diode array stack to provide illumination and is coupled with a pair of intensified CCD video cameras. The cameras were outfitted with various lenses and polarization filters to determine the benefits of each of the configurations. The first airborne demonstration of a laser diode illumination system is described and its effectiveness to perform nighttime mine detection operations is shown.

  16. VLBA Reveals Closest Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found the closest pair of supermassive black holes ever discovered in the Universe -- a duo of monsters that together are more than 150 million times more massive than the Sun and closer together than the Earth and the bright star Vega. The VLBA The VLBA CREDIT: NRAO/AUI/NSF "These two giant black holes are only about 24 light-years apart, and that's more than 100 times closer than any pair found before," said Cristina Rodriguez, of the University of New Mexico (UNM) and Simon Bolivar University in Venezuela. Black holes are concentrations of mass with gravity so strong that not even light can escape them. The black hole pair is in the center of a galaxy called 0402+379, some 750 million light-years from Earth. Astronomers presume that each of the supermassive black holes was once at the core of a separate galaxy, then the two galaxies collided, leaving the black holes orbiting each other. The black holes orbit each other about once every 150,000 years, the scientists say. "If two black holes like these were to collide, that event would create the type of strong gravitational waves that physicists hope to detect with instruments now under construction," said Gregory Taylor, of UNM. The physicists will need to wait, though: the astronomers calculate that the black holes in 0402+379 won't collide for about a billion billion years. "There are some things that might speed that up a little bit," Taylor remarked. An earlier VLBA study of 0402+379, an elliptical galaxy, showed the pair of radio-wave-emitting objects near its core. Further studies using the VLBA and the Hobby-Eberly Telescope in Texas, revealed that the pair of objects is indeed a pair of supermassive black holes. "We needed the ultra-sharp radio 'vision' of the VLBA, particularly at the high radio frequencies of 22 and 43 GigaHertz, to get the detail needed to show that those objects are a pair of

  17. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  18. Report on Pairing-based Cryptography

    PubMed Central

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  19. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  20. Solar magnetograph employing integrated diode arrays.

    PubMed

    Livingston, W C; Harvey, J; Slaughter, C; Trumbo, D

    1976-01-01

    A solar magnetograph employing as detectors a pair of self-scanning 512-element integrated diode arrays is described. Coupled to a 1.5-m telescope, photospheric flux as small as 5(10(16)) maxwells is detected, corresponding in intensity to DeltaI/I = 3(10(-4)) at lambda 0.8688 microm. Measured photometric properties of the diode array are given, including MTF as a function of wavelength, dark current as a function of temperature, completeness of readout, optical and electronic fixed-pattern noise. An integrating preamplifier is presented that achieves a measured noise, when connected to the array, equivalent to 950 electrons at the input for a bandwidth of 3(10(5)) Hz. These data provide a basis for an evaluation of the detector performance at low light levels beyond the needs of the magnetograph. Operated at near liquid nitrogen temperature, the noise and cooling characteristics indicate the detector has promise as a low light level sensor.

  1. Synchronization in Disordered Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Trees, B. R.; Dissanayake, S. T. M.

    2002-03-01

    We have studied the dynamics of a ladder array of overdamped Josephson junctions with periodic boundary conditions. The junctions have critical current and resistive disorder, are current biased above the critical current, and their voltages oscillate with nonidentical bare frequencies. We have been interested in the onset of synchronization in the rung junctions of the ladder, in which nearest neighbor interactions of strength α renormalize the bare frequencies to a common value. The degree of synchronization of the array is measured by an order parameter, r (0<= r<= 1), as a function of α and the spread of bare frequencies. For a given frequency spread, a synchronization phase transition is clearly visible with an increase in α. We have also determined that a time-averaged version of the resistively-shunted junction equations can be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of values of α and also demonstrate that the relationship between the array size, N, and the critical coupling strength for the onset of synchronization scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.

  2. Mapping genomic library clones using oligonucleotide arrays

    SciTech Connect

    Sapolsky, R.J.; Lipshutz, R.J.

    1996-05-01

    We have developed a high-density DNA probe array and accompanying biochemical and informatic methods to order clones from genomic libraries. This approach involves a series of enzymatic steps for capturing a set of short dispersed sequence markers scattered throughout a high-molecular-weight DNA. By this process, all the ambiguous sequences lying adjacent to a given Type IIS restriction site are ligated between two DNA adaptors. These markers, once amplified and labeled by PCR, can be hybridized and detected on a high-density olligonucleotide array bearing probes complementary to all possible markers. The array is synthesized using light-directed combinatorial chemistry. For each clone in a genomic library, a characteristic set of sequence markers can be determined. On the basis of the similarity between the marker sets for each pair of clones, their relative overlap can be measured. The library can be sequentially ordered into a contig map using this overlap information. This new methodology does not require gel-based methods or prior sequence information and involves manipulations that should allow for easy adaptation to automated processing and data collection. 28 refs., 9 figs., 2 tabs.

  3. Analyzing Responses of Chemical Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  4. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  5. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays

    PubMed Central

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  6. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.

    PubMed

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  7. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1977-01-01

    A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.

  8. Array processors in chemistry

    SciTech Connect

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  9. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  10. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  11. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  12. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  13. Pair programming in education: a literature review

    NASA Astrophysics Data System (ADS)

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renée; Murphy, Laurie; Zander, Carol

    2011-06-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in solutions, and improvement in learning outcomes. Moreover, there is some evidence that women, in particular, benefit from pair programming. The literature also provides evidence that the transition from paired to solo programming is easy for students. The greatest challenges for paired students appear to concern scheduling and partner compatibility. This review also considers practical issues such as assigning partners, teaching students to work in pairs, and assessing individual contributions, and concludes with a discussion of open research questions.

  14. Pair production and escape in accretion disks.

    NASA Astrophysics Data System (ADS)

    Meirelles Filho, C.; Liang, E. P.

    It is shown that, in the absence of confining mechanisms, there will be a non-negligible amount of pairs escaping from the inner region of a Comptonized soft photon two-temperature accretion disk, when pair production is not balanced by annihilation. Assuming conditions such that the photons and particles in the disk can be regarded as close to a Wien plasma (Svensson, 1984), the authors calculate the rate of pair escape from the disk for both a situation close to pair balance and a situation with the rate of escape exceeding annihilation. The pairs are assumed to be created by photon-photon processes. Within this model one can account for the 511 keV γ-ray luminosity due to pair annihilation in the ISM, as recently observed in the Einstein source.

  15. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  16. Detail of array structural elements through axis of array, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of array structural elements through axis of array, looking north-northeast - Over-the-Horizon Backscatter Radar Network, Columbia Falls Radar Site Receive Sector Two Antenna Array, At the end of Shadagee Ridge Road, Columbia Falls, Washington County, ME

  17. Lax pairs for deformed Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2016-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  18. Concurrent array-based queue

    SciTech Connect

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  19. Silica nanorod-array films with very low refractive indices.

    PubMed

    Xi, J Q; Kim, Jong Kyu; Schubert, E F

    2005-07-01

    The refractive-index contrast is an important figure of merit for dielectric multilayer structures, optical resonators, and photonic crystals. This represents a strong driving force for novel materials that have refractive indices lower than those of conventional optically transparent materials. Silica nanorod-array dielectric films with unprecedented low refractive indices of 1.08 are demonstrated and shown to have viable optical properties including enhanced reflectivity of a single-pair distributed Bragg reflector.

  20. {sup 67}As-{sup 67}Se mirror pair spectroscopy

    SciTech Connect

    Wiedemann, K. T.; Medina, N. H.; De Angelis, G.; Orlandi, R.; Vedova, F. Della; Gadea, A.; Marginean, N.; Napoli, D. R.; Sahin, E.; Tonev, D.; Bracco, A.; Leoni, S.; Carpenter, M.; Greene, J.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Chiara, C. J.; Pechenaya, O. L.; Reviol, W.

    2009-06-03

    This work focus on the electromagnetic decay properties of the heaviest known mirror pair {sup 67}As and {sup 67}Se, produced in the fusion evaporation reaction {sup 32}S+{sup 40}Ca, with a E = 90 MeV beam provided by the ATLAS accelerator at Argonne National Laboratory. The high selectivity required to investigate these proton-rich nuclei was achieved with the concurrent employment of Gammasphere, Neutron-Shell, and Microball. The full array allowed to obtain the level scheme of the {sup 67}Se nucleus up to 5.56 MeV, and 5 new transitions were assigned to the known {sup 67}As level-scheme. The level spin and parities were assigned using the ADO analysis and symmetry arguments.

  1. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  2. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Ai, Jun (Inventor); Dimov, Fedor (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  3. Striped tape arrays

    NASA Technical Reports Server (NTRS)

    Drapeau, Ann L.; Katz, Randy H.

    1992-01-01

    A growing number of applications require high capacity, high throughput tertiary storage systems. How data striping ideas apply to arrays of magnetic tape drives is investigated. Data striping increases throughput and reduces response time for large accesses to a storage system. Striped magnetic tape systems are particularly appealing because many inexpensive magnetic tape drives have low bandwidth; striping may offer dramatic performance improvements for these systems. There are several important issues in designing striped tape systems: the choice of tape drives and robots, whether to stripe within or between robots, and the choice of the best scheme for distributing data on cartridges. One of the most troublesome problems in striped tape arrays is the synchronization of transfers across tape drives. Another issue is how improved devices will affect the desirability of striping in the future. The results of simulations comparing the performance of striped tape systems to non-striped systems are presented.

  4. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  5. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  6. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  7. The TALE Infill Array

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas

    2009-05-01

    The TALE Infill Array in conjunction with the TALE Tower Detector will provide hybrid coverage of the cosmic ray energy spectrum down to 3x10^16 eV. It will consist of about 100, two square meter scintillators on the surface spaced at 400 m; and 24 buried twelve square meter scintillators. The combination of surface and underground detectors will allow for the determination of the muon content of showers and thus give a handle on cosmic ray composition.

  8. Array Transposition in SSD

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1998-01-01

    One obstacle to running very large two- and three-dimensional codes on the Cray X-MP and Y-MP systems is to efficiently perform array transpositions using SSD storage. This article discusses how such transpositions can be performed by means of algorithms that feature exclusively unit stride, long vector transfers between main memory and SSD, and which only require a single pass through the data (provided sufficient main memory buffers are available).

  9. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  10. Array Transposition in SSD

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1989-01-01

    One obstacle to running very large two- and three-dimensional codes on the Cray X-MP and Y-MP systems is to efficiently perform array transpositions using SSD storage. This article discusses how such transpositions can be performed by means of algorithms that feature exclusively unit stride, long vector transfers between main memory and SSD, and which only require a single pass through the data (provided sufficient main memory buffers are available).

  11. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  12. Infrared Target Array Development

    NASA Astrophysics Data System (ADS)

    McIntire, Thomas O.; Scott, Edward A.

    1982-03-01

    A "life size" thermal target array has been developed to facilitate in-flight testing of airborne weapon systems containing night vision subsystems. This in-flight testing to measure the performance of the night vision subsystem and its effect on overall weapon system performance is essential to the test and evaluation process of the particular weapon under test. This measurement of subsystem performance is called the Modulation Transfer Function, or MTF. In addition, a laser designator subsystem is frequently incorporated in a precision guided munition weapon system. In the test and evaluation of the designator, such quantities as beam quality (energy distribution), beam divergence, and beam wander are of interest. The thermal targets may be used to evaluate armored weapon systems. The capability of providing carefully controlled and variable thermal signatures in a field test environment is considered unique. The thermal target array consists of three targets: A six bar recognition target, a two bar detection target, and a laser designator scoring board (cross-hair). The image dimensions of 2.3 meters by 2.3 meters were derived from an optimized threat envelope. The thermal signatures of the targets are controllable to within 0.3 C about a differential setpoint. This differential setpoint is measured between the active element and the target background (or "ambient"). Several differential temperature settings are available to the test officer: 1.25°C, 3°C, 5°C, 7.5°C, and 10°C. This paper reviews the thermal array test objectives, target array fabrication, methodology of target utilization, and representative results.

  13. The CHARA optical array

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.

    1992-11-01

    The Center for High Angular Resolution Astronomy (CHARA) was established in the College of Arts and Sciences at Georgia State University in 1984 with the goals of designing, constructing, and then operating a facility for very high spatial resolution astronomy. The interest in such a facility grew out of the participants' decade of activity in speckle interferometry. Although speckle interferometry continues to provide important astrophysical measurements of a variety of objects, many pressing problems require resolution far beyond that which can be expected from single aperture telescopes. In early 1986, CHARA received a grant from the National Science Foundation which has permitted a detailed exploration of the feasibility of constructing a facility which will provide a hundred-fold increase in angular resolution over what is possible by speckle interferometry at the largest existing telescopes. The design concept for the CHARA Array was developed initially with the contractural collaboration of United Technologies Optical Systems, Inc., in West Palm Beach, Florida, an arrangement that expired in August 1987. In late November 1987, the Georgia Tech Research Institute joined with CHARA to continue and complete the design concept study. Very high-resolution imaging at optical wavelengths is clearly coming of age in astronomy. The CHARA Array and other related projects will be important and necessary milestones along the way toward the development of a major national facility for high-resolution imaging--a true optical counterpart to the Very Large Array. Ground-based arrays and their scientific output will lead to high resolution facilities in space and, ultimately, on the Moon.

  14. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  15. Array processor architecture

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  16. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  17. DSN Array Simulator

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; Mackey, Ryan

    2008-01-01

    The DSN Array Simulator (wherein 'DSN' signifies NASA's Deep Space Network) is an updated version of software previously denoted the DSN Receive Array Technology Assessment Simulation. This software (see figure) is used for computational modeling of a proposed DSN facility comprising user-defined arrays of antennas and transmitting and receiving equipment for microwave communication with spacecraft on interplanetary missions. The simulation includes variations in spacecraft tracked and communication demand changes for up to several decades of future operation. Such modeling is performed to estimate facility performance, evaluate requirements that govern facility design, and evaluate proposed improvements in hardware and/or software. The updated version of this software affords enhanced capability for characterizing facility performance against user-defined mission sets. The software includes a Monte Carlo simulation component that enables rapid generation of key mission-set metrics (e.g., numbers of links, data rates, and date volumes), and statistical distributions thereof as functions of time. The updated version also offers expanded capability for mixed-asset network modeling--for example, for running scenarios that involve user-definable mixtures of antennas having different diameters (in contradistinction to a fixed number of antennas having the same fixed diameter). The improved version also affords greater simulation fidelity, sufficient for validation by comparison with actual DSN operations and analytically predictable performance metrics.

  18. Solar array construction

    DOEpatents

    Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.

  19. Pair Programming in Education: A Literature Review

    ERIC Educational Resources Information Center

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renee; Murphy, Laurie; Zander, Carol

    2011-01-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in…

  20. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  1. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  2. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  3. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  4. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  5. Top Quark Pair Production at the Tevatron

    SciTech Connect

    Nielsen, Jason

    2005-05-17

    The measurement of the top quark pair production crosssection inproton-antiproton collisions at 1.96 TeV is a test ofquantumchromodynamics and could potentially be sensitive to newphysics beyondthe standard model. I report on the latest t-tbarcross section resultsfrom the CDF and DZero experiments in various finalstate topologies whicharise from decays of top quark pairs.

  6. Attitudes on Using Pair-Programming

    ERIC Educational Resources Information Center

    Howard, Elizabeth V.

    2007-01-01

    During a research study conducted over four semesters, students enrolled in an introductory programming class at a commuter campus used the pair-programming approach for both in-class labs and out-of-class programming assignments. This study was a comprehensive assessment of pair-programming using multiple measures of both quantitative and…

  7. Bidirectional Synonym Ratings of 464 Noun Pairs.

    ERIC Educational Resources Information Center

    Whitten, William B.; And Others

    1979-01-01

    Each of 464 noun pairs was rated for synonymy on a seven-point scale by college students to provide an extensive set of synonym pairs for use as stimuli in experiments, and to evaluate the effects of word encoding order on perceived synonymy. (SW)

  8. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  9. Spontaneous formation of inert oscillator pairs

    NASA Astrophysics Data System (ADS)

    Tsygankov, Denis; Wiesenfeld, Kurt

    2004-05-01

    We describe a peculiar type of spontaneous synchronization in a transmission line studded with nonlinear oscillators. After a transient period of complicated interactions, the elements form strongly synchronized pairs with interactions between these pairs virtually nil. The creation of these “dynamical dimers” appears to stem from the coupling intrinsic to transmission lines rather than any specific property of the nonlinear oscillators.

  10. Arrays of dual nanomechanical resonators for selective biological detection.

    PubMed

    Ramos, Daniel; Arroyo-Hernández, María; Gil-Santos, Eduardo; Tong, Hien Duy; Van Rijn, Cees; Calleja, Montserrat; Tamayo, Javier

    2009-03-15

    Arrays of small nanomechanical resonators with dual geometry have been fabricated for sensitive biological detection. The arrays consist of silicon nitride resonating 100 nm thick cantilevers with sensing gold areas alternately placed on the free and fixed cantilever ends. The Au areas act as sensing regions as can be functionalized by means of thiol chemistry. The nanomechanical arrays provide a double flavor of the adsorbed molecules: the added mass reported by the cantilevers with the Au area at the tip and the nanoscale elasticity reported by the cantilevers with the Au area at the clamp. The devices were applied for DNA detection based on Watson-Crick pairing rules. The proposed design for nanomechanical resonators provides higher specificity for DNA sensing in comparison with conventional single cantilevers. The nanoscale elasticity induced by the DNA hybridization arises from the intermolecular interactions between the adsorbates bound to the cantilever and the surface stress.

  11. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  12. Collective pairing Hamiltonian in the GCM approximation

    NASA Astrophysics Data System (ADS)

    Góźdź, A.; Pomorski, K.; Brack, M.; Werner, E.

    1985-08-01

    Using the generator coordinate method and the gaussian overlap approximation we derived the collective Schrödinger-type equation starting from a microscopic single-particle plus pairing hamiltonian for one kind of particle. The BCS wave function was used as the generator function. The pairing energy-gap parameter Δ and the gauge transformation anglewere taken as the generator coordinates. Numerical results have been obtained for the full and the mean-field pairing hamiltonians and compared with the cranking estimates. A significant role played by the zero-point energy correction in the collective pairing potential is found. The ground-state energy dependence on the pairing strength agrees very well with the exact solution of the Richardson model for a set of equidistant doubly-degenerate single-particle levels.

  13. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  14. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  15. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  16. Optical Spectroscopy of Unbound Asteroid Pairs

    NASA Astrophysics Data System (ADS)

    Duddy, Samuel; Lowry, S. C.; Christou, A.; Wolters, S. D.; Snodgrass, C.; Fitzsimmons, A.; Deller, J. F.; Hainaut, O. R.; Rozitis, B.; Weissman, P. R.; Green, S. F.

    2012-10-01

    The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.

  17. Stereo Pair: Wellington, New Zealand

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter winds

    New Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.

    Elevation data

  18. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  19. Initiation of Long-Wave Instability of Vortex Pairs at Cruise Altitudes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    Previous studies have usually attributed the initiation of the long-wave instability of a vortex pair to turbulence in the atmosphere or in the wake of the aircraft. The purpose here is to show by use of observations and photographs of condensation trails shed by aircraft at cruise altitudes that another initiating mechanism is not only possible but is usually the mechanism that initiates the long-wave instability at cruise altitudes. The alternate initiating mechanism comes about when engine thrust is robust enough to form an array of circumferential vortices around each jet-engine-exhaust stream. In those cases, initiation begins when the vortex sheet shed by the wing has rolled up into a vortex pair and descended to the vicinity of the inside bottom of the combined shear-layer vortex arrays. It is the in-and-out (up and down) velocity field between sequential circumferential vortices near the bottom of the array that then impresses disturbance waves on the lift-generated vortex pair that initiate the long-wave instability. A time adjustment to the Crow and Bate estimate for vortex linking is then derived for cases when thrust-based linking occurs.

  20. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  1. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.

    2016-10-01

    We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.

  2. Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.

  3. Large Autosomal Copy-Number Differences within Unselected Monozygotic Twin Pairs are Rare.

    PubMed

    McRae, Allan F; Visscher, Peter M; Montgomery, Grant W; Martin, Nicholas G

    2015-02-01

    Monozygotic (MZ) twins form an important system for the study of biological plasticity in humans. While MZ twins are generally considered to be genetically identical, a number of studies have emerged that have demonstrated copy-number differences within a twin pair, particularly in those discordant for disease. The rate of autosomal copy-number variation (CNV) discordance within MZ twin pairs was investigated using a population sample of 376 twin pairs genotyped on Illumina Human610-Quad arrays. After CNV calling using both QuantiSNP and PennCNV followed by manual annotation, only a single CNV difference was observed within the MZ twin pairs, being a 130 KB duplication of chromosome 5. Five other potential discordant CNV were called by the software, but excluded based on manual annotation of the regions. It is concluded that large CNV discordance is rare within MZ twin pairs, indicating that any CNV difference found within phenotypically discordant MZ twin pairs has a high probability of containing the causal gene(s) involved. PMID:25578400

  4. Partitioning of on-demand electron pairs

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Hohls, Frank; Kashcheyevs, Vyacheslavs; Wagner, Timo; Fricke, Lukas; Kästner, Bernd; Pierz, Klaus; Schumacher, Hans W.; Haug, Rolf J.

    2015-01-01

    The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

  5. Colors of dynamically associated asteroid pairs

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas A.

    2012-09-01

    Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroid pairs appears indistinguishable from that of all Main Belt asteroids. These findings support a scenario of pair formation from a common progenitor and suggest that pair formation is likely a compositionally independent process. In agreement with previous studies, this is most consistent with an origin via binary disruption and/or rotational fission.

  6. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  7. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  8. The Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Terzian, Yervant; Lazio, Joseph

    2006-06-01

    The Square Kilometre Array (SKA) is the future centimeter- and meter-wavelength telescope with a sensitivity about 50 times higher than present instruments. Its Key Science Projects are (a) Astrobiology including planetary formation within protoplanetary disks; (b) Testing theories of gravitation using an array of pulsars to search for gravitational waves and relativistic binaries to probe the strong-field regime; (c) The origin and evolution of cosmic magnetism, both within the Galaxy and in intergalactic space, via an all-sky grid of magnetic field measurements; (d) The end of the Dark Ages, involving searches for a neutral hydrogen signature, the first supermassive black holes, and the first metal-rich systems; and (e) A hydrogen census to a redshift z greater than or equal to 1 from which to study the evolution of galaxies, dark matter, and dark energy. The SKA will operate at wavelengths from 1.2 cm to 3 m (0.1-25 GHz), providing milliarcsecond resolution at the shortest wavelengths. Its instantaneous field of view will be about 1° (20 cm wavelength), with many simultaneous beams on the sky. The Reference Design is composed of a large number of small dish antennas, building upon an original US proposal. In order to obtain these capabilities at a reasonable cost, significant engineering investments are being made in antennas, wideband feeds and receivers, and signal processing; aperture arrays (phased feeds) are also being investigated in Europe for the lower frequencies. Candidate sites are in Argentina, Australia, China, and South Africa, with a short list of acceptable sites anticipated late in 2006.

  9. Diode laser array

    NASA Technical Reports Server (NTRS)

    Carlson, Nils W. (Inventor); Evans, Gary A. (Inventor); Kaiser, Charlie J. (Inventor)

    1990-01-01

    A diode laser array comprises a substrate of a semiconductor material having first and second opposed surfaces. On the first surface is a plurality of spaced gain sections and a separate distributed Bragg reflector passive waveguide at each end of each gain section and optically connecting the gain sections. Each gain section includes a cavity therein wherein charge carriers are generated and recombine to generate light which is confined in the cavity. Also, the cavity, which is preferably a quantum well cavity, provides both a high differential gain and potentially large depth of loss modulation. Each waveguide has a wavelength which is preferably formed by an extension of the cavity of the gain sections and a grating. The grating has a period which provides a selective feedback of light into the gain sections to supporting lasing, which allows some of the light to be emitted from the waveguide normal to the surface of the substrate and which allows optical coupling of the gain sections. Also, the grating period provides an operating wavelength which is on the short wavelength side of the gain period of the gain sections required for laser oscillation. An RF pulse is applied so as to maximize the magnitude of the loss modulation and the differential gain in the gain sections. The array is operated by applying a DC bias to all the gain sections at a level just below the threshold of the gain sections to only one of the gain sections which raises the bias in all of the gain sections to a level that causes all of the gain sections to oscillate. Thus, a small bias can turn the array on and off.

  10. UAVSAR Phased Array Aperture

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  11. A systolic array architecture for the Applebaum-Howells array

    NASA Astrophysics Data System (ADS)

    Ueno, Motoharu; Kawabata, K.; Morooka, Tasuku

    1990-08-01

    A systolic array architecture for the Applebaum-Howells array is derived. The problem to be solved is the elimination of the global signal feedback loop in the conventional Applebaum-Howells array processor. The procedure involved in deriving the architecture consists of two steps: orthogonalization of the input element signals and elimination of the feedback loop. In the first step, the input element signals are orthogonalized with regard to each other by using the Gram-Schmidt processor, placed ahead of the Applebaum-Howells processor. It is shown in the second step that the orthogonality in the Gram-Schmidt processor output signals can remove the global signal feedback loop and that the Applebaum-Howells array can be implemented effectively by using a systolic array with regular structure and local communication. Simulation results also show that the proposed processor features desirable characteristics for the radiation pattern with low sidelobe level common to the Applebaum-Howells array.

  12. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Dreher, J.

    2006-12-01

    The ATA will be a massively parallel array of 350 6-m antennas operating from 0.5 GHz to 11.3 GHz. It will be a superb instrument for both surveys and for imaging large, complex sources. By exploiting recent drops in the cost of electronics and by adopting the simplest possible design, the cost of the ATA will be significantly less than that of existing 100-m class telescopes. The ATA offers a very large primary field of view that may be imaged with a spectralline correlator and, at the same time, be studied with 16 dual-polarization pencil beams. The ATA also will have unique capabilities for very high fidelity imaging and for RFI excision. Central to the design is a high performance, yet cost effective, antenna with a Gregorian reflector system, connected to a novel ultrawide- band, log-periodic feed. Analog fiber is used to eliminate most of the electronics that are located at the antennas in more conventional arrays, allowing for a massively parallel signal processing design that offers enormous flexibility. A 42-element version of the ATA will begin observing in 2006.

  13. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  14. 90 Seconds of Discovery: Frustrated Lewis Pairs

    SciTech Connect

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2014-02-14

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  15. Engineering a factorable photon pair source

    SciTech Connect

    Zielnicki, Kevin; Kwiat, Paul

    2014-12-04

    Spontaneous parametric downconversion is an important process for producing pairs of photons for quantum optics. We discuss a scheme for eliminating undesired inter-photon correlations inherent in this process, and an efficient characterization of spectral correlations.

  16. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  17. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  18. Non stationary pair model in blazar

    NASA Astrophysics Data System (ADS)

    Marcowith, Alexandre; Henri, Gilles; Renaud, Nicolas

    2001-09-01

    This article shortly present an improved version of pair models for X and gamma-ray emission from blazar jets. The radiations are generated through external and synchrotron Inverse Compton mechanisms in the vicinity of a super-massive black hole by an ultra-relativistic electron-positron pair plasma pervading a non-relativistic electron-proton jet (two-flow model). Non stationary solutions are found by solving simultaneously pair creation/annihilation, soft photon absorption and particle acceleration processes along the jet. The power supply necessary to re-accelerate particles is not treated in a self-consistent procedure but parametrised. Pair creation opacity effects can lead to interesting variability effects depending on the X-ray emission regimes. Multi-wavelength observations by INTEGRAL will provide tests for the model, and also for the matter content and variability mechanisms in compact sources.

  19. 90 Seconds of Discovery: Frustrated Lewis Pairs

    ScienceCinema

    Kathmann, Shawn; Schenter, Greg; Autrey, Tom

    2016-07-12

    Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.

  20. Mixed parity pairing in a dipolar gas

    NASA Astrophysics Data System (ADS)

    Bruun, G. M.; Hainzl, C.; Laux, M.

    2016-10-01

    We show that fermionic dipoles in a two-layer geometry form Cooper pairs with both singlet and triplet components when they are tilted with respect to the normal of the planes. The mixed parity pairing arises because the interaction between dipoles in the two different layers is not inversion symmetric. We use an efficient eigenvalue approach to calculate the zero-temperature phase diagram of the system as a function of the dipole orientation and the layer distance. The phase diagram contains purely triplet as well as mixed singlet and triplet superfluid phases. We show in detail how the pair wave function for dipoles residing in different layers smoothly changes from singlet to triplet symmetry as the orientation of the dipoles is changed. Our results indicate that dipolar quantum gases can be used to unambiguously observe mixed parity pairing.

  1. Early Results from the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; LWA Collaboration

    2012-01-01

    The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Scientific programs include pulsars, supernova remnants, general transient searches, radio recombination lines, solar and Jupiter bursts, investigations into the "dark ages" using redshifted hydrogen, and ionospheric phenomena. Upon completion, LWA will consist of 53 phased array "stations” distributed accross a region over 400 km in diameter. Each station consists of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5sigma, 8 MHz, 2 polarizations, 1 h, zenith) from 20-80 MHz; with angular resolution of a few arcseconds. Additional information is online at http://lwa.unm.edu. Partners in the LWA project include LANL, JPL, NRAO, NRL, UNM, NMT, and Virginia Tech. The first station of the LWA, called "LWA1", is located near the center of the EVLA and has recently begun scientific operations. The LWA1 images the sky in realtime using the "transient buffer - narrowband” (TBN) system which is operational with 257 dipoles, and a bandwidth of 70 kHz. The LWA1 can also form up to 4 beams on the sky simultaneously with 16 MHz bandwidth in each of two tuning and full polarization. Early results include observations of pulsars, the Sun, and Jupiter.

  2. Synchronization in Disordered Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Dissanayake, S. T. M.; Trees, B. R.

    2001-10-01

    There is considerable scientific and technological interest in the time-dependent behavior of arrays of non-identical Josephson junctions, whose voltages oscillate with individual bare frequencies that can be made, through interactions, to renormalize their frequencies to a common value. We have studied the degree of synchronization of a subset of overdamped junctions in a ladder geometry, in which the voltages across the ``rung'' junctions of the ladder oscillate with the same, renormalized frequency and a fixed phase difference. We measure the degree of synchronization of the junctions with an order parameter, r (0<= r<= 1), as a function of the nearest-neighbor junction coupling strength. We also determined that a time-averaged version of the resistively-shunted junction (RSJ) equations could be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of the junction coupling strength and also demonstrated that the relationship between the array size N and the critical coupling strength for all junctions to oscillate with the same frequency scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.

  3. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O.; Okandan, Murat; Stein, David J.; Yang, Pin; Cesarano, III, Joseph; Dellinger, Jennifer

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  4. Ultrabright source of entangled photon pairs.

    PubMed

    Dousse, Adrien; Suffczyński, Jan; Beveratos, Alexios; Krebs, Olivier; Lemaître, Aristide; Sagnes, Isabelle; Bloch, Jacqueline; Voisin, Paul; Senellart, Pascale

    2010-07-01

    A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of the radiative decay of two electron-hole pairs trapped in a semiconductor quantum dot. Today, these sources operate at a very low rate, below 0.01 photon pairs per excitation pulse, which strongly limits their applications. For systems based on parametric conversion, this low rate is intrinsically due to the Poissonian statistics of the source. Conversely, a quantum dot can emit a single pair of entangled photons with a probability near unity but suffers from a naturally very low extraction efficiency. Here we show that this drawback can be overcome by coupling an optical cavity in the form of a 'photonic molecule' to a single quantum dot. Two coupled identical pillars-the photonic molecule-were etched in a semiconductor planar microcavity, using an optical lithography method that ensures a deterministic coupling to the biexciton and exciton energy states of a pre-selected quantum dot. The Purcell effect ensures that most entangled photon pairs are emitted into two cavity modes, while improving the indistinguishability of the two optical recombination paths. A polarization entangled photon pair rate of 0.12 per excitation pulse (with a concurrence of 0.34) is collected in the first lens. Our results open the way towards the fabrication of solid state triggered sources of entangled photon pairs, with an overall (creation and collection) efficiency of 80%. PMID:20613838

  5. Extracting differential pair distribution functions using MIXSCAT

    SciTech Connect

    Wurden, Caroline; Page, Katharine; Llobet, Anna; White, Claire E.; Proffen, Thomas

    2010-08-27

    Differently weighted experimental scattering data have been used to extract partial or differential structure factors or pair distribution functions in studying many materials. However, this is not done routinely partly because of the lack of user-friendly software. This paper presents MIXSCAT, a new member of the DISCUS program package. MIXSCAT allows one to combine neutron and X-ray pair distribution functions and extract their respective differential functions.

  6. Algorithm for Aligning an Array of Receiving Radio Antennas

    NASA Technical Reports Server (NTRS)

    Rogstad, David

    2006-01-01

    A digital-signal-processing algorithm (somewhat arbitrarily) called SUMPLE has been devised as a means of aligning the outputs of multiple receiving radio antennas in a large array for the purpose of receiving a weak signal transmitted by a single distant source. As used here, aligning signifies adjusting the delays and phases of the outputs from the various antennas so that their relatively weak replicas of the desired signal can be added coherently to increase the signal-to-noise ratio (SNR) for improved reception, as though one had a single larger antenna. The method was devised to enhance spacecraft-tracking and telemetry operations in NASA's Deep Space Network (DSN); the method could also be useful in such other applications as both satellite and terrestrial radio communications and radio astronomy. Heretofore, most commonly, alignment has been effected by a process that involves correlation of signals in pairs. This approach necessitates the use of a large amount of hardware most notably, the N(N - 1)/2 correlators needed to process signals from all possible pairs of N antennas. Moreover, because the incoming signals typically have low SNRs, the delay and phase adjustments are poorly determined from the pairwise correlations. SUMPLE also involves correlations, but the correlations are not performed in pairs. Instead, in a partly iterative process, each signal is appropriately weighted and then correlated with a composite signal equal to the sum of the other signals (see Figure 1). One benefit of this approach is that only N correlators are needed; in an array of N much greater than 1 antennas, this results in a significant reduction of the amount of hardware. Another benefit is that once the array achieves coherence, the correlation SNR is N - 1 times that of a pair of antennas.

  7. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  8. Recognition of Short Time-Paired Activities

    NASA Astrophysics Data System (ADS)

    Chaminda, Hapugahage Thilak; Klyuev, Vitaly; Naruse, Keitaro; Osano, Minetada

    We undertake numerous activities in our daily life and for some of those we forget to complete the action as originally intended. Significant aspects while performing most of these actions might be: “pairing of both hands simultaneously” and “short time consumption”. In this work an attempt has been made to recognize those kinds of Paired Activities (PAs), which are easy to forget, and to provide a method to remind about uncompleted PAs. To represent PAs, a study was done on opening and closing of various bottles. A model to define PAs, which simulated the paired behavior of both hands, is proposed, called “Paired Activity Model” (PAM). To recognize PAs using PAM, Paired Activity Recognition Algorithm (PARA) was implemented. Paired motion capturing was done by accelerometers, which were worn by subjects on the wrist areas of both hands. Individual and correlative behavior of both hands was used to recognize exact PA among other activities. Artificial Neural Network (ANN) algorithm was used for data categorization in PARA. ANN significantly outperformed the support vector machine algorithm in real time evaluations. In the user-independent case, PARA achieved recognition rates of 96% for only target PAs and 91% for target PAs undertaken amidst unrelated activities.

  9. Migration of helium-pair in metals

    NASA Astrophysics Data System (ADS)

    Cao, J. L.; Geng, W. T.

    2016-09-01

    We have carried out a first-principles density functional theory investigation into the migration of both a single interstitial He and an interstitial He-pair in Fe, Mo, W, Cu, Pd, and Pt. We find the migration trajectories and barriers are determined predominantly by low-energy He-pair configurations which depend mainly on the energy state of a single He in different interstices. The migration barrier for a He-pair in bcc metals is always slightly higher than for a single He. Configurations of a He-pair in fcc metals are very complicated, due to the existence of interstitial sites with nearly identical energy for a single He. The migration barrier for a He-pair is slightly lower than (in Cu), or similar to (in Pd and Pt) a single He. The collective migrations of a He-pair are ensured by strong Hesbnd He interactions with strength-versus-distance forms resembling chemical bonds and can be described with Morse potentials.

  10. Formation of asteroid pairs by rotational fission.

    PubMed

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  11. Seniority zero pair coupled cluster doubles theory

    SciTech Connect

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  12. Spectral similarity of unbound asteroid pairs

    NASA Astrophysics Data System (ADS)

    Wolters, Stephen D.; Weissman, Paul R.; Christou, Apostolis; Duddy, Samuel R.; Lowry, Stephen C.

    2014-04-01

    Infrared (IR) spectroscopy between 0.8 and 2.5 μ has been obtained for both components of three unbound asteroid pairs, using the NASA Infrared Telescope Facility with the SpeX instrument. Pair primary (2110) Moore-Sitterly is classified as an S-type following the Bus-DeMeo taxonomy; the classification for secondary (44612) 1999 RP27 is ambiguous: S/Sq/Q/K/L-type. Primary (10484) Hecht and secondary (44645) 1999 RC118 are classified as V-types. IR spectra for Moore-Sitterly and Hecht are each linked with available visual photometry. The classifications for primary (88604) 2001 QH293 and (60546) 2000 EE85 are ambiguous: S/Sq/Q/K/L-type. Subtle spectral differences between them suggest that the primary may have more weathered material on its surface. Dynamical integrations have constrained the ages of formation: 2110-44612 > 782 kyr; 10484-44645 = 348 (+823,-225) kyr; 88604-60546 = 925 (+842,-754) kyr. The spectral similarity of seven complete pairs is ranked in comparison with nearby background asteroids. Two pairs, 17198-229056 and 19289-278067, have significantly different spectra between the components, compared to the similarity of spectra in the background population. The other pairs are closer than typical, supporting an interpretation of each pair's formation from a common parent body.

  13. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  14. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  15. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    SciTech Connect

    Dunning, Thom H. Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  16. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  17. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  18. Future directions for NICMOS arrays

    NASA Technical Reports Server (NTRS)

    Thompson, R.; Rieke, Marcia J.; Young, Erick T.; Mccarthy, D.; Rasche, Robert; Blessinger, Michael; Vural, Kadri; Kleinhans, William

    1989-01-01

    The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) for the Hubble Space Telescope (HST) requires focal plane arrays of 256x256 pixels for both its cameras and its spectrometers. The new arrays, developed by the Rockwell Corporation for NICMOS, have 40 microns pixels of HgCdTe bump bonded to a switched MOSFET readout. Expected read noise and dark current for the arrays at 60 K are 30 e and 1 e/sec. respectively. The basis for these numbers is previous experience with 128x128 arrays.

  19. Nanoelectrode array for electrochemical analysis

    DOEpatents

    Yelton, William G.; Siegal, Michael P.

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  20. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence.

    PubMed

    Poirier-Richard, H-P; Couture, M; Brule, T; Masson, J-F

    2015-07-21

    The influence of experimental parameters on the performance of plasmonic sensors is of great importance in analytical sciences. The plasmon coupling conditions (angle of incidence, metal composition, laser frequency and excitation/emission properties of fluorophores) were thus investigated for surface plasmon-enhanced fluorescence on metallic nanohole arrays. Optimal fluorescence enhancements were achieved when the plasmon resonance, the excitation laser and the fluorophore's excitation wavelengths were matched. The enhancement of the acceptor emission of a rhodamine 6G(Rh6G)-Quasar670™ FRET pair was achieved on the nanohole arrays by tuning the plasmon wavelength with the maximal overlap of the donor's emission and acceptor excitation. Silver nanohole arrays achieved larger fluorescence enhancement than gold nanohole arrays at 532 nm, while gold nanohole arrays led to larger fluorescence enhancement at 635 nm. These results demonstrate the importance of tuning the plasmon coupling conditions for surface plasmon-enhanced fluorescence sensing.

  1. Improving protein array performance: focus on washing and storage conditions.

    PubMed

    Nath, Nidhi; Hurst, Robin; Hook, Brad; Meisenheimer, Poncho; Zhao, Kate Q; Nassif, Nadine; Bulleit, Robert F; Storts, Douglas R

    2008-10-01

    For protein microarrays, maintaining protein stability during the slide processing steps of washing, drying, and storage is of major concern. Although several studies have focused on the stability of immobilized antibodies in antibody microarrays, studies on protein-protein interaction arrays and enzyme arrays are lacking. In this paper we used five bait-prey protein interaction pairs and three enzymes to optimize the washing, drying, and storage conditions for protein arrays. The protein arrays for the study were fabricated by combining HaloTag technology and cell-free protein expression. The HaloTag technology, in combination with cell-free expression, allowed rapid expression and immobilization of fusion proteins on hydrogel-coated glass slides directly from cell extracts without any prior purification. Experimental results indicate enzyme captured on glass slides undergoes significant loss of activity when washed and spin-dried using only phosphate buffer, as is typically done with antibody arrays. The impact of washing and spin-drying in phosphate buffer on protein-protein interaction arrays was minimal. However, addition of 5% glycerol to the wash buffer helps retain enzyme activity during washing and drying. We observed significant loss of enzyme activity when slides were stored dry at 4 degrees C, however immobilized enzymes remained active for 30 days when stored at -20 degrees C in 50% glycerol. We also found that cell-free extract containing HaloTag-fused enzymes could undergo multiple freeze/thaw cycles without any adverse impact on enzyme activity. The findings indicate that for large ongoing studies, proteins of interest expressed in cell-free extract can be stored at -70 degrees C and repeatedly used to print small batches of protein array slides to be used over a few weeks.

  2. In arrayed ranks: array technology in the study of mesothelioma.

    PubMed

    Gray, Steven G; Fennell, Dean A; Mutti, Luciano; O'Byrne, Kenneth J

    2009-03-01

    Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research.

  3. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  4. Solitons in optomechanical arrays.

    PubMed

    Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying

    2016-06-15

    We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261

  5. Array biosensor: recent developments

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Rowe-Taitt, Chris A.; Feldstein, Mark J.; Ligler, Frances S.

    1999-05-01

    A fluorescence-based immunosensor has been developed for simultaneous analyses of multiple samples for 1 to 6 different antigens. A patterned array of recognition antibodies immobilized on the surface of a planar waveguide is used to 'capture' analyte present in samples. Bound analyte is then quantified by means of fluorescent detector molecules. Upon excitation of the fluorescent label by a small diode laser, a CCD camera detects the pattern of fluorescent antigen:antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. A new design for a fluidics distribution system is shown, as well as results from assays for physiologically relevant concentrations of staphylococcal enterotoxin B (SEB), F1 antigen from Yersinia pestis, and D- dimer, a marker of sepsis and thrombotic disorders.

  6. Microcavity array IR photodetector

    SciTech Connect

    Esman, A K; Kuleshov, V K; Zykov, G L

    2009-12-31

    An original microcavity array IR photodetector is proposed and the sensitivity and response time of its pixels are calculated. A photosensitive element represents a composite silicon microcavity made of two optically coupled closed waveguides on a dielectric substrate whose resonance wave depends on its temperature. This dependence is used to detect IR radiation which heats an absorbing element and the composite microcavity thermally coupled with this element. It is shown that for a spatial resolution of 45 {mu}m, the time response is 30 ms and the sensitivity is 10{sup -3} K at the IR radiation power of {approx} 4.7 x 10{sup -8} W element{sup -1}. (photodetectors)

  7. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  8. TRMM Solar Array

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Basic requirement of 978.59 watts per Panel output @ 58.9 volts B.O.L. was met on an average basis per agreement with NASA. Lower grade Cells were used on the shadowed Panel (Boom shadow) to maximize available power to the Spacecraft. The average output @ 58.9 volts was 991 watts. The outputs of the four t4) Panels ranged from 960 to 1,022 watts. The Panels successfully passed environmental testing at TRW to the contract specification and subsequent testing at NASA which involved output measurements at elevated temperatures. As this type of Array had never previously been built by TRW (aluminum Substrate with 4 cm x 4.4 cm GaAs Cells), the TRMM Program was a development effort combined with a Qual and Flight production effort. The most significant technical problem was Cell cracking during Qual thermal cycling. The cracking problem was determined to be generic within our Solar Array factory in the application of GaAs Cells to our designs. As a result, a TRW funded manufacturing process verification panel (known as the Manufacturing Verification Panel) was built to demonstrate our ability to properly apply GaAs Cells. The original Qual Panel comprised three (3) design variations with respect to Coverglass-to-Cell and Cell-to-Substrate adhesives. The intent was to qualify multiple designs in case one or more failed. When two of the three combinations failed due to excessive Cell breakage during thermal cycling, NASA was reluctant to allow Flight production based on the one remaining good Qual Panel Quadrant. This issue was pivotal for continuing the contract. Facts and recommendations are as follows: (1) The cause of the excessive cracking was never determined. and (2) The areas where the excessive cracking occurred utilized DC93-500 glassing adhesive which was NASA approved, and had been widely used by TRW on a multitude of projects.

  9. A row-column addressed micromachined ultrasonic transducer array for surface scanning applications.

    PubMed

    Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Logan, Andrew S; Yeow, John T W

    2014-12-01

    Row-column addressed arrays for ultrasonic non-destructive testing (NDT) applications are analyzed and demonstrated in this paper. Simulation and experimental results of a row-column addressed 32 by 32 capacitive micromachined ultrasonic transducer (CMUT) array are presented. The CMUT array, which was designed for medical imaging applications, has a center frequency of 5.3MHz. The CMUT array was used to perform C-scans on test objects with holes that have diameters of 1.0mm and 0.5mm. The array transducer has an aperture size of 4.8mm by 4.8mm, and it was used to scan an area of 4.0mm by 4.0mm. Compared to an N by N fully addressed 2-D array, a row-column addressed array of the same number of elements requires fewer (N instead of N(2)) pairs of interconnection and supporting electronic components such as pulsers and amplifiers. Even though the resulting field of view is limit by the aperture size, row-column addressed arrays and the row-column addressing scheme can be an alternative option of 2-D arrays for NDT applications.

  10. Experimental extraction of an entangled photon pair from two identically decohered pairs.

    PubMed

    Yamamoto, Takashi; Koashi, Masato; Ozdemir, Sahin Kaya; Imoto, Nobuyuki

    2003-01-23

    Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.

  11. High base pair opening rates in tracts of GC base pairs.

    PubMed

    Dornberger, U; Leijon, M; Fritzsche, H

    1999-03-12

    Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.

  12. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  13. Measuring Spatial Coherence With a Two-Dimensional Aperture Array

    NASA Astrophysics Data System (ADS)

    González, Aura I.; Mejía, Yobani

    2008-04-01

    The complex degree of spatial coherence of the optical fields, in general, is a shift variant quantity. Therefore to characterize it, in addition to knowing how it changes in function of the separation of the two points under analysis, we require knowing how it changes in function of the location of these points. In order to measure the complex degree of spatial coherence of any quasi-monochromatic optical field, we propose a method that uses a mask with a two-dimensional array of apertures (small circular holes) to sample the optical field. The distribution of the apertures in the mask is made so that we get a non redundant array, it means that the classes of aperture pairs of the mask are composed just by one pair. From the Fourier spectrum of the interference pattern in far field generated by the mask we can determine the magnitude and the phase of the complex degree of spatial coherence. The efficiency of the array is verified with experimental results using a partially coherent beam generated following the rotating glass method. Finally, the results obtained in the experiment are compared with those obtained by means of numerical simulations.

  14. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  15. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  16. Parity Protection in Flux-Pairing Qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Bell, Matthew; Jin, Xiaoyue; Ioffe, Lev; Gershenson, Michael

    2015-03-01

    We have studied a novel qubit whose logical states are decoupled from the environment due to parity protection. The flux-pairing qubit (FPQ) is a superconducting loop consisting of a 4 π periodic Josephson element (a Cooper pair box with the e charge on the central island) and a superinductor. This device is dual to the charge-pairing qubit. The FPQ design suppresses tunneling of single flux lines through the junctions in the Cooper pair box and enforces simultaneous tunneling of pairs of flux lines. The lowest-energy quantum states of the FPQ are encoded in the parity of the magnetic flux quanta inside the loop. Parity protection prohibits the mixing of these states, and reduces both the decay and dephasing rates. We will discuss the experimental aspects of the FPQ optimization and the possibility of fault-tolerant operations with these qubits. The work was supported in part by grants from the Templeton Foundation (40381) and the NSF (DMR-1006265).

  17. Radical-pair based avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  18. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a “two-layer” compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  19. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  20. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; Chatterjee, Utpal; Campuzano, J. C.; Scalapino, Douglas J.

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  1. Pairing in a dry Fermi sea

    PubMed Central

    Maier, T. A; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-01-01

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and −k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  2. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  3. Tremor as observed by the Array of Arrays in Cascadia

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Vidale, J. E.; Creager, K. C.

    2010-12-01

    We are capturing the intimate details of tremor activity in Cascadia with 8 small-aperture seismic arrays in northwestern Washington. The Array of Arrays (AoA) focuses on the tremor-active megathrust, including the area we previously imaged with a solo seismic array in 2008 [Ghosh et al., GRL, 2009, 2010]. Each array consists of 10 to 20 three-component sensors recording in continuous mode. Since it became operational in June 2009, the AoA has recorded several minor tremor episodes, and the recent episodic tremor and slip (ETS) event in August 2010. During the ETS event, each array was augmented by 10 additional single-channel, vertical-component sensors. We have already started to analyze seismic data for tremor episodes in July 2009, and March 2010. At each array, we apply a beamforming technique to stack the seismic energy at every 0.2 Hz from 2 to 15 Hz. During active tremor, the arrays show stable slowness, and azimuth over time, and up to 15 Hz energy on vertical channels, and 6 Hz on horizontals, with slowness consistent with the P and S waves respectively (Figure 1). Vidale et al. in this meeting provide a detailed description of a weeklong tremor episode in March 2010. The ETS started early second week of August about 60 km south of our arrays, and in a week or so, migrated along-strike to the north passing directly underneath the arrays. Strong tremor is still active about 50 km north of the arrays as we write this abstract. We will imminently analyze this data, and by the time of AGU, have preliminary results to present. Currently, we are developing an algorithm to focus as many arrays as possible to locate the tremor sources. With fine tremor detection capability and good azimuthal coverage, our AoA will better resolve the various confounding features of tremor spatiotemporal distribution (e.g., tremor patches, bands, streaks, rapid tremor reversals, low frequency earthquakes) that have been recently discovered in Cascadia. The AoA is poised to provide

  4. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its

  5. Passive microfluidic array card and reader

    SciTech Connect

    Dugan, Lawrence Christopher; Coleman, Matthew A.

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  6. A systolic array parallelizing compiler

    SciTech Connect

    Tseng, P.S. )

    1990-01-01

    This book presents a completely new approach to the problem of systolic array parallelizing compiler. It describes the AL parallelizing compiler for the Warp systolic array, the first working systolic array parallelizing compiler which can generate efficient parallel code for complete LINPACK routines. This book begins by analyzing the architectural strength of the Warp systolic array. It proposes a model for mapping programs onto the machine and introduces the notion of data relations for optimizing the program mapping. Also presented are successful applications of the AL compiler in matrix computation and image processing. A complete listing of the source program and compiler-generated parallel code are given to clarify the overall picture of the compiler. The book concludes that systolic array parallelizing compiler can produce efficient parallel code, almost identical to what the user would have written by hand.

  7. Loudspeaker line array educational demonstration.

    PubMed

    Anderson, Brian E; Moser, Brad; Gee, Kent L

    2012-03-01

    This paper presents a physical demonstration of an audio-range line array used to teach interference of multiple sources in a classroom or laboratory exercise setting. Software has been developed that permits real-time control and steering of the array. The graphical interface permits a user to vary the frequency, the angular response by phase shading, and reduce sidelobes through amplitude shading. An inexpensive, eight-element loudspeaker array has been constructed to test the control program. Directivity measurements of this array in an anechoic chamber and in a large classroom are presented. These measurements have good agreement with theoretical directivity predictions, thereby allowing its use as a quantitative learning tool for advanced students as well as a qualitative demonstration of arrays in other settings. Portions of this paper are directed toward educators who may wish to implement a similar demonstration for their advanced undergraduate or graduate level course in acoustics.

  8. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.

  9. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  10. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  11. Array gain for a cylindrical array with baffle scatter effects.

    PubMed

    Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying

    2007-11-01

    Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.

  12. Theoretical analysis of novel fiber grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  13. Automated DNA Base Pair Calling Algorithm

    1999-07-07

    The procedure solves the problem of calling the DNA base pair sequence from two channel electropherogram separations in an automated fashion. The core of the program involves a peak picking algorithm based upon first, second, and third derivative spectra for each electropherogram channel, signal levels as a function of time, peak spacing, base pair signal to noise sequence patterns, frequency vs ratio of the two channel histograms, and confidence levels generated during the run. Themore » ratios of the two channels at peak centers can be used to accurately and reproducibly determine the base pair sequence. A further enhancement is a novel Gaussian deconvolution used to determine the peak heights used in generating the ratio.« less

  14. An Evolved Orthogonal Enzyme/Cofactor Pair.

    PubMed

    Reynolds, Evan W; McHenry, Matthew W; Cannac, Fabien; Gober, Joshua G; Snow, Christopher D; Brustad, Eric M

    2016-09-28

    We introduce a strategy that expands the functionality of hemoproteins through orthogonal enzyme/heme pairs. By exploiting the ability of a natural heme transport protein, ChuA, to promiscuously import heme derivatives, we have evolved a cytochrome P450 (P450BM3) that selectively incorporates a nonproteinogenic cofactor, iron deuteroporphyrin IX (Fe-DPIX), even in the presence of endogenous heme. Crystal structures show that selectivity gains are due to mutations that introduce steric clash with the heme vinyl groups while providing a complementary binding surface for the smaller Fe-DPIX cofactor. Furthermore, the evolved orthogonal enzyme/cofactor pair is active in non-natural carbenoid-mediated olefin cyclopropanation. This methodology for the generation of orthogonal enzyme/cofactor pairs promises to expand cofactor diversity in artificial metalloenzymes.

  15. Hard Photodisintegration of a Proton Pair

    DOE PAGES

    Pomerantz, Ishay; Bubis, Nathaniel; Allada, Kalyan; Beck, Arie; Beck, Sara; Berman, Barry L.; Boeglin, Werner U.; Camsonne, Alexandre; Canan, Mustafa; Chirapatpimol, Khem; et al

    2010-01-08

    We present the first study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. An s^{-11} scaling of the cross section was observed, as predicted by the constituent counting rule. The onset of the scaling is at a higher energy and the cross section is significantly lower then for pn pair photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strongmore » energy-dependent structure not observed in deuteron photodisintegration.« less

  16. Parametric Amplification of Scattered Atom Pairs

    SciTech Connect

    Campbell, Gretchen K.; Mun, Jongchul; Boyd, Micah; Streed, Erik W.; Ketterle, Wolfgang; Pritchard, David E.

    2006-01-20

    We have observed parametric generation and amplification of ultracold atom pairs. A {sup 87}Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k{sub 0} and spontaneously scattered into two final states with quasimomenta k{sub 1} and k{sub 2}. Furthermore, when a seed of atoms was first created with quasimomentum k{sub 1} we observed parametric amplification of scattered atoms pairs in states k{sub 1} and k{sub 2} when the phase-matching condition was fulfilled. This process is analogous to optical parametric generation and amplification of photons and could be used to efficiently create entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in moving lattices observed in recent experiments.

  17. Hadronic production of massive lepton pairs

    SciTech Connect

    Berger, E.L.

    1982-12-01

    A review is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. I begin with the classical Drell-Yan annihilation model and its predictions. Subsequently, I discuss deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the perturbative QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, transverse-momentum distributions, implications for weak vector boson (W/sup + -/ and Z/sup 0/) yields and production properties, nuclear A dependence effects, correlations of the lepton pair with hadrons in the final state, and angular distributions in the lepton-pair rest frame.

  18. The Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  19. Solar Array Tracking Control

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D)more » convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed at compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  20. Planning a Global Array of Broadband Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Koper, Keith D.; Ammon, Charles J.

    2013-08-01

    A diverse group of more than 70 seismologists met for 2 days in Raleigh, N.C., to report on recent innovations in seismic array methods and to discuss the future of seismic arrays in global seismology. The workshop was sponsored by the Incorporated Research Institutions for Seismology (IRIS), with U.S. National Science Foundation funding. Participants included representatives of existing array research groups in Australia, Canada, Germany, Japan, Norway, and the United States, with individuals from academia, government, and industry. The workshop was organized by the authors of this meeting report, Pablo Ampeuro (California Institute of Technology), and Colleen Dalton (Boston University), along with IRIS staff support.

  1. Breaking of Cooper pairs in 108Pd

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Kakavand, T.; Razavi, R.

    2016-04-01

    In this paper, breaking of Cooper pairs in 108Pd is investigated within the canonical ensemble framework and the BCS model. Our results show an evidence of two phase transitions, which are related to neutron and proton systems. Also, with consideration of pairing interaction, the role of neutron and proton systems in entropy, spin cutoff parameter and as a result in the moment of inertia are investigated. The results show minor role for the proton system at low temperatures and approximately equal roles for both neutron and proton systems after the critical temperature. Good agreement was observed between obtained results and the experimental data.

  2. Photon pair generation in birefringent optical fibers

    NASA Astrophysics Data System (ADS)

    Smith, Brian J.; Mahou, P.; Cohen, Offir; Lundeen, J. S.; Walmsley, I. A.

    2009-12-01

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  3. Comment on ``Pairing interaction and Galilei invariance''

    NASA Astrophysics Data System (ADS)

    Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.

    1999-05-01

    A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.

  4. Shrinking of the Cooper Pair Insulator Phase in Thin Films with Ultrasmall Superconducting Islands

    NASA Astrophysics Data System (ADS)

    Joy, J. C.; Zhang, X.; Zhao, C.; Valles, J. M., Jr.; Fernandes, G.; Xu, J. M.

    The ubiquity of the bosonic Cooper Pair Insulator (CPI) phase near the two-dimensional superconductor to insulator transition (SIT) is a long standing question. While a number of two dimensional materials exhibit bosonic insulating phases similar to the Mott Insulator in arrays of ultrasmall, Josephson coupled superconducting islands, others show behaviors consistent with a fermionic insulating phase. Utilizing specially prepared anodized aluminum oxide substrates, we are able to fabricate films reminiscent of arrays of superconducting islands whose properties are tunable by varying the substrate morphology. Our recent work has focused on arrays of islands which possess an energy level spacing comparable to the mean field superconducting gap, where one expects pair breaking followed by fermionic Anderson Localization as the dominant mechanism by which superconductivity is destroyed. Early results show that the paradigmatic bosonic insulator exists only very near the disorder tuned SIT, while films only marginally deeper in the insulating phase exhibit transport distinct from the CPI's reentrant, activated transport. We are grateful for the support of NSF Grant No. DMR-1307290, the AFOSR, and the AOARD. Currently at Northwestern Polytechnical University, Xian, China.

  5. Paired Learning: Tutoring by Non-Teachers. Incorporating "The Paired Reading Bulletin" No. 5.

    ERIC Educational Resources Information Center

    Paired Reading Bulletin, 1989

    1989-01-01

    The eight papers constituting the Proceedings of the fourth National Paired Reading Conference are published in an annual bulletin of the Paired Reading Project, together with seven papers constituting the Supplementary Proceedings of the Peer Tutoring Conference, and nine feature articles, as follows: (1) "Whole-School Policy on Parental…

  6. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  7. Microshutter Arrays for NIRSpec

    NASA Technical Reports Server (NTRS)

    Silverberg, Robert

    2008-01-01

    A primary science goal of the 6.5 m James Webb Space Telescope is to characterize the epoch of initial galaxy formation, observing the early universe as the first stars and galaxies formed. This program will be accomplished using a combination of multi-band imaging and spectroscopic measurements of large numbers of faint galaxies. Since these objects are in general sparse on the sky, a multi object spectrometer is required to enable this critical scientific investigation. We have developed a microshutter array which is to be used as a high contrast, remotely programmable field selector for the Near Infrared Spectrometer (NIRSpec) on JWST. This device allows slits to be opened at the locations of selected galaxies in the field of view, and blocks sources and background light from the rest of the field. The first flight design devices have been built and were tested. These first generation of devices were used to demonstrate performance and flight readiness. Devices of the same design will be delivered to ESA for installation into the NIRSpec instrument.

  8. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  9. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.

    PubMed

    Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2015-05-18

    We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.

  10. Offering an Array of Improvements

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Sensors Unlimited, Inc., with SBIR funding from NASA's Langley Research Center, Goddard Space Flight Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory, developed a monolithic focal plane array for near-infrared imaging. The company developed one- (1- D) and two-dimensional (2-D) imaging arrays consisting of a highly reliable InGaAs p-I-n diode as a photodetector for monitoring a variety of applications, including single element device applications in receivers. The InGaAs 1-D and 2-D arrays have many applications. For example, they monitor the performance of dense wavelength division multiplexing (DWDM) systems- the process of packaging many channels into a single fiber-optic cable. Sensors Unlimited commercially offers its LXTM and LYTM Series InGaAs linear arrays for reliable DWDM performance monitoring. The LX and LY arrays enable instrument module designs with no moving parts, which provides for superior uniformity, and fast, linear outputs that remain stable over a wide temperature range. Innovative technologies derived from the monolithic focal plane array have enabled telecommunication companies to optimize existing bandwidth in their fiber-optic networks in order to support a high volume of network traffic. At the same time, the technologies obtained from the array have the potential for reducing costs, while increasing performance from Sensors Unlimited's current product lines.

  11. Replica amplification of nucleic acid arrays

    SciTech Connect

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  12. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  13. A Novel Approach for Collaborative Pair Programming

    ERIC Educational Resources Information Center

    Goel, Sanjay; Kathuria, Vanshi

    2010-01-01

    The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…

  14. Turbulent Particle Pair Diffusion Using Kinematic Simulations

    NASA Astrophysics Data System (ADS)

    Malik, Nadeem

    2015-11-01

    Sweeping errors in Kinematic Simulations (KS) have been shown to be negligible in turbulent flows with extended inertial subranges up to at least 1pair diffusivity K = < Δ . v > in KS may therefore be a genuine effect, challenging previous assumptions that in turbulence with generalized power-law energy spectra, E (k) ~k-p for 1 <= 3, locality would lead to, K ~σΔγ , where σΔ = [ <Δ2 > ]1/2 , Δ is the pair separation, v is the pair relative velocity, < > is the ensemble average, and γ = (1 + p) / 2 . For Kolmogorov turbulence this gives, K ~σΔ4 / 3 . A new analysis, supported by KS confirms that both local and non-local effects govern the pair diffusion process, leading to, K ~σΔγp , where now γp > γ for Kolmogorov turbulence, K ~σΔ1 . 53 . Thus non-local diffusional processes cannot be neglected, and this may have important consequences for the general theory of turbulence. The author acknowledge financial support from SABIC, #SB101011.

  15. Phenomena, dynamics and instabilities of vortex pairs

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Asselin, D. J.; Harris, D. M.

    2014-12-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex-vortex interactions and vortex-wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies.

  16. Assessing Paired Orals: Raters' Orientation to Interaction

    ERIC Educational Resources Information Center

    Ducasse, Ana Maria; Brown, Annie

    2009-01-01

    Speaking tasks involving peer-to-peer candidate interaction are increasingly being incorporated into language proficiency assessments, in both large-scale international testing contexts, and in smaller-scale, for example course-related, ones. This growth in the popularity and use of paired and group orals has stimulated research, particularly into…

  17. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  18. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  19. Fermionic Paired Superfluids at High Rotation Rate

    NASA Astrophysics Data System (ADS)

    Veillette, Martin Y.; Sheehy, Daniel E.; Gurarie, Victor; Radzihovsky, Leo

    2006-03-01

    I will describe our recent work on rotating resonantly-paired superfluids, mapping out the Feshbach resonance detuning, temperature and rotational frequency phase diagram. I will compare our predictions with the recent experiments on degenerate atomic ^6Li gases across a Feshbach resonance [Zwierlein et al. Nature 435, 1047 (2005)] and will make proposals for future experiments in such systems.

  20. Evolution of displays within the pair bond

    PubMed Central

    Servedio, Maria R.; Price, Trevor D.; Lande, Russell

    2013-01-01

    Although sexual selection is an important cause of display evolution, in socially monogamous species (e.g. many birds), displays continue after formation of the pair bond. Here, we consider that these displays evolve because they stimulate the partner to increase investment in offspring. Our study is motivated by elaborate mutual displays in species that are largely monomorphic and have long-term pair bonds (e.g. the great crested grebe, Podiceps cristatus) and by many empirical results evidencing that display manipulation affects parental investment. Using population genetic models, we show that a necessary condition for the permanent establishment of mutual displays in the pair bond is that the benefit of investment by the pair is more than twice that resulting from investment by a single individual. Pre-existing biases to respond to displays by increased investment are a necessary component of display evolution. We also consider examples where one sex (e.g. males) stimulates increased investment in offspring by the other sex. Here, display and additional investment cannot evolve permanently, but can increase and linger at high frequency for a long time before loss. We discuss how such transient effects may lead to the evolution of permanent displays as a result of evolution at additional loci. PMID:23427172

  1. Pairing the Adult Learner and Boutique Wineries

    ERIC Educational Resources Information Center

    Holyoke, Laura; Heath-Simpson, Delta

    2013-01-01

    This study explored connections between adult learners and their experiences in the context of small boutique wineries operating in the start-up phase of the organizational life cycle. The research objective was to gain insight regarding the pairing of adult learners with the entering of a specialty industry. Fourteen individuals from four…

  2. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  3. Quantum physics: Photons paired with phonons

    NASA Astrophysics Data System (ADS)

    Blencowe, Miles

    2016-02-01

    The force exerted by light on an object has been used to pair photons with quantum units of mechanical vibration. This paves the way for mechanical oscillators to act as interfaces between photons and other quantum systems. See Letter p.313

  4. Paired Field Placements: A Means for Collaboration

    ERIC Educational Resources Information Center

    Gardiner, Wendy; Robinson, Karen Shipley

    2009-01-01

    In this qualitative study, pairs of preservice teachers were placed with single cooperating teachers in a 100-hour urban field placement. The question guiding this research was would preservice teachers collaborate in ways that contributed to their professional development and if so why, how, and to what end? Results from field notes, multiple…

  5. Analysis of Paired Comparison Data Using Mx

    ERIC Educational Resources Information Center

    Tsai, Rung-Ching; Wu, Tsung-Lin

    2004-01-01

    By postulating that the random utilities associated with the choice options follow a multivariate normal distribution, Thurstonian models (Thurstone, 1927) provide a straightforward representation of paired comparison data. The use of Monte Carlo Expectation-Maximization (MCEM) algorithms and limited information approaches have been proposed to…

  6. Primordial nuggets survival and QCD pairing

    NASA Astrophysics Data System (ADS)

    Lugones, G.; Horvath, J. E.

    2004-03-01

    We reexamine the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition with the explicit consideration of pairing between quarks in a color-flavor locked state. Assuming that primordial quark nuggets are actually formed, we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived with substantial mass. We find a substantial quenching of the evaporation+boiling processes, which suggests the survival of primordial nuggets for the currently considered range of the pairing gap Δ. Boiling is shown to depend on the competition of an increased stability window and the suppression of the rate, and is not likely to dominate the destruction of the nuggets. If surface evaporation dominates, the fate of the nuggets depends on the features of the initial mass spectrum of the nuggets, their evaporation rate, and the value of the pairing gap, as shown and discussed in the text.

  7. Application specific serial arithmetic arrays

    NASA Technical Reports Server (NTRS)

    Winters, K.; Mathews, D.; Thompson, T.

    1990-01-01

    High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.

  8. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  9. Proposal of a Bulk HTSC Staggered Array Undulator

    SciTech Connect

    Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.; Sonobe, Taro; Higashimura, Keisuke; Masuda, Kai; Ohgaki, Hideaki; Yoshida, Kyohei; Zen, Heisyun

    2010-06-23

    We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on the Bean mode for a type-II superconductor were compared.

  10. Optical simulation of neutrino oscillations in binary waveguide arrays.

    PubMed

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

  11. Optical simulation of neutrino oscillations in binary waveguide arrays.

    PubMed

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities. PMID:25375692

  12. Multiple-Mouse MRI with Multiple Arrays of Receive Coils

    PubMed Central

    Ramirez, Marc S.; Esparza-Coss, Emilio; Bankson, James A.

    2010-01-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a three-fold acceleration was achieved with SNR in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. PMID:20146352

  13. Biphoton generation in quadratic waveguide arrays: A classical optical simulation

    NASA Astrophysics Data System (ADS)

    Gräfe, M.; Solntsev, A. S.; Keil, R.; Sukhorukov, A. A.; Heinrich, M.; Tünnermann, A.; Nolte, S.; Szameit, A.; Kivshar, Yu S.

    2012-08-01

    Quantum entanglement became essential in understanding the non-locality of quantum mechanics. In optics, this non-locality can be demonstrated on impressively large length scales, as photons travel with the speed of light and interact only weakly with their environment. Spontaneous parametric down-conversion (SPDC) in nonlinear crystals provides an efficient source for entangled photon pairs, so-called biphotons. However, SPDC can also be implemented in nonlinear arrays of evanescently coupled waveguides which allows the generation and the investigation of correlated quantum walks of such biphotons in an integrated device. Here, we analytically and experimentally demonstrate that the biphoton degrees of freedom are entailed in an additional dimension, therefore the SPDC and the subsequent quantum random walk in one-dimensional arrays can be simulated through classical optical beam propagation in a two-dimensional photonic lattice. Thereby, the output intensity images directly represent the biphoton correlations and exhibit a clear violation of a Bell-like inequality.

  14. Asteroid clusters similar to asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Vokrouhlicky, David; Fatka, Petr; Kusnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2016-10-01

    We study five small, tight and young clusters of asteroids. They are placed around following largest (primary) bodies: (11842) Kap'bos, (14627) Emilkowalski, (16598) 1992 YC2, (21509) Lucascavin and (39991) 1998 HR37. Each cluster has 2-4 secondaries that are tightly clustered around the primary body, with distance in the 5-dimensional space of mean orbital elements mostly within 10 m/s, and always < 23 m/s. Backward orbital integrations indicate that they formed between 105 and 106 yr ago. In the P1-q space, where P1 is the primary's spin period and q = Σ Mj/M1 is the total secondary-to-primary mass ratio, the clusters lie in the same range as asteroid pairs formed by rotational fission. We have extended the model of a proto-system separation after rotational fission by Pravec et al. (2010) for application to systems with more than one secondary and found a perfect match for the five tight clusters. We find these clusters to be similar to asteroid pairs and we suggest that they are "extended pairs", having 2-4 escaped secondaries rather than just one secondary as in the case of an asteroid pair. We compare them to six young mini-families (1270) Datura, (2384) Schulhof, (3152) Jones, (6825) Irvine, (10321) Rampo and (20674) 1999 VT1. These mini-families have similar ages, but they have a higher number of members and/or they show a significantly larger spread in the mean orbital elements (dmean on an order of tens m/s) than the five tight clusters. In the P1-q space, all but one of the mini-families lie in the same range as asteroid pairs and the tight clusters; the exception is the mini-family of (3152) Jones which appears to be a collisional family. A possibility that the other five mini-families were also formed by rotational fission as we suggest for the tight clusters ("extended asteroid pairs") is being explored.Reference:Pravec, P., et al. Formation of asteroid pairs by rotational fission. Nature 466, 1085-1088.

  15. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  16. Areal array jetting device for ball grid arrays

    SciTech Connect

    Frear, D.R.; Yost, F.G.; Schmale, D.T.; Essien, M.

    1997-08-01

    Package designs for microelectronics devices have moved from through-hole to surface mount technology in order to increase the printed wiring board real estate available by utilizing both sides of the board. The traditional geometry for surface mount devices is peripheral arrays where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. A solution to the peripheral surface mount issue is to shift the leads to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. In a BGA package, the leads are on the bottom surface of the package in the form of an array of solder balls. The current practice of joining BGA packages to printed wiring boards involves a hierarchy of solder alloy compositions. A high melting temperature ball is typically used for standoff. A promising alternative to current methods is the use of jetting technology to perform monolithic solder ball attachment. This paper describes an areal array jetter that was designed and built to simultaneously jet arrays of solder balls directly onto BGA substrates.

  17. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  18. Temperature and frequency compensated array beam steering unit

    NASA Astrophysics Data System (ADS)

    Claborn, K. D.; Bailey, W. C.

    1986-04-01

    Beam pointing errors and sidelobes resulting from temperature variations on the aperture and power divider of a series phased array antenna operating at a plurality of selected operating channel frequencies and having uniformly spaced elements are compensated for by placing a temperature sensor on both the aperture and power divider and converting the respective temperature outputs to digital signals which are fed to a digital beam steering unit. A pair of programmed memories are included in the beam steering unit which respond to an address or pointer corresponding to the digitized temperature values and the selected operating frequency to read out stored digitized beam steering phase gradients and feed phase correction which are combined and sequentially applied at regular intervals to symmetrically located phase shifter pairs. A uniformly compensated beam is thereafter radiated at a predetermined phase angle.

  19. Naval Research Laboratory array cable qualifying test program. Contract report

    SciTech Connect

    Swenson, R.C.; Howell, T.A.

    1994-08-01

    In 1993, Neptune Technologies designed and fabricated two prototype array cables under NRL`s support. Briefly, these two generic cables consisted of a monolay construction utilizing 18 singles and atwisted pair construction incorporating seven twisted pairs. Each conductor core was strengthened with an overbraid of Kevlar, then one core was jacketed with a braided sleeve of polyester which incorporated a fuzz type fairing, while the monocore incorporated an extruded jacket with a straked strum suppressor. The essence of the new cables are small AWG number 26 conductors insulated with a thin coating of Surlyn. These much smaller conductors are expected to provide a smaller cable with higher reliability. See Neptune Report dated December 32,1993, entitled Prototype Cable Final Technical Report.

  20. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  1. Fracture characterisation using geoelectric null-arrays

    NASA Astrophysics Data System (ADS)

    Falco, Pierik; Negro, François; Szalai, Sándor; Milnes, Ellen

    2013-06-01

    The term "geoelectric null-array" is used for direct current electrode configurations yielding a potential difference of zero above a homogeneous half-space. This paper presents a comparative study of the behaviour of three null-arrays, midpoint null-array (MAN), Wenner-γ null-array and Schlumberger null-array in response to a fracture, both in profiling and in azimuthal mode. The main objective is to determine which array(s) best localise fractures or best identify their orientation. Forward modelling of the three null-arrays revealed that the Wenner-γ and Schlumberger null-arrays localise vertical fractures the most accurately, whilst the midpoint null-array combined with the Schlumberger null-array allows accurate orientation of a fracture. Numerical analysis then served as a basis to interpret the field results. Field test measurements were carried out above a quarry in Les Breuleux (Switzerland) with the three null-arrays and classical arrays. The results were cross-validated with quarry-wall geological mapping. In real field circumstances, the Wenner-γ null-array proved to be the most efficient and accurate in localising fractures. The orientations of the fractures according to the numerical results were most efficiently determined with the midpoint null-array, whilst the Schlumberger null-array adds accuracy to the results. This study shows that geoelectrical null-arrays are more suitable than classical arrays for the characterisation of fracture geometry.

  2. Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays

    NASA Astrophysics Data System (ADS)

    Aguilar, Alvaro Díaz; Forzani, Erica S.; Li, Xiulan; Tao, Nongjian; Nagahara, Larry A.; Amlani, Islamshah; Tsui, Raymond

    2005-11-01

    We demonstrate a heavy metal-ion sensor for drinking water analysis using a conducting polymer nanojunction array. Each nanojunction is formed by bridging a pair of nanoelectrodes separated with a small gap (<60nm) with electrodeposited peptide-modified polyanilines. The signal transduction mechanism of the sensor is based on the change in the nanojunction conductance as a result of polymer conformational changes induced by the metal-ion chelating peptide. The nanojunction sensor allows real-time detection of Cu2+ and Ni2+ at ppt range.

  3. Pipeline feedback array sorter with multi-string sort array and merge tree array

    SciTech Connect

    Chuang, H.Y.H.; He, G.

    1989-01-17

    A pipeline feedback array sorter is described comprising: (a) a multi-string sort array having m inputs and outputs, where m is the width of the array or the number of data strings and is greater than or equal to 2; (b) a merge tree array having q leave nodes connected to the output of one of p buffer memories through a multiplexor for successively merging the columns of a buffer memory to fill subsequent buffer memory columns and having an output from the root node, where q is greater than or equal to 2 and p is greater than or equal to 1; (c) a first buffer memory having m inputs connected to the corresponding m outputs of the multi-string sort array for filling the first buffer memory and q outputs, the first buffer memory having mXq memory units, each of the units for holding one data item, the first buffer memory having two dimensional data movements; (d) p-1 buffer memories in feedback loops and having a single dimensional data movement, each of the p-1 buffer memories having an input connected with the output of the merge tree array and q outputs connected to the q leave nodes of the merge tree array, wherein each of the p buffer memories serve as input buffers to the merge tree array; and (e) a multiplexor for controlling and filling from the first buffer memory and p-1 buffer memories electrically connected to the inputs to the merge tree, whereby merging the columns of the p-th buffer memory a final sort is obtained from the root node of the merge tree array.

  4. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  5. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated

  6. Bolometric Arrays for Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Castillo, E.; Serrano, A.; Torres-Jácome, A.

    2009-11-01

    During last years, semiconductor bolometers using thin films have been developed at INAOE, specifically boron-doped hydrogenated amorphous silicon films. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and sub-millimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible configurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit specifically designed for this application. Both versions will work below 77K.

  7. An Update on the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; Tremblay, S. E.; Pihlstrom, Y.; Craig, J.; Rickard, L.; Dowell, J.; Kassim, N.; Clarke, T.; Hicks, B.; Polisensky, E.; Ray, P.; Schmitt, H.; Woods, D.; Hartman, J.; Ellingson, S.; Wolfe, C.; Navarro, R.; Sigman, E.; Soriano, M.; Owen, F.

    2011-01-01

    The Long Wavelength Array (LWA), a SKA Pathfinder, will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Scientific programs include pulsars, supernova remnants, general transient searches, radio recombination lines, solar and Jupiter bursts, investigations into the "dark ages" using redshifted hydrogen, and ionospheric phenomena. Upon completion, LWA will consist of 53 phased array "stations” distributed across a region over 400 km in diameter. Each station consists of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5sigma, 8 MHz, 2 polarizations, 1 h, zenith) from 20-80 MHz; with angular resolution of a few arcseconds. A technical overview of the LWA project is available (Ellingson etal. 2009, Proc. IEEE, 97, 1421), and additional information is online at http://lwa.unm.edu. Partners in the LWA project include LANL, JPL, NRAO, NRL, UNM, NMT, and Virginia Tech. The first station of the LWA, called "LWA-1", is located near the center of the EVLA and is expected to achieve initial operational capability in early 2011. As of September 2010, all antennas have been installed as well as a subset of the "production” versions of receivers, digital electronics, data recorders, and monitoring and control system. The "transient buffer - wideband” (TBW) capability is operational with 20 dipoles, and provides the ability to capture simultaneous raw 196 MSPS A/D output over the entire 10-88 MHz tuning range in 61 ms bursts. Other operating modes are in the final stages of implementation. Some early results obtained with LWA-1 will be presented. Funding for the LWA has been provided by the Office of Naval Research.

  8. Dynamically Reconfigurable Systolic Array Accelorators

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)

    2014-01-01

    A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.

  9. Flexible solar-array mechanism

    NASA Technical Reports Server (NTRS)

    Olson, M. C.

    1972-01-01

    One of the key elements of the flexible rolled-up solar array system is a mechanism to deploy, retract, and store the flexible solar-cell arrays. The selection of components, the design of the mechanism assembly, and the tests that were performed are discussed. During 6 months in orbit, all mission objectives were satisfied, and inflight performance has shown good correlation with preflight analyses and tests.

  10. Towards Fault Resilient Global Arrays

    SciTech Connect

    Tipparaju, Vinod; Krishnan, Manoj Kumar; Palmer, Bruce J.; Petrini, Fabrizio; Nieplocha, Jaroslaw

    2007-09-03

    The focus of the current paper is adding fault resiliency to the Global Arrays. We extended the GA toolkit to provide a minimal level of capabilities to enable programmer to implement fault resiliency at the user level. Our fault-recovery approach is programmer assisted and based on frequent incremental checkpoints and rollback recovery. In addition, it relies of pool of spare nodes that are used to replace the failing node. We demonstrate usefulness of fault resilient Global Arrays in application context.

  11. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  12. A lightweight inflatable solar array

    SciTech Connect

    Malone, P.K.; Williams, G.T.

    1995-12-31

    L`Garde and Phillips Laboratory have developed a light weight deployable solar array wing in the 200-1000 watt range, on the Inflatable Torus Solar Array Technology Demonstration (ITSAT Demo) Project. The power density of a flight unit could be as high as 93 W/kg for a 200 Watt-class wing, including structure and deployment mechanisms. In Phase 1, a proof of concept torus and array was constructed and deployed in the laboratory. During Phase 2, a revised torus and array were constructed and tested at L`Garde and the Naval Research Lab. The qualification tests included random vibration, deployment in a thermal vacuum chamber, natural frequency determination, and thermal cycling. The flight design uses 2 mil thick crystalline Si cells on an AO protected flexible Kapton film substrate folded accordion style for stowage. The support structure is a rectangular frame comprised of two inflated then rigidized cylinders, the array stowage box and its cover. The cylinders, flattened, folded and stored for launch, are deployed by inflating with N{sub 2} and rigidized by straining the cylinder laminate material controllably beyond the elastic limit. The engineering protoflight array was designed for optimum power density but, due to availability, some of the components came from excess production runs. Because of this, the actual power density of the test article was 59 W/kg, or 36% less than the baseline flight array. However, using components as designed, the projected 93 w/kg can be achieved. Due to simple deployment mechanism, the cost of an ITSAT-type solar array is about one-half that of competing systems.

  13. Linearly coupled oscillations in fully degenerate pair and warm pair-ion astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ilyas, M.; Wazir, Z.; Ehsan, Zahida

    2014-08-01

    In this paper we study the coexisting low frequency oscillations in strongly degenerate, magnetized, (electron-positron) pair and warm pair-ion plasma. The dispersion relations are obtained for both the cases in macroscopic quantum hydrodynamics approximation. In pair-ion case, the dispersion equation shows coupling of electrostatic and (shear) electromagnetic modes under certain circumstances with important role of ion temperature. Domain of existence of such waves and their relevance to dense degenerate astrophysical plasmas is pointed out. Results are analyzed numerically for typical systems with variation of ion concentration and ion temperature.

  14. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Royal, G. C., III

    1981-04-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  15. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  16. Premeiotic events and meiotic chromosome pairing.

    PubMed

    Bennett, M D

    1984-01-01

    There is practical difficulty in identifying when meiosis begins. Moreover, because of contradictory definitions there is ambiguity and some confusion as to when, in terms of the cell cycle, premeiosis ends and meiosis begins. Nevertheless, results for several organisms show clearly that meiotic chromosome behaviour is affected by premeiotic events and especially by events during the final premeiotic mitosis and/or premeiotic interphase. This review considers only premeiotic events which do (or might) affect meiotic chromosome pairing by their effect on genomic characters, such as: chromosome number, homology, condition and position, with particular emphasis on the last. Interpreted in its widest sense 'premeiotic events affecting meiotic chromosome pairing' must include karyogamy. Moreover, while karyogamy is the normal means of achieving the diploid chromosome number and pairs of homologues essential for normal chromosome pairing, it is not the only way, as illustrated by the remarkable premeiotic adaptations seen in the apogamous ferns and the frog Rana esculenta. Little is known about the condition (including the molecular organization) of chromosomes during their approach and switch to meiosis. However, completion during premeiosis of some DNA synthesis may be essential for normal meiotic chromosome pairing. Various results (including different effects of colchicine given first at different premeiotic stages) have been claimed as evidence of one or other type of premeiotic spatial ordering of chromosomes which might favour, or be essential for, meiotic chromosome pairing. Chromosome placement has been studied recently using the electron microscope, serial thin-section, reconstruction technique. This has revealed clear evidence of non-random spatial placement of chromosomes in non-meiotic and premeiotic cells. For example, in root-tip cells of barley, Hordeum vulgare L. cv. Tuleen 346 (2n = 2x = 14), it showed: a significant spatial separation of two haploid

  17. It’s Not Just Lunch: Extra-Pair Commensality Can Trigger Sexual Jealousy

    PubMed Central

    Kniffin, Kevin M.; Wansink, Brian

    2012-01-01

    Do people believe that sharing food might involve sharing more than just food? To investigate this, participants were asked to rate how jealous they (Study 1) – or their best friend (Study 2) – would be if their current romantic partner were contacted by an ex-romantic partner and subsequently engaged in an array of food- and drink-based activities. We consistently find – across both men and women – that meals elicit more jealousy than face-to-face interactions that do not involve eating, such as having coffee. These findings suggest that people generally presume that sharing a meal enhances cooperation. In the context of romantic pairs, we find that participants are attuned to relationship risks that extra-pair commensality can present. For romantic partners left out of a meal, we find a common view that lunch, for example, is not “just lunch.” PMID:22792327

  18. It's not just lunch: extra-pair commensality can trigger sexual jealousy.

    PubMed

    Kniffin, Kevin M; Wansink, Brian

    2012-01-01

    Do people believe that sharing food might involve sharing more than just food? To investigate this, participants were asked to rate how jealous they (Study 1)--or their best friend (Study 2)--would be if their current romantic partner were contacted by an ex-romantic partner and subsequently engaged in an array of food- and drink-based activities. We consistently find--across both men and women--that meals elicit more jealousy than face-to-face interactions that do not involve eating, such as having coffee. These findings suggest that people generally presume that sharing a meal enhances cooperation. In the context of romantic pairs, we find that participants are attuned to relationship risks that extra-pair commensality can present. For romantic partners left out of a meal, we find a common view that lunch, for example, is not "just lunch." PMID:22792327

  19. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    PubMed

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  20. A noninteractive two-state model of cell membrane ion channels using the pair approximation

    NASA Astrophysics Data System (ADS)

    Erdem, Rıza; Ekiz, Cesur

    2004-10-01

    A noninteractive two-state model for ion channels in cell membranes is proposed using the pair approximation. The cell membrane is visualized as a two-dimensional sheet with a regular array of lattice sites and is described by a simple two-state system in which each channel is opened by a movement of single gating particle which carries a charge. Assuming that the particle is in one of the two positions associated with closed and open states, the free energy is calculated using the pair approximation and minimized with respect to the pair variables to obtain the steady-state activation curves. Using known parameters for sodium channels in giant squid axon as an example, the fractions of open channels are obtained by solving a self-consistent nonlinear algebraic equation for the pair variables and the effect of the lattice coordination number on the channel activation vs. voltage curve is investigated. Our numerical results are compared with the mean-field results as well as the experimental measurements by cut-open axon technique.

  1. Contact Pairing Interaction for the Hartree-Fock-Bogoliubov Calculations

    SciTech Connect

    Dobaczewski, J.

    2001-10-18

    Properties of density-dependent contact pairing interactions in nuclei are discussed. It is shown that the pairing interaction that is intermediate between surface and volume pairing forces gives the pairing gaps that are compatible with the experimental odd-even mass staggering. Results of the deformed Hartree-Fock-Bogoliubov calculations for this ''mixed'' pairing interaction, and using the transformed harmonic oscillator basis, are presented.

  2. Electron-pair excitations and the molecular Coulomb continuum

    SciTech Connect

    Colgan, James

    2009-01-01

    Electron-pair excitations in the molecular hydrogen continuum are described by quantizing rotations of the momentum plane of the electron pair about by the pair's relative momentum. A helium-like description of the molecular pi.Joto double ionization is thus extended to higher angular momenta of the electron pair. A simple three-state superposition is found to account surprisingly well for recent observations of noncoplanar electron-pair, molecular-axis angular distributions.

  3. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  4. A search for resonant Z pair production

    SciTech Connect

    Boveia, Antonio

    2008-12-01

    I describe a search for anomalous production of Z pairs through a new massive resonance X in 2.5-2.9 fb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV using the CDFII Detector at the Fermilab Tevatron. I reconstruct Z pairs through their decays to electrons, muons, and quarks. To achieve perhaps the most efficient lepton reconstruction ever used at CDF, I apply a thorough understanding of the detector and new reconstruction software heavily revised for this purpose. In particular, I have designed and employ new general-purpose algorithms for tracking at large η in order to increase muon acceptance. Upon analyzing the unblinded signal samples, I observe no X → ZZ candidates and set upper limits on the production cross section using a Kaluza-Klein graviton-like acceptance.

  5. The Radical-Pair Mechanism of Magnetoreception.

    PubMed

    Hore, P J; Mouritsen, Henrik

    2016-07-01

    Although it has been known for almost half a century that migratory birds can detect the direction of the Earth's magnetic field, the primary sensory mechanism behind this remarkable feat is still unclear. The leading hypothesis centers on radical pairs-magnetically sensitive chemical intermediates formed by photoexcitation of cryptochrome proteins in the retina. Our primary aim here is to explain the chemical and physical aspects of the radical-pair mechanism to biologists and the biological and chemical aspects to physicists. In doing so, we review the current state of knowledge on magnetoreception mechanisms. We dare to hope that this tutorial will stimulate new interdisciplinary experimental and theoretical work that will shed much-needed additional light on this fascinating problem in sensory biology. PMID:27216936

  6. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  7. PAIR (Planning and Analysis of Inspection Resources)

    SciTech Connect

    Teichmann, T.; Santaniello, A.; Fishbone, L.G.

    1994-03-01

    The safeguards inspection effort of the International Atomic Energy Agency consists of the efforts for the Physical Inventory Verifications to close the annual material balance, Interim Inventory Verifications, conducted mainly to satisfy the Timeliness Criteria, Flow Verifications to verify the transfer of material, and Containment and Surveillance activities, which help preserve continuity of knowledge concerning the material. Estimating the requiring overall future inspection effort under a variety of conditions is an important part of Agency planning. As exemplified by the sample results provides a straightforward means to analyze `What if` situations in safeguards implementation. It thereby permits managers and analysts to study future scenarios and their effect on human resources. It is planned to introduce into PAIR a direct capability for studying costs associated with these hypothetical changes in safeguards implementation. In this way PAIR could more easily assist the Safeguards Department in its current program of investigating new safeguards approaches.

  8. A study of paired necro kidney grafts.

    PubMed

    Lamm, L U

    1979-01-01

    The comparison of the fate of kidney pairs originating from the same donor offers an opportunity to control variability in primary kidney graft survival due to characteristics of the donor. The present study on 1,303 pairs was made possible by combining the information in the Scandiatransplant registry and the EDTA follow-up file. The analysis showed that, contrary to expectation, the main variability in kidney graft survival is not donor dependent but rather due to post-nephrectomy factors. By the present approach it was possible to demonstrate a significant effect of presensitisation, HLA-A,B matching and recipient age. In contrast, transportation, and differences in sex and ABO blood group combinations seem to be of no importance for kidney graft survival.

  9. Pair correlations in neutron-rich nuclei

    SciTech Connect

    Esbensen, H.

    1995-08-01

    We started a program to study the ground-state properties of heavy, neutron-rich nuclei using the Hartree-Fock-Bogolyubov (HFB) approximation. This appears at present to be the most realistic approach for heavy nuclei that contain many loosely bound valence neutrons. The two-neutron density obtained in this approach can be decomposed into two components, one associated with the mean field and one associated with the pairing field. The latter has a structure that is quite similar to the pair-density obtained by diagonalizing the Hamiltonian for a two-neutron halo, which was studied earlier. This allows comparison of the HFB solutions against numerically exact solutions for two-neutron halos. This work is in progress. We intend to apply the HFB method to predict the ground-state properties of heavier, more neutron-rich nuclei that may be produced at future radioactive beam facilities.

  10. Pseudogap Pairing in Ultracold Fermi Atoms

    SciTech Connect

    Hu Hui; Liu Xiaji; Drummond, Peter D.; Dong Hui

    2010-06-18

    The Bose-Einstein condensate to Bardeen-Cooper-Schrieffer crossover in ultracold Fermi gases creates an ideal environment to enrich our knowledge of many-body systems. It is relevant to a wide range of fields from condensed matter to astrophysics. The nature of pairing in strongly interacting Fermi gases can be readily studied. This aids our understanding of related problems in high-T{sub c} superconductors, whose mechanism is still under debate due to the large interaction parameter. Here, we calculate the dynamical properties of a normal, trapped strongly correlated Fermi gas, by developing a quantum cluster expansion. Our calculations for the single-particle spectral function agree with recent rf spectroscopy measurements, and clearly demonstrate pseudogap pairing in the strongly interacting regime.

  11. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  12. A viscous vortex pair in ground effect

    NASA Astrophysics Data System (ADS)

    Peace, A. J.; Riley, N.

    1983-04-01

    Attention is given to the unsteady fluid motion which is induced when a vortex pair moves in an incompressible viscous fluid towards a plane boundary. The vortex pair at the initial instant is represented by two inviscid line vortices and the line which joins them is parallel to the boundary surface. The boundary surface may be either a rigid boundary at which the no-slip condition must be satisfied or a free surface corresponding to zero shear stress. The governing equations and a solution procedure are discussed, taking into account a finite-difference approach. Research of calculations are presented for both a non-slip boundary and a stress-free boundary. The phenomenon or rebound of the vortices from the boundary is found to occur in both cases. An explanation for this result in terms of viscous effects is provided.

  13. Schwinger pair production with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kasper, V.; Hebenstreit, F.; Oberthaler, M. K.; Berges, J.

    2016-09-01

    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.

  14. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  15. Dual Resolution Images from Paired Fingerprint Cards

    National Institute of Standards and Technology Data Gateway

    NIST Dual Resolution Images from Paired Fingerprint Cards (PC database for purchase)   NIST Special Database 30 is being distributed for use in development and testing of fingerprint compression and fingerprint matching systems. The database allows the user to develop and evaluate data compression algorithms for fingerprint images scanned at both 19.7 ppmm (500 dpi) and 39.4 ppmm (1000 dpi). The data consist of 36 ten-print paired cards with both the rolled and plain images scanned at 19.7 and 39.4 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  16. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  17. Satellite observations of transionospheric pulse pairs

    SciTech Connect

    Holden, D.N.; Munson, C.P.; Devenport, J.C.

    1995-04-15

    The BLACKBEARD payload aboard the ALEXIS satellite has been making broadband observations in the VHF band of the radio spectrum. Since November of 1993 several hundred unusual signals have been recorded. The peculiar nature of these bursts of radio noise is that they have a duration of approximately 10 {mu}sec, are typically 20 to 40 dB brighter than the average background, and occur in pairs separated by approximately 50 {mu}sec. The authors have dubbed these emissions TransIonospheric Pulse Pairs, or TIPP events. They do not know what the source of these emissions is, but the dispersion of these signals is consistent with an origin at or near the earth`s surface. The satellite field of view and time of day when TIPP events are generally detected are consistent with regions of thunderstorm activity such as south-central Africa or Indonesia. 4 refs., 5 figs.

  18. Pairing of Cooper pairs in a Josephson junction network containing an impurity

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Sodano, Pasquale

    2009-10-01

    We show how to induce pairing of Cooper pairs (and, thus, 4e superconductivity) as a result of local embedding of a quantum impurity in a Josephson network fabricable with conventional junctions. We find that a boundary double sine-Gordon model provides an accurate description of the dc Josephson current patterns, as well as of the stable phases accessible to the network. We point out that tunneling of pairs of Cooper pairs is robust against quantum fluctuations, as a consequence of the time reversal invariance, arising when the central region of the network is pierced by a dimensionless magnetic flux phiv=π. We find that, for phiv=π, a stable attractive finite coupling fixed point emerges and point out its relevance for engineering a two-level quantum system with enhanced coherence.

  19. Permanent GPS Geodetic Array in Southern California

    NASA Technical Reports Server (NTRS)

    Green, Cecil H.; Green, Ida M.

    1998-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in the spring of 1990 to evaluate continuous Global Positioning System (GPS) measurements as a new too] for monitoring crustal deformation. Southern California is an ideal location because of the relatively high rate of tectonic deformation, the high probability of intense seismicity, the long history of conventional and space geodetic measurements, and the availability of a well developed infrastructure to support continuous operations. Within several months of the start of regular operations, the PGGA recorded far-field coseismic displacements induced by the June 28, 1992 (M(sub w)=7.3), Landers earthquake, the largest magnitude earthquake in California in the past 40 years and the first one to be recorded by a continuous GPS array. Only nineteen months later, on 17 January 1994, the PGGA recorded coseismic displacements for the strongest earthquake to strike the Los Angeles basin in two decades, the (M(sub e)=6.7) Northridge earthquake. At the time of the Landers earthquake, only seven continuous GPS sites were operating in southern California; by the beginning of 1994, three more sites had been added to the array. However, only a pair of sites were situated in the Los Angeles basin. The destruction caused by the Northridge earthquake spurred a fourfold increase in the number of continuous GPS sites in southern California within 2 years of this event. The PGGA is now the regional component of the Southern California Integrated GPS Network (SCIGN), a major ongoing densification of continuous GPS sites, with a concentration in the Los Angeles metropolitan region. Continuous GPS provides temporally dense measurements of surface displacements induced by crustal deformation processes including interseismic, coseismic, postseismic, and aseismic deformation and the potential for detecting anomalous events such as preseismic deformation and interseismic strain variations. Although strain meters

  20. Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Klemm, M.; Craddock, I. J.; Preece, A.; Leendertz, J.; Benjamin, R.

    2008-12-01

    Using similar techniques to ground penetrating radars, microwave detection of breast tumors is a potential nonionizing and noninvasive alternative to traditional body-imaging techniques. In order to develop an imaging system, the team at Bristol have been working on a number of antenna array prototypes, based around a stacked-patch element, starting with simple pairs of elements and progressing to fully populated planar arrays. As the system commences human subject trials, a curved breast phantom has been developed along with an approximately hemi-spherical conformal array. This contribution will present details of the conformal array design and initial results from this unique experimental imaging system as applied to an anatomically shaped breast phantom.

  1. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    PubMed

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-01

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields. PMID:26957163

  2. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    PubMed

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-01

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  3. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules

    NASA Astrophysics Data System (ADS)

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-01

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar 1Σ molecules as qubits. Herein, we consider an array of polar 2Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  4. Spectra and symmetry in nuclear pairing

    SciTech Connect

    Balantekin, A. B.; Jesus, J. H. de; Pehlivan, Y.

    2007-06-15

    We apply the algebraic Bethe ansatz technique to the nuclear pairing problem with orbit dependent coupling constants and degenerate single particle energy levels. We find the exact energies and eigenstates. We show that for a given shell, there are degeneracies between the states corresponding to less than and more than half full shell. We also provide a technique to solve the equations of Bethe ansatz.

  5. On the pairing effects in triaxial nuclei

    SciTech Connect

    Oudih, M. R.; Fellah, M.; Allal, N. H.

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  6. Signature scheme based on bilinear pairs

    NASA Astrophysics Data System (ADS)

    Tong, Rui Y.; Geng, Yong J.

    2013-03-01

    An identity-based signature scheme is proposed by using bilinear pairs technology. The scheme uses user's identity information as public key such as email address, IP address, telephone number so that it erases the cost of forming and managing public key infrastructure and avoids the problem of user private generating center generating forgery signature by using CL-PKC framework to generate user's private key.

  7. Electrostatic drift modes in quantum pair plasmas

    SciTech Connect

    Ren Haijun; Cao Jintao; Wu Zhengwei

    2008-10-15

    Electrostatic drift waves in a nonuniform quantum magnetized electron-positron (pair) plasma are investigated. An explicit and straightforward analytical expression of the fluctuation frequency is presented. The effects induced by quantum fluctuations, density gradients, and magnetic field inhomogeneity on the wave frequencies are discussed and a purely quantum drift mode appears. The present analytical investigations are relevant to dense astrophysical objects as well as laboratory ultracold plasmas.

  8. Trident Pair Production in Strong Laser Pulses

    SciTech Connect

    Ilderton, Anton

    2011-01-14

    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.

  9. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    NASA Astrophysics Data System (ADS)

    Lunyov, A. V.; Mikhajlov, V. M.

    2016-01-01

    Results of the Strong Pairing Approximation (SPA) as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM). It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  10. Grandmothering life histories and human pair bonding

    PubMed Central

    Coxworth, James E.; Kim, Peter S.; McQueen, John S.; Hawkes, Kristen

    2015-01-01

    The evolution of distinctively human life history and social organization is generally attributed to paternal provisioning based on pair bonds. Here we develop an alternative argument that connects the evolution of human pair bonds to the male-biased mating sex ratios that accompanied the evolution of human life history. We simulate an agent-based model of the grandmother hypothesis, compare simulated sex ratios to data on great apes and human hunter–gatherers, and note associations between a preponderance of males and mate guarding across taxa. Then we explore a recent model that highlights the importance of mating sex ratios for differences between birds and mammals and conclude that lessons for human evolution cannot ignore mammalian reproductive constraints. In contradiction to our claim that male-biased sex ratios are characteristically human, female-biased ratios are reported in some populations. We consider the likelihood that fertile men are undercounted and conclude that the mate-guarding hypothesis for human pair bonds gains strength from explicit links with our grandmothering life history. PMID:26351687

  11. Population of the giant pairing vibration

    NASA Astrophysics Data System (ADS)

    Laskin, M.; Casten, R. F.; Macchiavelli, A. O.; Clark, R. M.; Bucurescu, D.

    2016-03-01

    Background: The giant pairing vibration (GPV), a correlated two-nucleon mode in the second shell above the Fermi surface, has long been predicted and expected to be strongly populated in two-nucleon transfer cross sections similar to those of the normal pairing vibration. Recent experiments have provided evidence for this mode in ,15C14 but, despite sensitive studies, it has not been definitively identified in either Sn or Pb nuclei where pairing correlations are known to play a crucial role. Purpose: Our aim is to test whether features inherent to the mixing of bound and unbound levels might account for this and to study the effect in a simple and intuitively clear approach. Method: We study the mixing of unbound levels in a set of toy models that capture the essential physics of the GPV, along with a more realistic calculation including distorted-wave Born approximation transfer amplitudes. Results: The calculated (relative) cross section to populate a simulated GPV state is effectively low, compared to the case of bound levels with no widths Conclusions: The mixing turns out to be only a minor contributor to the weak population. Rather, the main reason is the melting of the GPV peak due to the width it acquires from the low orbital angular momentum single-particle states playing a dominant role in two-nucleon transfer amplitudes. This effect, in addition to a severe Q -value mismatch, may account for the elusive nature of this mode in (t ,p ) and (p ,t ) reactions.

  12. Emission from Pair Instability Supernovae with Rotation

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Emmanouil; Van Rossum, Daniel R; Whalen, Daniel J.

    2014-08-01

    Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, like SN 2007bi, and can also be one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating therefore exhibiting a differentevolutionary path due to the effects of rotationally-induced mixing and mass-loss.Proper identification of such events requires rigorous radiation hydrodynamics and non-localthermal equilibrium calculations that capture not only the behavior of the light curve but also the spectral evolution of these events accurately. We present radiation hydrodynamics and local and non-local thermal equilibrium radiation transport calculations for 90-140 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We find that for a variety of progenitor masses these events are too dim and too red in color to account for so far observed super-luminous supernovae and do not seem to matchother known events, in terms of spectral appearance. We discuss the qualitative differences between different radiation transport treatments and compare our results with previous results from non-rotating pair-instability supernovae.

  13. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  14. Grandmothering life histories and human pair bonding.

    PubMed

    Coxworth, James E; Kim, Peter S; McQueen, John S; Hawkes, Kristen

    2015-09-22

    The evolution of distinctively human life history and social organization is generally attributed to paternal provisioning based on pair bonds. Here we develop an alternative argument that connects the evolution of human pair bonds to the male-biased mating sex ratios that accompanied the evolution of human life history. We simulate an agent-based model of the grandmother hypothesis, compare simulated sex ratios to data on great apes and human hunter-gatherers, and note associations between a preponderance of males and mate guarding across taxa. Then we explore a recent model that highlights the importance of mating sex ratios for differences between birds and mammals and conclude that lessons for human evolution cannot ignore mammalian reproductive constraints. In contradiction to our claim that male-biased sex ratios are characteristically human, female-biased ratios are reported in some populations. We consider the likelihood that fertile men are undercounted and conclude that the mate-guarding hypothesis for human pair bonds gains strength from explicit links with our grandmothering life history. PMID:26351687

  15. Meiotic segregation of a homeologous chromosome pair.

    PubMed

    Maxfield Boumil, R; Kemp, B; Angelichio, M; Nilsson-Tillgren, T; Dawson, D S

    2003-03-01

    During meiosis, the alignment of homologous chromosomes facilitates their subsequent migration away from one another to opposite spindle poles at anaphase I. Recombination is part of the mechanism by which chromosomes identify their homologous partners, and serves to link the homologs in a way that, in some organisms, has been shown to promote proper attachment to the meiotic spindle. We have built a diploid strain that contains a pair of homeologous chromosomes V': one is derived from Saccharomyces cerevisiae and one originates from S. carlsbergensis. Sequence analysis reveals that these chromosomes share 71% sequence identity. The homeologs experience high levels of meiotic double-stranded breaks. Despite their relatedness and their competence to initiate recombination, the meiotic segregation behavior of the homeologous chromosomes suggests that, in most meioses, they are partitioned by a meiotic segregation system that has been shown previously to partition non-exchange chromosomes and pairs with no homology. Though the homeologous chromosomes show a degree of meiotic segregation fidelity similar to that of other non-exchange pairs, our data provide evidence that their limited sequence homology may provide some bias in meiotic partner choice. PMID:12655401

  16. Paired and interacting galaxies: Conference summary

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.

  17. Study of J/psi Pair Production

    NASA Astrophysics Data System (ADS)

    Riley, Grant; CMS Collaboration

    2016-03-01

    We study the J/psi pair final state produced in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies with the CMS detector. The J/psi are reconstructed from their decay into muon pairs where the CMS detector provides excellent identification for muons with momenta as low as 2 GeV. In this final state, eventual resonances are predicted such as ηb, heavy quark tetra-quarks governed by strong interaction or a low-mass Higgs bosons in minimal SUSY extensions of the standard model. An important step in isolating signals is the understanding of the non-resonant J/psi pair production. Only recently based on the coss section measurements in LHCb and complementary measurements in CMS have production models been provided that not only include single-parton scattering but double-parton scattering and consider color singlet and color octet intermediate J/psi states. This measurement and the search for di-quarkonia resonances is presented here.

  18. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  19. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  20. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    NASA Astrophysics Data System (ADS)

    Dunning, Thom H.; Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-01

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a3B1 states of CF2 and SF2, which are formed by the addition of a fluorine atom to the a4Σ- states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF2, the second FS-F bond is very strong (De = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a4Σ-) state (1.666 Å versus 1.882 Å), and the three atoms are nearly collinear (θe = 162.7°) with only a small barrier to linearity (0.4 kcal/mol). In CF2, the second FC-F bond is also very strong (De = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a4Σ-) state (1.314 Å versus 1.327 Å), and the molecule is strongly bent (θe = 119.0°) with an 80.5 kcal/mol barrier to linearity. The a3B1 states of CF2 and SF2 illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  1. Biomimetic control for DEA arrays

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin; Gisby, Todd; Xie, Sheng Q.; Calius, Emilio; Anderson, Iain

    2010-04-01

    Arrays of actuators are ubiquitous in nature for manipulation, pumping and propulsion. Often these arrays are coordinated in a multi-level fashion with distributed sensing and feedback manipulated by higher level controllers. In this paper we present a biologically inspired multi-level control strategy and apply it to control an array of Dielectric Elastomer Actuators (DEA). A test array was designed consisting of three DEA arranged to tilt a set of rails on which a ball rolls. At the local level the DEA were controlled using capacitive self-sensing state machines that switched the actuator off and on when capacitive thresholds were exceeded, resulting in the steady rolling of the ball around the rails. By varying the voltage of the actuators in the on state, it was possible to control the speed of the ball to match a set point. A simple integral derivative controller was used to do this and an observer law was formulated to track the speed of the ball. The array demonstrated the ability to self start, roll the ball in either direction, and run at a range of speeds determined by the maximum applied voltage. The integral derivative controller successfully tracked a square wave set point. Whilst the test application could have been controlled with a classic centralised controller, the real benefit of the multi-level strategy becomes apparent when applied to larger arrays and biomimetic applications that are ideal for DEA. Three such applications are discussed; a robotic heart, a peristaltic pump and a ctenophore inspired propulsion array.

  2. Design of microstrip disk antenna arrays

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Parks, F. G.

    1978-01-01

    The radio frequency characteristics and design parameters for microstrip disk antenna elements and planar arrays are presented. Two C-band model arrays (an 8 element linear and an 8 by 8 planar) were designed, fabricated, and tested to demonstrate the technique of using microstrip elements for array applications. These arrays were designed with a cosine amplitude distribution.

  3. Solar Array Arcing Failure Mode and High Voltage Array Testing

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.

    2002-10-01

    In 1998, a new failure mode for space solar arrays was discovered. A flowchart for this failure mode is presented. Since the discovery of this arc failure mode, many tactics have been used to defeat it. The arc thresholds and arc mitigation strategies must be determined in vacuum-plasma tank testing on Earth. Results from these tests must then be extrapolated to the space plasma environment. Thus, the test conditions on Earth must be adequate to reproduce the important aspects of the phenomenon in space. At Glenn Research Center, we have been testing solar arrays for their arc thresholds and sustained arcing thresholds. In this paper, we detail the test conditions for a specific set of tests-those aimed at qualifying the Boeing Solar Tile solar arrays to operate in space at very high voltages (300 V or more).

  4. Nanopillars array for surface enhanced Raman scattering

    SciTech Connect

    S.P. Chang, A; Bora, M; Nguyen, H T; Behymer, E M; Larson, C C; Britten, J A; Carter, J C; Bond, T C

    2011-04-14

    The authors present a new class of surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. Two types of nanopillars within this class are discussed: vertical pillars and tapered pillars. For the vertical pillars, the gap between each pair of nanopillars is small enough (< 50 nm) such that highly confined plasmonic cavity resonances are supported between the pillars when light is incident upon them, and the anti-nodes of these resonances act as three-dimensional hotspots for SERS. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of 1,2 bis-(4-pyridyl)-ethylene (BPE), benzenethiol (BT) monolayer and toluene vapor. The results show that SERS enhancement factor of over 0.5 x 10{sup 9} can be achieved, and BPE can be detected down to femto-molar concentration level. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors such as volatile organic compounds.

  5. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  6. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  7. An intercontinental array--a next-generation radio telescope.

    PubMed

    Swenson, G W; Kellermann, K I

    1975-06-27

    It is difficult to estimate accurately the cost of constructing a large scientific instrument that involves many techniques. On the other hand, most of the component parts of the VLBA consist of antennas and electronic systems that already exist or are being fabricated. The kind of 25-m antennas being constructed for the VLA will cost about $900,000 each and will work at wavelengths as short as 1 cm. A multifrequency radiometer, hydrogen maser frequency standard, small control computer, control building, and wide-band instrumentation recorder bring the cost to about $1.5 million per element, or $15 million for a ten-element array using tape recorders. A multistation playback facility, with ten recorders and enough correlators to handle all interferometer pairs simultaneously, together with the necessary computers to control the processor and reduce the data, may add $5 million. The total cost is thus about $20 million at current prices, including an adequate supply of magnetic tape. This is comparable to the cost of existing large radio telescopes and arrays. An array that used a geostationary communication satellite to transmit the data to a real-time correlator would cost $30 million to $50 million more, but this is still within the price range of other space astronomy projects. It is thus feasible to construct at reasonable cost an intercontinental very long baseline array which has sub-milliarcsecond resolution. This would complement the Very Large Array now being constructed (4), which is much more sensitive to objects of low surface brightness. This next step would permit the study of the universe with unprecedented angular resolution.

  8. An intercontinental array--a next-generation radio telescope.

    PubMed

    Swenson, G W; Kellermann, K I

    1975-06-27

    It is difficult to estimate accurately the cost of constructing a large scientific instrument that involves many techniques. On the other hand, most of the component parts of the VLBA consist of antennas and electronic systems that already exist or are being fabricated. The kind of 25-m antennas being constructed for the VLA will cost about $900,000 each and will work at wavelengths as short as 1 cm. A multifrequency radiometer, hydrogen maser frequency standard, small control computer, control building, and wide-band instrumentation recorder bring the cost to about $1.5 million per element, or $15 million for a ten-element array using tape recorders. A multistation playback facility, with ten recorders and enough correlators to handle all interferometer pairs simultaneously, together with the necessary computers to control the processor and reduce the data, may add $5 million. The total cost is thus about $20 million at current prices, including an adequate supply of magnetic tape. This is comparable to the cost of existing large radio telescopes and arrays. An array that used a geostationary communication satellite to transmit the data to a real-time correlator would cost $30 million to $50 million more, but this is still within the price range of other space astronomy projects. It is thus feasible to construct at reasonable cost an intercontinental very long baseline array which has sub-milliarcsecond resolution. This would complement the Very Large Array now being constructed (4), which is much more sensitive to objects of low surface brightness. This next step would permit the study of the universe with unprecedented angular resolution. PMID:17772586

  9. STAR: SOFIA terahertz array receiver

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.; Heyminck, Stefan; Rabanus, D.; Jacobs, Karl; Schieder, Rudolf T.; Stutzki, Juergen

    2003-02-01

    We present the concept for KOSMA's 16 element 1.9 THz heterodyne array STAR (SOFIA Terahertz Array Receiver) which is being developed for SOFIA. The instrument will consist of two interleaved sub-arrays of 8 pixels each. Together we will have a 4 × 4 pixel array with a beam spacing on the sky of approximately 1.5 times the beam size of 15 arcsec (FWHM). The receiver is mainly targeted at measuring the fine structure transition of ionized atomic carbon at 1.9 THz (158 microns). STAR's optics setup is modeled after the successful design used in KOSMA's SMART receiver. It will contain a K-mirror type beam rotator, a Martin-Puplett diplexer for LO coupling and an LO multiplexer using imaging Fourier gratings. Complete optical sub-assemblies will be machined monolithically as integrated optics units, to reduce the need for optical alignment. STAR will probably use waveguide mixers with diffusion cooled hot electron bolometers, which are being developed at KOSMA. The receiver backends will be KOSMA Array-AOSs. Local oscillator power will be provided by a backward wave oscillator (BWO), followed by a frequency tripler.

  10. Contact Printing of Arrayed Microstructures

    PubMed Central

    Xu, Wei; Luikart, Alicia M.; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact printed onto the array structures using as little as 5 μL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin-hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time. PMID:20425106

  11. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  12. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  13. Mean and turbulent flow development through an array of rotating elements

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2014-11-01

    The adjustment of an incoming boundary layer profile as it impacts and interacts with an array of elements has received significant attention in the context of terrestrial and aquatic canopies and more recently in the context of horizontal axis wind farms. The distance required for the mean flow profile to stabilize, the energy transport through the array, and the structure of the turbulence within the array are directly dependent upon such factors as the element height, density, rigidity/flexibility, frontal area distribution, element homogeneity, and underlying topography. In the present study, the mean and turbulent development of the flow through an array of rotating elements was examined experimentally. Element rotation has been shown to drastically alter wake dynamics of single and paired elements, but the possible extension of such rotation-driven dynamics had not previously been examined on larger groups of elements. Practically, such an array of rotating elements may provide insight into the flow dynamics of an array of vertical axis wind turbines. 2D particle image velocimetry was used along the length of the array in order to examine the effects of an increasing ratio of cylinder rotation speed to streamwise freestream velocity on flow development and structure. Work supported by a NSF Graduate Research Fellowship & Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the EFML.

  14. An Integrated ISFET Sensor Array

    PubMed Central

    Nakazato, Kazuo

    2009-01-01

    A monolithically integrated ISFET sensor array and interface circuit are described. A new high-density, low-power source-drain follower was developed for the sensor array. ISFETs were formed by depositing Au/Ti extended-gate electrodes on standard MOSFETs, then thin silicon nitride layers using catalytic chemical vapor deposition and/or SU-8 protective layers were formed on the extended-gate electrodes. Applications for the array include: (1) pH detection by statistical distribution observing time and space fluctuations; (2) DNA detection using thiol-modified or silane-coupled oligonucleotides; (3) bio-image sensing by converting photons to electrons using Photosystem I of Thermosynechococcus elongatus, and sensing the converted electric charges by ISFETs. PMID:22291539

  15. Acoustically driven arrayed waveguide grating.

    PubMed

    Crespo-Poveda, A; Hernández-Mínguez, A; Gargallo, B; Biermann, K; Tahraoui, A; Santos, P V; Muñoz, P; Cantarero, A; de Lima, M M

    2015-08-10

    We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al,Ga)As. A good agreement between theory and experiment is achieved.

  16. Collective effects in ciliar arrays.

    PubMed

    Lenz, Peter; Ryskin, Andrey

    2006-12-08

    Collective effects in one-dimensional ciliar arrays are studied analytically and numerically. A new phase oscillator description for ciliar motion is introduced which depends only on a single parameter. It allows the systematic study of hydrodynamic interactions between cilia exhibiting arbitrary beating patterns. It is shown that if the hydrodynamic interactions do not alter the beating pattern of the cilia no synchronization of ciliar motion occurs. This is in particular the case in arrays with low ciliar densities. But hydrodynamic interactions can lead to formation of a collective (metachronal) wave which is stable for periodic boundary conditions. In finite arrays free boundaries destroy this collective motion. The dispersion relation for metachronal waves is found to be non-universal, i.e., to depend crucially on the microscopic details of the ciliar beating pattern.

  17. Collective effects in ciliar arrays

    NASA Astrophysics Data System (ADS)

    Lenz, Peter; Ryskin, Andrey

    2006-12-01

    Collective effects in one-dimensional ciliar arrays are studied analytically and numerically. A new phase oscillator description for ciliar motion is introduced which depends only on a single parameter. It allows the systematic study of hydrodynamic interactions between cilia exhibiting arbitrary beating patterns. It is shown that if the hydrodynamic interactions do not alter the beating pattern of the cilia no synchronization of ciliar motion occurs. This is in particular the case in arrays with low ciliar densities. But hydrodynamic interactions can lead to formation of a collective (metachronal) wave which is stable for periodic boundary conditions. In finite arrays free boundaries destroy this collective motion. The dispersion relation for metachronal waves is found to be non-universal, i.e., to depend crucially on the microscopic details of the ciliar beating pattern.

  18. Thin, Flexible IMM Solar Array

    NASA Technical Reports Server (NTRS)

    Walmsley, Nicholas

    2015-01-01

    NASA needs solar arrays that are thin, flexible, and highly efficient; package compactly for launch; and deploy into large, structurally stable high-power generators. Inverted metamorphic multijunction (IMM) solar cells can enable these arrays, but integration of this thin crystalline cell technology presents certain challenges. The Thin Hybrid Interconnected Solar Array (THINS) technology allows robust and reliable integration of IMM cells into a flexible blanket comprising standardized modules engineered for easy production. The modules support the IMM cell by using multifunctional materials for structural stability, shielding, coefficient of thermal expansion (CTE) stress relief, and integrated thermal and electrical functions. The design approach includes total encapsulation, which benefits high voltage as well as electrostatic performance.

  19. Chemical gas sensor array dataset.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Huerta, Ramón

    2015-06-01

    To address drift in chemical sensing, an extensive dataset was collected over a period of three years. An array of 16 metal-oxide gas sensors was exposed to six different volatile organic compounds at different concentration levels under tightly-controlled operating conditions. Moreover, the generated dataset is suitable to tackle a variety of challenges in chemical sensing such as sensor drift, sensor failure or system calibration. The data is related to "Chemical gas sensor drift compensation using classifier ensembles", by Vergara et al. [1], and "On the calibration of sensor arrays for pattern recognition using the minimal number of experiments", by Rodriguez-Lujan et al. [2] The dataset can be accessed publicly at the UCI repository upon citation of: http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations.

  20. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  1. Optical phased-array ladar.

    PubMed

    Montoya, Juan; Sanchez-Rubio, Antonio; Hatch, Robert; Payson, Harold

    2014-11-01

    We demonstrate a ladar with 0.5 m class range resolution obtained by integrating a continuous-wave optical phased-array transmitter with a Geiger-mode avalanche photodiode receiver array. In contrast with conventional ladar systems, an array of continuous-wave sources is used to effectively pulse illuminate a target by electro-optically steering far-field fringes. From the reference frame of a point in the far field, a steered fringe appears as a pulse. Range information is thus obtained by measuring the arrival time of a pulse return from a target to a receiver pixel. This ladar system offers a number of benefits, including broad spectral coverage, high efficiency, small size, power scalability, and versatility.

  2. Innovative Plasma Imaging Array Concept

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin; Domier, Calvin; Kong, Xiangyu; Liang, Tianran; Luhmann, Neville, Jr.; van de Pol, M. J.; Classen, I. G. J.; Boom, J.; Jaspers, R.; Donne, A. J. H.; Park, Hyeon

    2008-11-01

    A new lens/antenna array concept has been developed for millimeter-wave plasma imaging applications with dramatic increases in RF bandwidth and sensitivity. In this arrangement, an array of tightly coupled miniatured substrate lenses is fabricated such that each antenna has a dedicated substrate lens. The new arrangement exhibits low sidelobe levels over a bandwidth spanning 90 to 140 GHz for use in electron cyclotron emission imaging and microwave imaging reflectometry. An innovative ``vertical zoom'' control is also supported, which the vertical extent of the imaged plasma can be varied from 20 to 30 cm. The first plasma implementation of the new concept will take place on the TEXTOR tokamak in Fall 2008, with systems for DIII-D and ASDEX to follow in 2009. Experimental details regarding the imaging arrays and the new TEXTOR optical design will be presented.

  3. The Deep Space Network Array

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.

    2006-01-01

    This document is a viewgraph presentation that reviews the costs, and technological processing required to replace the current network of Deep Space Antennas. The concept of using an array for space communications is much less of a concern than the cost of implementing and operating such an array. Within the cost question, the cost uncertainty of the front-end components (repeated n-times) is of most importance. The activities at JPL have focused on both these aspects of the cost. A breadboard array of three antennas at JPL has been the vehicle to perform many investigations into the development of the new DSN. Several pictures of the antennas at JPL are shown.

  4. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  5. Introduction: array technology - an overview.

    PubMed

    Seliger, Hartmut

    2007-01-01

    Microarray technology has its roots in high-throughput parallel synthesis of biomacromolecules, combined with combinatorial science. In principle, the preparation of arrays can be performed either by in situ synthesis of biomacromolecules on solid substrates or by spotting of ex situ synthesized biomacromolecules onto the substrate surface. The application of microarrays includes spatial addressing with target (macro) molecules and screening for interactions between immobilized probe and target. The screening is simplified by the microarray format, which features a known structure of every immobilized library element. The area of nucleic acid arrays is best developed, because such arrays are allowed to follow the biosynthetic pathway from genes to proteins, and because nucleic acid hybridization is a most straightforward screening tool. Applications to genomics, transcriptomics, proteomics, and glycomics are currently in the foreground of interest; in this postgenomic phase they are allowed to gain new insights into the molecular basis of cellular processes and the development of disease.

  6. Long-term pair bonds in the Laysan Duck

    USGS Publications Warehouse

    Reynolds, M.H.; Breeden, J.H.; Vekasy, M.S.; Ellis, T.M.

    2009-01-01

    We describe long-term pair bonds in the endangered Laysan Duck (Anas laysanensis), a dabbling duck endemic to the Hawaiian Archipelago. Individually marked birds were identified on Laysan Island between 1998 and 2006 (n = 613 marked adults). We recorded pair bonds while observing marked birds, and documented within and between year mate switches and multi-year pair bonds. Twenty pairs banded before 2001 had stable pair bonds lasting ???5 years with a maximum enduring pair bond of nine breeding seasons. Understanding reproductive strategy, including mate retention, would aid conservation planning and management efforts for the Laysan Duck. Further study is needed to characterize the social system of this endangered species.

  7. Augmenting Think-Pair-Share with Simulations

    NASA Astrophysics Data System (ADS)

    Lee, Kevin M.; Siedell, C. M.; Prather, E. E.; CATS

    2009-01-01

    Computer simulations are valuable tools for the teaching and learning of introductory astronomy. They enable students to link together small pieces of information into mental models of complex physical systems that are far beyond their everyday experience. They can also be used to authentically test a student's conceptual understanding of a physical system by asking the student to make predictions regarding its behavior. Students receive formative feedback by testing their predictions in simulations. Think-Pair-Share - the posing of conceptual questions to students and having them vote on the answer before and after discussion with their peers - can benefit considerably from the incorporation of simulations. Simulations can be used for delivering content that precedes Think-Pair-Share, as the prompt the questions is based upon, or as a feedback tool to illustrate the answer to a question. These techniques are utilized in ClassAction - a collection of materials designed to enhance the metacognitive skills of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Many questions are available in a Flash computer database and instructors have the capability to recast these questions into alternate permutations based on their own preferences and student responses. Outlines, graphics, and simulations are included which instructors can use to provide feedback. This poster provides examples of simulation usage in Think-Pair-Share related to sky motions, lunar phases, and stellar properties. A multi-institutional classroom validation study of ClassAction is currently underway as a Collaboration of Astronomy Teaching Scholars (CATS) research project. All materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the

  8. Series-Coupled Pairs of Silica Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim

    2009-01-01

    Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.

  9. Plasmonic solitons and dromions via plasmon-induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Huang, Guoxiang

    2016-09-01

    We propose a method to enhance Kerr nonlinearities and realize low-power gigahertz solitons via plasmon induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor- loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess giant second- and third-order nonlinear optical susceptibilities, which may be used to create plasmon solitons and dromions with extremely low power. Our studies raise the possibility for obtaining strong nonlinear effects of gigahertz radiation at very low intensity based on room temperature metamaterials.

  10. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  11. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  12. SPS large array simulation. [spacetennas

    NASA Technical Reports Server (NTRS)

    Rathjen, S.; Sperber, B. R.; Nalos, E. J.

    1980-01-01

    Three types of computer simulations were developed to study the SPS microwave power transmission system (MPTS). The radially symmetric array simulation is low cost and is utilized to investigate general overall characteristics of the spacetenna at the array level only. "Tiltmain", a subarray level simulation program, is used to study the effects of system errors which modify the far-field pattern. The most recently designed program, "Modmain," takes the detail of simulation down to the RF module level and so to date is the closest numerical model of the reference design.

  13. Mosaic of coded aperture arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    The present invention pertains to a mosaic of coded aperture arrays which is capable of imaging off-axis sources with minimum detector size. Mosaics of the basic array pattern create a circular on periodic correlation of the object on a section of the picture plane. This section consists of elements of the central basic pattern as well as elements from neighboring patterns and is a cyclic version of the basic pattern. Since all object points contribute a complete cyclic version of the basic pattern, a section of the picture, which is the size of the basic aperture pattern, contains all the information necessary to image the object with no artifacts.

  14. Matched molecular pair analysis in drug discovery.

    PubMed

    Dossetter, Alexander G; Griffen, Edward J; Leach, Andrew G

    2013-08-01

    Multiple parameter optimisation in drug discovery is difficult, but Matched Molecular Pair Analysis (MMPA) can help. Computer algorithms can process data in an unbiased way to yield design rules and suggest better molecules, cutting the number of design cycles. The approach often makes more suggestions than can be processed manually and methods to deal with this are proposed. However, there is a paucity of contextually specific design rules, which would truly make the technique powerful. By combining extracted information from multiple sources there is an opportunity to solve this problem and advance medicinal chemistry in a matter of months rather than years. PMID:23557664

  15. A biometric signcryption scheme without bilinear pairing

    NASA Astrophysics Data System (ADS)

    Wang, Mingwen; Ren, Zhiyuan; Cai, Jun; Zheng, Wentao

    2013-03-01

    How to apply the entropy in biometrics into the encryption and remote authentication schemes to simplify the management of keys is a hot research area. Utilizing Dodis's fuzzy extractor method and Liu's original signcryption scheme, a biometric identity based signcryption scheme is proposed in this paper. The proposed scheme is more efficient than most of the previous proposed biometric signcryption schemes for that it does not need bilinear pairing computation and modular exponentiation computation which is time consuming largely. The analysis results show that under the CDH and DL hard problem assumption, the proposed scheme has the features of confidentiality and unforgeability simultaneously.

  16. A Guide to Fluorescent Protein FRET Pairs.

    PubMed

    Bajar, Bryce T; Wang, Emily S; Zhang, Shu; Lin, Michael Z; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies.

  17. A Guide to Fluorescent Protein FRET Pairs

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  18. A Guide to Fluorescent Protein FRET Pairs.

    PubMed

    Bajar, Bryce T; Wang, Emily S; Zhang, Shu; Lin, Michael Z; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  19. Generalized magnetofluid connections in pair plasmas

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Comisso, Luca; Mahajan, Swadesh M.

    2015-12-01

    We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found.

  20. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  1. Pair creation in noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Hamil, B.; Chetouani, L.

    2016-09-01

    By taking two interactions, the Volkov plane wave and a constant electromagnetic field, the probability related to the process of pair creation from the vacuum is exactly and analytically determined via the Schwinger method in noncommutative space-time. For the plane wave, it is shown that the probability is simply null and for the electromagnetic wave it is found that the expression of the probability has a similar form to that obtained by Schwinger in a commutative space-time. For a certain critical value of H, the probability is simply equal to 1.

  2. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  3. Pair Potential of Charged Colloidal Stars

    NASA Astrophysics Data System (ADS)

    Huang, F.; Addas, K.; Ward, A.; Flynn, N. T.; Velasco, E.; Hagan, M. F.; Dogic, Z.; Fraden, S.

    2009-03-01

    We report on the construction of colloidal stars: 1μm polystyrene beads grafted with a dense brush of 1μm long and 10 nm wide charged semiflexible filamentous viruses. The pair interaction potentials of colloidal stars are measured using an experimental implementation of umbrella sampling, a technique originally developed in computer simulations in order to probe rare events. The influence of ionic strength and grafting density on the interaction is measured. Good agreements are found between the measured interactions and theoretical predictions based upon the osmotic pressure of counterions.

  4. Generalized magnetofluid connections in pair plasmas

    SciTech Connect

    Asenjo, Felipe A.; Comisso, Luca; Mahajan, Swadesh M.

    2015-12-15

    We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found.

  5. Dynamical friction in pairs of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Prugniel, Philippe; Combes, Francoise

    1990-01-01

    The authors present numerical experiments on dynamical friction in pairs of elliptical galaxies of unequal mass. They confirm that the self-gravity of the response is not important and show the drastic effect of the deformability of the companion which reduces the decay time by more than a factor of 2. Almost the same amount of orbital energy is dissipated within the satellite as within the large galaxy. Finally, the authors discuss the importance of distant encounters for the dynamical evolution of systems of galaxies.

  6. Mated Fingerprint Card Pairs 2 (MFCP2)

    National Institute of Standards and Technology Data Gateway

    NIST Mated Fingerprint Card Pairs 2 (MFCP2) (PC database for purchase)   NIST Special Database 14 is being distributed for use in development and testing of automated fingerprint classification and matching systems on a set of images which approximate a natural horizontal distribution of the National Crime Information Center (NCIC) fingerprint classes. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  7. Spectral Theory of No-Pair Hamiltonians

    NASA Astrophysics Data System (ADS)

    Matte, Oliver; Stockmeyer, Edgardo

    We prove an HVZ theorem for a general class of no-pair Hamiltonians describing an atom or positively charged ion with several electrons in the presence of a classical external magnetic field. Moreover, we show that there exist infinitely many eigenvalues below the essential spectrum and that the corresponding eigenfunctions are exponentially localized. The novelty is that the electrostatic and magnetic vector potentials as well as a non-local exchange potential are included in the projection determining the model. As a main technical tool, we derive various commutator estimates involving spectral projections of Dirac operators with external fields. Our results apply to all coupling constants e2Z < 1.

  8. Catalysis of Schwinger vacuum pair production

    SciTech Connect

    Dunne, Gerald V.; Gies, Holger; Schuetzhold, Ralf

    2009-12-01

    We propose a new catalysis mechanism for nonperturbative vacuum electron-positron pair production, by superimposing a plane-wave x-ray probe beam with a strongly focused optical laser pulse, such as is planned at the Extreme Light Infrastructure (ELI) facility. We compute the absorption coefficient arising from vacuum polarization effects for photons below threshold in a strong electric field. This setup should facilitate the (first) observation of this nonperturbative QED effect with planned light sources such as ELI yielding an envisioned intensity of order 10{sup 26} W/cm{sup 2}.

  9. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations. PMID:24329463

  10. Deviations from mean-field behavior in disordered nanoscale superconductor normal-metal superconductor arrays

    NASA Astrophysics Data System (ADS)

    Kouh, Taejoon; Valles, J. M.

    2003-04-01

    We have fabricated quasi-two-dimensional disordered arrays of nanoscale Pb grains coupled by an overlayer of Ag grains. Their temperature-dependent resistive transitions follow predictions for an array of mesoscopic superconductor normal-metal superconductor junctions. The decrease of their transition temperatures with Ag overlayer thickness systematically deviates from the Cooper limit theory of the proximity effect as the Pb grain size decreases. The deviations occur when the estimated number of Cooper pairs per grain is <1 and suggest the approach to a superconductor-to-metal transition.

  11. Quantifying inbreeding avoidance through extra-pair reproduction

    PubMed Central

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females’ alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females’ within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases. PMID:25346331

  12. Pair formation in the herbivorous rabbitfish Siganus doliatus.

    PubMed

    Brandl, S J; Bellwood, D R

    2013-06-01

    This study investigated the basis of pair formation in the abundant herbivorous rabbitfish Siganus doliatus on Orpheus Island, Great Barrier Reef. Pair formation was the most common social system in S. doliatus, with 67.4% of all individuals occurring in pairs. Pairs were stable (i.e. individuals remained with the same partner throughout the study) and pair members were found within 5 m of each other 82.9% of the time. Of the examined pairs, 25% were homosexual resulting in a proportion of heterosexual pairs (75%) that was significantly lower than expected if pairs were formed solely for reproductive reasons. Therefore, although reproduction appears to be the main driver of pair formation in S. doliatus, other factors are likely to influence this behaviour. The high density of individuals on the reef crest (5.7 ± 0 .9 individuals 200 m(-2); mean ± s.e.) and extensively overlapping home ranges of pairs indicated that the defence of territories plays no role in pair formation. Instead, it appears that pair formation in S. doliatus is driven, in part, by other, non-reproductive, ecological factors. It is suggested that pair formation allows for increased vigilance against predation and enables S. doliatus to execute a novel feeding behaviour.

  13. Quantifying inbreeding avoidance through extra-pair reproduction.

    PubMed

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females' alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females' within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases.

  14. Synergy between pair coupled cluster doubles and pair density functional theory

    SciTech Connect

    Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  15. Interacting pairs in natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Piris, M.

    2014-07-01

    An interacting-pair model is considered to attain a new natural orbital functional (NOF). The new approach, which will be termed PNOF6, belongs to the JKL-only family of NOFs known in the literature as PNOFi. Accordingly, the approximated two-particle reduced density matrix (RDM) is reconstructed from the one-particle RDM, considering an explicit form of the two-particle cumulant in terms of the occupation numbers, and enforcing (2,2)-positivity conditions for the N-representability of the 2-RDM. PNOF6 is superior to its predecessor, PNOF5, which is an independent-pair approach. The functional is able to treat both dynamic and static correlations, thereby putting together the advantages of the other members of this series. The theory is applied to the dissociation of selected diatomic molecules. The equilibrium distances, dipole moments, harmonic frequencies, anharmonicity constants, and binding energies of the considered molecules are presented. Comparative potential energy curves for the deformation of benzene are given at the PNOF5 and PNOF6 levels of theory. In benzene, PNOF5 breaks the symmetry by about 1.5°, with an energy lowering of almost 3 kcal/mol, whereas PNOF6 provides the correct D6h symmetry.

  16. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  17. ``Schooling'' of wing pairs in flapping flight

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  18. The cavity-embedded-cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Chen, Fei

    Nearly eight decades after Erwin Schrodinger proposed his famous cat paradox, the boundary between classical and quantum physics is becoming accessible to experimental study in condensed matter systems, in which macroscopic and microscopic degrees of freedom interact with each other. The cavity-embedded-Cooper pair transistor (cCPT) is an ideal candidate for such a study in that it is not only strongly and intrinsically nonlinear but also fully quantum mechanical. A novel technique, based on the circuit quantum electrodynamics architecture, is first introduced for applying a dc bias to a high-Q superconducting microwave cavity. The development and investigation of the cCPT system, in which a Cooper pair transistor acting as a single artificial atom is directly coupled to an on-chip dc-biased high-Q resonator, is then presented. Self-oscillations in the cCPT, internally driven by the ac Josephson effect, demonstrate the strong and phase coherent coupling between matter and light in the cCPT. Meanwhile, photons continually produced by the system are collected and characterized by quantum state tomography, which indicates the non-classical nature of the emitted light and the nonlinear quantum dynamics of the cCPT system.

  19. Regulation of DNA Pairing in Homologous Recombination

    PubMed Central

    Daley, James M.; Gaines, William A.; Kwon, YoungHo; Sung, Patrick

    2014-01-01

    Homologous recombination (HR) is a major mechanism for eliminating DNA double-strand breaks from chromosomes. In this process, the break termini are resected nucleolytically to form 3′ ssDNA (single-strand DNA) overhangs. A recombinase (i.e., a protein that catalyzes homologous DNA pairing and strand exchange) assembles onto the ssDNA and promotes pairing with a homologous duplex. DNA synthesis then initiates from the 3′ end of the invading strand, and the extended DNA joint is resolved via one of several pathways to restore the integrity of the injured chromosome. It is crucial that HR be carefully orchestrated because spurious events can create cytotoxic intermediates or cause genomic rearrangements and loss of gene heterozygosity, which can lead to cell death or contribute to the development of cancer. In this review, we will discuss how DNA motor proteins regulate HR via a dynamic balance of the recombination-promoting and -attenuating activities that they possess. PMID:25190078

  20. Odd frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar

    Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.

  1. Pair Production Constraints on Superluminal Neutrinos Revisited

    SciTech Connect

    Brodsky, Stanley J.; Gardner, Susan; /Kentucky U.

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  2. Phase Calibration of Antenna Arrays Aimed at Spacecraft

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Lee, Dennis; Paal, Leslie; Mukai, Ryan; Cornish, Timothy

    2008-01-01

    A document describes a method of calibrating phase differences among ground antennas in an array so that the maximum-intensity direction of the far-field interference pattern of the array coincides with the direction for aiming the antennas to enable radio communication with a distant spacecraft. The method pertains to an array typically comprising between two and four 34-m (or similar size) antennas. The antennas are first calibrated pair-wise to maximize the uplink power received at a different spacecraft that is close enough for communication via a single ground antenna. In the calibration procedure, the phase of the signal transmitted by one of the antennas is ramped through a complete cycle, thereby causing the interference pattern to sweep over this closer spacecraft and guaranteeing that, at some point during the sweep, this spacecraft is illuminated at maximum intensity. The varying received uplink power is measured by a receiver in the closer spacecraft and the measurement data are transmitted to a ground station to enable determination of the optimum phase adjustment for the direction to the closer spacecraft. This adjustment is then translated to the look direction of the distant spacecraft, which could not be reached effectively using only one antenna.

  3. Large microchannel array fabrication and results for DNA sequencing

    SciTech Connect

    Pastrone, R L; Balch, J W; Brewer, L R; Copeland, A C; Davidson , J C; Fitch, J P; Kimbrough, J R; Madabhushi, R S; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-07

    We have developed a process for the production of microchannel arrays on bonded glass substrates up to I4 x 58 cm, for DNA sequencing. Arrays of 96 and 384 microchannels, each 46 cm long have been built. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 x 180 micrometers by 46 cm Iong; the etch is approximately isotropic, leaving a key undercut, for forming a rounded channel. The surface roughness at the bottom of the 40 micrometer deep channel has been profilometer measured to be as low as 20 nm; the roughness at the top surface was 2 nm. Etch uniformity of about 5% has been obtained using a 22% vol. HF / 78% Acetic acid solution. The simple lithography, etching, and bonding of these substrates enables efficient production of these arrays and extremely precise replication From master masks and precision machining with a mandrel. Keywords: microchannels, microchannel plates, DNA sequencing, electrophoresis, borosilicate glass

  4. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    SciTech Connect

    Dunning, Thom H. Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-21

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2}, which are formed by the addition of a fluorine atom to the a{sup 4}Σ{sup −} states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF{sub 2}, the second FS–F bond is very strong (D{sub e} = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a{sup 4}Σ{sup −}) state (1.666 Å versus 1.882 Å), and the three atoms are nearly collinear (θ{sub e} = 162.7°) with only a small barrier to linearity (0.4 kcal/mol). In CF{sub 2}, the second FC–F bond is also very strong (D{sub e} = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a{sup 4}Σ{sup −}) state (1.314 Å versus 1.327 Å), and the molecule is strongly bent (θ{sub e} = 119.0°) with an 80.5 kcal/mol barrier to linearity. The a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2} illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  5. Physicochemical Properties of Ion Pairs of Biological Macromolecules

    PubMed Central

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-01-01

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules. PMID:26437440

  6. Physicochemical Properties of Ion Pairs of Biological Macromolecules.

    PubMed

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-09-30

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.

  7. Physicochemical Properties of Ion Pairs of Biological Macromolecules.

    PubMed

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-01-01

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules. PMID:26437440

  8. Gamma-ray array physics.

    SciTech Connect

    Lister, C. J.

    1999-05-25

    In this contribution I am going to discuss the development of large arrays of Compton Suppressed, High Purity Germanium (HpGe) detectors and the physics that has been, that is being, and that will be done with them. These arrays and their science have dominated low-energy nuclear structure research for the last twenty years and will continue to do so in the foreseeable future. John Sharpey Schafer played a visionary role in convincing a skeptical world that the development of these arrays would lead to a path of enlightenment. The extent to which he succeeded can be seen both through the world-wide propagation of ever more sophisticated devices, and through the world-wide propagation of his students. I, personally, would not be working in research if it were not for Johns inspirational leadership. I am eternally grateful to him. Many excellent reviews of array physics have been made in the past which can provide detailed background reading. The review by Paul Nolan, another ex-Sharpey Schafer student, is particularly comprehensive and clear.

  9. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  10. High density arrays of micromirrors

    SciTech Connect

    Folta, J. M.; Decker, J. Y.; Kolman, J.; Lee, C.; Brase, J. M.

    1999-02-01

    We established and achieved our goal to (1) fabricate and evaluate test structures based on the micromirror design optimized for maskless lithography applications, (2) perform system analysis and code development for the maskless lithography concept, and (3) identify specifications for micromirror arrays (MMAs) for LLNL's adaptive optics (AO) applications and conceptualize new devices.

  11. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  12. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  13. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  14. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. V.; Cleland, J. W.; Westbrook, R. D.; Davis, H. L.; Wood, R. F.; Lindmayer, J.; Wakefield, G. F.

    1975-01-01

    The economic production of silicon solar cell arrays circumvents p-n junction degradation by nuclear doping, in which the Si-30 transmutes to P-31 after thermal neutron capture. Also considered are chemical purity specifications for improved silicon bulk states, surface induced states, and surface states.

  15. The Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Fuchs, Benjamin

    2012-11-01

    High and ultra-high energy cosmic rays hitting the Earth's atmosphere cause extensive air showers (EAS). In recent years, these cosmic rays have been extensively studied at the Pierre Auger Observatory in Argentina. The EAS mainly consist of charged particles, especially electrons and positrons, which cause electro-magnetic emission in the MHz range by interaction with the Earth's magnetic field. To measure this radio emission, AERA, the Auger Engineering Radio Array, was deployed in October 2010 and commenced regular data acquisition in April 2011. AERA was designed as an engineering array for technology and methodology development towards future large-scale radio arrays. It will allow studies on the radio emission mechanism and the physics capabilities of the detection technique. AERA's unique site within the surface detector array (SD) of the Pierre Auger Observatory provides the possibility of coincident hybrid and super-hybrid EAS detection especially in overlap with the fluorescence telescopes Coihueco and HEAT. Besides a description of the setup, we present an overview of analyses of commissioning data taken between November 2010 and April 2011. Also, we show the first hybrid and self-triggered events detected with AERA in April 2011.

  16. Progress on the CHARA array

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.; Bagnuolo, William G.; ten Brummelaar, Theo A.; Hartkopf, W. I.; Shure, Mark A.; Sturmann, Laszlo; Turner, Nils H.; Ridgway, Stephen T.

    1998-07-01

    The Center for High Angular Resolution Astronomy (CHARA) at Georgia State University is building an interferometric array of telescope for high resolution imaging at optical and IR wavelengths. The 'CHARA Array' will initially consist of five 1-m diameter telescopes arranged in a 'Y' shaped configuration with a maximum baseline of approximately 350 m. The facility is being constructed on Mt. Wilson, near Pasadena, California, a site noted for stable atmospheric conditions that often gives rise to exceptional image quality. The Array will be capable of submilliarcsecond imaging and will be devoted to a broad program of science aimed at fundamental stellar astrophysics in the visible and the astrophysics of young stellar objects in the IR spectral regions. This project is being funded in approximately 50/50 percent shares by Georgia State University and the National Science Foundation. The CHARA Array is expected to become operational during 1999. This paper presents a projection status report. An extensive collection of project reports and images are available at our website (http:/www.chara.gsu.edu).

  17. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  18. TANGO Array.. 1. The instrument

    NASA Astrophysics Data System (ADS)

    Bauleo, P.; Bonifazi, C.; Filevich, A.; Reguera, A.

    2004-01-01

    TANGO Array is an air shower experiment which has been constructed in Buenos Aires, Argentina. It was commissioned during the year 2000 becoming fully operational in September, 2000. The array consists of four water Cherenkov detectors enclosing a geometrical area of ˜30,000 m2 and its design has been optimized for the observation of Extended Air Showers produced by cosmic rays near the "knee" energy region ˜4×10 15 eV. Three of the detectors have been constructed using 12,000-l stainless-steel tanks, and the fourth has been mounted in a smaller, 400-l plastic container. The detectors are connected by cables to the data acquisition room, where a very simple system, which takes advantage of the features of a four-channel digital oscilloscope, was set for data collection. This data collection setup allows a fully automatic experiment control which does not require operator intervention. It includes monitoring, data logging, and daily calibration of all detectors. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  19. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-03-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  20. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.