Sample records for pairwise sequence alignment

  1. CombAlign: a code for generating a one-to-many sequence alignment from a set of pairwise structure-based sequence alignments.

    PubMed

    Zhou, Carol L Ecale

    2015-01-01

    In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.

  2. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    PubMed

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  3. SVM-dependent pairwise HMM: an application to protein pairwise alignments.

    PubMed

    Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F

    2017-12-15

    Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  5. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  6. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  7. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  8. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  9. DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.

    PubMed

    Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard

    2004-09-09

    Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  10. Multiple alignment-free sequence comparison

    PubMed Central

    Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine

    2013-01-01

    Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418

  11. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.

    PubMed

    Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric

    2005-03-10

    Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  12. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    PubMed

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  13. Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold

    PubMed Central

    Li, Weizhong; Lopez, Rodrigo

    2017-01-01

    Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999

  14. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    PubMed Central

    2007-01-01

    Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273

  15. SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments

    PubMed Central

    Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric

    2014-01-01

    This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831

  16. High-speed multiple sequence alignment on a reconfigurable platform.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf

    2006-01-01

    Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.

  17. Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.

    PubMed

    Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel

    2011-05-20

    Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.

  18. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  19. Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil

    2014-03-01

    Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.

  20. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    PubMed

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  1. Multiple alignment analysis on phylogenetic tree of the spread of SARS epidemic using distance method

    NASA Astrophysics Data System (ADS)

    Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.

    2017-09-01

    Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.

  2. Evolution of biological sequences implies an extreme value distribution of type I for both global and local pairwise alignment scores.

    PubMed

    Bastien, Olivier; Maréchal, Eric

    2008-08-07

    Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the information hazard rate, and that pairwise sequence alignment scores should follow a Gumbel distribution, which parameters could find some theoretical rationale. In particular, one parameter corresponds to the information hazard rate. Extreme value distribution of alignment scores, assessed from high scoring segments pairs following the Karlin-Altschul model, can also be deduced from the Reliability Theory applied to molecular sequences. It reflects the redundancy of information between homologous sequences, under functional conservative pressure. This model also provides a link between concepts of biological sequence analysis and of systems biology.

  3. GATA: A graphic alignment tool for comparative sequenceanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less

  4. Improving pairwise comparison of protein sequences with domain co-occurrence

    PubMed Central

    Gascuel, Olivier

    2018-01-01

    Comparing and aligning protein sequences is an essential task in bioinformatics. More specifically, local alignment tools like BLAST are widely used for identifying conserved protein sub-sequences, which likely correspond to protein domains or functional motifs. However, to limit the number of false positives, these tools are used with stringent sequence-similarity thresholds and hence can miss several hits, especially for species that are phylogenetically distant from reference organisms. A solution to this problem is then to integrate additional contextual information to the procedure. Here, we propose to use domain co-occurrence to increase the sensitivity of pairwise sequence comparisons. Domain co-occurrence is a strong feature of proteins, since most protein domains tend to appear with a limited number of other domains on the same protein. We propose a method to take this information into account in a typical BLAST analysis and to construct new domain families on the basis of these results. We used Plasmodium falciparum as a case study to evaluate our method. The experimental findings showed an increase of 14% of the number of significant BLAST hits and an increase of 25% of the proteome area that can be covered with a domain. Our method identified 2240 new domains for which, in most cases, no model of the Pfam database could be linked. Moreover, our study of the quality of the new domains in terms of alignment and physicochemical properties show that they are close to that of standard Pfam domains. Source code of the proposed approach and supplementary data are available at: https://gite.lirmm.fr/menichelli/pairwise-comparison-with-cooccurrence PMID:29293498

  5. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  6. The twilight zone of cis element alignments

    PubMed Central

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-01-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451

  7. Pairwise Sequence Alignment Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  8. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

    PubMed

    Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania

    2015-01-01

    This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

  9. Fast alignment-free sequence comparison using spaced-word frequencies.

    PubMed

    Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard

    2014-07-15

    Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.

  10. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    PubMed

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  11. Web-Beagle: a web server for the alignment of RNA secondary structures.

    PubMed

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-07-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts.

    PubMed

    Göke, Jonathan; Schulz, Marcel H; Lasserre, Julia; Vingron, Martin

    2012-03-01

    The identity of cells and tissues is to a large degree governed by transcriptional regulation. A major part is accomplished by the combinatorial binding of transcription factors at regulatory sequences, such as enhancers. Even though binding of transcription factors is sequence-specific, estimating the sequence similarity of two functionally similar enhancers is very difficult. However, a similarity measure for regulatory sequences is crucial to detect and understand functional similarities between two enhancers and will facilitate large-scale analyses like clustering, prediction and classification of genome-wide datasets. We present the standardized alignment-free sequence similarity measure N2, a flexible framework that is defined for word neighbourhoods. We explore the usefulness of adding reverse complement words as well as words including mismatches into the neighbourhood. On simulated enhancer sequences as well as functional enhancers in mouse development, N2 is shown to outperform previous alignment-free measures. N2 is flexible, faster than competing methods and less susceptible to single sequence noise and the occurrence of repetitive sequences. Experiments on the mouse enhancers reveal that enhancers active in different tissues can be separated by pairwise comparison using N2. N2 represents an improvement over previous alignment-free similarity measures without compromising speed, which makes it a good candidate for large-scale sequence comparison of regulatory sequences. The software is part of the open-source C++ library SeqAn (www.seqan.de) and a compiled version can be downloaded at http://www.seqan.de/projects/alf.html. Supplementary data are available at Bioinformatics online.

  13. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    PubMed

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  15. Exact calculation of distributions on integers, with application to sequence alignment.

    PubMed

    Newberg, Lee A; Lawrence, Charles E

    2009-01-01

    Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.

  16. Evolutionary distances in the twilight zone--a rational kernel approach.

    PubMed

    Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian

    2010-12-31

    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.

  17. High-throughput sequence alignment using Graphics Processing Units

    PubMed Central

    Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh

    2007-01-01

    Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356

  18. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment

    PubMed Central

    Coan, Heather B.; Youker, Robert T.

    2017-01-01

    Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656

  20. fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information

    DTIC Science & Technology

    2007-04-04

    machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel

  1. Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.

    PubMed

    Li, Guang; Wang, Yadong; Su, Xiaohong

    2012-10-01

    When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach

    NASA Astrophysics Data System (ADS)

    Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.

    2012-10-01

    In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.

  3. A new graph-based method for pairwise global network alignment

    PubMed Central

    Klau, Gunnar W

    2009-01-01

    Background In addition to component-based comparative approaches, network alignments provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to NP-hard problems. Most previous algorithmic work on network alignments is heuristic in nature. Results We introduce the graph-based maximum structural matching formulation for pairwise global network alignment. We relate the formulation to previous work and prove NP-hardness of the problem. Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee. Conclusion Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the LISA library. PMID:19208162

  4. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.

    PubMed

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-03-01

    Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org

  5. STELLAR: fast and exact local alignments

    PubMed Central

    2011-01-01

    Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882

  6. Accelerated probabilistic inference of RNA structure evolution

    PubMed Central

    Holmes, Ian

    2005-01-01

    Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387

  7. CAFE: aCcelerated Alignment-FrEe sequence analysis

    PubMed Central

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.

    2017-01-01

    Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388

  8. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    PubMed

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  9. Minimap2: pairwise alignment for nucleotide sequences.

    PubMed

    Li, Heng

    2018-05-10

    Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.

  10. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes

    PubMed Central

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-01-01

    Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515

  11. libgapmis: extending short-read alignments

    PubMed Central

    2013-01-01

    Background A wide variety of short-read alignment programmes have been published recently to tackle the problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches in the alignment; however, their ability to allow for gaps varies greatly, with many performing poorly or not allowing them at all. The seed-and-extend strategy is applied in most short-read alignment programmes. After aligning a substring of the reference sequence against the high-quality prefix of a short read--the seed--an important problem is to find the best possible alignment between a substring of the reference sequence succeeding and the remaining suffix of low quality of the read--extend. The fact that the reads are rather short and that the gap occurrence frequency observed in various studies is rather low suggest that aligning (parts of) those reads with a single gap is in fact desirable. Results In this article, we present libgapmis, a library for extending pairwise short-read alignments. Apart from the standard CPU version, it includes ultrafast SSE- and GPU-based implementations. libgapmis is based on an algorithm computing a modified version of the traditional dynamic-programming matrix for sequence alignment. Extensive experimental results demonstrate that the functions of the CPU version provided in this library accelerate the computations by a factor of 20 compared to other programmes. The analogous SSE- and GPU-based implementations accelerate the computations by a factor of 6 and 11, respectively, compared to the CPU version. The library also provides the user the flexibility to split the read into fragments, based on the observed gap occurrence frequency and the length of the read, thereby allowing for a variable, but bounded, number of gaps in the alignment. Conclusions We present libgapmis, a library for extending pairwise short-read alignments. We show that libgapmis is better-suited and more efficient than existing algorithms for this task. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any short-read alignment pipeline. The open-source code of libgapmis is available at http://www.exelixis-lab.org/gapmis. PMID:24564250

  12. BAYESIAN PROTEIN STRUCTURE ALIGNMENT.

    PubMed

    Rodriguez, Abel; Schmidler, Scott C

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.

  13. Iterative non-sequential protein structural alignment.

    PubMed

    Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher

    2009-06-01

    Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.

  14. Dali server update.

    PubMed

    Holm, Liisa; Laakso, Laura M

    2016-07-08

    The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models.

    PubMed

    Jacquin, Hugo; Gilson, Amy; Shakhnovich, Eugene; Cocco, Simona; Monasson, Rémi

    2016-05-01

    Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred effective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of 'true' LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.

  16. MultiSETTER: web server for multiple RNA structure comparison.

    PubMed

    Čech, Petr; Hoksza, David; Svozil, Daniel

    2015-08-12

    Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.

  17. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  18. NoFold: RNA structure clustering without folding or alignment.

    PubMed

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. ‘Candidatus Phytoplasma palmicola’, a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique

    USDA-ARS?s Scientific Manuscript database

    In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise sequence similarity values based on alignment of near full-length 16SrRNA genes (1530 bp) reve...

  20. SANSparallel: interactive homology search against Uniprot

    PubMed Central

    Somervuo, Panu; Holm, Liisa

    2015-01-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811

  1. Alignment of RNA molecules: Binding energy and statistical properties of random sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com

    2012-02-15

    A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less

  2. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  3. A protein block based fold recognition method for the annotation of twilight zone sequences.

    PubMed

    Suresh, V; Ganesan, K; Parthasarathy, S

    2013-03-01

    The description of protein backbone was recently improved with a group of structural fragments called Structural Alphabets instead of the regular three states (Helix, Sheet and Coil) secondary structure description. Protein Blocks is one of the Structural Alphabets used to describe each and every region of protein backbone including the coil. According to de Brevern (2000) the Protein Blocks has 16 structural fragments and each one has 5 residues in length. Protein Blocks fragments are highly informative among the available Structural Alphabets and it has been used for many applications. Here, we present a protein fold recognition method based on Protein Blocks for the annotation of twilight zone sequences. In our method, we align the predicted Protein Blocks of a query amino acid sequence with a library of assigned Protein Blocks of 953 known folds using the local pair-wise alignment. The alignment results with z-value ≥ 2.5 and P-value ≤ 0.08 are predicted as possible folds. Our method is able to recognize the possible folds for nearly 35.5% of the twilight zone sequences with their predicted Protein Block sequence obtained by pb_prediction, which is available at Protein Block Export server.

  4. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.

    PubMed

    Jones, David T; Kandathil, Shaun M

    2018-04-26

    In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.

  5. cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.

    PubMed

    Zhang, Jing; Wang, Hao; Feng, Wu-Chun

    2017-01-01

    BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.

  6. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less

  7. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.

    PubMed

    Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas

    2011-03-15

    Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.

  8. Structure based alignment and clustering of proteins (STRALCP)

    DOEpatents

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  9. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.

    PubMed

    Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin

    2018-05-03

    The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.

  10. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling

    PubMed Central

    Adam, Benoit; Charloteaux, Benoit; Beaufays, Jerome; Vanhamme, Luc; Godfroid, Edmond; Brasseur, Robert; Lins, Laurence

    2008-01-01

    Background Lipocalins are widely distributed in nature and are found in bacteria, plants, arthropoda and vertebra. In hematophagous arthropods, they are implicated in the successful accomplishment of the blood meal, interfering with platelet aggregation, blood coagulation and inflammation and in the transmission of disease parasites such as Trypanosoma cruzi and Borrelia burgdorferi. The pairwise sequence identity is low among this family, often below 30%, despite a well conserved tertiary structure. Under the 30% identity threshold, alignment methods do not correctly assign and align proteins. The only safe way to assign a sequence to that family is by experimental determination. However, these procedures are long and costly and cannot always be applied. A way to circumvent the experimental approach is sequence and structure analyze. To further help in that task, the residues implicated in the stabilisation of the lipocalin fold were determined. This was done by analyzing the conserved interactions for ten lipocalins having a maximum pairwise identity of 28% and various functions. Results It was determined that two hydrophobic clusters of residues are conserved by analysing the ten lipocalin structures and sequences. One cluster is internal to the barrel, involving all strands and the 310 helix. The other is external, involving four strands and the helix lying parallel to the barrel surface. These clusters are also present in RaHBP2, a unusual "outlier" lipocalin from tick Rhipicephalus appendiculatus. This information was used to assess assignment of LIR2 a protein from Ixodes ricinus and to build a 3D model that helps to predict function. FTIR data support the lipocalin fold for this protein. Conclusion By sequence and structural analyzes, two conserved clusters of hydrophobic residues in interactions have been identified in lipocalins. Since the residues implicated are not conserved for function, they should provide the minimal subset necessary to confer the lipocalin fold. This information has been used to assign LIR2 to lipocalins and to investigate its structure/function relationship. This study could be applied to other protein families with low pairwise similarity, such as the structurally related fatty acid binding proteins or avidins. PMID:18190694

  12. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.

    PubMed

    Parente, Daniel J; Ray, J Christian J; Swint-Kruse, Liskin

    2015-12-01

    As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. © 2015 Wiley Periodicals, Inc.

  13. G-Anchor: a novel approach for whole-genome comparative mapping utilizing evolutionary conserved DNA sequences.

    PubMed

    Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M

    2018-05-01

    Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.

  14. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    PubMed

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  15. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

    PubMed

    Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.

  16. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies

    PubMed Central

    Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441

  17. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    PubMed

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  18. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. ExoLocator--an online view into genetic makeup of vertebrate proteins.

    PubMed

    Khoo, Aik Aun; Ogrizek-Tomas, Mario; Bulovic, Ana; Korpar, Matija; Gürler, Ece; Slijepcevic, Ivan; Šikic, Mile; Mihalek, Ivana

    2014-01-01

    ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.

  20. Node fingerprinting: an efficient heuristic for aligning biological networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2014-10-01

    With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.

  1. ScaffoldSeq: Software for characterization of directed evolution populations.

    PubMed

    Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J

    2016-07-01

    ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Multiple network alignment via multiMAGNA+.

    PubMed

    Vijayan, Vipin; Milenkovic, Tijana

    2017-08-21

    Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.

  3. FEAST: sensitive local alignment with multiple rates of evolution.

    PubMed

    Hudek, Alexander K; Brown, Daniel G

    2011-01-01

    We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.

  4. Pre-calculated protein structure alignments at the RCSB PDB website.

    PubMed

    Prlic, Andreas; Bliven, Spencer; Rose, Peter W; Bluhm, Wolfgang F; Bizon, Chris; Godzik, Adam; Bourne, Philip E

    2010-12-01

    With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org andreas@sdsc.edu; pbourne@ucsd.edu.

  5. Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.

    PubMed

    Hernandez, Troy; Yang, Jie

    2016-10-01

    The typical process for classifying and submitting a newly sequenced virus to the NCBI database involves two steps. First, a BLAST search is performed to determine likely family candidates. That is followed by checking the candidate families with the pairwise sequence alignment tool for similar species. The submitter's judgment is then used to determine the most likely species classification. The aim of this article is to show that this process can be automated into a fast, accurate, one-step process using the proposed alignment-free method and properly implemented machine learning techniques. We present a new family of alignment-free vectorizations of the genome, the generalized vector, that maintains the speed of existing alignment-free methods while outperforming all available methods. This new alignment-free vectorization uses the frequency of genomic words (k-mers), as is done in the composition vector, and incorporates descriptive statistics of those k-mers' positional information, as inspired by the natural vector. We analyze five different characterizations of genome similarity using k-nearest neighbor classification and evaluate these on two collections of viruses totaling over 10,000 viruses. We show that our proposed method performs better than, or as well as, other methods at every level of the phylogenetic hierarchy. The data and R code is available upon request.

  6. A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Mestres, Jordi; Rohrer, Douglas C.; Maggiora, Gerald M.

    1999-01-01

    This article describes a molecular-field-based similarity method for aligning molecules by matching their steric and electrostatic fields and an application of the method to the alignment of three structurally diverse non-nucleoside HIV-1 reverse transcriptase inhibitors. A brief description of the method, as implemented in the program MIMIC, is presented, including a discussion of pairwise and multi-molecule similarity-based matching. The application provides an example that illustrates how relative binding orientations of molecules can be determined in the absence of detailed structural information on their target protein. In the particular system studied here, availability of the X-ray crystal structures of the respective ligand-protein complexes provides a means for constructing an 'experimental model' of the relative binding orientations of the three inhibitors. The experimental model is derived by using MIMIC to align the steric fields of the three protein P66 subunit main chains, producing an overlay with a 1.41 Å average rms distance between the corresponding Cα's in the three chains. The inter-chain residue similarities for the backbone structures show that the main-chain conformations are conserved in the region of the inhibitor-binding site, with the major deviations located primarily in the 'finger' and RNase H regions. The resulting inhibitor structure overlay provides an experimental-based model that can be used to evaluate the quality of the direct a priori inhibitor alignment obtained using MIMIC. It is found that the 'best' pairwise alignments do not always correspond to the experimental model alignments. Therefore, simply combining the best pairwise alignments will not necessarily produce the optimal multi-molecule alignment. However, the best simultaneous three-molecule alignment was found to reproduce the experimental inhibitor alignment model. A pairwise consistency index has been derived which gauges the quality of combining the pairwise alignments and aids in efficiently forming the optimal multi-molecule alignment analysis. Two post-alignment procedures are described that provide information on feature-based and field-based pharmacophoric patterns. The former corresponds to traditional pharmacophore models and is derived from the contribution of individual atoms to the total similarity. The latter is based on molecular regions rather than atoms and is constructed by computing the percent contribution to the similarity of individual points in a regular lattice surrounding the molecules, which when contoured and colored visually depict regions of highly conserved similarity. A discussion of how the information provided by each of the procedures is useful in drug design is also presented.

  7. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.

    PubMed

    Yang, Chung-Han; Shih, Cheng-Ting; Chen, Kun-Tze; Lee, Po-Han; Tsai, Ping-Han; Lin, Jian-Cheng; Yen, Ching-Yu; Lin, Tiao-Yin; Lu, Chin Lung

    2016-07-08

    Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.

    PubMed

    Sheth, Bhavisha P; Thaker, Vrinda S

    2015-10-01

    Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.

  9. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms.

    PubMed

    Ortegon, Patricia; Poot-Hernández, Augusto C; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya

    2015-01-01

    In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.

  10. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms

    PubMed Central

    Ortegon, Patricia; Poot-Hernández, Augusto C.; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya

    2015-01-01

    In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. PMID:25973143

  11. SSMap: a new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase.

    PubMed

    David, Fabrice P A; Yip, Yum L

    2008-09-23

    Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap - a new UniProt-PDB residue-residue level mapping - was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps. SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings. SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.

  12. Object-oriented sequence analysis: SCL--a C++ class library.

    PubMed

    Vahrson, W; Hermann, K; Kleffe, J; Wittig, B

    1996-04-01

    SCL (Sequence Class Library) is a class library written in the C++ programming language. Designed using object-oriented programming principles, SCL consists of classes of objects performing tasks typically needed for analyzing DNA or protein sequences. Among them are very flexible sequence classes, classes accessing databases in various formats, classes managing collections of sequences, as well as classes performing higher-level tasks like calculating a pairwise sequence alignment. SCL also includes classes that provide general programming support, like a dynamically growing array, sets, matrices, strings, classes performing file input/output, and utilities for error handling. By providing these components, SCL fosters an explorative programming style: experimenting with algorithms and alternative implementations is encouraged rather than punished. A description of SCL's overall structure as well as an overview of its classes is given. Important aspects of the work with SCL are discussed in the context of a sample program.

  13. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    PubMed Central

    Galpert, Deborah; del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification. PMID:26605337

  14. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species.

    PubMed

    Galpert, Deborah; Del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.

  15. Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic.

    PubMed

    Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi

    2016-02-01

    The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Darwin v. 2.0: an interpreted computer language for the biosciences.

    PubMed

    Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L

    2000-02-01

    We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch

  17. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    PubMed

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  18. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGES

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  19. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.

  20. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    PubMed

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .

  1. The prediction of biogenic magnetic nanoparticles biomineralization in human tissues and organs

    NASA Astrophysics Data System (ADS)

    Medviediev, O.; Gorobets, O. Yu; Gorobets, S. V.; Yadrykhins'ky, V. S.

    2017-10-01

    In this study, human homologs of magnetosome island proteins basing on pairwise and multiple alignment of amino acid sequences were found. The expression levels of genes, which encode magnetosome island proteins of M. gryphiswaldense MSR-1, that were cultured under oxygen deficiency conditions and also under microaerobic conditions were compared to the expression levels of genes that encode the relevant homologs in human organism. The possibility of BMN biomineralization in human tissues and organs, in which BMN were not experimentally found before, was predicted.

  2. Scalable Parallel Methods for Analyzing Metagenomics Data at Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    2015-05-01

    The field of bioinformatics and computational biology is currently experiencing a data revolution. The exciting prospect of making fundamental biological discoveries is fueling the rapid development and deployment of numerous cost-effective, high-throughput next-generation sequencing technologies. The result is that the DNA and protein sequence repositories are being bombarded with new sequence information. Databases are continuing to report a Moore’s law-like growth trajectory in their database sizes, roughly doubling every 18 months. In what seems to be a paradigm-shift, individual projects are now capable of generating billions of raw sequence data that need to be analyzed in the presence of alreadymore » annotated sequence information. While it is clear that data-driven methods, such as sequencing homology detection, are becoming the mainstay in the field of computational life sciences, the algorithmic advancements essential for implementing complex data analytics at scale have mostly lagged behind. Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or “homologous”) on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. In this dissertation, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for a collection of 2.56M sequences show parallel efficiencies of ~75-100% on up to 8K cores, representing a time-to-solution of 33 seconds. We extend this work with a detailed analysis of single-node sequence alignment performance using the latest CPU vector instruction set extensions. Preliminary results reveal that current sequence alignment algorithms are unable to fully utilize widening vector registers.« less

  3. Template-Based Modeling of Protein-RNA Interactions.

    PubMed

    Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong

    2016-09-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.

  4. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation

    PubMed Central

    Casadio, Rita

    2017-01-01

    Abstract BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. PMID:28453653

  5. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  6. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens.

    PubMed

    Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O

    2018-01-31

    In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  8. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation.

    PubMed

    Profiti, Giuseppe; Martelli, Pier Luigi; Casadio, Rita

    2017-07-03

    BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610

  10. Template-Based Modeling of Protein-RNA Interactions

    PubMed Central

    Zheng, Jinfang; Kundrotas, Petras J.; Vakser, Ilya A.

    2016-01-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes. PMID:27662342

  11. A comparison of different functions for predicted protein model quality assessment.

    PubMed

    Li, Juan; Fang, Huisheng

    2016-07-01

    In protein structure prediction, a considerable number of models are usually produced by either the Template-Based Method (TBM) or the ab initio prediction. The purpose of this study is to find the critical parameter in assessing the quality of the predicted models. A non-redundant template library was developed and 138 target sequences were modeled. The target sequences were all distant from the proteins in the template library and were aligned with template library proteins on the basis of the transformation matrix. The quality of each model was first assessed with QMEAN and its six parameters, which are C_β interaction energy (C_beta), all-atom pairwise energy (PE), solvation energy (SE), torsion angle energy (TAE), secondary structure agreement (SSA), and solvent accessibility agreement (SAE). Finally, the alignment score (score) was also used to assess the quality of model. Hence, a total of eight parameters (i.e., QMEAN, C_beta, PE, SE, TAE, SSA, SAE, score) were independently used to assess the quality of each model. The results indicate that SSA is the best parameter to estimate the quality of the model.

  12. JCoDA: a tool for detecting evolutionary selection.

    PubMed

    Steinway, Steven N; Dannenfelser, Ruth; Laucius, Christopher D; Hayes, James E; Nayak, Sudhir

    2010-05-27

    The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda.

  13. JCoDA: a tool for detecting evolutionary selection

    PubMed Central

    2010-01-01

    Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda. PMID:20507581

  14. Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the Annulohypoxylon and Hypoxylon genera.

    PubMed

    Suwannasai, Nuttika; Martín, María P; Phosri, Cherdchai; Sihanonth, Prakitsin; Whalley, Anthony J S; Spouge, John L

    2013-01-01

    Thailand, a part of the Indo-Burma biodiversity hotspot, has many endemic animals and plants. Some of its fungal species are difficult to recognize and separate, complicating assessments of biodiversity. We assessed species diversity within the fungal genera Annulohypoxylon and Hypoxylon, which produce biologically active and potentially therapeutic compounds, by applying classical taxonomic methods to 552 teleomorphs collected from across Thailand. Using probability of correct identification (PCI), we also assessed the efficacy of automated species identification with a fungal barcode marker, ITS, in the model system of Annulohypoxylon and Hypoxylon. The 552 teleomorphs yielded 137 ITS sequences; in addition, we examined 128 GenBank ITS sequences, to assess biases in evaluating a DNA barcode with GenBank data. The use of multiple sequence alignment in a barcode database like BOLD raises some concerns about non-protein barcode markers like ITS, so we also compared species identification using different alignment methods. Our results suggest the following. (1) Multiple sequence alignment of ITS sequences is competitive with pairwise alignment when identifying species, so BOLD should be able to preserve its present bioinformatics workflow for species identification for ITS, and possibly therefore with at least some other non-protein barcode markers. (2) Automated species identification is insensitive to a specific choice of evolutionary distance, contributing to resolution of a current debate in DNA barcoding. (3) Statistical methods are available to address, at least partially, the possibility of expert misidentification of species. Phylogenetic trees discovered a cryptic species and strongly supported monophyletic clades for many Annulohypoxylon and Hypoxylon species, suggesting that ITS can contribute usefully to a barcode for these fungi. The PCIs here, derived solely from ITS, suggest that a fungal barcode will require secondary markers in Annulohypoxylon and Hypoxylon, however. The URL http://tinyurl.com/spouge-barcode contains computer programs and other supplementary material relevant to this article.

  15. Comparison of predicted binders in Rhipicephalus (Boophilus) microplus intestine protein variants Bm86 Campo Grande strain, Bm86 and Bm95.

    PubMed

    Andreotti, Renato; Pedroso, Marisela S; Caetano, Alexandre R; Martins, Natália F

    2008-01-01

    This paper reports the sequence analysis of Bm86 Campo Grande strain comparing it with Bm86 and Bm95 antigens from the preparations TickGardPLUS and Gavac, respectively. The PCR product was cloned into pMOSBlue and sequenced. The secondary structure prediction tool PSIPRED was used to calculate alpha helices and beta strand contents of the predicted polypeptide. The hydrophobicity profile was calculated using the algorithms from the Hopp and Woods method, in addition to identification of potential MHC class-I binding regions in the antigens. Pair-wise alignment revealed that the similarity between Bm86 Campo Grande strain and Bm86 is 0.2% higher than that between Bm86 Campo Grande strain and Bm95 antigens. The identities were 96.5% and 96.3% respectively. Major suggestive differences in hydrophobicity were predicted among the sequences in two specific regions.

  16. BrucellaBase: Genome information resource.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.

  18. Analysis Tool Web Services from the EMBL-EBI.

    PubMed

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-07-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

  19. Analysis Tool Web Services from the EMBL-EBI

    PubMed Central

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-01-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338

  20. Molecular characterization of echovirus 30-associated outbreak of aseptic meningitis in Korea in 2008.

    PubMed

    Choi, Young Jin; Park, Kwi Sung; Baek, Kyoung Ah; Jung, Eun Hye; Nam, Hae Seon; Kim, Yong Bae; Park, Joon Soo

    2010-03-01

    Evaluation of the primary etiologic agents that cause aseptic meningitis outbreaks may provide valuable information regarding the prevention and management of aseptic meningitis. In Korea, an outbreak of aseptic meningitis caused by echovirus type 30 (E30) occurred from May to October in 2008. In order to determine the etiologic agent, CSF and/or stool specimens from 140 children hospitalized for aseptic meningitis at Soonchunhyang University Cheonan Hospital between June and October of 2008 were tested for virus isolation and identification. E30 accounted for 61.7% (37 cases) and echovirus 6 accounted for 21.7% (13 cases) of all the human enteroviruses (HEVs) isolates (60 cases in total). For the molecular characterization of the isolates, the VP1 gene sequence of 18 Korean E30 isolates was compared pairwise using the MegAlign with 34 reference strains from the GenBank database. The pairwise comparison of the nucleotide sequences of the VP1 genes demonstrated that the sequences of the Korean strains differed from those of lineage groups A, B, C, D, E, F and G. Reconstruction of the phylogenetic tree based on the complete VP1 nucleotide sequences resulted in a monophyletic tree, with eight clustered lineage groups. All Korean isolates were segregated from other lineage groups, thus suggesting that the Korean strains were a distinct lineage of E30, and a probable cause of this outbreak. This manuscript is the first report, to the best of our knowledge, of the molecular characteristics of E30 strains associated with an aseptic meningitis outbreak in Korea, and their respective phylogenetic relationships.

  1. Retention time alignment of LC/MS data by a divide-and-conquer algorithm.

    PubMed

    Zhang, Zhongqi

    2012-04-01

    Liquid chromatography-mass spectrometry (LC/MS) has become the method of choice for characterizing complex mixtures. These analyses often involve quantitative comparison of components in multiple samples. To achieve automated sample comparison, the components of interest must be detected and identified, and their retention times aligned and peak areas calculated. This article describes a simple pairwise iterative retention time alignment algorithm, based on the divide-and-conquer approach, for alignment of ion features detected in LC/MS experiments. In this iterative algorithm, ion features in the sample run are first aligned with features in the reference run by applying a single constant shift of retention time. The sample chromatogram is then divided into two shorter chromatograms, which are aligned to the reference chromatogram the same way. Each shorter chromatogram is further divided into even shorter chromatograms. This process continues until each chromatogram is sufficiently narrow so that ion features within it have a similar retention time shift. In six pairwise LC/MS alignment examples containing a total of 6507 confirmed true corresponding feature pairs with retention time shifts up to five peak widths, the algorithm successfully aligned these features with an error rate of 0.2%. The alignment algorithm is demonstrated to be fast, robust, fully automatic, and superior to other algorithms. After alignment and gap-filling of detected ion features, their abundances can be tabulated for direct comparison between samples.

  2. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. TCW: Transcriptome Computational Workbench

    PubMed Central

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R.

    2013-01-01

    Background The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. Methodology The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. Conclusion It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw. PMID:23874959

  4. TCW: transcriptome computational workbench.

    PubMed

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  5. An alternative view of protein fold space.

    PubMed

    Shindyalov, I N; Bourne, P E

    2000-02-15

    Comparing and subsequently classifying protein structures information has received significant attention concurrent with the increase in the number of experimentally derived 3-dimensional structures. Classification schemes have focused on biological function found within protein domains and on structure classification based on topology. Here an alternative view is presented that groups substructures. Substructures are long (50-150 residue) highly repetitive near-contiguous pieces of polypeptide chain that occur frequently in a set of proteins from the PDB defined as structurally non-redundant over the complete polypeptide chain. The substructure classification is based on a previously reported Combinatorial Extension (CE) algorithm that provides a significantly different set of structure alignments than those previously described, having, for example, only a 40% overlap with FSSP. Qualitatively the algorithm provides longer contiguous aligned segments at the price of a slightly higher root-mean-square deviation (rmsd). Clustering these alignments gives a discreet and highly repetitive set of substructures not detectable by sequence similarity alone. In some cases different substructures represent all or different parts of well known folds indicative of the Russian doll effect--the continuity of protein fold space. In other cases they fall into different structure and functional classifications. It is too early to determine whether these newly classified substructures represent new insights into the evolution of a structural framework important to many proteins. What is apparent from on-going work is that these substructures have the potential to be useful probes in finding remote sequence homology and in structure prediction studies. The characteristics of the complete all-by-all comparison of the polypeptide chains present in the PDB and details of the filtering procedure by pair-wise structure alignment that led to the emergent substructure gallery are discussed. Substructure classification, alignments, and tools to analyze them are available at http://cl.sdsc.edu/ce.html.

  6. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    PubMed

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  7. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances

    PubMed Central

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272

  8. SANA NetGO: a combinatorial approach to using Gene Ontology (GO) terms to score network alignments.

    PubMed

    Hayes, Wayne B; Mamano, Nil

    2018-04-15

    Gene Ontology (GO) terms are frequently used to score alignments between protein-protein interaction (PPI) networks. Methods exist to measure GO similarity between proteins in isolation, but proteins in a network alignment are not isolated: each pairing is dependent on every other via the alignment itself. Existing measures fail to take into account the frequency of GO terms across networks, instead imposing arbitrary rules on when to allow GO terms. Here we develop NetGO, a new measure that naturally weighs infrequent, informative GO terms more heavily than frequent, less informative GO terms, without arbitrary cutoffs, instead downweighting GO terms according to their frequency in the networks being aligned. This is a global measure applicable only to alignments, independent of pairwise GO measures, in the same sense that the edge-based EC or S3 scores are global measures of topological similarity independent of pairwise topological similarities. We demonstrate the superiority of NetGO in alignments of predetermined quality and show that NetGO correlates with alignment quality better than any existing GO-based alignment measures. We also demonstrate that NetGO provides a measure of taxonomic similarity between species, consistent with existing taxonomic measuresa feature not shared with existing GObased network alignment measures. Finally, we re-score alignments produced by almost a dozen aligners from a previous study and show that NetGO does a better job at separating good alignments from bad ones. Available as part of SANA. whayes@uci.edu. Supplementary data are available at Bioinformatics online.

  9. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  10. Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea

    PubMed Central

    Arai, Satoru; Gu, Se Hun; Baek, Luck Ju; Tabara, Kenji; Bennett, Shannon; Oh, Hong-Shik; Takada, Nobuhiro; Kang, Hae Ji; Tanaka-Taya, Keiko; Morikawa, Shigeru; Okabe, Nobuhiko; Yanagihara, Richard; Song, Jin-Won

    2012-01-01

    Spurred by the recent isolation of a novel hantavirus, named Imjin virus (MJNV), from the Ussuri white-toothed shrew (Crocidura lasiura), targeted trapping was conducted for the phylogenetically related Asian lesser white-toothed shrew (Crocidura shantungensis). Pair-wise alignment and comparison of the S, M and L segments of a newfound hantavirus, designated Jeju virus (JJUV), indicated remarkably low nucleotide and amino acid sequence similarity with MJNV. Phylogenetic analyses, using maximum likelihood and Bayesian methods, showed divergent ancestral lineages for JJUV and MJNV, despite the close phylogenetic relationship of their reservoir soricid hosts. Also, no evidence of host switching was apparent in tanglegrams, generated by TreeMap 2.0β. PMID:22230701

  11. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.

  12. Identification and Characterization of a Pesticide Degrading Flavobacterium Species EMBS0145 by 16S rRNA Gene Sequencing.

    PubMed

    Nayarisseri, Anuraj; Suppahia, Anjana; Nadh, Anuroopa G; Nair, Achuthsankar S

    2015-06-01

    Organophosphates like chlorpyrifos, diazinon, or malathion have become most common and indisputably most toxic pest control agents that adversely affects the human nervous system even at low levels of exposure. Because of their relatively low cost and ability to be applied on a wide range of target insects and crop, organophosphorus pesticides account for a large share of all insecticides used in India, and this in turn raises severe health concerns. In this view, the present investigation was aimed to identify novel species of Flavobacterium bacteria which is bestowed with the capacity to degrade pesticides like chlorpyrifos, diazinon, or malathion. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted, and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rRNA gene sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel species of Flavobacterium later which was named as EMBS0145 and sequence was deposited in GenBank with Accession Number: JN794045.

  13. Identification and characterization of a pesticide degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Nayarisseri, Anuraj; Suppahia, Anjana; Nadh, Anuroopa G; Nair, Achuthsankar S

    2014-08-09

    Organophosphates (OPs) like chlorpyrifos, diazinon, or malathion have become most common and indisputably most toxic pest-control agents that adversely affects the human nervous system even at low levels of exposure. Because of their relatively low cost and ability to be applied on a wide range of target insects and crop, organophosphorus pesticides account for a large share of all insecticides used in India, this in turn raises severe health concerns. In this view, the present investigation was aimed to identify novel species of Flavobacterium bacteria which is bestowed with the capacity to degrade pesticides like chlorpyrifos, diazinon or malathion. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rRNA gene sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel species of Flavobacterium later which was named as EMBS0145 and sequence was deposited in GenBank with accession number JN794045.

  14. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  15. Flexbar 3.0 - SIMD and multicore parallelization.

    PubMed

    Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut

    2017-09-15

    High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  17. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223

  18. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.

    PubMed

    Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil

    2013-04-04

    The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.

  19. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    PubMed Central

    Zuo, Xinxin; Du, Chao; Wang, Runxiao; Zheng, Jiangbin; Yang, Ruigang

    2018-01-01

    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects. PMID:29547562

  20. Net2Align: An Algorithm For Pairwise Global Alignment of Biological Networks

    PubMed Central

    Wadhwab, Gulshan; Upadhyayaa, K. C.

    2016-01-01

    The amount of data on molecular interactions is growing at an enormous pace, whereas the progress of methods for analysing this data is still lacking behind. Particularly, in the area of comparative analysis of biological networks, where one wishes to explore the similarity between two biological networks, this holds a potential problem. In consideration that the functionality primarily runs at the network level, it advocates the need for robust comparison methods. In this paper, we describe Net2Align, an algorithm for pairwise global alignment that can perform node-to-node correspondences as well as edge-to-edge correspondences into consideration. The uniqueness of our algorithm is in the fact that it is also able to detect the type of interaction, which is essential in case of directed graphs. The existing algorithm is only able to identify the common nodes but not the common edges. Another striking feature of the algorithm is that it is able to remove duplicate entries in case of variable datasets being aligned. This is achieved through creation of a local database which helps exclude duplicate links. In a pervasive computational study on gene regulatory network, we establish that our algorithm surpasses its counterparts in its results. Net2Align has been implemented in Java 7 and the source code is available as supplementary files. PMID:28356678

  1. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  2. GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.

    PubMed

    Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de

    2006-03-31

    Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.

  3. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  4. Eigenbeam analysis of the diversity in bat biosonar beampatterns.

    PubMed

    Caspers, Philip; Müller, Rolf

    2015-03-01

    A quantitative analysis of the interspecific variability in bat biosonar beampatterns has been carried out on 267 numerical predictions of emission and reception beampatterns from 98 different species. Since these beampatterns did not share a common orientation, an alignment was necessary to analyze the variability in the shape of the patterns. To achieve this, beampatterns were aligned using a pairwise optimization framework based on a rotation-dependent cost function. The sum of the p-norms between beam-gain functions across frequency served as a figure of merit. For a representative subset of the data, it was found that all pairwise beampattern alignments resulted in a unique global minimum. This minimum was found to be contained in a subset of all possible beampattern rotations that could be predicted by the overall beam orientation. Following alignment, the beampatterns were decomposed into principal components. The average beampattern consisted of a symmetric, positionally static single lobe that narrows and became progressively asymmetric with increasing frequency. The first three "eigenbeams" controlled the beam width of the beampattern across frequency while higher rank eigenbeams account for symmetry and lobe motion. Reception and emission beampatterns could be distinguished (85% correct classification) based on the first 14 eigenbeams.

  5. SODa: an Mn/Fe superoxide dismutase prediction and design server.

    PubMed

    Kwasigroch, Jean Marc; Wintjens, René; Gilis, Dimitri; Rooman, Marianne

    2008-06-02

    Superoxide dismutases (SODs) are ubiquitous metalloenzymes that play an important role in the defense of aerobic organisms against oxidative stress, by converting reactive oxygen species into nontoxic molecules. We focus here on the SOD family that uses Fe or Mn as cofactor. The SODa webtool http://babylone.ulb.ac.be/soda predicts if a target sequence corresponds to an Fe/Mn SOD. If so, it predicts the metal ion specificity (Fe, Mn or cambialistic) and the oligomerization mode (dimer or tetramer) of the target. In addition, SODa proposes a list of residue substitutions likely to improve the predicted preferences for the metal cofactor and oligomerization mode. The method is based on residue fingerprints, consisting of residues conserved in SOD sequences or typical of SOD subgroups, and of interaction fingerprints, containing residue pairs that are in contact in SOD structures. SODa is shown to outperform and to be more discriminative than traditional techniques based on pairwise sequence alignments. Moreover, the fact that it proposes selected mutations makes it a valuable tool for rational protein design.

  6. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .

  7. CoCoNUT: an efficient system for the comparison and analysis of genomes

    PubMed Central

    2008-01-01

    Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477

  8. Protein contact prediction using patterns of correlation.

    PubMed

    Hamilton, Nicholas; Burrage, Kevin; Ragan, Mark A; Huber, Thomas

    2004-09-01

    We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. Copyright 2004 Wiley-Liss, Inc.

  9. Brief Note :Variability in the cathelicidin 6 (CATHL-6) gene in Tianzhu white yak from Tibetan area in China.

    PubMed

    E, G X; Na, R S; Zhao, Y J; Chen, L P; Qiu, X Y; Huang, Y F

    2015-04-10

    Cathelicidins are a major family of antimicrobial peptides (AMPs), an important component of innate immune system, playing a critical role in host defense and disease resistance in virtually all living species. Polymorphism and functional studies on cathelicidin of Tianzhu white yak contribute to understanding the specific innate immune mechanism in animals living at high altitudes in comparison to cattle and domesticated white yak. Thirty-six individuals of Tianzhu white yak, originating from the area of three ecotypes (Gansu in China), were investigated. The total length of the aligned Yak cathelicidin 6 (CATHL-6) sequences was 1923 bp, including six single nucleotide polymorphisms and one indel. Ten haplotypes were identified, and phylogenetic analyses resolved those 10 haplotypes in two clusters. The results indicate that the white yak originated from two domestication sites. In addition, lack of significant pairwise difference between sequences (Tajima's D = 0.92865, P > 0.10) in the CATHL-6 region indicates absence of population size expansion in current white yak population.

  10. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    PubMed

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  11. SALAD database: a motif-based database of protein annotations for plant comparative genomics

    PubMed Central

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named ‘SALAD on ARRAYs’ to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis. PMID:19854933

  12. SALAD database: a motif-based database of protein annotations for plant comparative genomics.

    PubMed

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209,529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named 'SALAD on ARRAYs' to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis.

  13. An efficient algorithm for pairwise local alignment of protein interaction networks

    DOE PAGES

    Chen, Wenbin; Schmidt, Matthew; Tian, Wenhong; ...

    2015-04-01

    Recently, researchers seeking to understand, modify, and create beneficial traits in organisms have looked for evolutionarily conserved patterns of protein interactions. Their conservation likely means that the proteins of these conserved functional modules are important to the trait's expression. In this paper, we formulate the problem of identifying these conserved patterns as a graph optimization problem, and develop a fast heuristic algorithm for this problem. We compare the performance of our network alignment algorithm to that of the MaWISh algorithm [Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A, Pairwise alignment of protein interaction networks, J Computmore » Biol 13(2): 182-199, 2006.], which bases its search algorithm on a related decision problem formulation. We find that our algorithm discovers conserved modules with a larger number of proteins in an order of magnitude less time. In conclusion, the protein sets found by our algorithm correspond to known conserved functional modules at comparable precision and recall rates as those produced by the MaWISh algorithm.« less

  14. Feature Based Retention Time Alignment for Improved HDX MS Analysis

    NASA Astrophysics Data System (ADS)

    Venable, John D.; Scuba, William; Brock, Ansgar

    2013-04-01

    An algorithm for retention time alignment of mass shifted hydrogen-deuterium exchange (HDX) data based on an iterative distance minimization procedure is described. The algorithm performs pairwise comparisons in an iterative fashion between a list of features from a reference file and a file to be time aligned to calculate a retention time mapping function. Features are characterized by their charge, retention time and mass of the monoisotopic peak. The algorithm is able to align datasets with mass shifted features, which is a prerequisite for aligning hydrogen-deuterium exchange mass spectrometry datasets. Confidence assignments from the fully automated processing of a commercial HDX software package are shown to benefit significantly from retention time alignment prior to extraction of deuterium incorporation values.

  15. A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling.

    PubMed

    Li, Jilong; Cheng, Jianlin

    2016-05-10

    Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96-6.37% and 2.42-5.19% on the three datasets over using single templates. MTMG's performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html.

  16. A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling

    PubMed Central

    Li, Jilong; Cheng, Jianlin

    2016-01-01

    Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96–6.37% and 2.42–5.19% on the three datasets over using single templates. MTMG’s performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html. PMID:27161489

  17. A universal genomic coordinate translator for comparative genomics

    PubMed Central

    2014-01-01

    Background Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Results Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Conclusions Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken. PMID:24976580

  18. A universal genomic coordinate translator for comparative genomics.

    PubMed

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken.

  19. BioWord: A sequence manipulation suite for Microsoft Word

    PubMed Central

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  20. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran.

    PubMed

    Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B

    2015-07-01

    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.

  1. BioWord: a sequence manipulation suite for Microsoft Word.

    PubMed

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  2. Breaking the computational barriers of pairwise genome comparison.

    PubMed

    Torreno, Oscar; Trelles, Oswaldo

    2015-08-11

    Conventional pairwise sequence comparison software algorithms are being used to process much larger datasets than they were originally designed for. This can result in processing bottlenecks that limit software capabilities or prevent full use of the available hardware resources. Overcoming the barriers that limit the efficient computational analysis of large biological sequence datasets by retrofitting existing algorithms or by creating new applications represents a major challenge for the bioinformatics community. We have developed C libraries for pairwise sequence comparison within diverse architectures, ranging from commodity systems to high performance and cloud computing environments. Exhaustive tests were performed using different datasets of closely- and distantly-related sequences that span from small viral genomes to large mammalian chromosomes. The tests demonstrated that our solution is capable of generating high quality results with a linear-time response and controlled memory consumption, being comparable or faster than the current state-of-the-art methods. We have addressed the problem of pairwise and all-versus-all comparison of large sequences in general, greatly increasing the limits on input data size. The approach described here is based on a modular out-of-core strategy that uses secondary storage to avoid reaching memory limits during the identification of High-scoring Segment Pairs (HSPs) between the sequences under comparison. Software engineering concepts were applied to avoid intermediate result re-calculation, to minimise the performance impact of input/output (I/O) operations and to modularise the process, thus enhancing application flexibility and extendibility. Our computationally-efficient approach allows tasks such as the massive comparison of complete genomes, evolutionary event detection, the identification of conserved synteny blocks and inter-genome distance calculations to be performed more effectively.

  3. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  4. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.

    PubMed

    Yap, Jia-Yee S; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y H; Wilton, Alan; Wilkins, Marc R; Rossetto, Maurizio; Delaney, Sven K

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  5. Synthesis and NMR Analysis of a Conformationally Controlled β-Turn Mimetic Torsion Balance.

    PubMed

    Lypson, Alyssa B; Wilcox, Craig S

    2017-01-20

    The molecular torsion balance concept was applied to a new conformationally controlled scaffold and synthesized to accurately evaluate pairwise amino acid interactions in an antiparallel β-sheet motif. The scaffold's core design combines (ortho-tolyl)amide and o,o,o'-trisubstituted biphenyl structural units to provide a geometry better-suited for intramolecular hydrogen bonding. Like the dibenzodiazocine hinge of the traditional torsion balance, the (ortho-tolyl)amide unit offers restricted rotation around an N-aryl bond. The resulting two-state folding model is a powerful template for measuring hydrogen bond stability between two competing sequences. The aim of this study was to improve the alignment between the amino acid sequences attached to the upper and lower aromatic rings in order to promote hydrogen bond formation at the correct distance and antiparallel orientation. Bromine substituents were introduced ortho to the upper side chains and compared to a control to test our hypothesis. Hydrogen bond formation has been identified between the NH amide proton of the upper side chain (proton donor) and glycine acetamide of the lower side chain (proton acceptor).

  6. Preliminary Classification of Novel Hemorrhagic Fever-Causing Viruses Using Sequence-Based PAirwise Sequence Comparison (PASC) Analysis.

    PubMed

    Bào, Yīmíng; Kuhn, Jens H

    2018-01-01

    During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.

  7. Classification of HCV and HIV-1 Sequences with the Branching Index

    PubMed Central

    Hraber, Peter; Kuiken, Carla; Waugh, Mark; Geer, Shaun; Bruno, William J.; Leitner, Thomas

    2009-01-01

    SUMMARY Classification of viral sequences should be fast, objective, accurate, and reproducible. Most methods that classify sequences use either pairwise distances or phylogenetic relations, but cannot discern when a sequence is unclassifiable. The branching index (BI) combines distance and phylogeny methods to compute a ratio that quantifies how closely a query sequence clusters with a subtype clade. In the hypothesis-testing framework of statistical inference, the BI is compared with a threshold to test whether sufficient evidence exists for the query sequence to be classified among known sequences. If above the threshold, the null hypothesis of no support for the subtype relation is rejected and the sequence is taken as belonging to the subtype clade with which it clusters on the tree. This study evaluates statistical properties of the branching index for subtype classification in HCV and HIV-1. Pairs of BI values with known positive and negative test results were computed from 10,000 random fragments of reference alignments. Sampled fragments were of sufficient length to contain phylogenetic signal that groups reference sequences together properly into subtype clades. For HCV, a threshold BI of 0.71 yields 95.1% agreement with reference subtypes, with equal false positive and false negative rates. For HIV-1, a threshold of 0.66 yields 93.5% agreement. Higher thresholds can be used where lower false positive rates are required. In synthetic recombinants, regions without breakpoints are recognized accurately; regions with breakpoints do not uniquely represent any known subtype. Web-based services for viral subtype classification with the branching index are available online. PMID:18753218

  8. Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence

    PubMed Central

    Iskow, Rebecca C.; Austermann, Christian; Scharer, Christopher D.; Raj, Towfique; Boss, Jeremy M.; Sunyaev, Shamil; Price, Alkes; Stranger, Barbara; Simon, Viviana; Lee, Charles

    2013-01-01

    Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. PMID:23593015

  9. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.

  10. Pairwise alignment of chromatograms using an extended Fisher-Rao metric.

    PubMed

    Wallace, W E; Srivastava, A; Telu, K H; Simón-Manso, Y

    2014-09-02

    A conceptually new approach for aligning chromatograms is introduced and applied to examples of metabolite identification in human blood plasma by liquid chromatography-mass spectrometry (LC-MS). A square-root representation of the chromatogram's derivative coupled with an extended Fisher-Rao metric enables the computation of relative differences between chromatograms. Minimization of these differences using a common dynamic programming algorithm brings the chromatograms into alignment. Application to a complex sample, National Institute of Standards and Technology (NIST) Standard Reference Material 1950, Metabolites in Human Plasma, analyzed by two different LC-MS methods having significantly different ranges of elution time is described. Published by Elsevier B.V.

  11. Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man

    PubMed Central

    Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.

    2000-01-01

    The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409

  12. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web.

    PubMed

    Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C

    1996-05-01

    The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.

  13. Distance education through the Internet: the GNA-VSNS biocomputing course.

    PubMed

    de la Vega, F M; Giegerich, R; Fuellen, G

    1996-01-01

    A prototype course on biocomputing was delivered via international computer networks in early summer 1995. The course lasted 11 weeks, and was offered free of charge. It was organized by the BioComputing Division of the Virtual School of Natural Sciences, which is a member school of the Globewide Network Academy. It brought together 34 students and 7 instructors from all over the world, and covered the basics of sequence analysis. Five authors from Germany and USA prepared a hypertext book which was discussed in weekly study sessions that took place in a virtual classroom at the BioMOO electronic conferencing system. The course aimed at students with backgrounds in molecular biology, biomedicine or computer science, complementing and extending their skills with an interdisciplinary curriculum. Special emphasis was placed on the use of Internet resources, and the development of new teaching tools. The hypertext book includes direct links to sequence analysis and databank search services on the Internet. A tool for the interactive visualization of unit-cost pairwise sequence alignment was developed for the course. All course material will stay accessible at the World Wide Web address (Uniform Resource Locator) http://+www.techfak.uni-bielefeld.de/bcd/welcome .html. This paper describes the aims and organization of the course, and gives a preliminary account of this novel experience in distance education.

  14. Genetic characterization and phylogenetic analysis of Eimeria arloingi in Iranian native kids.

    PubMed

    Khodakaram-Tafti, A; Hashemnia, M; Razavi, S M; Sharifiyazdi, H; Nazifi, S

    2013-09-01

    Among the 16 species of Eimeria from goats, Eimeria arloingi and Eimeria ninakohlyakimovae are regarded as the most pathogenic species in the world and cause clinical caprine coccidiosis. E. arloingi is known to be an important cause of coccidiosis in Iranian kids. Molecular analyses of two portions of nuclear ribosomal DNA (internal transcribed spacer1 (ITS1) and 18S rDNA) were used for the genetic characterization of the E. arloingi. Comparison of the sequencing data of E. arloingi obtained in the present study (ITS1: KC507793 and 18S rDNA: KC507792) with other Eimeria species in the GenBank database revealed a particularly close relationship between E. arloingi and Eimeria spp. from the cattle and sheep. The phylogram based on the ITS1 sequences shows that the E. arloingi, Eimeria bovis, and Eimeria zuernii formed a distinct group separate from the other remaining Eimeria spp. in cattle and poultry. In pairwise alignment, 18S rDNA sequence derived from E. arloingi showed 99% similarity to Eimeria ahsata with differences observed at only three nucleotides. This study showed that the ITS1 and 18S rDNA gene are useful genetic markers for the specific identification and differentiation of Eimeria spp. in ruminants.

  15. Using structure to explore the sequence alignment space of remote homologs.

    PubMed

    Kuziemko, Andrew; Honig, Barry; Petrey, Donald

    2011-10-01

    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  16. Automatic classification of protein structures relying on similarities between alignments

    PubMed Central

    2012-01-01

    Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051

  17. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  18. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  19. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution

    PubMed Central

    Yap, Jia-Yee S.; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y. H.; Wilkins, Marc R.; Rossetto, Maurizio; Delaney, Sven K.

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine. PMID:26061691

  20. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  1. Fine-tuning structural RNA alignments in the twilight zone.

    PubMed

    Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert

    2010-04-30

    A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  2. Remarkable sequence conservation of the last intron in the PKD1 gene.

    PubMed

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  3. Isolation of N2 -fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Palau, Josep; Bedmar, Eulogio J

    2016-01-01

    Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iterative refinement of structure-based sequence alignments by Seed Extension

    PubMed Central

    Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook

    2009-01-01

    Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional iterative refinement procedures based on residue-level dynamic programming algorithm in many structure alignment programs. PMID:19589133

  5. A generalized global alignment algorithm.

    PubMed

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  6. COACH: profile-profile alignment of protein families using hidden Markov models.

    PubMed

    Edgar, Robert C; Sjölander, Kimmen

    2004-05-22

    Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster

  7. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    PubMed Central

    Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei

    2007-01-01

    Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966

  8. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.

    PubMed

    Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng

    2009-05-01

    Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.

  9. High-accuracy identification of incident HIV-1 infections using a sequence clustering based diversity measure.

    PubMed

    Xia, Xia-Yu; Ge, Meng; Hsi, Jenny H; He, Xiang; Ruan, Yu-Hua; Wang, Zhi-Xin; Shao, Yi-Ming; Pan, Xian-Ming

    2014-01-01

    Accurate estimates of HIV-1 incidence are essential for monitoring epidemic trends and evaluating intervention efforts. However, the long asymptomatic stage of HIV-1 infection makes it difficult to effectively distinguish incident infections from chronic ones. Current incidence assays based on serology or viral sequence diversity are both still lacking in accuracy. In the present work, a sequence clustering based diversity (SCBD) assay was devised by utilizing the fact that viral sequences derived from each transmitted/founder (T/F) strain tend to cluster together at early stage, and that only the intra-cluster diversity is correlated with the time since HIV-1 infection. The dot-matrix pairwise alignment was used to eliminate the disproportional impact of insertion/deletions (indels) and recombination events, and so was the proportion of clusterable sequences (Pc) as an index to identify late chronic infections with declined viral genetic diversity. Tested on a dataset containing 398 incident and 163 chronic infection cases collected from the Los Alamos HIV database (last modified 2/8/2012), our SCBD method achieved 99.5% sensitivity and 98.8% specificity, with an overall accuracy of 99.3%. Further analysis and evaluation also suggested its performance was not affected by host factors such as the viral subtypes and transmission routes. The SCBD method demonstrated the potential of sequencing based techniques to become useful for identifying incident infections. Its use may be most advantageous for settings with low to moderate incidence relative to available resources. The online service is available at http://www.bioinfo.tsinghua.edu.cn:8080/SCBD/index.jsp.

  10. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos.

    PubMed

    Roca, Alberto I

    2014-01-01

    The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.

  11. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets.

    PubMed

    Hoffmann, Nils; Keck, Matthias; Neuweger, Heiko; Wilhelm, Mathias; Högy, Petra; Niehaus, Karsten; Stoye, Jens

    2012-08-27

    Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source.

  12. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets

    PubMed Central

    2012-01-01

    Background Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. Results In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). Conclusions We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source. PMID:22920415

  13. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  14. Molecular characterization of novel mucosotropic papillomaviruses from a Florida manatee (Trichechus manatus latirostris).

    PubMed

    2015-12-01

    We isolated two new manatee papillomavirus (PV) types, TmPV3 and TmPV4, from a Florida manatee (Trichechus manatus latirostris). Two PV types were previously isolated from this species. TmPV1 is widely dispersed amongst manatees and a close-to-root PV; not much is known about TmPV2. The genomes of TmPV3 and TmPV4 were 7622 and 7771 bp in size, respectively. Both PVs had a genomic organization characteristic of all PVs, with one non-coding region and seven ORFs, including the E7 ORF that is absent in other cetacean PVs. Although these PVs were isolated from separate genital lesions of the same manatee, an enlarged E2/E4 ORF was found only in the TmPV4 genome. The full genome and L1 sequence similarities between TmPV3 and TmPV4 were 63.2 and 70.3 %, respectively. These genomes shared only 49.1 and 50.2 % similarity with TmPV1. The pairwise alignment of L1 nucleotide sequences indicated that the two new PVs nested in a monophyletic group of the genus Rhopapillomavirus, together with the cutaneotropic TmPV1 and TmPV2.

  15. Fine-tuning structural RNA alignments in the twilight zone

    PubMed Central

    2010-01-01

    Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706

  16. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  17. Simultaneous phylogeny reconstruction and multiple sequence alignment

    PubMed Central

    Yue, Feng; Shi, Jian; Tang, Jijun

    2009-01-01

    Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110

  18. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.

    PubMed

    Neuwald, Andrew F

    2009-08-01

    The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.

  19. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    PubMed

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  20. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.

    PubMed

    Gil, Manuel

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  1. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances

    PubMed Central

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263

  2. Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.

    PubMed

    Bauer, Markus; Klau, Gunnar W; Reinert, Knut

    2007-07-27

    The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.

  3. FASMA: a service to format and analyze sequences in multiple alignments.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2007-12-01

    Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.

  4. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos

    PubMed Central

    2014-01-01

    Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393

  5. B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.

    PubMed

    Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang

    2016-03-01

    Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.

  6. DNA-based watermarks using the DNA-Crypt algorithm.

    PubMed

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  7. DNA-based watermarks using the DNA-Crypt algorithm

    PubMed Central

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  8. Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam.

    PubMed

    Nguyen, Thanh Giang Thi; Van De, Nguyen; Vercruysse, Jozef; Dorny, Pierre; Le, Thanh Hoa

    2009-12-01

    Ribosomal RNA sequences (361 or 362bp) of the second internal transcribed spacer 2 (ITS-2) and a portion of mitochondrial cox1 (423bp) for Fasciola spp. obtained from specimens collected in indigenous and hybrid goats and sheep in Vietnam were characterized for genotypic status and hybridization/introgression. Alignment of 48 ITS-2 sequences (also those from goats and sheep in this study) indicates that F. gigantica and F. hepatica differ typically from each other at seven sites whereas one of these is a distinguishing deletion (T) at the 327th position in F. gigantica relative to F. hepatica. The isolates from the mountainous goats in the North of Vietnam (Yen Bai province) showed the ITS-2 composition relatively identical to that of F. hepatica. The ITS-2 sequences from populations of Fasciola isolates in goats had probably experienced introgression/hybridization as reported previously in other ruminants and humans. All Vietnamese goat-of-origin specimens had high pairwise percentage of mitochondrial cox1 sequences to F. gigantica (97-100%), and very low identity to F. hepatica (91-93%), suggesting their maternal linkage to be traced to F. gigantica. The presence of hybrid and/or introgressed populations of liver flukes bearing genetic material from both F. hepatica and F. gigantica in the goats/sheep in Vietnam, regardless of indigenous or imported hosts, appears to be the first demonstration from a tropical country.

  9. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  10. Overcoming Sequence Misalignments with Weighted Structural Superposition

    PubMed Central

    Khazanov, Nickolay A.; Damm-Ganamet, Kelly L.; Quang, Daniel X.; Carlson, Heather A.

    2012-01-01

    An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian-weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD’s robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, SSM, CE, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics-scale analysis. HwRMSD can align homologs with low sequence identity and large conformational differences, cases where both sequence-based and structural-based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence-alignment method, substitution matrix, and gap parameters for each unique pair of homologs. PMID:22733542

  11. The number of reduced alignments between two DNA sequences

    PubMed Central

    2014-01-01

    Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679

  12. QUASAR--scoring and ranking of sequence-structure alignments.

    PubMed

    Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf

    2005-12-15

    Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.

  13. Screening synteny blocks in pairwise genome comparisons through integer programming.

    PubMed

    Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael

    2011-04-18

    It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota-based screening can eliminate ambiguous synteny blocks and focus on specific genomic evolutionary events, like the divergence of lineages (in cross-species comparisons) and the most recent WGD (in self comparisons). The QUOTA-ALIGN algorithm screens a set of synteny blocks to retain only those compatible with a user specified ploidy relationship between two genomes. These blocks, in turn, may be used for additional downstream analyses such as identifying true orthologous regions in interspecific comparisons. There are two major contributions of QUOTA-ALIGN: 1) reducing the block screening task to a BIP problem, which is novel; 2) providing an efficient software pipeline starting from all-against-all BLAST to the screened synteny blocks with dot plot visualizations. Python codes and full documentations are publicly available http://github.com/tanghaibao/quota-alignment. QUOTA-ALIGN program is also integrated as a major component in SynMap http://genomevolution.com/CoGe/SynMap.pl, offering easier access to thousands of genomes for non-programmers. © 2011 Tang et al; licensee BioMed Central Ltd.

  14. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  15. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns

    PubMed Central

    Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.

    2014-01-01

    Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182

  16. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Molecular diagnostics and ITS-based phylogenic analysis of Streptococcus suis serotype 2 in central Vietnam.

    PubMed

    Nguyen, Bach Hoang; Phan, Dieu Hong Nu; Nguyen, Hien Xuan; Le, An Van; Alberti, Alberto

    2015-07-04

    Streptococcus suis (S. suis) serotype 2 has recently become the most prevalent cause of meningitis in adults in many areas of Vietnam. This study provides data on S. suis molecular diagnosis in central Vietnam using a real-time polymerase chain reaction (PCR) assay targeting the S. suis serotype 2 cps2J gene. Additionally, 16S-23S rDNA intragenic spacer (ITS)-based phylogenic analysis of strains isolated from cerebrospinal fluid (CSF) in Thua Thien Hue Province, Vietnam, is presented and discussed. Pathogenic bacteria were isolated from 40 CSF samples, and 18 were identified as S. suis by culture-dependent methods. Capsular serotyping was assessed by real-time PCR. ITS sequences were obtained after traditional PCR and were used in phylogenic analyses. Pathogenic bacteria were isolated from 36 out of 40 CSF samples. A total of 18 S. suis strains were isolated and assigned to serotype 2 by real-time PCR. One CSF sample, negative when tested by culture-dependent methods, was positive to S. suis serotype 2 by real-time PCR. Pairwise alignments of the 18 ITS sequences did not reveal any variable nucleotide position, and resulted in a single sequence type. Sequences were similar to S. suis serotype 2 reference ITS sequences (> 98.1%), and there was no lack of an ITS spacer region in the isolates. S. suis serotype 2 is the most prevalent serotype in central Vietnam. Real-time PCR assay proved to be a reliable diagnostic method for early detection of S. suis 2 in CSF samples.

  18. Molecular identification and first description of the male of Neoechinorhynchus schmidti (Acanthocephala: Neoechinorhynchidae), a parasite of Trachemys scripta (Testudines) in México.

    PubMed

    García-Varela, Martín; García-Prieto, Luís; Rodríguez, Rodolfo Pérez

    2011-12-01

    The morphology of the males of Neoechinorhynchus schmidti (Acanthocephala: Neoechinorhynchidae) is unknown, because this species was described based exclusively on females. However, recently we collected 2 common slider turtles Trachemys scripta in Centla swamps, Tabasco, Mexico, parasitized by 27 specimens of an acanthocephalan whose females were morphologically identical to N. schmidti. The domains D2 and D3 of the large subunit of the nuclear ribosomal RNA (LSU) of 3 males and 2 females of this material were sequenced. The sequences of both sexes were identical, and based on this result, we described for the first time the morphology of the males of N. schmidti. In addition, 6 sequences of a congeneric species, also parasite of turtles (Neoechinorhynchus emyditoides) were generated in the current research. The 11 sequences of these 2 species were aligned with 13 sequences of another 4 species of the same genus, producing a data set of 24 taxa with 674 nucleotides. The genetic divergence between N. schmidti and N. emyditoides was 4% and intraspecific differences ranged from 0.01 to 0.02%. Pairwise differences between either of these species and 4 other congeners parasitic in fresh and brackish water fishes (Neoechinorhynchus golvani, Neoechinorhynchus roseum, Neoechinorhynchus saginatus, and Neoechinorhynchus sp.) varied from 9.5 to 33%. Maximum likelihood and maximum parsimony analyses show that N. schmidti and N. emyditoides are sister taxa. Bootstrap analysis also indicates that the sister relationship is reliably supported. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine

    NASA Technical Reports Server (NTRS)

    Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.

  20. ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures.

    PubMed

    Konc, Janez; Cesnik, Tomo; Konc, Joanna Trykowska; Penca, Matej; Janežič, Dušanka

    2012-02-27

    ProBiS-Database is a searchable repository of precalculated local structural alignments in proteins detected by the ProBiS algorithm in the Protein Data Bank. Identification of functionally important binding regions of the protein is facilitated by structural similarity scores mapped to the query protein structure. PDB structures that have been aligned with a query protein may be rapidly retrieved from the ProBiS-Database, which is thus able to generate hypotheses concerning the roles of uncharacterized proteins. Presented with uncharacterized protein structure, ProBiS-Database can discern relationships between such a query protein and other better known proteins in the PDB. Fast access and a user-friendly graphical interface promote easy exploration of this database of over 420 million local structural alignments. The ProBiS-Database is updated weekly and is freely available online at http://probis.cmm.ki.si/database.

  1. Saving the Best for Last? A Cross-Species Analysis of Choices between Reinforcer Sequences

    ERIC Educational Resources Information Center

    Andrade, Leonardo F.; Hackenberg, Timothy D.

    2012-01-01

    Two experiments were conducted to compare choices between sequences of reinforcers in pigeon (Experiment 1) and human (Experiment 2) subjects, using functionally analogous procedures. The subjects made pairwise choices among 3 sequence types, all of which provided the same overall reinforcement rate, but differed in their temporal patterning.…

  2. Multiple DNA and protein sequence alignment on a workstation and a supercomputer.

    PubMed

    Tajima, K

    1988-11-01

    This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.

  3. Analysing the performance of personal computers based on Intel microprocessors for sequence aligning bioinformatics applications.

    PubMed

    Nair, Pradeep S; John, Eugene B

    2007-01-01

    Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.

  4. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens

    PubMed Central

    Naz, Sadia; Ngo, Tony; Farooq, Umar

    2017-01-01

    Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099

  5. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.

  6. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers

    NASA Astrophysics Data System (ADS)

    Roche-Lima, Abiel; Thulasiram, Ruppa K.

    2012-02-01

    Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.

  7. Partitioning the Genetic Diversity of a Virus Family: Approach and Evaluation through a Case Study of Picornaviruses

    PubMed Central

    Lauber, Chris

    2012-01-01

    The recent advent of genome sequences as the only source available to classify many newly discovered viruses challenges the development of virus taxonomy by expert virologists who traditionally rely on extensive virus characterization. In this proof-of-principle study, we address this issue by presenting a computational approach (DEmARC) to classify viruses of a family into groups at hierarchical levels using a sole criterion—intervirus genetic divergence. To quantify genetic divergence, we used pairwise evolutionary distances (PEDs) estimated by maximum likelihood inference on a multiple alignment of family-wide conserved proteins. PEDs were calculated for all virus pairs, and the resulting distribution was modeled via a mixture of probability density functions. The model enables the quantitative inference of regions of distance discontinuity in the family-wide PED distribution, which define the levels of hierarchy. For each level, a limit on genetic divergence, below which two viruses join the same group, was objectively selected among a set of candidates by minimizing violations of intragroup PEDs to the limit. In a case study, we applied the procedure to hundreds of genome sequences of picornaviruses and extensively evaluated it by modulating four key parameters. It was found that the genetics-based classification largely tolerates variations in virus sampling and multiple alignment construction but is affected by the choice of protein and the measure of genetic divergence. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3905–3915, 2012), we analyze the substantial insight gained with the genetics-based classification approach by comparing it with the expert-based picornavirus taxonomy. PMID:22278230

  8. DNA barcoding the native flowering plants and conifers of Wales.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Ford, Col R; Trinder, Sarah A; Long, Charlotte; Moore, Chris W; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  9. DNA Barcoding the Native Flowering Plants and Conifers of Wales

    PubMed Central

    de Vere, Natasha; Rich, Tim C. G.; Ford, Col R.; Trinder, Sarah A.; Long, Charlotte; Moore, Chris W.; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J.

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification. PMID:22701588

  10. An Accurate Scalable Template-based Alignment Algorithm

    PubMed Central

    Gardner, David P.; Xu, Weijia; Miranker, Daniel P.; Ozer, Stuart; Cannone, Jamie J.; Gutell, Robin R.

    2013-01-01

    The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign. PMID:24772376

  11. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment

    PubMed Central

    2013-01-01

    Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA. PMID:24564200

  12. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.

    PubMed

    Nagar, Anurag; Hahsler, Michael

    2013-01-01

    Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.

  13. Simple chained guide trees give high-quality protein multiple sequence alignments

    PubMed Central

    Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.

    2014-01-01

    Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495

  14. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis

    PubMed Central

    Roelens, Baptiste; Schvarzstein, Mara; Villeneuve, Anne M.

    2015-01-01

    Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination. PMID:26500263

  15. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    PubMed

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been laterally transferred between these groups. Other results and observations reported here indicate that the genes for the BchL-N-B proteins in Proteobacteria are derived from the Clade C Cyanobacteria, whereas those in Chlorobi were acquired from Chloroflexus or related bacteria by means of LGTs. Some implications of these observations regarding the origin and spread of photosynthesis are discussed.

  16. MaxAlign: maximizing usable data in an alignment.

    PubMed

    Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G

    2007-08-28

    The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.

  17. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees.

    PubMed

    Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard

    2010-03-31

    Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

  18. Population and forensic genetic analyses of mitochondrial DNA control region variation from six major provinces in the Korean population.

    PubMed

    Hong, Seung Beom; Kim, Ki Cheol; Kim, Wook

    2015-07-01

    We generated complete mitochondrial DNA (mtDNA) control region sequences from 704 unrelated individuals residing in six major provinces in Korea. In addition to our earlier survey of the distribution of mtDNA haplogroup variation, a total of 560 different haplotypes characterized by 271 polymorphic sites were identified, of which 473 haplotypes were unique. The gene diversity and random match probability were 0.9989 and 0.0025, respectively. According to the pairwise comparison of the 704 control region sequences, the mean number of pairwise differences between individuals was 13.47±6.06. Based on the result of mtDNA control region sequences, pairwise FST genetic distances revealed genetic homogeneity of the Korean provinces on a peninsular level, except in samples from Jeju Island. This result indicates there may be a need to formulate a local mtDNA database for Jeju Island, to avoid bias in forensic parameter estimates caused by genetic heterogeneity of the population. Thus, the present data may help not only in personal identification but also in determining maternal lineages to provide an expanded and reliable Korean mtDNA database. These data will be available on the EMPOP database via accession number EMP00661. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Linking GPS and travel diary data using sequence alignment in a study of children's independent mobility

    PubMed Central

    2011-01-01

    Background Global positioning systems (GPS) are increasingly being used in health research to determine the location of study participants. Combining GPS data with data collected via travel/activity diaries allows researchers to assess where people travel in conjunction with data about trip purpose and accompaniment. However, linking GPS and diary data is problematic and to date the only method has been to match the two datasets manually, which is time consuming and unlikely to be practical for larger data sets. This paper assesses the feasibility of a new sequence alignment method of linking GPS and travel diary data in comparison with the manual matching method. Methods GPS and travel diary data obtained from a study of children's independent mobility were linked using sequence alignment algorithms to test the proof of concept. Travel diaries were assessed for quality by counting the number of errors and inconsistencies in each participant's set of diaries. The success of the sequence alignment method was compared for higher versus lower quality travel diaries, and for accompanied versus unaccompanied trips. Time taken and percentage of trips matched were compared for the sequence alignment method and the manual method. Results The sequence alignment method matched 61.9% of all trips. Higher quality travel diaries were associated with higher match rates in both the sequence alignment and manual matching methods. The sequence alignment method performed almost as well as the manual method and was an order of magnitude faster. However, the sequence alignment method was less successful at fully matching trips and at matching unaccompanied trips. Conclusions Sequence alignment is a promising method of linking GPS and travel diary data in large population datasets, especially if limitations in the trip detection algorithm are addressed. PMID:22142322

  20. A Novel Partial Sequence Alignment Tool for Finding Large Deletions

    PubMed Central

    Aruk, Taner; Ustek, Duran; Kursun, Olcay

    2012-01-01

    Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777

  1. Fast single-pass alignment and variant calling using sequencing data

    USDA-ARS?s Scientific Manuscript database

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  2. GOSAP: Gene Ontology-Based Semantic Alignment of Biological Pathways.

    PubMed

    Gamalielsson, Jonas; Olsson, Bjorn

    2008-01-01

    We present a new method for semantic comparison of biological pathways, aiming to discover evolutionary conservation of pathways between species. Our method uses all three sub-ontologies of Gene Ontology (GO) and a measure of semantic similarity to calculate match scores between gene products. These scores are used for finding local pairwise pathway alignments. This approach has the advantage of being applicable to all types of pathways where nodes are gene products, e.g., regulatory pathways, signalling pathways and metabolic enzyme-to-enzyme pathways. We demonstrate the usefulness of the method using regulatory and metabolic pathways from E. coli and S. cerevisiae as examples.

  3. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  4. Biclustering as a method for RNA local multiple sequence alignment.

    PubMed

    Wang, Shu; Gutell, Robin R; Miranker, Daniel P

    2007-12-15

    Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/

  5. MANGO: a new approach to multiple sequence alignment.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2007-01-01

    Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.

  6. Embedding strategies for effective use of information from multiple sequence alignments.

    PubMed Central

    Henikoff, S.; Henikoff, J. G.

    1997-01-01

    We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452

  7. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    PubMed Central

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  8. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites.

    PubMed

    Irizarry, Kristopher J L; Bryden, Randall L

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus . Our results provide insight into pigment phenotypes in pythons.

  9. kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity.

    PubMed

    Murray, Kevin D; Webers, Christfried; Ong, Cheng Soon; Borevitz, Justin; Warthmann, Norman

    2017-09-01

    Modern genomics techniques generate overwhelming quantities of data. Extracting population genetic variation demands computationally efficient methods to determine genetic relatedness between individuals (or "samples") in an unbiased manner, preferably de novo. Rapid estimation of genetic relatedness directly from sequencing data has the potential to overcome reference genome bias, and to verify that individuals belong to the correct genetic lineage before conclusions are drawn using mislabelled, or misidentified samples. We present the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing runs from their k-mer counts. It produces a distance matrix, which can then be further analysed and visualised. Our method does not require prior knowledge of the underlying genomes and applications include establishing sample identity and detecting mix-up, non-obvious genomic variation, and population structure. We show that kWIP can reconstruct the true relatedness between samples from simulated populations. By re-analysing several published datasets we show that our results are consistent with marker-based analyses. kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.com/kdmurray91/kwip.

  10. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.

    PubMed

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy

    2015-05-01

    We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.

  11. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    PubMed

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  12. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    PubMed

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  13. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces.

    PubMed

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan; Zhang, Shuyi; Jin, Qi

    2012-10-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.

  14. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  15. Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces

    PubMed Central

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan

    2012-01-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China. PMID:22855479

  16. Retrieval and registration of long-range overlapping frames for scalable mosaicking of in vivo fetoscopy.

    PubMed

    Peter, Loïc; Tella-Amo, Marcel; Shakir, Dzhoshkun Ismail; Attilakos, George; Wimalasundera, Ruwan; Deprest, Jan; Ourselin, Sébastien; Vercauteren, Tom

    2018-05-01

    The standard clinical treatment of Twin-to-Twin transfusion syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (1) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (2) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison with two standard baselines. This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.

  17. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  18. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.

    PubMed

    Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S

    2007-10-11

    By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.

  19. Protein structure recognition: From eigenvector analysis to structural threading method

    NASA Astrophysics Data System (ADS)

    Cao, Haibo

    In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle. In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  20. 'Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique.

    PubMed

    Harrison, Nigel A; Davis, Robert E; Oropeza, Carlos; Helmick, Ericka E; Narváez, María; Eden-Green, Simon; Dollet, Michel; Dickinson, Matthew

    2014-06-01

    In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100% identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0-99.6% identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d'Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5% sequence identity with all previously described members of 'Candidatus Phytoplasma'. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of 'Candidatus Phytoplasma', justifying its recognition as the reference strain of a novel taxon, 'Candidatus Phytoplasma palmicola'. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d'Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.

  1. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences

    PubMed Central

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong

    2015-01-01

    Abstract We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate—slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory. PMID:25549288

  2. A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band

    NASA Astrophysics Data System (ADS)

    Zou, Quan; Shan, Xiao; Jiang, Yi

    Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.

  3. Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas

    2005-08-15

    Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.

  4. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.

    PubMed

    Eernisse, D J

    1992-04-01

    DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.

  5. Alignment methods: strategies, challenges, benchmarking, and comparative overview.

    PubMed

    Löytynoja, Ari

    2012-01-01

    Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.

  6. AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.

    PubMed

    Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R

    2015-04-01

    Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.

  7. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA

    PubMed Central

    Wright, Imogen A.; Travers, Simon A.

    2014-01-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618

  8. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  9. A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.

    PubMed

    Luczak, Brian B; James, Benjamin T; Girgis, Hani Z

    2017-12-06

    Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.

  10. Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin.

    PubMed

    Guzzi, Pietro Hiram; Milenkovic, Tijana

    2018-05-01

    Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.

  11. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome

    PubMed Central

    Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend

    2007-01-01

    A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995

  12. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  13. Phylogenetic Relationship of Necoclí Virus to Other South American Hantaviruses (Bunyaviridae: Hantavirus).

    PubMed

    Montoya-Ruiz, Carolina; Cajimat, Maria N B; Milazzo, Mary Louise; Diaz, Francisco J; Rodas, Juan David; Valbuena, Gustavo; Fulhorst, Charles F

    2015-07-01

    The results of a previous study suggested that Cherrie's cane rat (Zygodontomys cherriei) is the principal host of Necoclí virus (family Bunyaviridae, genus Hantavirus) in Colombia. Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences in this study confirmed that Necoclí virus is phylogenetically closely related to Maporal virus, which is principally associated with the delicate pygmy rice rat (Oligoryzomys delicatus) in western Venezuela. In pairwise comparisons, nonidentities between the complete amino acid sequence of the nucleocapsid protein of Necoclí virus and the complete amino acid sequences of the nucleocapsid proteins of other hantaviruses were ≥8.7%. Likewise, nonidentities between the complete amino acid sequence of the glycoprotein precursor of Necoclí virus and the complete amino acid sequences of the glycoprotein precursors of other hantaviruses were ≥11.7%. Collectively, the unique association of Necoclí virus with Z. cherriei in Colombia, results of the Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences, and results of the pairwise comparisons of amino acid sequences strongly support the notion that Necoclí virus represents a novel species in the genus Hantavirus. Further work is needed to determine whether Calabazo virus (a hantavirus associated with Z. brevicauda cherriei in Panama) and Necoclí virus are conspecific.

  14. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  15. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  16. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    PubMed

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter

    2015-01-01

    To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  17. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  18. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)

    PubMed Central

    Martin, Andrew C. R.

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836

  19. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    PubMed

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.

  20. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    PubMed

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  1. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  2. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification.

    PubMed

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-05-01

    Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  3. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  4. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide

    EPA Science Inventory

    User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...

  5. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    PubMed Central

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465

  6. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  7. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.

    PubMed

    Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-08-28

    We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/

  8. Long Read Alignment with Parallel MapReduce Cloud Platform

    PubMed Central

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  9. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA.

    PubMed

    Wright, Imogen A; Travers, Simon A

    2014-07-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Long Read Alignment with Parallel MapReduce Cloud Platform.

    PubMed

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  11. Linkage of Viral Sequences among HIV-Infected Village Residents in Botswana: Estimation of Linkage Rates in the Presence of Missing Data

    PubMed Central

    Carnegie, Nicole Bohme; Wang, Rui; Novitsky, Vladimir; De Gruttola, Victor

    2014-01-01

    Linkage analysis is useful in investigating disease transmission dynamics and the effect of interventions on them, but estimates of probabilities of linkage between infected people from observed data can be biased downward when missingness is informative. We investigate variation in the rates at which subjects' viral genotypes link across groups defined by viral load (low/high) and antiretroviral treatment (ART) status using blood samples from household surveys in the Northeast sector of Mochudi, Botswana. The probability of obtaining a sequence from a sample varies with viral load; samples with low viral load are harder to amplify. Pairwise genetic distances were estimated from aligned nucleotide sequences of HIV-1C env gp120. It is first shown that the probability that randomly selected sequences are linked can be estimated consistently from observed data. This is then used to develop estimates of the probability that a sequence from one group links to at least one sequence from another group under the assumption of independence across pairs. Furthermore, a resampling approach is developed that accounts for the presence of correlation across pairs, with diagnostics for assessing the reliability of the method. Sequences were obtained for 65% of subjects with high viral load (HVL, n = 117), 54% of subjects with low viral load but not on ART (LVL, n = 180), and 45% of subjects on ART (ART, n = 126). The probability of linkage between two individuals is highest if both have HVL, and lowest if one has LVL and the other has LVL or is on ART. Linkage across groups is high for HVL and lower for LVL and ART. Adjustment for missing data increases the group-wise linkage rates by 40–100%, and changes the relative rates between groups. Bias in inferences regarding HIV viral linkage that arise from differential ability to genotype samples can be reduced by appropriate methods for accommodating missing data. PMID:24415932

  12. Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data.

    PubMed

    Carnegie, Nicole Bohme; Wang, Rui; Novitsky, Vladimir; De Gruttola, Victor

    2014-01-01

    Linkage analysis is useful in investigating disease transmission dynamics and the effect of interventions on them, but estimates of probabilities of linkage between infected people from observed data can be biased downward when missingness is informative. We investigate variation in the rates at which subjects' viral genotypes link across groups defined by viral load (low/high) and antiretroviral treatment (ART) status using blood samples from household surveys in the Northeast sector of Mochudi, Botswana. The probability of obtaining a sequence from a sample varies with viral load; samples with low viral load are harder to amplify. Pairwise genetic distances were estimated from aligned nucleotide sequences of HIV-1C env gp120. It is first shown that the probability that randomly selected sequences are linked can be estimated consistently from observed data. This is then used to develop estimates of the probability that a sequence from one group links to at least one sequence from another group under the assumption of independence across pairs. Furthermore, a resampling approach is developed that accounts for the presence of correlation across pairs, with diagnostics for assessing the reliability of the method. Sequences were obtained for 65% of subjects with high viral load (HVL, n = 117), 54% of subjects with low viral load but not on ART (LVL, n = 180), and 45% of subjects on ART (ART, n = 126). The probability of linkage between two individuals is highest if both have HVL, and lowest if one has LVL and the other has LVL or is on ART. Linkage across groups is high for HVL and lower for LVL and ART. Adjustment for missing data increases the group-wise linkage rates by 40-100%, and changes the relative rates between groups. Bias in inferences regarding HIV viral linkage that arise from differential ability to genotype samples can be reduced by appropriate methods for accommodating missing data.

  13. HIA: a genome mapper using hybrid index-based sequence alignment.

    PubMed

    Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen

    2015-01-01

    A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.

  14. Heuristics for multiobjective multiple sequence alignment.

    PubMed

    Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B

    2016-07-15

    Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.

  15. Three novel papillomaviruses (HPV109, HPV112 and HPV114) and their presence in cutaneous and mucosal samples.

    PubMed

    Ekström, Johanna; Forslund, Ola; Dillner, Joakim

    2010-02-20

    To expand our knowledge of the genomic diversity of human papillomaviruses (HPVs), we searched for new HPVs in squamous cell carcinomas of the skin (SCC) and seemingly HPV-negative, otherwise typically HPV-associated lesions. We describe the characterization of three novel HPV types. HPV109 was isolated from an SCC, HPV112 from a condyloma and HPV114 from a low-grade cervical lesion. Pairwise alignment of the L1 sequences classified HPV114 to genus alpha species 3, whereas HPV112 defined a new species in the genus gamma. HPV109 had uncertain classification because of a low and about equal similarity in the L1 gene (between 60% and 65%) to different genera. Type-specific real-time PCRs of cervical samples, a majority from women with low grade atypical cytology, (n=2856) and various cutaneous samples (n=538), found HPV114 in 1.7% (48/2856) of the genital samples, whereas both HPV109 and 112 were rare viruses found at high viral loads only in their index samples. Copyright 2009 Elsevier Inc. All rights reserved.

  16. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.

    PubMed

    Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L

    2012-07-01

    Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.

  17. Spatio-temporal alignment of pedobarographic image sequences.

    PubMed

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.

  18. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  19. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    PubMed

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  20. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    PubMed Central

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  1. What's in your next-generation sequence data? An exploration of unmapped DNA and RNA sequence reads from the bovine reference individual

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...

  2. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly

    PubMed Central

    Wala, Jeremiah; Beroukhim, Rameen

    2017-01-01

    Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768

  3. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    PubMed

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.

    PubMed

    Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano

    2018-01-01

    Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .

  5. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  6. enoLOGOS: a versatile web tool for energy normalized sequence logos

    PubMed Central

    Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.

    2005-01-01

    enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495

  7. Slider--maximum use of probability information for alignment of short sequence reads and SNP detection.

    PubMed

    Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M

    2009-01-01

    A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.

  8. AntiClustal: Multiple Sequence Alignment by antipole clustering and linear approximate 1-median computation.

    PubMed

    Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V

    2003-01-01

    In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.

  9. Intrasubject multimodal groupwise registration with the conditional template entropy.

    PubMed

    Polfliet, Mathias; Klein, Stefan; Huizinga, Wyke; Paulides, Margarethus M; Niessen, Wiro J; Vandemeulebroucke, Jef

    2018-05-01

    Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. HSA: a heuristic splice alignment tool.

    PubMed

    Bu, Jingde; Chi, Xuebin; Jin, Zhong

    2013-01-01

    RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.

  11. An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing.

    PubMed

    Bergin, Sarah M; Periaswamy, Balamurugan; Barkham, Timothy; Chua, Hong Choon; Mok, Yee Ming; Fung, Daniel Shuen Sheng; Su, Alex Hsin Chuan; Lee, Yen Ling; Chua, Ming Lai Ivan; Ng, Poh Yong; Soon, Wei Jia Wendy; Chu, Collins Wenhan; Tan, Siyun Lucinda; Meehan, Mary; Ang, Brenda Sze Peng; Leo, Yee Sin; Holden, Matthew T G; De, Partha; Hsu, Li Yang; Chen, Swaine L; de Sessions, Paola Florez; Marimuthu, Kalisvar

    2018-05-09

    OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;1-9.

  12. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  13. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2003-12-23

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

  14. New powerful statistics for alignment-free sequence comparison under a pattern transfer model.

    PubMed

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu

    2011-09-07

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Differential evolution-simulated annealing for multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  16. New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model

    PubMed Central

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu

    2011-01-01

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298

  17. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    PubMed

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  18. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  19. ARYANA: Aligning Reads by Yet Another Approach.

    PubMed

    Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi

    2014-01-01

    Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.

  20. AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis

    PubMed Central

    Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2010-01-01

    Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533

  1. Comparison of the ITS1 and ITS2 rDNA in Emeria callospermophili (Apicomplexa: Eimeriidae) from Sciurid Rodents

    PubMed Central

    Motriuk-Smith, Dagmara; Seville, R Scott; Quealy, Leah; Oliver, Clinton E.

    2011-01-01

    The taxonomy of the coccidia has historically been morphologically based. The purpose of this study was to establish if conspecificity of isolates of Eimeria callospermophili from 4 ground-dwelling squirrel hosts (Rodentia: Sciuridae) is supported by comparison of rDNA sequence data and to examine how this species relates to eimerian species from other sciurid hosts. Eimeria callospermophili was isolated from 4 wild caught hosts, i.e., Urocitellus elegans, Cynomys leucurus, Marmota flaviventris, and Cynomys ludovicianus. The ITS1 and ITS2 genomic rDNA sequences were PCR generated, sequenced, and analyzed. The highest intraspecific pairwise distance values of 6.0% in ITS1 and 7.1% in ITS2 were observed in C. leucurus. Interspecific pairwise distance values greater than 5% do not support E. callospermophili conspecificity. Generated E. callospermophili sequences were compared to Eimeria lancasterensis from Sciuris niger and Sciurus niger cinereus, and Eimeria ontarioensis from S. niger. A single well-supported clade was formed by E. callospermophili amplicons in Neighbor Joining and Maximum Parsimony analyses. However, within the clade there was little evidence of host or geographic structuring of the species. PMID:21506777

  2. RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations

    PubMed Central

    Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.

    2014-01-01

    Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449

  3. Iterative pass optimization of sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  4. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    PubMed

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.

  5. Obtaining a more resolute teleost growth hormone phylogeny by the introduction of gaps in sequence alignment.

    PubMed

    Rubin, D A; Dores, R M

    1995-06-01

    In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.

  6. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results.

    PubMed

    Worley, K C; Wiese, B A; Smith, R F

    1995-09-01

    BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).

  7. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  8. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    PubMed Central

    2010-01-01

    Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162

  9. Spreadsheet-based program for alignment of overlapping DNA sequences.

    PubMed

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  10. EAPhy: A Flexible Tool for High-throughput Quality Filtering of Exon-alignments and Data Processing for Phylogenetic Methods.

    PubMed

    Blom, Mozes P K

    2015-08-05

    Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.

  11. Solution to urn models of pairwise interaction with application to social, physical, and biological sciences

    NASA Astrophysics Data System (ADS)

    Pickering, William; Lim, Chjan

    2017-07-01

    We investigate a family of urn models that correspond to one-dimensional random walks with quadratic transition probabilities that have highly diverse applications. Well-known instances of these two-urn models are the Ehrenfest model of molecular diffusion, the voter model of social influence, and the Moran model of population genetics. We also provide a generating function method for diagonalizing the corresponding transition matrix that is valid if and only if the underlying mean density satisfies a linear differential equation and express the eigenvector components as terms of ordinary hypergeometric functions. The nature of the models lead to a natural extension to interaction between agents in a general network topology. We analyze the dynamics on uncorrelated heterogeneous degree sequence networks and relate the convergence times to the moments of the degree sequences for various pairwise interaction mechanisms.

  12. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    Background Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Methods Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Results Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Conclusions Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology. PMID:25034633

  13. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology.

  14. A statistical physics perspective on alignment-independent protein sequence comparison.

    PubMed

    Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R

    2015-08-01

    Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.

  15. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  16. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    PubMed

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.

  17. Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.

    PubMed

    Sakai, Ryo; Aerts, Jan

    2014-01-01

    The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.

  18. SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform.

    PubMed

    Lin, Jie; Wei, Jing; Adjeroh, Donald; Jiang, Bing-Hua; Jiang, Yue

    2018-05-02

    Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.

  19. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB.

    PubMed

    Xu, Qifang; Dunbrack, Roland L

    2012-11-01

    Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.

  20. DEMO: Sequence Alignment to Predict Across Species Susceptibility

    EPA Science Inventory

    The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...

  1. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    PubMed

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  2. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  3. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  4. Spreadsheet macros for coloring sequence alignments.

    PubMed

    Haygood, M G

    1993-12-01

    This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.

  5. Validation of Splicing Events in Transcriptome Sequencing Data

    PubMed Central

    Kaisers, Wolfgang; Ptok, Johannes; Schwender, Holger; Schaal, Heiner

    2017-01-01

    Genomic alignments of sequenced cellular messenger RNA contain gapped alignments which are interpreted as consequence of intron removal. The resulting gap-sites, genomic locations of alignment gaps, are landmarks representing potential splice-sites. As alignment algorithms report gap-sites with a considerable false discovery rate, validations are required. We describe two quality scores, gap quality score (gqs) and weighted gap information score (wgis), developed for validation of putative splicing events: While gqs solely relies on alignment data wgis additionally considers information from the genomic sequence. FASTQ files obtained from 54 human dermal fibroblast samples were aligned against the human genome (GRCh38) using TopHat and STAR aligner. Statistical properties of gap-sites validated by gqs and wgis were evaluated by their sequence similarity to known exon-intron borders. Within the 54 samples, TopHat identifies 1,000,380 and STAR reports 6,487,577 gap-sites. Due to the lack of strand information, however, the percentage of identified GT-AG gap-sites is rather low. While gap-sites from TopHat contain ≈89% GT-AG, gap-sites from STAR only contain ≈42% GT-AG dinucleotide pairs in merged data from 54 fibroblast samples. Validation with gqs yields 156,251 gap-sites from TopHat alignments and 166,294 from STAR alignments. Validation with wgis yields 770,327 gap-sites from TopHat alignments and 1,065,596 from STAR alignments. Both alignment algorithms, TopHat and STAR, report gap-sites with considerable false discovery rate, which can drastically be reduced by validation with gqs and wgis. PMID:28545234

  6. Rapid protein alignment in the cloud: HAMOND combines fast DIAMOND alignments with Hadoop parallelism.

    PubMed

    Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander

    2017-09-10

    The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    PubMed

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  8. Biological intuition in alignment-free methods: response to Posada.

    PubMed

    Ragan, Mark A; Chan, Cheong Xin

    2013-08-01

    A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.

  9. A Mathematical Optimization Problem in Bioinformatics

    ERIC Educational Resources Information Center

    Heyer, Laurie J.

    2008-01-01

    This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…

  10. SEAN: SNP prediction and display program utilizing EST sequence clusters.

    PubMed

    Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek

    2006-02-15

    SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.

  11. Mango: multiple alignment with N gapped oligos.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2008-06-01

    Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.

  12. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, T.G.; Chang, W.I.

    1997-12-23

    A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.

  13. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, Thomas G.; Chang, William I-Wei

    1997-01-01

    A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.

  14. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    PubMed

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  15. SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.

    PubMed

    Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile

    2015-01-01

    In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.

  16. Improve homology search sensitivity of PacBio data by correcting frameshifts.

    PubMed

    Du, Nan; Sun, Yanni

    2016-09-01

    Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. HIV Sequence Compendium 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiken, Carla; Foley, Brian; Leitner, Thomas

    This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2010. Hence, though it is called the 2010 Compendium, its contents correspond to the 2009 curated alignments on our website. The number of sequences in the HIV database is stillmore » increasing exponentially. In total, at the time of printing, there were 339,306 sequences in the HIV Sequence Database, an increase of 45% since last year. The number of near complete genomes (>7000 nucleotides) increased to 2576 by end of 2009, reflecting a smaller increase than in previous years. However, as in previous years, the compendium alignments contain only a small fraction of these. Included in the alignments are a small number of sequences representing each of the subtypes and the more prevalent circulating recombinant forms (CRFs) such as 01 and 02, as well as a few outgroup sequences (group O and N and SIV-CPZ). Of the rarer CRFs we included one representative each. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. Reprints are available from our website in the form of both HTML and PDF files. As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less

  18. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  19. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  20. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB

    PubMed Central

    Dunbrack, Roland L.

    2012-01-01

    Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020

  1. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    PubMed

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  2. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  3. CLAST: CUDA implemented large-scale alignment search tool.

    PubMed

    Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken

    2014-12-11

    Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.

  4. Comparative modeling without implicit sequence alignments.

    PubMed

    Kolinski, Andrzej; Gront, Dominik

    2007-10-01

    The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.

  5. HIV Sequence Compendium 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Brian Thomas; Leitner, Thomas Kenneth; Apetrei, Cristian

    This compendium is an annual printed summary of the data contained in the HIV sequence database. We try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2015. Hence, though it is published in 2015 and called the 2015 Compendium, its contents correspond to the 2014 curated alignments on our website. The number of sequences in the HIV database ismore » still increasing. In total, at the end of 2014, there were 624,121 sequences in the HIV Sequence Database, an increase of 7% since the previous year. This is the first year that the number of new sequences added to the database has decreased compared to the previous year. The number of near complete genomes (>7000 nucleotides) increased to 5834 by end of 2014. However, as in previous years, the compendium alignments contain only a fraction of these. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/ content/sequence/NEWALIGN/align.html As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less

  6. DNATagger, colors for codons.

    PubMed

    Scherer, N M; Basso, D M

    2008-09-16

    DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.

  7. Rapid Threat Organism Recognition Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kelly P.; Solberg, Owen D.; Schoeniger, Joseph S.

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has also been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on qualitymore » and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less

  8. PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction

    PubMed Central

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.

    2008-01-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945

  9. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  10. Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Sumibcay, Laarni; Arai, Satoru; Hope, Andrew G.; Mocz, Gabor; Song, Jin-Won; Cook, Joseph A.; Yanagihara, Richard

    2009-01-01

    Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. PMID:19582155

  11. Is multiple-sequence alignment required for accurate inference of phylogeny?

    PubMed

    Höhl, Michael; Ragan, Mark A

    2007-04-01

    The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.

  12. Clustalnet: the joining of Clustal and CORBA.

    PubMed

    Campagne, F

    2000-07-01

    Performing sequence alignment operations from a different program than the original sequence alignment code, and/or through a network connection, is often required. Interactive alignment editors and large-scale biological data analysis are common examples where such a flexibility is important. Interoperability between the alignment engine and the client should be obtained regardless of the architectures and programming languages of the server and client. Clustalnet, a Clustal alignment CORBA server is described, which was developed on the basis of Clustalw. This server brings the robustness of the algorithms and implementations of Clustal to a new level of reuse. A Clustalnet server object can be accessed from a program, transparently through the network. We present interfaces to perform the alignment operations and to control these operations via immutable contexts. The interfaces that select the contexts do not depend on the nature of the operation to be performed, making the design modular. The IDL interfaces presented here are not specific to Clustal and can be implemented on top of different sequence alignment algorithm implementations.

  13. Modular and configurable optimal sequence alignment software: Cola.

    PubMed

    Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G

    2014-01-01

    The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.

  14. Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment.

    PubMed

    Ranwez, Vincent

    2016-01-01

    Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.

  15. Automated Sanger Analysis Pipeline (ASAP): A Tool for Rapidly Analyzing Sanger Sequencing Data with Minimum User Interference.

    PubMed

    Singh, Aditya; Bhatia, Prateek

    2016-12-01

    Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.

  16. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    PubMed Central

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing whole plastid genomes to find markers for evolutionary analyses is therefore particularly useful when overall genetic distances are low. PMID:25405773

  17. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  19. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  20. Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis.

    PubMed

    Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš

    2012-05-01

    Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.

  1. Randomized Approaches for Nearest Neighbor Search in Metric Space When Computing the Pairwise Distance Is Extremely Expensive

    NASA Astrophysics Data System (ADS)

    Wang, Lusheng; Yang, Yong; Lin, Guohui

    Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.

  2. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences.

    PubMed

    Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer

    2017-09-26

    Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .

  3. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes.

    PubMed

    Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M

    2014-01-01

    Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.

  4. Measuring fit of sequence data to phylogenetic model: gain of power using marginal tests.

    PubMed

    Waddell, Peter J; Ota, Rissa; Penny, David

    2009-10-01

    Testing fit of data to model is fundamentally important to any science, but publications in the field of phylogenetics rarely do this. Such analyses discard fundamental aspects of science as prescribed by Karl Popper. Indeed, not without cause, Popper (Unended quest: an intellectual autobiography. Fontana, London, 1976) once argued that evolutionary biology was unscientific as its hypotheses were untestable. Here we trace developments in assessing fit from Penny et al. (Nature 297:197-200, 1982) to the present. We compare the general log-likelihood ratio (the G or G (2) statistic) statistic between the evolutionary tree model and the multinomial model with that of marginalized tests applied to an alignment (using placental mammal coding sequence data). It is seen that the most general test does not reject the fit of data to model (P approximately 0.5), but the marginalized tests do. Tests on pairwise frequency (F) matrices, strongly (P < 0.001) reject the most general phylogenetic (GTR) models commonly in use. It is also clear (P < 0.01) that the sequences are not stationary in their nucleotide composition. Deviations from stationarity and homogeneity seem to be unevenly distributed amongst taxa; not necessarily those expected from examining other regions of the genome. By marginalizing the 4( t ) patterns of the i.i.d. model to observed and expected parsimony counts, that is, from constant sites, to singletons, to parsimony informative characters of a minimum possible length, then the likelihood ratio test regains power, and it too rejects the evolutionary model with P < 0.001. Given such behavior over relatively recent evolutionary time, readers in general should maintain a healthy skepticism of results, as the scale of the systematic errors in published trees may really be far larger than the analytical methods (e.g., bootstrap) report.

  5. Twisted trees and inconsistency of tree estimation when gaps are treated as missing data - The impact of model mis-specification in distance corrections.

    PubMed

    McTavish, Emily Jane; Steel, Mike; Holder, Mark T

    2015-12-01

    Statistically consistent estimation of phylogenetic trees or gene trees is possible if pairwise sequence dissimilarities can be converted to a set of distances that are proportional to the true evolutionary distances. Susko et al. (2004) reported some strikingly broad results about the forms of inconsistency in tree estimation that can arise if corrected distances are not proportional to the true distances. They showed that if the corrected distance is a concave function of the true distance, then inconsistency due to long branch attraction will occur. If these functions are convex, then two "long branch repulsion" trees will be preferred over the true tree - though these two incorrect trees are expected to be tied as the preferred true. Here we extend their results, and demonstrate the existence of a tree shape (which we refer to as a "twisted Farris-zone" tree) for which a single incorrect tree topology will be guaranteed to be preferred if the corrected distance function is convex. We also report that the standard practice of treating gaps in sequence alignments as missing data is sufficient to produce non-linear corrected distance functions if the substitution process is not independent of the insertion/deletion process. Taken together, these results imply inconsistent tree inference under mild conditions. For example, if some positions in a sequence are constrained to be free of substitutions and insertion/deletion events while the remaining sites evolve with independent substitutions and insertion/deletion events, then the distances obtained by treating gaps as missing data can support an incorrect tree topology even given an unlimited amount of data. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. First report of Perkinsus beihaiensis in Crassostrea madrasensis from the Indian subcontinent.

    PubMed

    Sanil, N K; Suja, G; Lijo, J; Vijayan, K K

    2012-04-26

    Protozoan parasites of the genus Perkinsus are considered important pathogens responsible for mass mortalities in many wild and farmed bivalve populations. The present study was initiated to screen populations of the Indian edible oyster Crassostrea madrasensis, a promising candidate for aquaculture along the Indian coasts, for the presence of Perkinsus spp. The study reports the presence of P. beihaiensis for the first time in C. madrasensis populations from the Indian subcontinent and south Asia. Samples collected from the east and west coasts of India were subjected to Ray's fluid thioglycollate medium (RFTM) culture and histology which indicated the presence of Perkinsus spp. PCR screening of the tissues using specific primers amplified the product specific to the genus Perkinsus. The taxonomic affinities of the parasites were determined by sequencing both internal transcribed spacer (ITS) and actin genes followed by basic local alignment search tool (BLAST) analysis. Analysis based on the ITS sequences showed 98 to 100% identity to Perkinsus spp. (P. beihaiensis and Brazilian Perkinsus sp.). The pairwise genetic distance values and phylogenetic analysis confirmed that 2 of the present samples belonged to the P. beihaiensis clade while the other 4 showed close affinities with the Brazilian Perkinsus sp. clade. The genetic divergence data, close affinity with the Brazilian Perkinsus sp., and co-existence with P. beihaiensis in the same host species in the same habitat show that the remaining 4 samples exhibit some degree of variation from P. beihaiensis. As expected, the sequencing of actin genes did not show any divergence among the samples studied. They probably could be intraspecific variants of P. beihaiensis having a separate lineage in the process of evolution.

  7. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642

  8. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    PubMed

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  9. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    PubMed

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  10. Sequence alignment visualization in HTML5 without Java.

    PubMed

    Gille, Christoph; Birgit, Weyand; Gille, Andreas

    2014-01-01

    Java has been extensively used for the visualization of biological data in the web. However, the Java runtime environment is an additional layer of software with an own set of technical problems and security risks. HTML in its new version 5 provides features that for some tasks may render Java unnecessary. Alignment-To-HTML is the first HTML-based interactive visualization for annotated multiple sequence alignments. The server side script interpreter can perform all tasks like (i) sequence retrieval, (ii) alignment computation, (iii) rendering, (iv) identification of a homologous structural models and (v) communication with BioDAS-servers. The rendered alignment can be included in web pages and is displayed in all browsers on all platforms including touch screen tablets. The functionality of the user interface is similar to legacy Java applets and includes color schemes, highlighting of conserved and variable alignment positions, row reordering by drag and drop, interlinked 3D visualization and sequence groups. Novel features are (i) support for multiple overlapping residue annotations, such as chemical modifications, single nucleotide polymorphisms and mutations, (ii) mechanisms to quickly hide residue annotations, (iii) export to MS-Word and (iv) sequence icons. Alignment-To-HTML, the first interactive alignment visualization that runs in web browsers without additional software, confirms that to some extend HTML5 is already sufficient to display complex biological data. The low speed at which programs are executed in browsers is still the main obstacle. Nevertheless, we envision an increased use of HTML and JavaScript for interactive biological software. Under GPL at: http://www.bioinformatics.org/strap/toHTML/.

  11. Sequence determination and analysis of the NSs genes of two tospoviruses.

    PubMed

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  12. eShadow: A tool for comparing closely related sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.

    2004-01-15

    Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less

  13. Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements

    PubMed Central

    Kriegeskorte, Nikolaus; Mur, Marieke

    2012-01-01

    The pairwise dissimilarities of a set of items can be intuitively visualized by a 2D arrangement of the items, in which the distances reflect the dissimilarities. Such an arrangement can be obtained by multidimensional scaling (MDS). We propose a method for the inverse process: inferring the pairwise dissimilarities from multiple 2D arrangements of items. Perceptual dissimilarities are classically measured using pairwise dissimilarity judgments. However, alternative methods including free sorting and 2D arrangements have previously been proposed. The present proposal is novel (a) in that the dissimilarity matrix is estimated by “inverse MDS” based on multiple arrangements of item subsets, and (b) in that the subsets are designed by an adaptive algorithm that aims to provide optimal evidence for the dissimilarity estimates. The subject arranges the items (represented as icons on a computer screen) by means of mouse drag-and-drop operations. The multi-arrangement method can be construed as a generalization of simpler methods: It reduces to pairwise dissimilarity judgments if each arrangement contains only two items, and to free sorting if the items are categorically arranged into discrete piles. Multi-arrangement combines the advantages of these methods. It is efficient (because the subject communicates many dissimilarity judgments with each mouse drag), psychologically attractive (because dissimilarities are judged in context), and can characterize continuous high-dimensional dissimilarity structures. We present two procedures for estimating the dissimilarity matrix: a simple weighted-aligned-average of the partial dissimilarity matrices and a computationally intensive algorithm, which estimates the dissimilarity matrix by iteratively minimizing the error of MDS-predictions of the subject’s arrangements. The Matlab code for interactive arrangement and dissimilarity estimation is available from the authors upon request. PMID:22848204

  14. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    PubMed

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Alignment and integration of complex networks by hypergraph-based spectral clustering

    NASA Astrophysics Data System (ADS)

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  16. Alignment and integration of complex networks by hypergraph-based spectral clustering.

    PubMed

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  17. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  18. GASP: Gapped Ancestral Sequence Prediction for proteins

    PubMed Central

    Edwards, Richard J; Shields, Denis C

    2004-01-01

    Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199

  19. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    PubMed

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  20. Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.

    The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less

  1. A new version of the RDP (Ribosomal Database Project)

    NASA Technical Reports Server (NTRS)

    Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.; hide

    1999-01-01

    The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.

  2. Analysis of Neuronal Sequences Using Pairwise Biases

    DTIC Science & Technology

    2015-08-27

    semantic memory (knowledge of facts) and implicit memory (e.g., how to ride a bike ). Evidence for the participation of the hippocampus in the formation of...hippocampal formation in an attempt to be cured of severe epileptic seizures. Although the surgery was successful in regards to reducing the frequency and...very different from each other in many ways including duration and number of spikes. Still, these sequences share a similar trend in the general order

  3. JVM: Java Visual Mapping tool for next generation sequencing read.

    PubMed

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  4. Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment

    PubMed Central

    2011-01-01

    Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510

  5. CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.

    PubMed

    Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan

    2017-06-24

    The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .

  6. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package

    PubMed Central

    Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang

    2006-01-01

    Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074

  7. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.

  8. Sequence Similarity Presenter: a tool for the graphic display of similarities of long sequences for use in presentations.

    PubMed

    Fröhlich, K U

    1994-04-01

    A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.

  9. A random walk in physical biology

    NASA Astrophysics Data System (ADS)

    Peterson, Eric Lee

    Biology as a scientific discipline is becoming evermore quantitative as tools become available to probe living systems on every scale from the macro to the micro and now even to the nanoscale. In quantitative biology the challenge is to understand the living world in an in vivo context, where it is often difficult for simple theoretical models to connect with the full richness and complexity of the observed data. Computational models and simulations offer a way to bridge the gap between simple theoretical models and real biological systems; towards that aspiration are presented in this thesis three case studies in applying computational models that may give insight into native biological structures.The first is concerned with soluble proteins; proteins, like DNA, are linear polymers written in a twenty-letter "language" of amino acids. Despite the astronomical number of possible proteins sequences, a great amount of similarity is observed among the folded structures of globular proteins. One useful way of discovering similar sequences is to align their sequences, as done e.g. by the popular BLAST program. By clustering together amino acids and reducing the alphabet that proteins are written in to fewer than twenty letters, we find that pairwise sequence alignments are actually more sensitive to proteins with similar structures.The second case study is concerned with the measurement of forces applied to a membrane. We demonstrate a general method for extracting the forces applied to a fluid lipid bilayer of arbitrary shape and show that the subpiconewton forces applied by optical tweezers to vesicles can be accurately measured in this way.In the third and final case study we examine the forces between proteins in a lipid bilayer membrane. Due to the bending of the membrane surrounding them, such proteins feel mutually attractive forces which can help them to self-organize and act in concert. These finding are relevant at the areal densities estimated for membrane proteins such as the MscL mechanosensitive channel. The findings of the analytical studies were confirmed by a Monte Carlo Markov Chain simulation using the fully two-dimensional potentials between two model proteins in a membrane.Living systems present us with beautiful and intricate structures, from the helices and sheets of a folded protein to the dynamic morphology of cellular organelles and the self-organization of proteins in a biomembrane and a synergy of theoretical and it in silico approaches should enable us to build and refine models of in vivo biological data.

  10. SATCHMO-JS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction.

    PubMed

    Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen

    2010-07-01

    We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.

  11. Lunatimonas lonarensis gen. nov., sp. nov., a haloalkaline bacterium of the family Cyclobacteriaceae with nitrate reducing activity.

    PubMed

    Srinivas, T N R; Aditya, S; Bhumika, V; Kumar, P Anil

    2014-02-01

    Novel pinkish-orange pigmented, Gram-negative staining, half-moon shaped, non-motile, strictly aerobic strains designated AK24(T) and AK26 were isolated from water and sediment samples of Lonar Lake, Buldhana district, Maharahstra, India. Both strains were positive for oxidase, catalase and β-galactosidase activities. The predominant fatty acids were iso-C15:0 (41.5%), anteiso-C15:0 (9.7%), iso-C17:0 3OH (9.6%), iso-C17:1 ω9c (10.2%) and C16:1 ω7c/C16:1 ω6c/iso-C15:0 2OH (summed feature 3) (14.4%). The strains contained MK-7 as the major respiratory quinone, and phosphatidylethanolamine and five unidentified lipids as the polar lipids. Blast analysis of the 16S rRNA gene sequence of strain AK24(T) showed that it was closely related to Aquiflexum balticum, with a pair-wise sequence similarity of 91.6%, as well as to Fontibacter ferrireducens, Belliella baltica and Indibacter alkaliphilus (91.3, 91.2 and 91.2% pair-wise sequence similarity, respectively), but it only had between 88.6 and 91.0% pair-wise sequence similarity to the rest of the family members. The MALDI-TOF assay reported no significant similarities for AK24(T) and AK26, since they potentially represented a new species. A MALDI MSP dendrogram showed close similarity between the two strains, but they maintained a distance from their phylogenetic neighbors. The genome of AK24(T) showed the presence of heavy metal tolerance genes, including the genes providing resistance to arsenic, cadmium, cobalt and zinc. A cluster of heat shock resistance genes was also found in the genome. Two lantibiotic producing genes, LanR and LasB, were also found in the genome of AK24(T). Strains AK24(T) and AK26 were very closely related to each other with 99.5% pair-wise sequence similarity. Phylogenetic analysis indicated that the strains were members of the family Cyclobacteriaceae and they clustered with the genus Mariniradius, as well as with the genera Aquiflexum, Cecembia, Fontibacter, Indibacter, and Shivajiella. DNA-DNA hybridization between strains AK24(T) and AK26 showed a relatedness of 82% and their rep-PCR banding patterns were very similar. Based on data from the current polyphasic study, it is proposed that the isolates be placed in a new genus and species with the name Lunatimonas lonarensis gen. nov., sp. nov. The type strain of Lunatimonas lonarensis is AK24(T) (=JCM 18822(T)=MTCC 11627(T)). Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Approximate matching of regular expressions.

    PubMed

    Myers, E W; Miller, W

    1989-01-01

    Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.

  13. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  14. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.

    PubMed

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-11-23

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.

  15. SP-Designer: a user-friendly program for designing species-specific primer pairs from DNA sequence alignments.

    PubMed

    Villard, Pierre; Malausa, Thibaut

    2013-07-01

    SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php. © 2013 John Wiley & Sons Ltd.

  16. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.

    PubMed

    Robinson, Kelly M; Hawkins, Aziah S; Santana-Cruz, Ivette; Adkins, Ricky S; Shetty, Amol C; Nagaraj, Sushma; Sadzewicz, Lisa; Tallon, Luke J; Rasko, David A; Fraser, Claire M; Mahurkar, Anup; Silva, Joana C; Dunning Hotopp, Julie C

    2017-09-01

    As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi ) and one minority member (i.e. human or the Wolbachia endosymbiont w Bm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium , at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium- human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.

  17. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  18. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites.

    PubMed

    Briddon, Rob W; Martin, Darren P; Roumagnac, Philippe; Navas-Castillo, Jesús; Fiallo-Olivé, Elvira; Moriones, Enrique; Lett, Jean-Michel; Zerbini, F Murilo; Varsani, Arvind

    2018-05-09

    Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.

  19. Alignment-Annotator web server: rendering and annotating sequence alignments.

    PubMed

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  1. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  2. Towards the Rational Design of a Candidate Vaccine against Pregnancy Associated Malaria: Conserved Sequences of the DBL6ε Domain of VAR2CSA

    PubMed Central

    Badaut, Cyril; Bertin, Gwladys; Rustico, Tatiana; Fievet, Nadine; Massougbodji, Achille; Gaye, Alioune; Deloron, Philippe

    2010-01-01

    Background Placental malaria is a disease linked to the sequestration of Plasmodium falciparum infected red blood cells (IRBC) in the placenta, leading to reduced materno-fetal exchanges and to local inflammation. One of the virulence factors of P. falciparum involved in cytoadherence to chondroitin sulfate A, its placental receptor, is the adhesive protein VAR2CSA. Its localisation on the surface of IRBC makes it accessible to the immune system. VAR2CSA contains six DBL domains. The DBL6ε domain is the most variable. High variability constitutes a means for the parasite to evade the host immune response. The DBL6ε domain could constitute a very attractive basis for a vaccine candidate but its reported variability necessitates, for antigenic characterisations, identifying and classifying commonalities across isolates. Methodology/Principal Findings Local alignment analysis of the DBL6ε domain had revealed that it is not as variable as previously described. Variability is concentrated in seven regions present on the surface of the DBL6ε domain. The main goal of our work is to classify and group variable sequences that will simplify further research to determine dominant epitopes. Firstly, variable sequences were grouped following their average percent pairwise identity (APPI). Groups comprising many variable sequences sharing low variability were found. Secondly, ELISA experiments following the IgG recognition of a recombinant DBL6ε domain, and of peptides mimicking its seven variable blocks, allowed to determine an APPI cut-off and to isolate groups represented by a single consensus sequence. Conclusions/Significance A new sequence approach is used to compare variable regions in sequences that have extensive segmental gene relationship. Using this approach, the VAR2CSA DBL6 domain is composed of 7 variable blocks with limited polymorphism. Each variable block is composed of a limited number of consensus types. Based on peptide based ELISA, variable blocks with 85% or greater sequence identity are expected to be recognized equally well by antibody and can be considered the same consensus type. Therefore, the analysis of the antibody response against the classified small number of sequences should be helpful to determine epitopes. PMID:20585655

  3. Sequence harmony: detecting functional specificity from alignments

    PubMed Central

    Feenstra, K. Anton; Pirovano, Walter; Krab, Klaas; Heringa, Jaap

    2007-01-01

    Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww. PMID:17584793

  4. Dynamic facial expression recognition based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  5. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships

    PubMed Central

    2014-01-01

    Background Miscanthus is a promising biomass crop for temperate regions. Despite the increasing interest in this plant, limited sequence information has constrained research into its biology, physiology, and breeding. The whole genome transcriptomes of M. sinensis and M. sacchariflorus presented in this study may provide good resources to understand functional compositions of two important Miscanthus genomes and their evolutionary relationships. Results For M. sinensis, a total of 457,891 and 512,950 expressed sequence tags (ESTs) were produced from leaf and rhizome tissues, respectively, which were assembled into 12,166 contigs and 89,648 singletons for leaf, and 13,170 contigs and 112,138 singletons for rhizome. For M. sacchariflorus, a total of 288,806 and 267,952 ESTs from leaf and rhizome tissues, respectively, were assembled into 8,732 contigs and 66,881 singletons for leaf, and 8,104 contigs and 63,212 singletons for rhizome. Based on the distributions of synonymous nucleotide substitution (Ks), sorghum and Miscanthus diverged about 6.2 million years ago (MYA), Saccharum and Miscanthus diverged 4.6 MYA, and M. sinensis and M. sacchariflorus diverged 1.5 MYA. The pairwise alignment of predicted protein sequences from sorghum-Miscanthus and two Miscanthus species found a total of 43,770 and 35,818 nsSNPs, respectively. The impacts of striking mutations found by nsSNPs were much lower between sorghum and Miscanthus than those between the two Miscanthus species, perhaps as a consequence of the much higher level of gene duplication in Miscanthus and resulting ability to buffer essential functions against disturbance. Conclusions The ESTs generated in the present study represent a significant addition to Miscanthus functional genomics resources, permitting us to discover some candidate genes associated with enhanced biomass production. Ks distributions based on orthologous ESTs may serve as a guideline for future research into the evolution of Miscanthus species as well as its close relatives sorghum and Saccharum. PMID:24884969

  6. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships.

    PubMed

    Kim, Changsoo; Lee, Tae-Ho; Guo, Hui; Chung, Sung Jin; Paterson, Andrew H; Kim, Do-Soon; Lee, Geung-Joo

    2014-05-18

    Miscanthus is a promising biomass crop for temperate regions. Despite the increasing interest in this plant, limited sequence information has constrained research into its biology, physiology, and breeding. The whole genome transcriptomes of M. sinensis and M. sacchariflorus presented in this study may provide good resources to understand functional compositions of two important Miscanthus genomes and their evolutionary relationships. For M. sinensis, a total of 457,891 and 512,950 expressed sequence tags (ESTs) were produced from leaf and rhizome tissues, respectively, which were assembled into 12,166 contigs and 89,648 singletons for leaf, and 13,170 contigs and 112,138 singletons for rhizome. For M. sacchariflorus, a total of 288,806 and 267,952 ESTs from leaf and rhizome tissues, respectively, were assembled into 8,732 contigs and 66,881 singletons for leaf, and 8,104 contigs and 63,212 singletons for rhizome. Based on the distributions of synonymous nucleotide substitution (Ks), sorghum and Miscanthus diverged about 6.2 million years ago (MYA), Saccharum and Miscanthus diverged 4.6 MYA, and M. sinensis and M. sacchariflorus diverged 1.5 MYA. The pairwise alignment of predicted protein sequences from sorghum-Miscanthus and two Miscanthus species found a total of 43,770 and 35,818 nsSNPs, respectively. The impacts of striking mutations found by nsSNPs were much lower between sorghum and Miscanthus than those between the two Miscanthus species, perhaps as a consequence of the much higher level of gene duplication in Miscanthus and resulting ability to buffer essential functions against disturbance. The ESTs generated in the present study represent a significant addition to Miscanthus functional genomics resources, permitting us to discover some candidate genes associated with enhanced biomass production. Ks distributions based on orthologous ESTs may serve as a guideline for future research into the evolution of Miscanthus species as well as its close relatives sorghum and Saccharum.

  7. Semantic transference for enriching multilingual biomedical knowledge resources.

    PubMed

    Pérez, María; Berlanga, Rafael

    2015-12-01

    Biomedical knowledge resources (KRs) are mainly expressed in English, and many applications using them suffer from the scarcity of knowledge in non-English languages. The goal of the present work is to take maximum profit from existing multilingual biomedical KRs lexicons to enrich their non-English counterparts. We propose to combine different automatic methods to generate pair-wise language alignments. More specifically, we use two well-known translation methods (GIZA++ and Moses), and we propose a new ad hoc method specially devised for multilingual KRs. Then, resulting alignments are used to transfer semantics between KRs across their languages. Transference quality is ensured by checking the semantic coherence of the generated alignments. Experiments have been carried out over the Spanish, French and German UMLS Metathesaurus counterparts. As a result, the enriched Spanish KR can grow up to 1,514,217 concepts (originally 286,659), the French KR up to 1,104,968 concepts (originally 83,119), and the German KR up to 1,136,020 concepts (originally 86,842). Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes.

    PubMed

    Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann

    2018-03-27

    Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with previous reports in that pockets of genetic differentiation exists between populations of this widely dispersed species but, overall, the species remains relatively homogeneous.

  9. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    EPA Science Inventory

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  10. MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences

    PubMed Central

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.

    2016-01-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193

  11. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    PubMed

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  12. QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families

    PubMed Central

    Gudyś, Adam; Deorowicz, Sebastian

    2017-01-01

    The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins. PMID:28139687

  13. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.

    PubMed

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-03-01

    In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.

  14. WEBnm@ v2.0: Web server and services for comparing protein flexibility.

    PubMed

    Tiwari, Sandhya P; Fuglebakk, Edvin; Hollup, Siv M; Skjærven, Lars; Cragnolini, Tristan; Grindhaug, Svenn H; Tekle, Kidane M; Reuter, Nathalie

    2014-12-30

    Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.

  15. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    PubMed

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  16. EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity

    PubMed Central

    Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D

    2006-01-01

    Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150

  17. Community detection in sequence similarity networks based on attribute clustering

    DOE PAGES

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    2017-07-24

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  18. Community detection in sequence similarity networks based on attribute clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  19. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  20. The VirusBanker database uses a Java program to allow flexible searching through Bunyaviridae sequences.

    PubMed

    Fourment, Mathieu; Gibbs, Mark J

    2008-02-05

    Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically.

  1. Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution.

    PubMed

    Brody, Thomas; Yavatkar, Amarendra S; Park, Dong Sun; Kuzin, Alexander; Ross, Jermaine; Odenwald, Ward F

    2017-06-01

    Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter's ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses.

  2. Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes

    PubMed Central

    2012-01-01

    Background Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods. Results We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. Conclusions Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem. PMID:22759433

  3. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    PubMed Central

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709

  4. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection.

    PubMed

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.

  5. Incorporating evolution of transcription factor binding sites into annotated alignments.

    PubMed

    Bais, Abha S; Grossmann, Stefen; Vingron, Martin

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.

  6. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment

    PubMed Central

    Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.

    2007-01-01

    The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268

  7. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    PubMed Central

    2011-01-01

    Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/. Conclusions Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners. PMID:21682895

  8. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts?

    PubMed

    Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y

    2014-12-23

    Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.

  9. Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors

    NASA Astrophysics Data System (ADS)

    Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.

    2010-06-01

    Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.

  10. Application of discrete Fourier inter-coefficient difference for assessing genetic sequence similarity.

    PubMed

    King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach

    2014-01-01

    Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.

  11. Sequence analysis of Leukemia DNA

    NASA Astrophysics Data System (ADS)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  12. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin.

    PubMed

    Mor, A; Amiche, M; Nicolas, P

    1994-05-31

    A novel antimicrobial peptide, designated dermaseptin b, was isolated from the skin of the arboreal frog Phyllomedusa bicolor. This 27-residue peptide amide is basic, containing 3 lysine residues that punctuate an alternating hydrophobic and hydrophilic sequence. In helix-inducing solvent, dermaseptin b adopts an amphipathic alpha-helical conformation that most closely resembles class L amphipathic helixes, with all lysine residues on the polar face of the helix. The peptide exhibits growth inhibition activity in vitro against a broad spectrum of pathogenic microorganisms including yeast and bacteria as well as various filamentous fungi that are responsible for severe opportunistic infections accompanying acquired immunodeficiency syndrome and the use of immunosuppressive agents. Maximized pairwise sequence alignment of dermaseptin b and dermaseptin s, a 34-residue antimicrobial peptide previously isolated from Phyllomedusa sauvagii, reveals 81% amino acid identity. No other significant similarity was found between dermaseptin b and any prokaryotic or eukaryotic protein, but similarity was found with adenoregulin (38% amino acid postional identity), a 33-residue peptide that enhances binding of agonists to the A1 adenosine receptor. The synthetic replicates of dermaseptin b and adenoregulin displayed similar but nonidentical spectra of antimicrobial activity, and both peptides were devoid of lytic effect on mammalian cells. Accordingly, the observation that adenoregulin enhances binding of agonists to the adenosine receptor may in fact be a consequence of its ability to alter the structure of biological membranes and to produce signal transduction via interactions with the lipid bilayer, bypassing cell surface receptor interactions.

  13. Koi herpesvirus encodes and expresses a functional interleukin-10.

    PubMed

    Sunarto, Agus; Liongue, Clifford; McColl, Kenneth A; Adams, Mathew M; Bulach, Dieter; Crane, Mark St J; Schat, Karel A; Slobedman, Barry; Barnes, Andrew C; Ward, Alister C; Walker, Peter J

    2012-11-01

    Koi herpesvirus (KHV) (species Cyprinid herpesvirus 3) ORF134 was shown to transcribe a spliced transcript encoding a 179-amino-acid (aa) interleukin-10 (IL-10) homolog (khvIL-10) in koi fin (KF-1) cells. Pairwise sequence alignment indicated that the expressed product shares 25% identity with carp IL-10, 22 to 24% identity with mammalian (including primate) IL-10s, and 19.1% identity with European eel herpesvirus IL-10 (ahvIL-10). In phylogenetic analyses, khvIL-10 fell in a divergent position from all host IL-10 sequences, indicating extensive structural divergence following capture from the host. In KHV-infected fish, khvIL-10 transcripts were observed to be highly expressed during the acute and reactivation phases but to be expressed at very low levels during low-temperature-induced persistence. Similarly, KHV early (helicase [Hel] and DNA polymerase [DNAP]) and late (intercapsomeric triplex protein [ITP] and major capsid protein [MCP]) genes were also expressed at high levels during the acute and reactivation phases, but only low-level expression of the ITP gene was detected during the persistent phase. Injection of khvIL-10 mRNA into zebrafish (Danio rerio) embryos increased the number of lysozyme-positive cells to a similar degree as zebrafish IL-10. Downregulation of the IL-10 receptor long chain (IL-10R1) using a specific morpholino abrogated the response to both khvIL-10 and zebrafish IL-10 transcripts, indicating that, despite the structural divergence, khvIL-10 functions via this receptor. This is the first report describing the characteristics of a functional viral IL-10 gene in the Alloherpesviridae.

  14. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.

    PubMed

    Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka

    2013-07-01

    We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.

  15. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity

    PubMed Central

    Kuraku, Shigehiro; Zmasek, Christian M.; Nishimura, Osamu; Katoh, Kazutaka

    2013-01-01

    We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology. PMID:23677614

  16. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  17. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    PubMed Central

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-01-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083

  18. Maintaining neutral sagittal cervical alignment after football helmet removal during emergency spine injury management.

    PubMed

    Decoster, Laura C; Burns, Matthew F; Swartz, Erik E; Murthi, Dinakar S; Hernandez, Adam E; Vailas, James C; Isham, Linda L

    2012-04-15

    Descriptive laboratory study. To determine whether the placement of padding beneath the occiput after helmet removal is an effective intervention to maintain neutral sagittal cervical spine alignment in a position comparable with the helmeted condition. Current on-field recommendations for managing football athletes with suspected cervical spine injuries call for face mask removal, rather than helmet removal, because the combination of helmet and shoulder pads has been shown to maintain neutral cervical alignment. Therefore, in cases when helmet removal is required, recommendations also call for shoulder pad removal. Because removal of equipment causes motion, any technique that postpones the need to remove the shoulder pads would reduce prehospital motion. Four lateral radiographs of 20 male participants were obtained (age = 23.6 ± 2.7 years). Radiographs of participants wearing shoulder pads and helmet were first obtained. The helmet was removed and radiographs of participants with occipital padding were obtained immediately and 20 minutes later and finally without occipital padding. Cobb angle measurements for C2-C6 vertebral segments were determined by an orthopedic spine surgeon blinded to the study's purpose. Intraobserver reliability was determined using intraclass coefficient analysis. Measurements were analyzed using a 1×4 repeated-measures analysis of variance and post hoc pairwise comparisons with Bonferroni correction. Intraobserver analysis showed excellent reliability (intraclass correlation = 1.0; 95% confidence interval [CI], 0.999-1.0). Repeated-measures analysis of variance detected significant differences (F(3,17) = 13.34; P < 0.001). Pairwise comparisons revealed no differences in cervical alignment (all measurements reported reflect lordosis) when comparing the baseline helmeted condition (10.1° ± 8.7°; 95% CI, 6.0-14.1) with the padded conditions. Measurements taken after removal of occipital padding (14.4° ± 8.1°; 95% CI, 10.6-18.2) demonstrated a significant increase in cervical lordosis compared with the immediate padded measurement (9.5° ± 6.9°; 95% CI, 6.3-12.7; P = 0.011) and the 20-minute padded measurement (6.5° ± 6.8°; 95% CI, 3.4-9.7; P < 0.001). Although face mask removal remains the standard, if it becomes necessary to remove the football helmet in the field, occipital padding (along with full body/head immobilization techniques) may be used to limit cervical lordosis, allowing safe delay of shoulder pad removal.

  19. On the Impact of Widening Vector Registers on Sequence Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram

    2016-09-22

    Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based onmore » striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.« less

  20. T-BAS: Tree-Based Alignment Selector toolkit for phylogenetic-based placement, alignment downloads and metadata visualization: an example with the Pezizomycotina tree of life.

    PubMed

    Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François

    2017-04-15

    High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. SPHINX--an algorithm for taxonomic binning of metagenomic sequences.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S

    2011-01-01

    Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.

  2. Adaptive Local Realignment of Protein Sequences.

    PubMed

    DeBlasio, Dan; Kececioglu, John

    2018-06-11

    While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.

  3. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  4. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  5. Solving the problem of Trans-Genomic Query with alignment tables.

    PubMed

    Parker, Douglass Stott; Hsiao, Ruey-Lung; Xing, Yi; Resch, Alissa M; Lee, Christopher J

    2008-01-01

    The trans-genomic query (TGQ) problem--enabling the free query of biological information, even across genomes--is a central challenge facing bioinformatics. Solutions to this problem can alter the nature of the field, moving it beyond the jungle of data integration and expanding the number and scope of questions that can be answered. An alignment table is a binary relationship on locations (sequence segments). An important special case of alignment tables are hit tables ? tables of pairs of highly similar segments produced by alignment tools like BLAST. However, alignment tables also include general binary relationships, and can represent any useful connection between sequence locations. They can be curated, and provide a high-quality queryable backbone of connections between biological information. Alignment tables thus can be a natural foundation for TGQ, as they permit a central part of the TGQ problem to be reduced to purely technical problems involving tables of locations.Key challenges in implementing alignment tables include efficient representation and indexing of sequence locations. We define a location datatype that can be incorporated naturally into common off-the-shelf database systems. We also describe an implementation of alignment tables in BLASTGRES, an extension of the open-source POSTGRESQL database system that provides indexing and operators on locations required for querying alignment tables. This paper also reviews several successful large-scale applications of alignment tables for Trans-Genomic Query. Tables with millions of alignments have been used in queries about alternative splicing, an area of genomic analysis concerning the way in which a single gene can yield multiple transcripts. Comparative genomics is a large potential application area for TGQ and alignment tables.

  6. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    PubMed

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  7. Risk of breast cancer with CXCR4-using HIV defined by V3 loop sequencing.

    PubMed

    Goedert, James J; Swenson, Luke C; Napolitano, Laura A; Haddad, Mojgan; Anastos, Kathryn; Minkoff, Howard; Young, Mary; Levine, Alexandra; Adeyemi, Oluwatoyin; Seaberg, Eric C; Aouizerat, Bradley; Rabkin, Charles S; Harrigan, P Richard; Hessol, Nancy A

    2015-01-01

    Evaluate the risk of female breast cancer associated with HIV-CXCR4 (X4) tropism as determined by various genotypic measures. A breast cancer case-control study, with pairwise comparisons of tropism determination methods, was conducted. From the Women's Interagency HIV Study repository, one stored plasma specimen was selected from 25 HIV-infected cases near the breast cancer diagnosis date and 75 HIV-infected control women matched for age and calendar date. HIV-gp120 V3 sequences were derived by Sanger population sequencing (PS) and 454-pyro deep sequencing (DS). Sequencing-based HIV-X4 tropism was defined using the geno2pheno algorithm, with both high-stringency DS [false-positive rate (3.5) and 2% X4 cutoff], and lower stringency DS (false-positive rate, 5.75 and 15% X4 cutoff). Concordance of tropism results by PS, DS, and previously performed phenotyping was assessed with kappa (κ) statistics. Case-control comparisons used exact P values and conditional logistic regression. In 74 women (19 cases, 55 controls) with complete results, prevalence of HIV-X4 by PS was 5% in cases vs 29% in controls (P = 0.06; odds ratio, 0.14; confidence interval: 0.003 to 1.03). Smaller case-control prevalence differences were found with high-stringency DS (21% vs 36%, P = 0.32), lower stringency DS (16% vs 35%, P = 0.18), and phenotyping (11% vs 31%, P = 0.10). HIV-X4 tropism concordance was best between PS and lower stringency DS (93%, κ = 0.83). Other pairwise concordances were 82%-92% (κ = 0.56-0.81). Concordance was similar among cases and controls. HIV-X4 defined by population sequencing (PS) had good agreement with lower stringency DS and was significantly associated with lower odds of breast cancer.

  8. POEM: Identifying Joint Additive Effects on Regulatory Circuits.

    PubMed

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such "modularization" approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. The software described in this article is available at csgi.tau.ac.il/POEM/.

  9. POEM: Identifying Joint Additive Effects on Regulatory Circuits

    PubMed Central

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Motivation: Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such “modularization” approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Results: Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. Availability: The software described in this article is available at csgi.tau.ac.il/POEM/. PMID:27148351

  10. The VirusBanker database uses a Java program to allow flexible searching through Bunyaviridae sequences

    PubMed Central

    Fourment, Mathieu; Gibbs, Mark J

    2008-01-01

    Background Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. Results The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. Conclusion VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically. PMID:18251994

  11. Phylogeny of the Genus Flavivirus

    PubMed Central

    Kuno, Goro; Chang, Gwong-Jen J.; Tsuchiya, K. Richard; Karabatsos, Nick; Cropp, C. Bruce

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses. PMID:9420202

  12. Phylogeny of the genus Flavivirus.

    PubMed

    Kuno, G; Chang, G J; Tsuchiya, K R; Karabatsos, N; Cropp, C B

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.

  13. New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era (2010 JGI/ANL HPC Workshop)

    ScienceCinema

    Notredame, Cedric

    2018-05-02

    Cedric Notredame from the Centre for Genomic Regulation gives a presentation on New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era at the JGI/Argonne HPC Workshop on January 26, 2010.

  14. ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.

    PubMed

    Zaal, Dionne; Nota, Benjamin

    2016-01-01

    We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    PubMed Central

    2012-01-01

    Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984

  16. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia.

    PubMed

    Zuiter, Afnan Saeid; Sawwan, Jammal; Al Abdallat, Ayed

    2012-08-10

    Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  17. Bringing the fathead minnow (Pimephales promelas) into the ...

    EPA Pesticide Factsheets

    The fathead minnow (Pimephales promelas) is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. Throughout this time, a lot of knowledge has been gained about the fathead minnow’s biological responses to various xenobiotics. However, despite its importance as a model organism, the fathead minnow still has few publicly available gene sequences. Recently, Burns et al. (2015; Environ. Toxicol. Chem. 35:212) described the sequencing and de-novo assembly of the fathead minnow genome. Two draft genome assemblies are now publicly available on the GenBank database. However, on their own the draft assemblies remain of limited use to researchers who are primarily interested in the functional units of the genome, i.e. the genes. In the present study, an annotation pipeline, consisting of gene prediction, evidence alignment, and data synthesis, was applied to the fathead minnow SOAPdenovo assembly. Ab initio gene prediction was performed using AUGUSTUS, which provided a starting point of 43,345 gene predictions. Fathead minnow Expressed Sequence Tags (ESTs) and zebrafish protein-coding sequences (CDSs) were then aligned to the assembly using the corresponding spliced alignment methods of the program Exonerate. Of the over 240,000 EST alignments, 73% were successfully aligned with 90% or greater sequence identity and query coverage. Similarly, 39% of nearly 45,000 zebrafish co

  18. Improving transmission efficiency of large sequence alignment/map (SAM) files.

    PubMed

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.

  19. D-GENIES: dot plot large genomes in an interactive, efficient and simple way.

    PubMed

    Cabanettes, Floréal; Klopp, Christophe

    2018-01-01

    Dot plots are widely used to quickly compare sequence sets. They provide a synthetic similarity overview, highlighting repetitions, breaks and inversions. Different tools have been developed to easily generated genomic alignment dot plots, but they are often limited in the input sequence size. D-GENIES is a standalone and web application performing large genome alignments using minimap2 software package and generating interactive dot plots. It enables users to sort query sequences along the reference, zoom in the plot and download several image, alignment or sequence files. D-GENIES is an easy-to-install, open-source software package (GPL) developed in Python and JavaScript. The source code is available at https://github.com/genotoul-bioinfo/dgenies and it can be tested at http://dgenies.toulouse.inra.fr/.

  20. GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D

    NASA Astrophysics Data System (ADS)

    Richmond, Nicola J.; Abrams, Charlene A.; Wolohan, Philippa R. N.; Abrahamian, Edmond; Willett, Peter; Clark, Robert D.

    2006-09-01

    Alignment of multiple ligands based on shared pharmacophoric and pharmacosteric features is a long-recognized challenge in drug discovery and development. This is particularly true when the spatial overlap between structures is incomplete, in which case no good template molecule is likely to exist. Pair-wise rigid ligand alignment based on linear assignment (the LAMDA algorithm) has the potential to address this problem (Richmond et al. in J Mol Graph Model 23:199-209, 2004). Here we present the version of LAMDA embodied in the GALAHAD program, which carries out multi-way alignments by iterative construction of hypermolecules that retain the aggregate as well as the individual attributes of the ligands. We have also generalized the cost function from being purely atom-based to being one that operates on ionic, hydrogen bonding, hydrophobic and steric features. Finally, we have added the ability to generate useful partial-match 3D search queries from the hypermolecules obtained. By running frozen conformations through the GALAHAD program, one can utilize the extended version of LAMDA to generate pharmacophores and pharmacosteres that agree well with crystal structure alignments for a range of literature datasets, with minor adjustments of the default parameters generating even better models. Allowing for inclusion of partial match constraints in the queries yields pharmacophores that are consistently a superset of full-match pharmacophores identified in previous analyses, with the additional features representing points of potentially beneficial interaction with the target.

  1. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  2. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  3. DUK - A Fast and Efficient Kmer Based Sequence Matching Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingkun; Copeland, Alex; Han, James

    2011-03-21

    A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less

  4. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  5. TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.

    PubMed

    Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud

    2011-09-01

    Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.

  6. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  7. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  8. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions.

    PubMed

    Lee, Seung Yup; Skolnick, Jeffrey

    2007-07-01

    To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions. 2007 Wiley-Liss, Inc.

  9. cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.

    PubMed

    Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro

    2016-01-01

    Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.

  10. PCV: An Alignment Free Method for Finding Homologous Nucleotide Sequences and its Application in Phylogenetic Study.

    PubMed

    Kumar, Rajnish; Mishra, Bharat Kumar; Lahiri, Tapobrata; Kumar, Gautam; Kumar, Nilesh; Gupta, Rahul; Pal, Manoj Kumar

    2017-06-01

    Online retrieval of the homologous nucleotide sequences through existing alignment techniques is a common practice against the given database of sequences. The salient point of these techniques is their dependence on local alignment techniques and scoring matrices the reliability of which is limited by computational complexity and accuracy. Toward this direction, this work offers a novel way for numerical representation of genes which can further help in dividing the data space into smaller partitions helping formation of a search tree. In this context, this paper introduces a 36-dimensional Periodicity Count Value (PCV) which is representative of a particular nucleotide sequence and created through adaptation from the concept of stochastic model of Kolekar et al. (American Institute of Physics 1298:307-312, 2010. doi: 10.1063/1.3516320 ). The PCV construct uses information on physicochemical properties of nucleotides and their positional distribution pattern within a gene. It is observed that PCV representation of gene reduces computational cost in the calculation of distances between a pair of genes while being consistent with the existing methods. The validity of PCV-based method was further tested through their use in molecular phylogeny constructs in comparison with that using existing sequence alignment methods.

  11. Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space

    PubMed Central

    Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S.

    2015-01-01

    When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. PMID:25780763

  12. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  13. CoSMoS: Conserved Sequence Motif Search in the proteome

    PubMed Central

    Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I

    2006-01-01

    Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915

  14. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    PubMed

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  15. Easy and Fast Reconstruction of a 3D Avatar with an RGB-D Sensor.

    PubMed

    Mao, Aihua; Zhang, Hong; Liu, Yuxin; Zheng, Yinglong; Li, Guiqing; Han, Guoqiang

    2017-05-12

    This paper proposes a new easy and fast 3D avatar reconstruction method using an RGB-D sensor. Users can easily implement human body scanning and modeling just with a personal computer and a single RGB-D sensor such as a Microsoft Kinect within a small workspace in their home or office. To make the reconstruction of 3D avatars easy and fast, a new data capture strategy is proposed for efficient human body scanning, which captures only 18 frames from six views with a close scanning distance to fully cover the body; meanwhile, efficient alignment algorithms are presented to locally align the data frames in the single view and then globally align them in multi-views based on pairwise correspondence. In this method, we do not adopt shape priors or subdivision tools to synthesize the model, which helps to reduce modeling complexity. Experimental results indicate that this method can obtain accurate reconstructed 3D avatar models, and the running performance is faster than that of similar work. This research offers a useful tool for the manufacturers to quickly and economically create 3D avatars for products design, entertainment and online shopping.

  16. Alview: Portable Software for Viewing Sequence Reads in BAM Formatted Files.

    PubMed

    Finney, Richard P; Chen, Qing-Rong; Nguyen, Cu V; Hsu, Chih Hao; Yan, Chunhua; Hu, Ying; Abawi, Massih; Bian, Xiaopeng; Meerzaman, Daoud M

    2015-01-01

    The name Alview is a contraction of the term Alignment Viewer. Alview is a compiled to native architecture software tool for visualizing the alignment of sequencing data. Inputs are files of short-read sequences aligned to a reference genome in the SAM/BAM format and files containing reference genome data. Outputs are visualizations of these aligned short reads. Alview is written in portable C with optional graphical user interface (GUI) code written in C, C++, and Objective-C. The application can run in three different ways: as a web server, as a command line tool, or as a native, GUI program. Alview is compatible with Microsoft Windows, Linux, and Apple OS X. It is available as a web demo at https://cgwb.nci.nih.gov/cgi-bin/alview. The source code and Windows/Mac/Linux executables are available via https://github.com/NCIP/alview.

  17. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  18. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  19. Global Network Alignment in the Context of Aging.

    PubMed

    Faisal, Fazle Elahi; Zhao, Han; Milenkovic, Tijana

    2015-01-01

    Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human. By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.

  20. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

Top